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Abstract
The Wells–Riley model has been widely used to estimate airborne infection risk, typ-
ically from a deterministic point of view (i.e., focusing on the average number of
infections) or in terms of a per capita probability of infection. Some of its main limita-
tions relate to considering well-mixed air, steady-state concentration of pathogen in the
air, a particular amount of time for the indoor interaction, and that all individuals are
homogeneous and behave equally. Here, we revisit the Wells–Riley model, providing a
mathematical formalism for its stochastic version, where the number of infected indi-
viduals follows a Binomial distribution. Then, we extend the Wells–Riley methodology
to consider transient behaviours, randomness, and population heterogeneity. In partic-
ular, we provide analytical solutions for the number of infections and the per capita
probability of infection when: (i) susceptible individuals remain in the room after the
infector leaves, (ii) the duration of the indoor interaction is random/unknown, and (iii)
infectors have heterogeneous quanta production rates (or the quanta production rate of
the infector is random/unknown). We illustrate the applicability of our new formula-
tions through two case studies: infection risk due to an infectious healthcare worker
(HCW) visiting a patient, and exposure during lunch for uncertain meal times in differ-
ent dining settings. Our results highlight that infection risk to a susceptible who remains
in the space after the infector leaves can be nonnegligible, and highlight the importance
of incorporating uncertainty in the duration of the indoor interaction and the infectivity
of the infector when estimating risk.
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1 INTRODUCTION

Airborne transmission is a common infection route for many
respiratory pathogens and can be particularly important due
to its facilitation of superspreading events, often requiring
tailored mitigations such as face masks, ventilation, or air
cleaning. Transmission of airborne infections is complex and
the mode of transmission may vary with different pathogens.
For example, tuberculosis spreads almost exclusively through
the air via inhalation of very small aerosols less than 5 𝜇m
diameter (Wang et al., 2021), while influenza is thought to be
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spread through both small aerosols and larger droplets which
can be inhaled or transferred through touch and surface con-
tamination (Milton et al., 2013). For some pathogens, such as
influenza and severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), disentangling the preferred form of trans-
mission can be challenging; transmission risk can sometimes
be environment-dependent, and possibly include a combina-
tion of various routes (Bueno de Mesquita et al., 2020; Wang
et al., 2021).

In order to develop a better understanding of transmission
mechanisms and to quantify the likely impact of different mit-
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2 EDWARDS ET AL.

igation strategies, one can use a quantitative microbial risk
assessment (QMRA) approach. QMRA models assess expo-
sure to particular risks or hazards and use a dose–response
approach to characterise the likelihood of an adverse health
outcome from exposures to pathogens (Haas, 2020). Previous
applications of QMRA include assessing faecal contami-
nation in water systems (Soller et al., 2010), food-borne
diseases (Pérez-Rodríguez et al., 2008), and more recently
respiratory pathogen transmission, for example, the transmis-
sion of influenza and SARS-CoV-2 (Buonanno et al., 2020;
Kitajima et al., 2020; Miller et al., 2022; Wilson et al., 2021).

To date, the majority of QMRA models for assessing
airborne infection risk within indoor environments use the
traditional Wells–Riley approach (Riley et al., 1978; Wells,
1955), which considers that the probability of each single
susceptible individual (e.g., sharing an indoor space with
a constant number I of infectious individuals) becoming
exposed (i.e., infected but not yet infectious) during a time
interval [0,T] is

P(T) =
E(T)

S0
= 1 − e

−
Iqp

Q
T
, (1)

where P(T) is the per capita probability of becoming
exposed/infected, E(T) is the estimated mean number of
exposures (i.e., infections) during [0,T], S0 is the initial num-
ber of susceptible people, p [m3 min−1] is the pulmonary
breathing rate of each individual, Q [m3 min−1] is the extract
ventilation rate in the space, and q [quanta min−1] is the
quanta production rate by the infectious individuals. A quan-
tum is defined as the number of infectious airborne particles
required to infect an individual; in particular, one quan-
tum inhaled by an individual will cause an infection with
probability 1 − e−1 (≈ 63.2%) (Wells, 1955). The quanta
generation rate, q, cannot be experimentally measured, but
estimated epidemiologically. If the exposure time, ventilation
rate, and number of exposures are known from a particular
outbreak, then the quanta generation rate can be calculated
using Equation (1) (Sze To & Chao, 2010).

The standard Wells–Riley equation (1) relies on four key
assumptions: (i) the air in the indoor space is well-mixed
so that the concentration of pathogen in the air is spatially
homogeneous, (ii) the concentration of pathogen in the air is
at steady-state during [0,T], (iii) individuals behave equally,
and (iv) susceptible and infectious individuals remain in the
room for the whole time interval [0,T]. These are simplify-
ing assumptions which allow for mathematical tractability but
can lead to unrealistic predictions, especially in specific sce-
narios. The well-mixed assumption is commonly referred to
as a major limitation of the Wells–Riley model in the lit-
erature (Rudnick & Milton, 2003; Sze To & Chao, 2010;
Zemouri et al., 2020), since it does not allow one to con-
sider heterogeneities in the concentration of pathogen in the
air within the indoor setting (Qian et al., 2009). On the other
hand, the steady-state approximation does not allow consid-
eration of transient effects which can be especially relevant
under specific environmental conditions (e.g., a moving pop-

ulation (Arino et al., 2016), or under poor levels of ventilation
and during small time scales (Edwards et al., 2023)). Despite
these limitations, it does offer a quick and simple assessment
of the risk in many spaces, and is often viewed as a simpler
approach than other methods such as dose–response models
or computational fluid dynamics (CFD) methods (Sze To &
Chao, 2010; Zhao et al., 2022).

There have been many adaptations made to the traditional
Wells–Riley model over the years in an attempt to overcome
these limitations arising due to the original assumptions. Con-
sidering the influence of spatial effects on the Wells–Riley
model using methods such as coupling with CFD (Gao et al.,
2008; Qian et al., 2009; Tung & Hu, 2008; Wang et al.,
2022), integrated spatial flow fractions (Guo et al., 2021),
and general spatial adaptations (Lau et al., 2022; Pantelic
& Tham, 2012) are common in attempting to overcome the
well-mixed assumption. A recent adaption has been to con-
sider the change of quanta in the space in more detail by using
a transport equation for the concentration of pathogen in the
space characterising further dynamical features of the out-
break (Boonmeemapasuk & Pochai, 2022; Ding et al., 2022;
H. Li et al., 2021; J. Li et al., 2021; Qian et al., 2009; Timpi-
tak & Pochai, 2022). Gammaitoni and Nucci (1997) allowed
for varying quanta levels over time with a conservation equa-
tion, making the model closer to a dose–response approach,
which has then been used extensively (Beggs et al., 2010;
King et al., 2021; Knibbs et al., 2011; Rocha-Melogno et al.,
2023). Wood et al. (2023) explore a coupling of the quanta
conservation equation with an epidemic model, where they
analyse important time scales and features arising from the
dimensionless dynamical system.

Other adaptations look closer at individual aspects of the
Wells–Riley model. For example, levels of excess CO2 in the
air, commonly considered as a proxy for amount of shared
air in indoor spaces, was incorporated into the traditional
Wells–Riley model by Rudnick and Milton (2003). Zemouri
et al. (2020), Cammarata and Cammarata (2021), and Bur-
ridge et al. (2022) build on this work with further extensions
of the model. Other adaptions include accounting for the
deposition of airborne particles (Fisk et al., 2004; Franchi-
mon et al., 2008), or the consideration of mitigation measures
such as mask wearing (Dai & Zhao, 2020; Fantozzi et al.,
2022; Fennelly & Nardell, 1998; Nazaroff et al., 1998; Nicas,
1996), social distancing (Sun & Zhai, 2020; Shang et al.,
2022), and particle filtration or air cleaning (Fisk et al., 2004;
Nazaroff et al., 1998). The majority of the models mentioned
above typically only consider single-zone environments, but
multi-zone versions have also been developed in recent years
(Edwards et al., 2023; Ko et al., 2001, 2004; López-García
et al., 2019; Noakes & Sleigh, 2009).

Despite the many different generalisations of the Wells–
Riley model, many studies (Pavilonis et al., 2021; Rowe et al.,
2022; Zhao et al., 2022) still use the classical approach that
was originally presented by Wells (1955) and Riley et al.
(1978). Moreover, although the Wells–Riley model quantifies
individual infection risk in terms of a per capita probability of
infection, most of the applications in the literature typically
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THE WELLS–RILEY MODEL REVISITED 3

use deterministic approaches focusing on mean quantities
(e.g., mean number of individuals infected in an indoor space
during [0,T]), typically for single zones and under the steady-
state assumption. Stochastic formulations have been applied
using Monte Carlo numerical approaches (Noakes & Sleigh,
2009), but those which can deal with more complex sce-
narios (multi-zone, transient concentration, random length of
stay of the infectious individual, or heterogeneities across
individuals), and which can allow estimation of the probabil-
ity distribution of the number of exposed individuals during
a specific time interval, are still to be properly formulated
from a mathematical point of view. Having these tools would
enable a more realistic approach to modelling real scenarios,
better representing real-life behaviours and environments,
and accounting for stochasticity, making the model more
generalisable and applicable.

In this paper, we present stochastic variations to the
existing Wells–Riley framework that focus on probability dis-
tributions instead of mean quantities. This enables explicit
analytical solutions that allow for more general, and accu-
rate applications of the Wells–Riley model when assessing
risk. In particular, we analyse the nonnegligible risk of infec-
tion to a susceptible person who remains in the space long
after the infector leaves. We incorporate randomness in the
duration of the indoor interaction, acknowledging that it is
not always possible to know exactly how long an infec-
tious individual may be present for, especially when trying to
assess risk before the indoor gathering actually takes place.
Finally, we address population heterogeneity by consider-
ing a probability distribution for the quanta generation rate,
accounting for heterogeneous infectivity across individuals.
These advancements will allow for a wider use of the tra-
ditional Wells–Riley model, increasing its applicability and
providing a better representation of the heterogeneity and
uncertainty that is present when assessing infection risk in
real-life settings.

2 THE WELLS–RILEY MODEL

The traditional Wells–Riley model estimates airborne infec-
tion risk in an indoor setting during a fixed time period,
say [0,T] for some T > 0. One can classify individuals in
the population (N individuals in an indoor setting) accord-
ing to their disease status, typically Susceptible (S(t)) and
Infectious (I(t)), with S0 + I0 = N. Here, S0 is the number of
initially susceptible individuals and I0 is the initial number of
infectious individuals.

If the time period, [0,T], is relatively short (i.e., hours
rather than days), individuals who become infected are not
infectious during the indoor gathering, and the only infec-
tious individuals are the ones initially in the room at time
t = 0, I0. It is then more precise to classify individuals as
Susceptible (S(t)) and Exposed (E(t)), where individuals are
exposed if they have been infected but are not yet infec-
tious, whereas the number of infectious individuals remains
constant, I(t) = I0, and S(t) + E(t) + I0 = N for all t ∈ [0,T].

From now on, in this paper, we talk about “infections” and
“exposures” interchangeably, and focus on scenarios where
the incubation period of the pathogen is longer than the
time duration of the indoor interaction, so that individuals
become infected but not infectious during the time scales of
interest.

A deterministic version of the standard Wells–Riley model,
or if one interprets S(t) and E(t) as mean quantities, can be
obtained via the ordinary differential equations (ODEs)

dS(t)
dt

= −pC(t)S(t),

dE(t)
dt

= pC(t)S(t),

(2)

which represent a Susceptible–Exposed (SE) compartmen-
tal epidemic model (Edwards et al., 2023). Infectious quanta
is defined in such a way that the rate at which individuals
are infected is considered to be proportional to the con-
centration of pathogen in the air at any given time, C(t)
[quanta m−3], where the constant of proportionality is the
pulmonary (breathing) rate p [m3 min−1], leading to the per
capita infectivity rate pC(t). Although we consider here an
SE compartmental epidemic model to represent a duration
of the indoor interaction which is shorter than the incu-
bation period of the pathogen (so that individuals become
exposed but not yet infectious), the Wells–Riley methodology
has also been linked to other types of compartmental epi-
demic models, such as the Susceptible-Infected-Susceptible
(SIS) (López-García et al., 2019) and Susceptible-Exposed-
Infected-Recovered (SEIR) (Wood et al., 2023), to model
alternative situations.

In particular, the concentration of pathogen in the air is
modelled via the ODE

v
dC(t)

dt
= qI0 − QC(t), (3)

where v [m3] is the room volume, q [quanta min−1] is the
quanta production rate, Q [m3 min−1] is the extract ventila-
tion rate, and I0 is the number of infectious individuals in the
room during the time interval of interest.

Equation (3) can be solved analytically to obtain a transient
solution for C(t). If we let the initial condition be C(t = 0) =
C0 = 0 (e.g., time t = 0 represents whenever the infector(s)
enter(s) the room), then we obtain the following solution:

C(t) =
qI0

Q

(
1 − e

−
Qt

v

)
, t ≥ 0. (4)

More general initial concentrations C0 > 0 may be consid-
ered instead to represent specific situations. Moreover, one

can solve Equation (3) for steady-state by setting
dC(t)

dt
= 0,

which leads to

C∗ =
qI0

Q
. (5)
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4 EDWARDS ET AL.

In the following subsections, we show how to exploit these
estimates of the concentration of pathogen in the air in order
to estimate the number of exposures during the time interval
of interest [0,T]. Finally, we note that although Q [m3 min−1]
represents an extract ventilation rate and is the parameter
considered in most applications of the Wells–Riley model
in the literature, there are other mechanisms that can con-
tribute to the removal of pathogenic material from the air,
and which can be easily incorporated into these models. In
particular the extract ventilation rate Q can be replaced by a
more general removal rate R [m3 min−1], which incorporates
other mechanisms such as viral inactivation (biological decay
in infectiousness of the pathogen) and viral deposition such
as onto surfaces or the ground (Miller et al., 2021), so that

R = Q + v ri + v rd,

where v [m3] is the volume of the space, ri [min−1] is the
viral inactivation rate, and rd [min−1] is the viral deposition
rate. We use Q from now on within the next sections to keep
notation consistent, but the more general removal rate R can
be used instead in all equations in this paper, depending on the
scenario under consideration. In fact, general removal rates
are considered in the case studies analysed in Section 4.

2.1 Steady-state concentration

From the steady-state concentration solution, Equation (5), to
estimate the number of exposed individuals during [0,T] one
just needs to set C(t) = C∗ during the time interval of interest
[0,T], and substitute it back into Equation (2), leading to the
solution

E(T) = S0

(
1 − e

−
pqI0

Q
T
)
.

Here, the per capita probability of infection is E(T)∕S0 =

1 − e
−

pqI0
Q

T
; that is, the standard Wells–Riley per capita prob-

ability of infection given in Equation (1) under steady-state
assumptions. From a stochastic point of view, E(T) can be
considered as a random variable rather than as a deterministic
or mean quantity. Since individuals become infected inde-
pendently of each other, one can interpret this as a sequence
of S0 Bernoulli experiments, so that the number of exposed
individuals in [0,T] follows a Binomial distribution

E(T) ∼ Bin

(
S0 , 1 − e

−
pqI0

Q
T
)
, (6)

which provides a stochastic interpretation of the deterministic
estimate. We note that the mean number of exposed individ-

uals during [0,T] is then S0

(
1 − e

−
pqI0

Q
T
)

. However, this

stochastic interpretation also allows one to estimate the prob-

ability of observing a specific number of exposures E(T) =
n,

ℙ{E(T) = n} =
(S0

n

)(
1 − e

−
pqI0

Q
T
)n(

e
−

pqI0
Q

T
)S0−n

, n ∈ {0, 1, … , S0}.

(7)
This distribution can also be derived from first principles
using the master equation (i.e., Kolmogorov differential
equations) of the stochastic process (see Appendix A).

2.2 Transient concentration

A particular limitation of the approach in Subsection 2.1 is
that the transient concentration of pathogen in the air, C(t)
for t ∈ [0,T], is approximated with the constant steady-state
value C∗; this can lead to an overestimation of the predicted
quanta concentration levels during early times and be particu-
larly unrealistic in scenarios with low ventilation rates, larger
room volumes, or when the infector is only present for a
short period of time (Edwards et al., 2023). Alternatively, the
transient solution of the concentration of airborne pathogen,
Equation (4), can be considered and substituted back into
Equation (2) to reach the more precise estimate (Gammaitoni
& Nucci, 1997; Sze To & Chao, 2010)

E(T) = S0

⎛⎜⎜⎝1 − e
pqI0
Q2

[
v

(
1−e

−
Q
v

T
)
−QT

]⎞⎟⎟⎠.
Following the same arguments as before, E(T) can be inter-
preted as a random variable in a stochastic version of the
Wells–Riley model, and follows a Binomial distribution

E(T) ∼ Bin
⎛⎜⎜⎝S0 , 1 − e

pqI0
Q2

[
v

(
1−e

−
Q
v

T
)
−QT

]⎞⎟⎟⎠,
so that the mean number of exposed individuals during [0,T]

is S0

⎛⎜⎜⎝1 − e
pqI0
Q2

[
v

(
1−e

−
Q
v

T
)
−QT

]⎞⎟⎟⎠, and

ℙ{E(T) = n} =
(S0

n

)(
1 − e

pqI0
Q2

[
v

(
1−e−

Q
v

T
)
−QT

])n(
e

pqI0
Q2

[
v

(
1−e−

Q
v

T
)
−QT

])S0−n

for n ∈ {0, 1, … , S0}.

3 BEYOND THE WELLS–RILEY
MODEL: RANDOMNESS,
HETEROGENEITY, AND TRANSIENT
BEHAVIOURS

In this section, we propose extensions of the traditional
Wells–Riley model to scenarios that are more representative
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THE WELLS–RILEY MODEL REVISITED 5

of those experienced in real life. In Section 3.1, transient
effects are incorporated by analysing the situation where the
infectious individual(s) eventually leave(s) the room, whereas
the susceptible individuals stay. In Section 3.2, we consider
the unknown duration of an interaction with an infectious
individual by incorporating a random time for the length of
exposure, T . Finally, we explore infectiousness heterogeneity
across individuals in Section 3.3 by considering a probability
distribution for the quanta production rate q.

3.1 The infector leaves the room

In Section 2, we estimated the risk for susceptible individuals
who share the same room with the initial I0 infectors during a
time period of [0,T] for some time T > 0. However, we note
that depending on the ventilation settings for the space, the
environmental conditions (e.g., temperature, relative humid-
ity), or the biological properties of the airborne pathogen
itself, susceptible individuals are also exposed to a (poten-
tially nonnegligible) residual risk even after the infector(s)
leave(s) the room, if they remain in situ. For example, a recent
study reported evidence to suggest COVID-19 transmission
in a shared bathroom between an infectious individual and a
susceptible one who entered up to 40 minutes after the infec-
tor had left (Jung et al., 2021) and we see further evidence of
transmission between neighbouring zones through connected
airflow (Eichler et al., 2021; Jung et al., 2021; SAGE, 2021)
demonstrating the possibility of airborne transmission despite
the absence of an infector.

We focus here on estimating infection risk for susceptible
individuals who remain in the room during [0,T + t], whereas
the infector(s) leave(s) at time T , for some T , t > 0; in Sec-
tion 4.1, this will apply to a scenario where an infectious
healthcare worker (HCW) visits the room of a suscepti-
ble hospital patient during a time interval [0,T]. We note
that our analysis here can be easily adapted to the situa-
tion where a susceptible individual enters the room after the
infector has already left. The overall infection risk for each
susceptible individual during [0,T + t], in terms of the per
capita infection probability P(T + t) of the individual being
exposed/infected during [0,T + t], can be split according
to two distinct periods: the probability of the suscepti-
ble individual becoming exposed/infected during the time
period during which the infector is present ([0,T]), P1(T),
and the probability of the susceptible individual becoming
exposed/infected during the time period after the infector
leaves the room ([T ,T + t]), P2(T ,T + t), due to pathogenic
material which remains in the air. In particular, the over-
all probability of infection during [0,T + t] for a susceptible
individual in the indoor setting is

P(T + t) = ℙ{infection in [0,T + t]}

= ℙ{′′infection in [0,T]′′ or

′′no infection in [0,T] and infection in [T ,T + t]′′}

= P1(T) + (1 − P1(T))P2(T ,T + t). (8)

The per capita probability of each susceptible individual
to become exposed during [0,T], P1(T), can be calculated as
described in Section 2.2, using the transient concentration of
pathogen in the air during [0,T], so that

P1(T) = 1 − e
pqI0
Q2

[
v

(
1−e

−
Q
v

T
)
−QT

]
. (9)

To estimate exposure during the second period, when the
infector is absent, we consider

C(T) =
qI0

Q

(
1 − e

−
Q

v
T
)
, (10)

as the initial condition for the concentration of pathogen in
the air during the period [T ,T + t], while considering I0 = 0
during [T ,T + t] (since the infector(s) have left the room).
Thus, Equation (3) becomes

v
dC(T + t)

dt
= −QC(T + t),

and solving this with the initial condition in Equation (10)
gives

C(T + t) =
qI0

Q

(
1 − e

−
Q

v
T
)

e
−

Q

v
t
, t ≥ 0.

Hence, to calculate the per capita exposure probability during
[T ,T + t], P2(T ,T + t), we can solve

dP2(T ,T + t)
dt

= pC(T + t) =
pqI0

Q

(
1 − e

−
Q

v
T
)

e
−

Q

v
t
,

which gives

P2(T ,T + t) =
pqvI0

Q2

(
1 − e

−
Q

v
T
)(

1 − e
−

Q

v
t
)
, t ≥ 0.

(11)
As may be common in specific settings, such as hospitals or
care homes, susceptible individuals (e.g., a patient) may stay
in the room long after the infector(s) (e.g., an HCW) leave(s).
Thus, one can use the estimate

lim
t→∞

P2(T ,T + t) =
pqvI0

Q2

(
1 − e

−
Q

v
T
)
. (12)

Finally, combining Equations (8), (9), and (11) gives the
overall probability of infection during [0,T + t]

ℙ{infection in [0,T + t]} = 1 − e
pqI0
Q2

[
v

(
1−e−

Q
v

T
)
−QT

]
(

1 −
pqvI0

Q2

(
1 − e−

Q

v
T
)(

1 − e−
Q

v
t
))

.

(13)
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6 EDWARDS ET AL.

Setting t = 0 we recover the probability of infection during
[0,T], P1(T) in Equation (9). Once again, if t →∞, that is,
if the susceptible individual stays in the indoor space long
after the infector has left, the overall per capita probability of
infection can be estimated as

lim
t→∞

ℙ{infection in [0,T + t]} = 1 − e
pqI0
Q2

[
v

(
1−e−

Q
v

T
)
−QT

]

(
1 −

pqvI0

Q2

(
1 − e−

Q

v
T
))

. (14)

3.2 Uncertainty in the duration of the
indoor gathering

Here, we consider estimation of exposure risk during [0,T]
when there is randomness or uncertainty in the duration of
the event, T . In this case, we consider that T is a random vari-
able rather than a constant, which could represent the typical
duration of a particular type of gathering (e.g., lunch across
different hospitality venues in our results in Section 4.2) or
when analysing a particular outbreak where the duration is
not known. We focus on the steady-state modelling frame-
work for simplicity, and consider that T ∼ G(⋅) follows a
probability distribution with density function fT (t). One can
compute the per capita probability of infection in [0,T], using
Equation (1), as

P(T) = ∫
+∞

0

(
1 − e

−
pqI0

Q
t
)

fT (t) dt . (15)

While this expression provides quantification for the per
capita infection risk (i.e., the probability of infection for an
individual attending the indoor gathering, of duration [0,T],
where T is random and unknown), the distribution of the
number of infections/exposures, E(T), is trickier to find.
Given that the time duration is random, infection events are
no longer independent Bernoulli trials, and thus E(T) is not
a Binomial random variable. This lack of independence can
be noticed from the fact that, for example, if a particular
individual gets infected during [0,T], with T unknown, this
increases the likelihood of the indoor gathering having lasted
for a longer period (i.e., T being large), which increases the
probability of other individuals having been exposed during
the indoor gathering. Still, one can compute the probability
distribution of the number of exposures, in terms of prob-
abilities ℙ{E(T) = n} for n ∈ {0, 1, … , S0}, by solving the
integral

ℙ{E(T) = n} = ∫
+∞

0
ℙ{E(T) = n|T = t}fT (t) dt .

Recall, from Equation (6), that E(T|T = t) ∼ Binomial(S0,

1 − e
−

pqI0
Q

t
), and so we get

ℙ{E(T) = n} = ∫
+∞

0

(S0

n

)(
1 − e

−
pqI0

Q
t
)n(

e
−

pqI0
Q

t
)S0−n

fT (t) dt .

(16)
Although Equations (15) and (16) can easily be solved
numerically for any density function fT (t) of interest, we next
explore analytical expressions when specific distributions for
T are considered. In particular, we look at the Exponential
and Erlang distributions as they are typically used to model
waiting times in many applications.

3.2.1 Exponential distribution

One can model the duration of the indoor gathering in terms
of an Exponential distribution with rate 𝜆, T ∼ Exp(𝜆), so
that fT (t) = 𝜆e−𝜆t for t ≥ 0. Then, the per capita probabil-
ity of infection during [0,T], Equation (15), becomes (see
Appendix B for the full derivation)

P(T) = 1 −
𝜆

pqI0

Q
+ 𝜆

. (17)

On the other hand, the probability of observing n infections,
ℙ{E(T) = n}, can be estimated using Equation (16), which
gives

ℙ{E(T) = n} =
(S0

n

)∑n
i=0(−1)i

(n

i

) 𝜆

(S0−n+i)
pqI0

Q
+𝜆
,

n ∈ {0, 1, … , S0}. (18)

We refer the reader to Appendix C for a detailed derivation.

3.2.2 Erlang distribution

While the Exponential distribution has been widely used in
the literature to model waiting times in many applications,
partly due to its memoryless property, it can overestimate
short times (since the density function decays exponen-
tially from its maximum value at fT (0) = 𝜆), which may be
unrealistic in specific situations. Alternatively, the Erlang dis-
tribution (which is a Gamma distribution with integer shape
parameter) can be used, since it allows for a more Log-
Gaussian-like shape (unimodal and defined on the positive
real numbers); see, for example, Figure 4 where we use
the Erlang distribution to model lunch times in different
hospitality venues.

If one considers T ∼ Erlang(k, 𝜆), then fT (t) =
𝜆k tk−1 e−𝜆t

(k−1)!
for t ≥ 0. Thus, the per capita probability of infection during
[0,T] becomes (Appendix B)

P(T) = 1 −
⎛⎜⎜⎝

𝜆
pqI0

Q
+ 𝜆

⎞⎟⎟⎠
k

. (19)
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THE WELLS–RILEY MODEL REVISITED 7

The number of exposures during [0,T] can be estimated in
terms of the probabilities (Appendix C)

ℙ{E(T) = n} =
(S0

n

)∑n
i=0(−1)i

(n

i

)( 𝜆

(S0−n+i)
pqI0

Q
+𝜆

)k

,

n ∈ {0, 1, … , S0}. (20)

We note that, since the Erlang(k, 𝜆) can be thought of as
a sum of k exponential distributions with rate 𝜆, it is clear
that if one sets k = 1 in Equations (19) and (20), we recover
Equations (17) and (18) for the exponential case, respectively,
as expected.

3.3 Infectiousness heterogeneity

The standard Wells–Riley model relies on the assumption that
all infectors, I0, release pathogenic material [quanta] at a con-
stant and common rate q. However, population heterogeneity
in infectiousness is very common for many pathogens (Lloyd-
Smith et al., 2005), which is one of the reasons why estimates
for the quanta rate q for many pathogens often amount to
significantly wide ranges (Mikszewski et al., 2022). The
infectivity of a given individual can depend on many dif-
ferent factors including their viral load (Kidd et al., 2021),
respiratory activity or behaviour (Buonanno et al., 2020),
time since infection (Ma et al., 2021), or symptoms (Wang
et al., 2023). Thus, it is of interest to consider the situa-
tion where the parameter q follows a probability distribution,
q ∼ G(⋅). If, for example, a single infector is in the room,
I0 = 1, their infectivity may be unknown and sampled from
the corresponding distribution instead, which incorporates
such heterogeneity at the population level.

As time T and the quanta production rate q both occur as
linear terms in the exponent when calculating the steady-state
per capita probability of infection, P(T) in Equation (1), our
results in Section 3.2 directly apply here when instead of a
random duration T , one considers a random quanta rate q ∼
G(⋅), for some generic probability distribution with density
function f (q), whereas T is constant. In particular, one gets

P(T) = ∫
+∞

0

(
1 − e

−
pqI0

Q
T
)

f (q) dq .

ℙ{E(T) = n} = ∫
+∞

0

(S0

n

)(
1 − e

−
pqI0

Q
T
)n(

e
−

pqI0
Q

T
)S0−n

f (q) dq , n ∈ {0, 1, … , S0}.

Thus, following the same arguments as in Section 3.2, and
if q ∼ Exp(μ) with rate μ, so that f (q) = μe−μq for q ≥ 0, we
get the per capita probability of infection during [0,T]

P(T) = 1 −
μ

pI0

Q
T + μ

,

and the number of exposures during [0,T] can be estimated
in terms of the probabilities

ℙ{E(T) = n} =
(S0

n

) n∑
i=0

(−1)i
(n

i

) μ

(S0 − n + i)
pI0

Q
T + μ

,

n ∈ {0, 1, … , S0}.

Alternatively, if one considers instead that q ∼ Erlang(k, μ),

so that f (q) =
μke−μq

(k−1)!
qk−1 for q ≥ 0, the per capita probability

of infection during [0,T] becomes

P(T) = 1 −
⎛⎜⎜⎝

μ
pI0

Q
T + μ

⎞⎟⎟⎠
k

,

and the number of exposures can be estimated via the
probabilities

ℙ{E(T) = n} =
(S0

n

) n∑
i=0

(−1)i
(n

i

)⎛⎜⎜⎝
μ

(S0 − n + i)
pI0

Q
T + μ

⎞⎟⎟⎠
k

,

n ∈ {0, 1, … , S0}.

4 RESULTS

In this section, we consider two case studies to show the
applicability of the methodology presented in Section 3 in
real-life scenarios. Case Study 1 (Section 4.1) refers to expo-
sure risk in a healthcare setting, and investigates risk once
the infector has left the room. This uses measured HCW visit
times to a single-bed room and explores the infection risk to
the susceptible patient who remains in the room long after the
infectious HCW leaves, exploiting our results in Section 3.1.
Case Study 2 (Section 4.2) explores infection risk when the
duration of the outbreak is unknown. In particular, we con-
sider data from the different times spent eating in various
restaurant environments, and explore how each hospitality
setting can lead to different infection risk depending on the
duration of lunch, using methodology from Section 3.2.

4.1 Case Study 1: Visit from a HCW

In this section, we model a scenario where an infectious HCW
enters a patient’s single-bed room in order to complete a par-
ticular care activity with a given duration, and then leaves.
We estimate the infection risk for the susceptible patient who
remains in the room for long after the infector has left (i.e.,
t →∞). In this section, we leverage our analytical results in
Section 3.1, and in particular Equation (14).

The HCW visit times used in this section were taken from
a previous study (King et al., 2021) which observed the
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8 EDWARDS ET AL.

F I G U R E 1 Violin plots illustrating the various durations of
healthcare worker (HCW) visits when carrying out one of five care activities
to a patient as measured by King et al. (2021).

duration of patient care for a variety of activities includ-
ing taking blood samples (“Bloods”, 13 visits recorded),
intravenous care (“IV”, 20 visits recorded), general checks
(“Check”, 13 visits recorded), observational care (“Obs”, 32
visits recorded), and doctors’ rounds (“Rounds”, 24 visits
recorded), totaling 102 recorded visits. We use the visits as
102 data points for the duration of care, which have mean
𝜇 = 4.37 min and standard deviation (SD) 𝜎 = 3.15 min .

We set v = 28.57 m3, which is the volume of a single-
bed room on a UK NHS Trust adult respiratory ward
used in our previous study (Edwards et al., 2023). For
illustrative purposes, and since the quanta production rate
for SARS-CoV-2 has been estimated to range from 15 to
more than 4000 quanta h−1 (Mikszewski et al., 2022), we
use q = 360 quanta h−1, equating to q = 6 quanta min−1 in
our results, and set the pulmonary breathing rate as p =
0.01 m3 min−1 (Noakes & Sleigh, 2009). A range of ven-
tilation rates are explored representing 0.5 Air Changes
per Hour (ACH), 1.5 ACH, 3 ACH, and 6 ACH, giv-
ing Q ∈ {0.238, 0.714, 1.428, 2.856} [m3 min−1]. For the
viral inactivation and deposition rates, we consider plausi-
ble values in ranges proposed in Miller et al. (2021), in
particular ri ∈ {0, 0.0035, 0.007, 0.0105} [min−1] and rd ∈

{0.005, 0.0115, 0.01815, 0.025} [min−1]. These combined
removal mechanisms can result in overall removal rates rang-
ing from R = 0.381 to R = 3.870 [m3 min−1], so in this sec-
tion we explore the values R ∈ {0.381, 1.143, 2.147, 3.870}
[m3 min−1].

In Figure 1, we plot the distribution of visit times (as a
violin plot) from HCWs for the five different care types in
King et al. (2021). We can observe slight variations across
the different activities, with “IV” and “Rounds” containing
specific outliers (representing longer times) compared to the
other activities. We can also see that “Check” typically has
the shortest visit length, and a narrower distribution compared
to other care types, with the shape of the violin plot concen-
trated around its mean. Apart from “Check,” the quartiles for
the other four types of care activity are similar in value, and

we see a similar violin shape in the main body, suggesting a
similar distribution of visit duration.

Figure 2 presents violin plots for the resulting infection
risk probability ℙ{infection in [0,∞)} using Equation (14),
for each care type and visit length. This probability esti-
mates the total risk of infection to the susceptible patient, who
remains in the room long after the infectious HCW has left.
We explore removal rates R ∈ {0.381, 1.143, 2.147, 3.870}
[m3 min−1] in Figure 2A–D. We note that for each removal
rate, “Check” typically leads to lower infection risk across
care types, which is consistent with it normally having
the lowest visit duration (Figure 1). The violin plots in
Figure 2 have similar shapes to those in Figure 1 for each
care type. As expected, increasing removal rates lead to
decreasing infection risk regardless of the care type. Increas-
ing removal rates also leads to decreasing variability (i.e.,
decreasing SD of the corresponding violin plots), suggest-
ing that increasing ventilation can lead to more homogeneous
infection risk across different visits (especially within the
same care type). However, the removal rates considered in
this section are not able to completely mitigate large infec-
tion risk episodes represented by outliers corresponding to
“IV” and “Rounds” type of care. This suggests that increasing
ventilation might not be enough when HCW visits are signif-
icantly long, and that additional mitigation strategies, such
as using masks, might be especially important during these
cases.

Our results above consider total infection risk, which
accounts for the risk during the visit (i.e., during [0,T],
where t = 0 represents the infectious HCW entering into the
patient’s room, and T is the time that the infector leaves the
room), as well as after the visit (i.e., [T ,∞)). It is of inter-
est then to analyse the relative importance of each of these
two time periods. In Figure 3A, we plot the total probabil-
ity of infection during [0,∞) for the susceptible patient in the
single-bed room, given by Equation (14), for all 102 observed
visit times (without distinguishing care type) and the different
removal rates. We also illustrate the contributing probabili-
ties which arise from each of the two time periods; Figure 3B
shows the probability of infection during [0,T] (i.e., when
the infector is present, Equation (9)), and Figure 3C shows
the probability of infection after the infector has left (Equa-
tion (12)). In Figure 3D, we plot the relative contribution of
the infection risk during the time period after the infector has
left on the total infection risk probability (Figure 3A), that
is,

Ptotal(T) − P1(T)
Ptotal(T)

× 100, (21)

where Ptotal(T) is computed via Equation (14), and P1(T) via
Equation (9).

When analysing the results in Figure 3A, noting that we
have used a log scale for the y-axis, we see that increasing
ventilation becomes more effective for longer HCW visits.
For relatively short time periods (less than 5 min), we observe
small overall probabilities of infection almost regardless of
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THE WELLS–RILEY MODEL REVISITED 9

F I G U R E 2 Violin plots for the distribution of total risk of infection to the susceptible patient due to the visit of an infectious healthcare worker (HCW)
(Equation (14) for t →∞), across different care types and removal rates: (A) R = 0.381 m3 min−1, (B) R = 1.143 m3 min−1, (C) R = 2.147 m3 min−1, and
(D) R = 3.870 m3 min−1.

the removal rate considered. On the other hand, relatively
longer times (more than 10 min) lead to significantly larger
infection risk probabilities, and the impact of the removal
rate becomes more noticeable. This feature is mirrored in
Figure 3B, when focusing on probability of infection during
the specific time period when the infectious HCW is still in
the room.

Importantly, the impact of increasing removal rates is more
substantial when focusing on the probability of infection once
the infector leaves (see Figure 3C). Despite the infector only
being present for a relatively short period of time (up to 20
min), the infection risk in Figure 3C is not negligible, espe-
cially for larger values of T and smaller removal rates R.
In particular, increasing removal rates have a considerable
impact on the risk of infection after the infector leaves the
room, with this difference growing with HCW visit length.
When the infector is present for longer than 5 min, we see
greater benefit in having a higher removal rate. This is directly
related to the fact that the amount of pathogen which can
accumulate in the air increases with T , and that in this type of
scenario the susceptible individual remains in the room long

after the infector has left (i.e., we are considering t →∞ in
Equation (14)).

In Figure 3D, we plot the relative contribution to the total
probability of infection from the infection risk during the time
period after the infectious HCW has left. This is shown for all
visit lengths and each of the four removal rates. We note that
the removal rates also have a similar effect here, and with
increasing removal rate, the percentage contributed from the
second period gets smaller. That is to say, the period of time
after the infector leaves becomes less important with larger
removal rates (and, thus, with increasing ventilation). This
is due to the fact that the removal mechanisms will reduce
the concentration of airborne pathogen faster, and thus reduce
the risk to the susceptible individual still in the room after
the infector leaves. It is clear that for short visit times, the
infection risk after the HCW leaves is an important factor to
consider, with the majority of the infection risk coming from
this period, particularly for smaller removal rates and shorter
visit times. Overall, we note the nonnegligible contribution to
the overall risk of infection that comes from the period when
the infector is not present.
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10 EDWARDS ET AL.

F I G U R E 3 Probabilities of infection for various healthcare worker (HCW) visit times, T, and varying removal rates for (A) the total period [0,∞)
(Equation (14)), (B) the period for when the infector is present only, [0, T] (Equation (9)), (C) the period after the infector has left, [T ,∞) (Equation (12)), and
(D) Relative contribution towards the total probability of infection from the probability of infection after the infector has left, defined in Equation (21).

A particular feature to highlight across all of the results in
Figure 3 is the importance of considering transient effects,
especially when modelling infection risk over small time
scales. We have illustrated the importance of the period once
the infector leaves, when infectious pathogen may remain in
the air and contribute to the infection risk for the susceptible
patient. This would otherwise be overlooked when using the
standard steady-state Wells–Riley model, since in this model
the concentration would be considered to be zero as soon as
the infector leaves.

4.2 Case Study 2: Random time spent in
different restaurant settings

In this section, we investigate the risk of infection posed by
having lunch in different restaurants, and while considering
an unknown (random) lunch duration T for different party
sizes, leveraging the methodology in Section 3.2.

We consider Erlang distributions to model the duration
of lunch, T ∼ Erlang(k , 𝜆), for some parameters (k, 𝜆). In

particular, we calibrate these parameters based on data from
a study which investigated the impact of social factors on the
duration of a meal time, which included different party sizes
in a selection of hospitality venues (Bell & Pliner, 2003).
This study considered three different venues: a fast-food
restaurant, a workplace cafeteria, and a moderately priced
restaurant. The party sizes ranged from one person, to 5+
people. Since we focus on analysing infection risk for the
group having the meal together, due to an infector being
present in this same group, we will consider here party sizes
larger than one. For our illustrative results, meal duration for
party sizes 5+ in Bell and Pliner (2003) have been used to
consider a party size of exactly five individuals. The mea-
sured mean meal duration, and its SD, for each party size
can be seen for the fast-food restaurant, the workplace cafe-
teria, and the moderately priced restaurant in Tables 1, 2, and
3, respectively.

As the data for the meal times in Bell and Pliner (2003)
are given in the form of the mean and SD, instead of as raw
data values, we use these summary statistics to calibrate the
Erlang parameters k (shape) and 𝜆 (rate). In particular, an
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THE WELLS–RILEY MODEL REVISITED 11

TA B L E 1 Observed average meal times, with standard deviation (SD), for various party sizes in a fast-food restaurant (Bell & Pliner, 2003), together
with calibrated Erlang distributions to model these.

Observed Modelled (Erlang (k , 𝝀))

Party size Mean 𝛍 [min] SD 𝝈 [min] Mean 𝛍 [min] SD 𝝈 [min] k 𝝀

2 18.2 6.0 17.8 5.9 9 0.5056

3 18.4 6.8 17.6 6.7 7 0.3979

4 19.7 7.2 18.4 7.0 7 0.3800

5 21.9 5.8 21.5 5.9 14 0.6510

TA B L E 2 Observed average meal times, with standard deviation (SD), for various party sizes in a workplace cafeteria (Bell & Pliner, 2003), together
with calibrated Erlang distributions to model these.

Observed Modelled (Erlang (k , 𝝀))

Party size Mean 𝛍 [min] SD 𝝈 [min] Mean 𝛍 [min] SD 𝝈 [min] k 𝝀

2 23.0 7.9 21.7 7.7 8 0.3685

3 33.0 11.3 34.8 11.6 9 0.2584

4 41.1 10.6 41.0 10.6 15 0.3658

5 44.0 14.2 45.8 14.5 10 0.2182

TA B L E 3 Observed average meal times, with standard deviation (SD), for various party sizes in a moderately priced restaurant (Bell & Pliner, 2003),
together with calibrated Erlang distributions to model these.

Observed Modelled (Erlang (k , 𝝀))

Party size Mean 𝛍 [min] SD 𝝈 [min] Mean 𝛍 [min] SD 𝝈 [min] k 𝝀

2 44.9 10.8 44.5 10.7 17 0.3849

3 47.2 10.1 47.6 10.1 22 0.4627

4 52.3 8.5 52.5 8.5 38 0.7239

5 58.5 13.1 58.7 13.1 20 0.3409

Erlang(k, 𝜆) distribution has mean and SD given as:

μ =
k
𝜆
, 𝜎 =

√
k

𝜆2
. (22)

Thus, for each pair of observed (μ, 𝜎) in Tables 1–3, for each
party size, the simultaneous equations in Equation (22) are
solved to get a corresponding value for k and 𝜆. Since the
shape parameter, k, takes integer values, the solution for k was
then rounded to the nearest integer. Calibrated parameters are
reported in Tables 1–3, and the resulting Erlang distributions
are plotted in Figure 4. We note that the rounding method
for k leads to a calibrated Erlang which does not precisely
match the observed mean (and SD) meal durations, but the
relative error is small, so that meal durations are relatively
well captured by the resulting Erlang distributions. In partic-
ular, the relative error is less than 6.50% for the mean and
less than 3.30% for the SD in the fast-food restaurant case,
less than 5.65% for the mean and less than 2.85% for the SD
in the workplace cafeteria case, and less than 1.64% for the

mean and less than 0.83% for the SD in the moderately priced
restaurant case, across all party sizes.

In Figure 4, the resulting Erlang distributions can be seen
for each party size, for all of the dining locations. Figure 4A
shows relatively small variability between the meal duration
for different party sizes when dining in a fast-food restaurant,
suggesting that, regardless of the number of people, typical
mean length remains the same. In the other two cases, there
is evidence of more variability between the time spent across
different party sizes. These results are rather intuitive to what
we would expect to see in everyday life. Typically, fast-food
settings are more informal and encourage a quicker dining
experience regardless of the number of individuals present,
whereas in more formal settings such as the workplace cafe
or restaurant, once seated you may be more likely to stay
for longer, especially for larger party sizes. Now, we aim to
explore the impact of these random meal durations, across
different party sizes and hospitality venues, on the infection
risk for the group (in terms of number of infections), if an
infector is present within it. That is, for a party size N, we
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12 EDWARDS ET AL.

F I G U R E 4 Calibrated Erlang density functions for each party size in the (A) fast-food restaurant, (B) workplace cafeteria, and (C) moderately priced
restaurant.

set the initial number of infectors to be I0 = 1, and the initial
number of susceptible individuals S0 = N − I0, and do not
consider any interaction with other individuals in the venue.
We set the pulmonary breathing rate to be p = 0.01 m3 min−1

(Noakes & Sleigh, 2009), and the quanta production rate q =
6 quanta min−1 as in the previous case study. The volumes of
each space are considered to be equal, so that our results focus
on analysing the impact of meal duration (which depends on
hospitality venue type and party size) as the key factor of
interest, while all other parameters/factors remain the same.
For illustrative purposes, we consider space dimensions of
3 × 10 × 10 (height [m] × width [m] × depth [m]) giving v =
300 m3. We explore ventilation rates of 3 and 1 ACH, giving
extract ventilation Q = 15 m3 min−1 and Q = 5 m3 min−1,
respectively. For the viral inactivation and removal rates, we
chose the midpoint of the ranges proposed in Miller et al.
(2021), leading to ri = 0.00525 min−1 and rd = 0.015 min−1.
Combining these with the extract ventilation rates lead us to
consider removal rates R = 21.075 m3 min−1 (corresponding
to 3 ACH) and R = 11.075 m3 min−1 (corresponding to 1
ACH).

Figure 5 shows the probability distribution of the number
of infections for each party size and hospitality venue, when
considering 3 ACH ventilation rate. The mean number of
infections is plotted as a vertical line for each histogram, and
these mean values are reported in the legend. Results suggest
a relatively low risk for all scenarios, with the most likely out-
come being zero infections (highest probability at zero). This
is consistent across all three dining settings. In all of the cases,
the mean number of exposures is less than 1, with the high-
est mean being 0.61 in the restaurant case with a party size
of 5, as one would expect. In general, larger party sizes lead
to higher risk of some infection(s) occurring: the probability
of getting exactly one infection during the meal is 20 − 37%
for a party size of 5, but less than 12% for a party size of
2. We also note that, in reality, the probability of having an
infector present would significantly increase for larger party
sizes, which is not explored in these results (where we assume
that a single infector is present, regardless of the scenario).
Similarly, in reality both the risk of an infector being present
and the total number of new infections would also be influ-
enced by the number of other people present in the restaurant.
Overall, the predicted number of infections in the moderately
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THE WELLS–RILEY MODEL REVISITED 13

F I G U R E 5 The probability of having a given number of exposures for different hospitality venues and party sizes. Volume of v = 300 m3, and
ventilation rate of 3 Air Changes per Hour (ACH). Mean numbers of infections are reported in the legend and plotted as vertical lines for each histogram.

priced restaurant is larger than in the workplace cafeteria, this
one being larger than in the fast-food venue, which is directly
related to the meal durations observed in Figure 4.

Another possibility for the low risk could be due to the
good levels of ventilation. It is possible that the ventilation
is muting some of the nuances due to the small variations
present in the distributions. For additional comparison, the
probability of a given number of exposures for the three dif-
ferent restaurant cases can be seen for four different party
sizes and a reduced ventilation rate of 1 ACH in Figure 6.

When we reduce the ventilation in these spaces, the dif-
ferences in risk becomes more noticeable, and we observe
a larger probability across all non-zero predicted exposures,
with a smaller probability of zero predicted exposures. In par-
ticular, the probability of zero exposures in a party size of 5
in a moderately priced restaurant has reduced from over 50%
in the 3 ACH case, to less than 30% in the 1 ACH case. This
increase in risk is also seen in the predicted mean number of
exposures, where the highest mean across all scenarios is now
1.08, compared to 0.61 in the 3 ACH case.

In Figures 5 and 6, the focus is in the population level
risk, in terms of the number of predicted exposures during
the meal. One can instead look at the risk posed to an indi-

vidual who is attending the event (per capita probability), and
study how this per capita risk is affected by the meal dura-
tion. The traditional Wells–Riley model (Equation (1)) offers
a per capita probability of an individual becoming infected
in a given scenario, for a given time duration T . In Sec-
tion 3.2.2, we introduced the per capita probability for an
individual when the exact time is not known, but is instead
represented through an Erlang distribution (Equation (19)).
Predictions given by these Equations (1) and (19) can be
now compared when considering the meal duration times for
the different hospitality venues. In this analysis, we consider
the room volume v = 300 m3, pulmonary breathing rate p =
0.01 m3 min−1, quanta production rate q = 6 quanta min−1,
and removal rate R = 11.075 m3 min−1.

To better understand the difference between per capita
probabilities for known and unknown exposure times, we take
a sample of 100 random time durations from each Erlang dis-
tribution across each dining setting and party size in Figure 4.
For each sampled meal duration, Equation (1) provides the
per capita infection risk probability for that specific dura-
tion of the meal. Thus, Equation (1) applied to 100 sampled
times (from each Erlang distribution in Figure 4, correspond-
ing to each hospitality venue and party size) gives 100 values
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14 EDWARDS ET AL.

F I G U R E 6 The probability of having a given number of exposures for different hospitality venues and party sizes. Volume of v = 300 m3, and
ventilation rate of 1 Air Changes per Hour (ACH). Mean numbers of infections are reported in the legend and plotted as vertical lines for each histogram.

of P(T), the per capita probability of infection estimated
by the traditional Wells–Riley model. These 100 values of
P(T) are plotted as violin plots in Figure 7. On the other
hand, each Erlang distribution in Figure 4 leads to a single
overall prediction P(T) from Equation (19), which estimates
the per capita infection risk probability accounting for the
uncertainty in meal duration encoded by the corresponding
Erlang distribution. This single prediction of P(T) is super-
imposed on each of the corresponding violin plots, as a black
dot.

From Figure 7, we see a similar pattern to that observed
across the probability distributions for the number of expo-
sures in Figures 5 and 6. In particular, the scenarios with
the typically shorter meal time durations experience the low-
est per capita infection risk probability, that is, the fast-food
restaurant has the lowest per capita risk. This is consis-
tent also across the party sizes with larger groups typically
experiencing a high individual per capita risk of infection,
as expected. We can also note how the per capita proba-
bility obtained via Equation (19), which estimates infection
risk while accounting for the uncertainty in the meal dura-
tion time encoded by the Erlang distribution, is able to
summarise all of the distribution from the traditional Wells–

Riley per capita (violin plot) into a single point (black dot),
across Figure 7A–C. Thus, by using our methodology in Sec-
tion 3, one can estimate infection risk in terms of P(T) while
accounting for the uncertainty in the time duration of the
indoor interaction.

An interesting feature to highlight on these plots is the
change in the per capita infection risk probability with party
size. It is expected that the per capita infection risk proba-
bility may vary across the different dining settings (i.e., that
the individual infection risk depends on the venue/indoor set-
ting). However, one would expect that the individual infection
risk does not depend on party size, if the number of infec-
tors present is fixed to I0 = 1; that is, Equations (1) and (19)
are both independent of the total population size, N. Through
Figure 7, we see that as the party size increases, so does the
per capita probability of infection. This is due to the fact
that the Erlang distributions across the party sizes and set-
tings account for the fact that individuals are likely to spend
longer in a particular venue if there are more people din-
ing (Figure 4). This highlights the importance of social and
behavioural factors in determining infection risk, which is
often overlooked when using traditional QMRA techniques
such as the Wells–Riley model, but which can be better

 15396924, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/risa.14295 by T

est, W
iley O

nline L
ibrary on [27/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



THE WELLS–RILEY MODEL REVISITED 15

F I G U R E 7 Violin plots for the distribution of per capita P(T) for the traditional Wells–Riley model (Equation (1)) with duration T sampled from the
Erlang distributions (Figure 4), along with the per capita P(T) for unknown T using an Erlang distribution (Equation (19)) for each party size in the (A)
fast-food restaurant, (B) workplace cafeteria, and (C) moderately priced restaurant.

explored via our newly proposed methodology by integrating
uncertainty in some model parameters.

5 DISCUSSION

In this study, we have extended the traditional Wells–Riley
framework, to assess risk in three situations: where the infec-
tor leaves the room but the susceptible remains; the duration
of the indoor interaction is random/unknown; or there exists
heterogeneity in infectivity across infectious individuals. We
have been able to compute the per capita probability of infec-
tion for each susceptible individual in these scenarios, and
to estimate the probability distribution for the number of
exposures/infections.

When using the traditional Wells–Riley model under the
steady-state assumption, the risk of infection is only non-
zero when the infector is present. However, the suspension
of infectious aerosols means that the risk remains possibly
long after the infector leaves. By using a transient concen-
tration of pathogen solution, we are able to model the gradual
growth and decay of the airborne pathogen concentration, and
as a result, the accompanying infection risk. This allows one

to compute the probability of infection whilst the infector is
present, and once they leave, giving a holistic risk assessment
to a susceptible individual, acknowledging that the risk of
infection stretches beyond the presence of an infector. This
aids our understanding of what governs infection risk, and
how this may differ across the two time periods. We pro-
vide the analytical solution for this probability for a single
zone where the susceptible individual is present for a partic-
ular time period (Equation (13)) or for long after the infector
leaves (Equation (14)).

The applicability of these results has been shown via a first
case study (Section 4.1), where we leveraged real-life HCW
visit times data, and estimate risk experienced by the sus-
ceptible patient before and after the infector (HCW) leaves
the space. We show that post-departure risk is nonnegligible,
and becomes even more important for shorter visit times, or
under smaller removal rates. In the results, we assume that the
susceptible individual is present for t →∞ after the infector
leaves. This is more relevant for hospitals wards, such as an
adult respiratory ward where patients are often admitted as
inpatients for longer periods. It is possible that the percentage
contribution from the period after the infector leaves is much
less if the susceptible individual also leaves shortly after.
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16 EDWARDS ET AL.

It is possible that we see such a large contribution from
the second period due to small time scales used for the pres-
ence of the infector. Even though these are realistic times
(taken from measured data), if we considered alternative sce-
narios where the infector was present for longer periods,
we may see a smaller overall contribution from the second
period. This would be scenarios where the first period dis-
plays steady-state-like behaviour. We can see hints of this in
Figure 3D, for example, in the case where we have the highest
removal rate (R = 3.97 m3 min−1) and the longest visit time
(19.28 min). This will most likely be the closest to steady-
state behaviour and thus, the contribution from the second
period is very small (1.71%), and could be seen as negligi-
ble. Simultaneously, this further illustrates the importance of
including the period after the infector leaves for shorter visits,
and poor removal rates as its relevance can vary depending on
the scenario parameters.

An example of the stochasticity that exists in real life,
which is overlooked by the traditional Wells–Riley model, is
not knowing the duration of an outbreak, or the time that the
infector is present in the space. In these scenarios, it may be
more suitable to consider a random duration, in the form of
a distribution. This way, we can estimate infection risk while
accounting for realistic time distributions that are represen-
tative of typical behaviour experienced in the corresponding
setting. We explored this methodology in Section 3.2, pro-
viding explicit solutions for steady-state concentration in a
single room for two well-known distributions commonly used
to model waiting times; Exponential and Erlang. A limitation
of this methodology is that we use the steady-state solution
for the concentration of airborne pathogen in the model, so
future work should be devoted to generalise these results for
a transient concentration of pathogen in the air.

In Case Study 2 (Section 4.2), we explore the possibil-
ity of not knowing the duration of the indoor interaction. In
particular, we consider infection risk during lunch in differ-
ent dining settings, and for different party sizes, by fitting
an Erlang distribution to measured meal duration data. The
resulting Erlang distributions varied across the scenarios with
long meal durations experienced more so in the workplace
cafeteria or in the moderately priced restaurant, where as the
fast-food restaurant had much smaller meal durations and
less variation across the party sizes. This pattern was con-
sistent with the infection risk, where settings of typically
longer meal durations lead to a higher risk of infection, as
does the increase in the party size. We observed how decreas-
ing the removal rate increased the risk of infection across
all scenarios, but the distribution of the risk of possible pre-
dicted exposures was still dominated by the distributions of
meal durations.

When analysing the per capita probability of infection
(Figure 7), we saw the importance of considering social fac-
tors when assessing infection risk. Intuitively, the per capita
probability of infection should be unaffected by change in
population size under the assumption that a single infector is
present, but we saw how the typical time spent in each sce-
nario is highly influenced by social setting and party size,

leading to variations in the per capita probability that are
often overlooked when the exact exposure time is known. The
per capita probability of infection for an Erlang-distributed
time duration, represented as a single point in Figure 7, is
closely aligned to the mean value of the standard Wells–Riley
per capita probability of infection across 100 time durations
sampled from the corresponding Erlang distribution. Thus,
our single estimate is able to quantify infection risk while
accounting for the uncertainty in the duration of the indoor
interaction. This demonstrates the importance of incorporat-
ing uncertainty in the duration of the indoor interaction when
estimating infection risk, rather than using a single estimate
of this duration.

6 CONCLUSION

In this work, we have presented new mathematical formu-
lations to assess infection risk that build on the existing
Wells–Riley framework. Through the inclusion of stochastic-
ity, we are able to take the existing methodology presented
in the Wells–Riley model, and use this to derive the prob-
ability distribution of the number of exposures/infections.
Moreover, we extended these results in order to assess risk
of infection in the period after the infector leaves, and when
considering an unknown random outbreak duration, or quanta
generation rate, in terms of probability distributions. We illus-
trated this methodology through two case studies: one case
study that shows that the period after the infector leaves can
contribute nonnegligible risk, and another case study which
illustrates the risk for various restaurant scenarios where the
exact duration of each outbreak is unknown. We have suc-
cessfully developed new, explicit formulas for the infection
probability in these scenarios, increasing the applicability
of the Wells–Riley framework, with a better representa-
tion of the characteristics we face when trying to model
real-life outbreaks.
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A P P E N D I X A
Probability distribution of the number of exposures in [0,T] in the Wells–Riley model under steady-state conditions.

We consider here the stochastic version of the standard Wells–Riley model under steady-state concentration of pathogen in
the air. In particular, we consider N = S0 + I0 individuals in an indoor setting during [0,T]. The number of infectors over time
remains constant, I0, and the interest is in analysing the number of exposures that occur, E(T). To do this, we consider the
random variable S(t), representing the number of susceptible individuals at time t. According to Equation (2), one considers

that each susceptible individual becomes exposed, independently of each other, at rate pC∗, with C∗ =
qI0

Q
. Thus, the variable

S(t) follows a pure death process (see Allen, 2010, Section 6.4.2) taking decreasing values in {S0, S0 − 1, … , 2, 1, 0}, with initial
condition S(0) = S0.

The number of exposures in [0,T] is a random variable which can be analysed in terms of the number of susceptibles, since
E(T) = S0 − S(T). The number of susceptible individuals at any given time, S(t), can be studied in terms of the probabilities
pn(t) = ℙ{S(t) = n}, n ∈ {0, 1, … , S0}, which obey the Forward Kolmogorov equations (Allen, 2010, Section 5.6), typically
referred to as the master equation of the stochastic process,

dpn(t)
dt

= pC∗(n + 1)pn+1(t) − pC∗npn(t), n ∈ {0, 1, … , S0 − 1},

dpS0
(t)

dt
= −pC∗S0pS0

(t).

These differential equations can be solved in [0,T] using probability generating function techniques (see Allen, 2010,
Section 6.4.2), leading to

pn(T) = ℙ{S(T) = n} =
(S0

n

)
e−npC∗T

(
1 − e−pC∗T

)S0−n
, n ∈ {0, 1, … , S0}.

Finally, and since E(T) = S0 − S(T) so that ℙ{S(T) = n} = ℙ{E(T) = S0 − n}, and C∗ =
qI0

Q
, one gets

ℙ{E(T) = n} =
(S0

n

)(
1 − e

−
pqI0

Q
T
)n(

e
−

pqI0
Q

T
)S0−n

, n ∈ {0, 1, … , S0},

which proves Equation (7). Here, we have also used the fact that
(S0

n

)
=
( S0

S0−n

)
. Thus, the distribution of the number of exposed

individuals during [0,T], under steady-state conditions, is indeed a Binomial distribution

E(T) ∼ Bin

(
S0, 1 − e

−
pqI0

Q
T
)
.

A P P E N D I X B
Per capita probability of infection during [0,T] under Exponentially distributed or Erlang distributed random times.

Let us consider that T is exponentially distributed with rate 𝜆, T ∼ Exp(𝜆), so that fT (t) = 𝜆e−𝜆t for t ≥ 0. Then, the per capita
probability of infection during [0,T] is

P(T) = ∫
+∞

0

(
1 − e

−(
pqI0

Q
)t
)
𝜆e−𝜆t

= ∫
+∞

0
𝜆e−𝜆t dt − ∫

+∞

0
𝜆e

−(
pqI0

Q
+𝜆)t

dt

= 1 +
𝜆

pqI0

Q
+ 𝜆

[
e
−(

pqI0
Q

+𝜆)t
]+∞

t=0
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20 EDWARDS ET AL.

so that

P(T) = 1 −
𝜆

pqI0

Q
+ 𝜆

,

which corresponds to Equation (17).

If one considers instead T ∼ Erlang(k, 𝜆), so that fT (t) =
𝜆k tk−1 e−𝜆t

(k−1)!
for t ≥ 0, the per capita probability of infection during

[0,T] is given by

P(T) = ∫
+∞

0

(
1 − e

−(
pqI0

Q
)t
)
𝜆k tk−1 e−𝜆t

(k − 1)!
dt

= ∫
+∞

0

𝜆k tk−1 e−𝜆t

(k − 1)!
dt − ∫

+∞

0

𝜆k e
−(

pqI0
Q

+𝜆)t
tk−1

(k − 1)!
dt

=
𝜆k

(k − 1)! ∫
+∞

0
e−𝜆t tk−1 dt

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
(†)

−
𝜆k

(k − 1)! ∫
+∞

0
e
−(

pqI0
Q

+𝜆)t
tk−1 dt

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
(††)

.

One can compute (†)

∫
+∞

0

𝜆k

(k − 1)!
e−𝜆t tk−1 dt = 1

since it corresponds to integrating the density function of an Erlang (k, 𝜆). One can also compute (††)

∫
+∞

0

𝜆ktk−1

(k − 1)!
e
−(

pqI0
Q

+𝜆)t
dt =

⎛⎜⎜⎝
𝜆

pqI0

Q
+ 𝜆

⎞⎟⎟⎠
k

∫
+∞

0

tk−1

(k − 1)!

(
pqI0

Q
+ 𝜆

)k

e
−(

pqI0
Q

+𝜆)t
dt

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

Equals 1, since it is the density of an Erlang
(

k,
pqI0

Q
+𝜆

)

=

⎛⎜⎜⎝
𝜆

pqI0

Q
+ 𝜆

⎞⎟⎟⎠
k

.

Thus,

P(T) = 1 −
⎛⎜⎜⎝

𝜆
pqI0

Q
+ 𝜆

⎞⎟⎟⎠
k

,

which corresponds to Equation (19).
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A P P E N D I X C
Probability distribution of the number of exposures during [0,T] for Exponentially distributed and Erlang distributed
random times.

Let us consider that T is exponentially distributed with rate 𝜆, T ∼ Exp(𝜆), so that fT (t) = 𝜆e−𝜆t for t ≥ 0. Then, the
probability of observing exactly n exposures during [0,T], for n ∈ {0, 1, … , S0}, is given by

ℙ{E(T) = n} = ∫
+∞

0

(S0

n

)(
1 − e

−
pqI0

Q
t
)n(

e
−

pqI0
Q

t
)S0−n

𝜆e−𝜆t dt

=
(S0

n

)
𝜆 ∫

+∞

0

(
1 − e

−
pqI0

Q
t
)n

⏟⎴⎴⎴⏟⎴⎴⎴⏟
Use Binomial Expansion

(
e
−

pqI0
Q

t
)S0−n

e−𝜆t dt

=
(S0

n

)
𝜆 ∫

+∞

0

(
e
−

pqI0
Q

t
)S0−n

e−𝜆t
n∑

i=0

(−1)i
(n

i

)
e
−i

pqI0
Q

t
dt

=
(S0

n

)
𝜆

n∑
i=0

(−1)i
(n

i

)
∫

+∞

0
e
−
[
(S0−n+i)

pqI0
Q

+𝜆
]
t

dt

= −
(S0

n

)
𝜆

n∑
i=0

(−1)i
(n

i

)⎡⎢⎢⎣ 1

(S0 − n + i)
pqI0

Q
+ 𝜆

e
−
[
(S0−n+i)

pqI0
Q

+𝜆
]
t
⎤⎥⎥⎦
+∞

t=0

,

which leads to

ℙ{E(T) = n} =
(S0

n

) n∑
i=0

(−1)i
(n

i

)⎛⎜⎜⎝
𝜆

(S0 − n + i)
pqI0

Q
+ 𝜆

⎞⎟⎟⎠
k

, n ∈ {0, 1, … , S0},

corresponding to Equation (18).

Alternatively, if we consider T ∼ Erlang(k, 𝜆), so that fT (t) =
𝜆k tk−1 e−𝜆t

(k−1)!
for t ≥ 0, the probability of observing exactly n

exposures during [0,T], for n ∈ {0, 1, … , S0}, is given by

ℙ{E(T) = n} = ∫
+∞

0

(S0

n

)(
1 − e

−
pqI0

Q
t
)n(

e
−

pqI0
Q

t
)S0−n

𝜆k tk−1 e−𝜆t

(k − 1)!
dt

=
(S0

n

) 𝜆k

(k − 1)! ∫
+∞

0

(
1 − e

−
pqI0

Q
t
)n

⏟⎴⎴⎴⏟⎴⎴⎴⏟
Use Binomial Expansion

(
e
−

pqI0
Q

t
)S0−n

e−𝜆t tk−1 dt

=
(S0

n

) 𝜆k

(k − 1)! ∫
+∞

0

(
e
−

pqI0
Q

t
)S0−n

e−𝜆t tk−1
n∑

i=0

(−1)i
(n

i

)
e
−i

pqI0
Q

t
dt

=
(S0

n

) 𝜆k

(k − 1)!

n∑
i=0

(−1)i
(n

i

)
∫

+∞

0
e
−
[
(S0−n+i)

pqI0
Q

+𝜆
]
t

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

Let 𝛾i=(S0−n+i)
pqI0

Q
+𝜆

tk−1 dt

=
(S0

n

) n∑
i=0

(−1)i
(n

i

)( 𝜆

𝛾i

)k

∫
+∞

0
e−𝛾it

(𝛾i)
ktk−1

(k − 1)!
dt

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
Equals 1, since it is the density of an Erlang(k,𝛾i)

=
(S0

n

) n∑
i=0

(−1)i
(n

i

)( 𝜆

𝛾i

)k

.
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22 EDWARDS ET AL.

Finally, recalling that 𝛾i = (S0 − n + i)
pqI0

Q
+ 𝜆, we get

ℙ{E(T) = n} =
(S0

n

) n∑
i=0

(−1)i
(n

i

)⎛⎜⎜⎝
𝜆

(S0 − n + i)
pqI0

Q
+ 𝜆

⎞⎟⎟⎠
k

, n ∈ {0, 1, … , S0},

which corresponds to Equation (20).
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