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Empirical Risk Minimization with

Relative Entropy Regularization
Samir M. Perlaza, Gaetan Bisson, Iñaki Esnaola, Alain Jean-Marie, and Stefano Rini.

Abstract—The empirical risk minimization (ERM) problem with
relative entropy regularization (ERM-RER) is investigated under
the assumption that the reference measure is a σ-finite measure,
and not necessarily a probability measure. Under this assump-
tion, which leads to a generalization of the ERM-RER problem
allowing a larger degree of flexibility for incorporating prior
knowledge, numerous relevant properties are stated. Among these
properties, the solution to this problem, if it exists, is shown
to be a unique probability measure, often mutually absolutely
continuous with the reference measure. Such a solution exhibits a
probably-approximately-correct guarantee for the ERM problem
independently of whether the latter possesses a solution. For a
fixed dataset, the empirical risk is shown to be a sub-Gaussian
random variable when the models are sampled from the solution
to the ERM-RER problem. The generalization capabilities of
the solution to the ERM-RER problem (the Gibbs algorithm)
are studied via the sensitivity of the expected empirical risk to
deviations from such a solution towards alternative probability
measures. Finally, an interesting connection between sensitivity,
generalization error, and lautum information is established.

Index Terms—Supervised Learning, PAC-Learning, Regulariza-
tion, Relative Entropy, Empirical Risk Minimization, Gibbs Mea-
sure, Gibbs Algorithm, Generalization, and Sensitivity.

I. INTRODUCTION

In statistical machine learning, the problem of empirical

risk minimization (ERM) with relative entropy regularization

(ERM-RER) has been the workhorse for building probabil-

ity measures on the set of models, without any additional

assumption on the statistical description of the datasets. See

for instance [3]–[5] and [6]. Instead of additional statistical

assumptions on the datasets, which are typical in Bayesian

methods [7], relative entropy regularization requires a ref-

erence probability measure on the set of models, which is

external to the ERM problem. Often, such a reference measure

represents prior knowledge or side information and is chosen

for guiding the search of models towards those inducing low
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Polynésie Française, Faaa 98702, French Polynesia.
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empirical risks with high probability over seen and unseen

datasets. From this perspective, the reference measure can be

seen as an additional degree of freedom to improve the gen-

eralization capabilities of machine learning algorithms based

on ERM-RER, e.g, Gibbs algorithms [5], [8]–[15] and [16].

This new degree of freedom is one of the main motivations for

regularizing the ERM problem using relative entropy, or more

generally, any f -divergence regularization, as discussed in

[17], [18] and [19]. Beyond probability measures, as shown in

this paper, the reference measure can be any σ-finite measure

with arbitrary support. The flexibility introduced by this gen-

eralization becomes particularly relevant for the case in which

priors are available in the form of probability distributions

that can be evaluated up to some normalizing factor, cf. [20],

or cannot be represented by probability distributions, e.g.,

equal preferences among elements of infinite countable sets.

For some specific choices of σ-finite reference measures, the

ERM-RER boils down to particular cases of special interest:

(i) the information-risk minimization problem presented in

[21]; (ii) the ERM with differential entropy regularization

(ERM-DiffER); and (iii) the ERM with discrete entropy

regularization (ERM-DisER). See for instance [22] and ref-

erences therein. From this perspective, the proposed ERM-

RER formulation yields a unified mathematical framework that

comprises a large class of problems.

When the reference measure is a probability measure, the

solution to the ERM-RER problem is known to be unique

and correspond to a Gibbs probability measure. Such a Gibbs

probability measure has been studied using measure theoretic

and information theoretic notions in [9], [21], [23]–[30];

statistical physics in [3]; PAC (Probably Approximatively

Correct)-Bayesian learning theory in [31]–[34]; and proved

to be of particular interest in classification problems in [5],

[12], [18], [35]–[37] and [38]. In the general case in which

the reference is a σ-finite measure, a solution to the ERM-

RER problem does not always exist. Nonetheless, if it exists,

it is shown to be a unique Gibbs probability despite the fact

that its partition function is defined with respect to a σ-finite

measure. The condition for the existence is mild and is always

satisfied when the reference measure is a probability measure,

as highlighted above. Interestingly, such a solution is mutually

absolutely continuous with the reference measure in most

practical cases. Interestingly, most of the properties known for

the classical ERM-RER problem are shown to hold in the most

general case. For instance, the empirical risk observed when

models are sampled from the ERM-RER-optimal probability

measure is a sub-Gaussian random variable that exhibits a PAC

guarantee for the ERM problem without regularization.
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When the solution to the ERM-RER problem is used to sample

models to label unseen patterns, the process is known as the

Gibbs algorithm. One of the traditional performance metrics to

evaluate the generalization capabilities of the Gibbs algorithm

is the generalization error. When the reference measure is a

probability measure, a closed-form expression for the general-

ization error of the Gibbs algorithm is presented in [9], while

upper bounds have been derived in [16], [21], [28]–[34], [39]–

[52], and references therein. In this work, a new performance

metric coined sensitivity, which quantifies the variations of the

expected empirical risk due to deviations from the solution

of the ERM-RER problem is introduced. The sensitivity is

defined as the difference between two quantities: (a) The

expectation of the empirical risk with respect to the solution

to the ERM-RER problem; and (b) the expectation of the

empirical risk with respect to an alternative measure. The

absolute value of the sensitivity is shown to be upper bounded

by a term that is proportional to the squared-root of the relative

entropy of the alternative measure with respect to the ERM-

RER-optimal measure. Such bound allows providing lower and

upper bounds on the expected empirical risk after a deviation

from the ERM-RER-optimal measure towards an alternative

probability measure. More interestingly, the expectation (with

respect to the probability distribution of the datasets) of the

sensitivity to deviations to a specific measure is shown to be

equal to the generalization error of the Gibbs algorithm. Using

this result, the closed-form expression for the generalization

error of the Gibbs algorithm presented in [9] is shown to

hold even in the case in which the reference measure is a

σ-finite measure. Moreover, the generalization error is shown

to be upper bounded by a term that is proportional to the

squared-root of the lautum information between the models

and the datasets, cf. [53]. This bound is reminiscent of the

result in [30, Theorem 1] in which a similar bound is presented

using the mutual information instead of the lautum informa-

tion. While [30, Theorem 1] follows immediately from the

variational representation of relative entropy, c.f., [54, Lemma

4.18 (Transportation Lemma)], the new result follows from

the fact that the empirical risk when models are sampled from

the ERM-RER-optimal probability measure is a sub-Gaussian

random variable. Interestingly, the new upper-bound does not

require any of the conditions in [30, Theorem 1].

The remainder of this work is organized as follows. Section II

introduces two optimization problems: the ERM and the ERM-

RER. The asymmetry of the relative entropy is analyzed in

the context of the ERM-RER and two variants, coined Type-I

and Type-II, are distinguished. The former considers the case

in which the regularization is the relative entropy of the

optimization measure with respect to the reference measure.

The latter considers a regularization by the relative entropy

of the reference measure with respect to the optimization

measure. Section III presents the solution to the ERM-RER

problem in the general case and introduces its main properties.

Section IV introduces two new classes of reference measures

and the solution of the ERM-RER problem is shown to

exhibit different properties for each class. This section ends

by studying the ERM-RER problem in the special case in

which the reference measure is a Gibbs probability measure.

This special case exhibits a solution that is identical to the

solution to an ERM-RER problem whose reference measure

is the same used to build the above mentioned Gibbs measure.

Section V studies the properties of the log-partition function of

the ERM-RER-optimal probability measure. The first, second,

and third cumulants of the empirical risk when the models

are sampled from the ERM-RER-optimal measure and the

reference measure are respectively characterized. Section VI

and Section VII study the properties of the expectation and

variance of the empirical risk when the models are sampled

from the ERM-RER-optimal probability measure. These mean

and variance are compared with the mean and variance of the

empirical risk when models are sampled from the reference

measure. Section VIII introduces several explicit expressions

for the cumulant generating function of the empirical risk

when the models are sampled from the ERM-RER-optimal

measure. Using these equivalent expressions, it is shown that

empirical risk is a sub-Gaussian random variable when models

are sampled from the ERM-RER-optimal measure. Section IX

describes the monotonic concentration of the ERM-RER-

optimal probability measure when the regularization factor

tends to zero. Section X show that the empirical risk when the

models are sampled from the ERM-RER-optimal probability

measure exhibits a PAC-type guarantee with respect to the

ERM problem without regularization. Finally, Section XI stud-

ies the sensitivity of the expected empirical risk with respect to

deviations from the ERM-RER-optimal measure to alternative

measures and shows connections with the generalization error

and the lautum information. Section XII ends this work with

conclusions and a discussion on the results.

II. EMPIRICAL RISK MINIMIZATION (ERM)

Let M, X and Y , with M ⊆ R
d and d ∈ N, be sets of models,

patterns, and labels, respectively. A pair (x, y) ∈ X × Y is

referred to as a labeled pattern or as a data point. Given n
data points, with n ∈ N, denoted by (x1, y1), (x2, y2),
. . ., (xn, yn), the corresponding dataset is represented by the

tuple

z =
(

(x1, y1) , (x2, y2) , . . . , (xn, yn)
)

∈ (X × Y)
n
. (1)

Let the function f : M × X → Y be such that the label

assigned to the pattern x according to the model θ ∈ M is

f(θ, x). Let also the function

ℓ : Y × Y → [0,+∞] (2)

be such that given a data point (x, y) ∈ X×Y , the risk induced

by a model θ ∈ M is ℓ (f(θ, x), y). In the following, the risk

function ℓ is assumed to be nonnegative and for all y ∈ Y ,

ℓ (y, y) = 0.

The empirical risk induced by the model θ, with respect to

the dataset z in (1) is determined by the function Lz : M →
[0,+∞], which satisfies

Lz (θ) =
1

n

n
∑

i=1

ℓ (f(θ, xi), yi) . (3)
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Using this notation, the ERM consists of the following opti-

mization problem:

min
θ∈M

Lz (θ) . (4)

Let the set of solutions to the ERM problem in (4) be denoted

by

T (z) , arg min
θ∈M

Lz (θ) . (5)

Note that if the set M is finite, the ERM problem in (4) always

possesses a solution, and thus, |T (z)| > 0. Nonetheless, in

general, the ERM problem might not necessarily possess a

solution, i.e., |T (z)| = 0.

A. Notation and Main Assumptions

In the following, given a measurable space (Ω,F ), the

notation △ (Ω,F ) is used to represent the set of σ-finite

measures that can be defined over (Ω,F ). Given a mea-

sure Q ∈ △ (Ω,F ), the subset △Q (Ω,F ) of △ (Ω,F ) con-

tains all σ-finite measures that are absolutely continuous with

respect to the measure Q. Alternatively, the subset ▽Q (Ω,F )
of △ (Ω,F ) contains all probability measures P such that Q is

absolutely continuous with respect to P . Given a set A ⊂ R
d,

the Borel σ-field over A is denoted by B (A).

The main assumption adopted in this work is that the function

Lz in (3) is measurable with respect to the Borel measurable

spaces (M,B (M)) and ([0,+∞],B ([0,+∞])).

B. Relative Entropy Extended to σ-Finite Measures

In this work, the relative entropy, which is usually defined for

probability measures, is extended to σ-finite measures.

Definition 1 (Generalized Relative Entropy): Given two σ-

finite measures P and Q on the same measurable space, such

that P is absolutely continuous with respect to Q, the relative

entropy of P with respect to Q is

D (P‖Q) =

∫

dP

dQ
(x) log

Å

dP

dQ
(x)

ã

dQ(x), (6)

where the function dP
dQ is the Radon-Nikodym derivative of P

with respect to Q.

The relative entropy exhibits a property often referred to as

the information inequality [55, Theorem 2.6.3] in the case of

probability measures on (Ω,F ), with Ω a countable set. The

following theorem explores this property in a more general

scenario.

Theorem 1: If P and Q are both probability measures on a

general measurable space (Ω,F ), then,

D (P‖Q)>0, (7)

with equality if and only if P and Q are identical.

Proof: Consider the function f : [0,∞) → R such that for all

x ∈ (0,+∞), f(x) = x log(x) and f(0) = 0. Note that f is

strictly convex. If P and Q are both probability measures on

the measurable space (Ω,F ), the following holds:

D (P‖Q)=

∫

dP

dQ
(x) log

Å

dP

dQ
(x)

ã

dQ(x) (8)

=

∫

f

Å

dP

dQ
(x)

ã

dQ(x) (9)

>f

Å∫

dP

dQ
(x)dQ(x)

ã

(10)

=f (1) (11)

=0, (12)

where the inequality (11) follows from Jensen’s inequality [56,

Section 6.3.5]. Equality in (11) holds if and only if for all

x ∈ suppQ, dP
dQ (x) = 1, which implies that both P and Q

are identical. This completes proof.

If Q is not a probability measure, then it might be observed

that D (P‖Q) < 0. Consider for instance the case in which

P is a zero-mean Gaussian probability measure with variance

σ2 and Q is the Lebesgue measure on (R,B (R)). Hence,

the Radon-Nikodym derivative dP
dQ is the Gaussian probability

density function such that for all x ∈ R,

dP

dQ
(x)=

1√
2πσ2

exp

Å

− x2

2σ2

ã

. (13)

Under this assumption, the relative entropy of P with respect

to Q is the negative of the differential entropy of P . That

is,

D (P‖Q)=−1

2
log
(

2πǫσ2
)

, (14)

with ǫ being Néper’s constant. See for instance [55, Ex-

ample 8.1.2]. Hence, D (P‖Q) is negative for all σ2 ∈
(

1
2πǫ ,+∞

)

and nonnegative for all σ2 ∈
(

0, 1
2πǫ

]

. Finally,

note also that

lim
σ2→0

D (P‖Q)=+∞, and (15)

lim
σ2→+∞

D (P‖Q)=−∞. (16)

A central observation from (14) is that the equality

D (P‖Q) = 0 does not necessarily imply that P and Q are

identical measures. For instance, when σ2 = 1
2πǫ in (15), it

holds that D (P‖Q) = 0, while P is a Gaussian probability

measure and Q is the Lebesgue measure.

The following property, known for the case of probability

measures as the joint-convexity of the relative entropy, is

extended by the following theorem.

Theorem 2: Let P1 and P2 be two probability measures and Q1

and Q2 be two σ-finite measures, all on the same measurable

space. For all i ∈ {1, 2}, let Pi be absolutely continuous with

respect to Qi. Then, for all λ ∈ [0, 1],

D (λP1 + (1− λ)P2‖λQ1 + (1− λ)Q2)

6λD (P1‖Q1) + (1− λ)D (P2‖Q2) . (17)

Equality in (17) holds if and only if P1 = P2 and Q1 = Q2.

Proof: The proof is presented in Appendix A.
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C. ERM with Relative Entropy Regularization

Given a dataset, the expected empirical risk induced by a

measure P ∈ ∆(M,B (M)) is defined as follows.

Definition 2 (Expected Empirical Risk): Let P be a probability

measure in ∆(M,B (M)). The expected empirical risk with

respect to the dataset z in (1) induced by the measure P is

Rz (P ) =

∫

Lz (θ) dP (θ), (18)

where the function Lz is in (3).

The ERM-RER problem is parametrized by a σ-finite measure

in △ (M,B (M)) and a positive real, which are referred

to as the reference measure and the regularization factor,

respectively. Let Q ∈ △ (M,B (M)) be a σ-finite measure

and let λ be a positive real. The ERM-RER problem, with

parameters Q and λ, consists of the following optimization

problem:

min
P∈△Q(M,B(M))

Rz (P ) + λD (P‖Q) , (19a)

s. t.

∫

dP (θ) = 1, (19b)

where the dataset z is in (1), and the functional Rz is defined

in (18).

D. Type-I and Type-II Relative Entropy Regularization

The optimization problem in (19) is coined Type-I ERM-RER

in [57] in the aim of distinguishing it from the optimization

problem

min
P∈▽Q(M,B(M))

Rz (P ) + λD (Q‖P ) , (20a)

s. t.

∫

dP (θ) = 1, (20b)

which is coined Type-II ERM-RER.

The Type-II ERM-RER problem in (20), when Q is a probabil-

ity measure, exhibits a solution that is identical to the solution

to the following Type-I ERM-RER problem [57, Theorem 1]:

min
P∈△Q(M,B(M))

∫

log(β+Lz(ν))dP (ν)+D(P‖Q), (21a)

s. t.

∫

dP (θ) = 1, (21b)

where β is a constant chosen to satisfy

∫

λ

β + Lz (ν)
dQ(ν)=1. (21c)

Essentially, by appropriately transforming the objective func-

tion, an equivalence can be established between Type-I and

Type-II ERM-RER problems. Hence, without loss of general-

ity, the remainder of this work focuses exclusively on Type-I

ERM-RER, which is simply referred to as ERM-RER.

III. THE SOLUTION TO THE ERM-RER PROBLEM

The solution to the ERM-RER problem in (19) is presented

in terms of two objects. First, the function KQ,z : R → R ∪
{+∞} such that for all t ∈ R,

KQ,z (t)=log

Å∫

exp (t Lz (θ)) dQ(θ)

ã

, (22)

with Lz in (3). Second, the set KQ,z ⊂ (0,+∞), which is

defined by

KQ,z,

ß

s ∈ (0,+∞) : KQ,z

Å

−1

s

ã

< +∞
™

. (23)

The notation for the function KQ,z and the set KQ,z are

chosen such that their parametrization by (or dependence on)

the dataset z in (1) and the σ-finite measure Q in (19) are

highlighted.

The following lemma describes the set KQ,z .

Lemma 1: The set KQ,z in (23) is a convex subset of R. If the

measure Q in (19) is a probability measure, then, the set KQ,z

in (23) satisfies

KQ,z = (0,+∞). (24)

Proof: The proof is presented in Appendix B.

Using this notation, the solution to the ERM-RER problem

in (19) is presented by the following theorem.

Theorem 3: If λ ∈ KQ,z , with KQ,z in (23), the solution to the

optimization problem in (19) is a unique probability measure,

denoted by P
(Q,λ)
Θ|Z=z

, which satisfies for all θ ∈ suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=exp

Å

−KQ,z

Å

− 1

λ

ã

− 1

λ
Lz (θ)

ã

, (25)

where the function Lz is defined in (3) and the function KQ,z

is defined in (22).

Proof: The proof is presented in Appendix C.

Contrary to the ERM problem in (4), which does not nec-

essarily possess a solution, the ERM-RER problem in (19)

always possess a solution when Q is a probability measure.

This is essentially because the set KQ,z is the set of all

positive reals (Lemma 1), and thus, the condition λ ∈ KQ,z

is always verified. On the contrary, when Q is a σ-finite

measure, the solution to the ERM-RER problem in (19)

depends on whether λ ∈ KQ,z . If the solution exists, it

is P
(Q,λ)
Θ|Z=z

in (25), which is a unique probability measure

referred to as the Gibbs measure [58]. The function KQ,z is

often referred to as the log-partition function, see for instance,

[59, Section 7.3.1].

The following lemma shows that the Radon-Nikodym deriva-

tive in (25) is both nonnegative and finite.

Lemma 2: The Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25)

satisfies for all θ ∈ suppQ that

0 6
dP

(Q,λ)
Θ|Z=z

dQ
(θ) < +∞, (26)
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where the equality
dP

(Q,λ)

Θ|Z=z

dQ (θ) = 0 holds if and only

if Lz (θ) = +∞.

Proof: The proof is presented in Appendix D.

An immediate consequence of Lemma 2 is the equality

P
(Q,λ)
Θ|Z=z

({θ ∈ M : Lz (θ) = +∞}) = 0.

Theorem 3 shows that the probability measure P
(Q,λ)
Θ|Z=z

is

absolutely continuous with respect to the measure Q. The fol-

lowing lemma shows that the converse is also true if and only

if the set of models that lead to an infinite empirical risk exhibit

zero measure with respect to the reference measure Q.

Lemma 3: The σ-finite measure Q and the probability mea-

sure P
(Q,λ)
Θ|Z=z

in (25) are mutually absolutely continuous if and

only if

Q ({θ ∈ M : Lz (θ) = +∞}) = 0. (27)

Proof: The proof is presented in Appendix E.

The relevance of Lemma 3 is that it shows that if λ ∈
KQ,z , the collection of negligible sets with respect to the

measure P
(Q,λ)
Θ|Z=z

in (25) is identical to the collection of

negligible sets with respect to the measure Q in (19), under

the assumption in (27). Such an assumption is trivially true

when the function ℓ in (2) is bounded.

The following lemma shows that the negligible sets with

respect to the measure P
(Q,λ)
Θ|Z=z

in (25) are invariant with

respect to λ.

Lemma 4: For all (α, β) ∈ KQ,z×KQ,z , with KQ,z in (23), as-

sume that the probability measures P
(Q,α)
Θ|Z=z

and P
(Q,β)
Θ|Z=z

sat-

isfy (25) with λ = α and λ = β, respectively. Then, P
(Q,α)
Θ|Z=z

and P
(Q,β)
Θ|Z=z

are mutually absolutely continuous.

Proof: The proof is presented in Appendix F.

Particular assumptions on the set M and the reference mea-

sure Q lead to well-known instances of the ERM-RER prob-

lem in (19), as discussed hereunder.

A. Examples

Three examples are of particular interest: (a) The set M ⊂ R
d

is countable and the measure Q is the counting measure in

(M,B (M)), which leads to the ERM-DisER problem; (b)
The set M is an uncountable subset of R

d, and Q is the

Lebesgue measure on (M,B (M)), which leads to the ERM-

DiffER problem; and (c) The set M and the measure Q form

a Borel probability measure space (M,B (M) , Q), which

leads to the information-risk minimization problem.

1) ERM with Discrete Entropy Regularization: When the

set M ⊂ R
d is countable and the σ-finite measure Q in (19)

is the counting measure in (M,B (M)), given a probability

measure P ∈ △ (M,B (M)), the Radon-Nikodym deriva-

tive dP
dQ is a probability mass function, denoted by p. Thus,

the relative entropy D (P‖Q) is equivalent to the negative of

the discrete entropy induced by p [55, Chapter 2], denoted by

H(p). In this case, the ERM-RER in (19) can be re-written

as the following ERM-DisER problem:

min
p

∑

θ∈M

Lz (θ) p (θ)− λH (p) , (28)

where the optimization domain in (28) is the set of proba-

bility mass functions that can be defined over the measure

space △ (M,B (M)). In this special case, the probability

measure P
(Q,λ)
Θ|Z=z

in (25) whose probability mass function

is the solution to the ERM-DisER problem in (28) satis-

fies

dP
(Q,λ)
Θ|Z=z

dQ
(θ) =

exp
Ä

−Lz(θ)
λ

ä

∑

ν∈M

exp

Å

−Lz (ν)

λ

ã , (29)

which describes the discrete Gibbs probability measure

on △ (M,B (M)), with temperature parameter λ, and energy

function Lz in (3).

2) ERM with Differential Entropy Regularization:

When M ⊆ R
d is uncountable and the σ-finite measure Q

in (19) is the Lebesgue measure in (M,B (M)), for all

probability measures P ∈ ∆Q (M,B (M)), the Radon-

Nikodym derivative dP
dQ is a probability density function,

denoted by g. Thus, the relative entropy D (P‖Q) is

equivalent to the negative of the differential entropy induced

by g [55, Chapter 8], denoted by h(g). In this special case,

the ERM-RER in (19) can be re-written as the following

ERM-DiffER problem:

min
g

∫

M

Lz (θ) g (θ) dθ − λh (g) , (30)

where the optimization domain in (30) is the set of proba-

bility density functions that can be defined over the measure

space (M,B (M)). The probability measure P
(Q,λ)
Θ|Z=z

in (25)

whose probability density function is the solution to the ERM-

RER problem in (30) satisfies

dP
(Q,λ)
Θ|Z=z

dQ
(θ) =

exp
Ä

−Lz(θ)
λ

ä

∫

M

exp

Å

−Lz (ν)

λ

ã

dν

, (31)

which describes the absolutely continuous Gibbs probability

measure with temperature parameter λ and energy function Lz

in (3).

Both, the ERM-DiffER and ERM-DisER problems are closely

related to those typically arising while using Jayne’s maximum

entropy principle [60], [61] for classification problems such as

those in [35]–[37], and [62].

3) Information-Risk Minimization: When Q is a probabil-

ity measure, the ERM-RER in (19) is equivalent to the

information-risk minimization (IRM) problem in [21]. The

IRM problem in (19) is known to possess a unique solution

equal to the Gibbs probability measure in (25), as indepen-

dently shown in [21], [30], [58], [63], [64] and [65].
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B. Bounds on the Radon-Nikodym Derivative

The Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) is bigger for

models inducing smaller empirical risks, as shown by the

following corollary of Theorem 3.

Corollary 1: The Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25)

satisfies for all (θ1,θ2) ∈ suppQ × suppQ, with Lz (θ2) 6
Lz (θ1), that

dP
(Q,λ)
Θ|Z=z

dQ
(θ1) 6

dP
(Q,λ)
Θ|Z=z

dQ
(θ2) , (32)

with equality if and only if Lz (θ1) = Lz (θ2).

The intuition that follows from corollary 1 is that under

the assumption that the ERM problem in (4) possesses a

solution in the support of the reference measure, i.e., T (z)∩
suppQ is not empty, with T (z) in (5), the maximum of

the function
dP

(Q,λ)

Θ|Z=z

dQ in (25) is achieved by the models in

T (z)∩suppQ. When the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ
in (25) is either the probability mass function in (29) or the

probability density function in (31), Corollary 1 shows that

the elements of the set T (z) ∩ suppQ are the modes of the

corresponding probability density function or probability mass

function.

C. Asymptotes of the Radon-Nikodym Derivative

The following lemma describes the asymptotic behavior of

the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) when the

regulariation factor increases, i.e., λ → +∞ and the reference

measure Q is a probability measure.

Lemma 5: Let the measure Q in (19) be a probability

measure. Then, for all θ ∈ suppQ, the Radon-Nikodym

derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) satisfies

lim
λ→+∞

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=1. (33)

Proof: From Theorem 3, it follows that for all θ ∈
suppQ,

lim
λ→+∞

dP
(Q,λ)
Θ|Z=z

dQ
(θ)= lim

λ→+∞

exp
Ä

−Lz(θ)
λ

ä

∫

exp

Å

−Lz (ν)

λ

ã

dQ (ν)

(34)

=
1

∫

dQ (ν)

(35)

=1, (36)

where the function Lz is defined in (3). This completes the

proof.

Lemma 5 unveils the fact that, when Q is a probability

measure, in the limit when λ → +∞, both probability

measures P
(Q,λ)
Θ|Z=z

and Q are identical. This is consistent

with the fact that when λ tends to infinity, the optimization

problem in (19) boils down to exclusively minimizing the

relative entropy. Such minimum is zero and is observed when

both probability measures P
(Q,λ)
Θ|Z=z

and Q are identical (The-

orem 1). Such intuition breaks when the reference measure is

a σ-finite measure, but not a probability measure. In such a

case, the relative entropy term in (19) might be negative and

a minimum might not exist. See for instance, the case of the

relative entropy between a Gaussian measure and the Lebesgue

measure in (14), which satisfies (16).

The limit of the Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25),

when λ tends to zero from the right, can be studied using the

following set

Lz (δ),{θ ∈ M : Lz (θ) 6 δ} , (37)

where the function Lz is defined in (3) and δ ∈ [0,+∞). In

particular consider the nonnegative real

δ⋆Q,z , inf {δ ∈ [0,+∞) : Q (Lz (δ)) > 0} . (38)

Let also L⋆
Q,z be the following level set of the empirical risk

function Lz in (3):

L⋆
Q,z,

{

θ ∈ suppQ : Lz (θ) = δ⋆Q,z

}

. (39)

Using this notation, the limit of the Radon-Nikodym deriva-

tive
dP

(Q,λ)

Θ|Z=z

dQ in (25), when λ tends to zero from the right, is

described by the following lemma.

Lemma 6: If Q
Ä

L⋆
Q,z

ä

> 0, with the set L⋆
Q,z in (39) and Q

the σ-finite measure in (19), then for all θ ∈ suppQ, the

Radon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) satisfies

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

1

Q
Ä

L⋆
Q,z

ä1{θ∈L⋆
Q,z}. (40)

Alternatively, if Q
Ä

L⋆
Q,z

ä

= 0. Then, for all θ ∈ suppQ,

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

ß

+∞ if θ ∈ L⋆
Q,z

0 otherwise.
(41)

Proof: The proof is presented in Appendix G.

Consider that Q
Ä

L⋆
Q,z

ä

> 0, with L⋆
Q,z in (39). Under

this assumption, from Lemma 6, it holds that the probability

measure P
(Q,λ)
Θ|Z=z

asymptotically concentrates on the set L⋆
Q,z

when λ tends to zero from the right. More specifically, note
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that for all measurable sets A ⊆ L⋆
Q,z ∩ suppQ, it holds

that

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(A)= lim
λ→0+

∫

A

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) (42)

=

∫

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)1{θ∈A}dQ(θ) (43)

=

∫

1

Q
Ä

L⋆
Q,z

ä1{θ∈L⋆
Q,z}1{θ∈A}dQ(θ) (44)

=
1

Q
Ä

L⋆
Q,z

ä

∫

1{θ∈A}dQ (θ) (45)

=
Q (A)

Q
Ä

L⋆
Q,z

ä , (46)

where the equality in (43) follows from Lemma 2 and the

dominated convergence theorem [56, Theorem 2.6.9]. The

equality in (44) follows from Lemma 6. In the particular case

in which A = L⋆
Q,z in (46), it holds that lim

λ→0+
P

(Q,λ)
Θ|Z=z

(

L⋆
Q,z

)

= 1, which verifies the asymptotic concentration of the prob-

ability measure P
(Q,λ)
Θ|Z=z

on the set L⋆
Q,z .

Another interesting observation is that the Radon-Nikodym

derivative
dP

(Q,λ)

Θ|Z=z

dQ in (25) is a constant among the elements of

the set L⋆
Q,z . This can be assimilated to a uniform distribution

of the probability among the elements of the set L⋆
Q,z in

the limit when λ tends to zero from the right, as previously

highlighted in [23]–[25] and [26]. This becomes more evident

in the case in which the set M is finite and Q is the counting

measure. In such a case, the asymptotic probability of each

of the elements in L⋆
Q,z when λ tends to zero from the right

is 1

|L⋆
Q,z| .

Consider now that Q
Ä

L⋆
Q,z

ä

= 0, with L⋆
Q,z in (39). Under

this assumption, in the asymptotic regime when λ → 0,

the measure P
(Q,λ)
Θ|Z=z

is not a probability measure but either

the trivial measure or the infinite measure. This is typically

the case in which M = R
d, the measure Q is absolutely

continuous with respect to the Lebesgue measure, and the

solution to the ERM problem in (4) has a unique solution

on the support of Q, i.e., L⋆
Q,z = T (z) and |T (z)| = 1,

which implies Q(L⋆
Q,z) = 0.

An interesting question, which is left out of the scope of this

paper, is the rate at which P
(Q,λ)
Θ|Z=z

converges to such limiting

measure. The interested reader is referred to [23], [26], and

references therein.

The following lemma shows that independently of whether the

set L⋆
Q,z is negligible with respect to the measure Q, the limit

when λ tends to zero from the right of P
(Q,λ)
Θ|Z=z

Ä

L⋆
Q,z

ä

is

equal to one.

Lemma 7: The measure P
(Q,λ)
Θ|Z=z

in (25) and the set L⋆
Q,z

in (39) satisfy,

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(

L⋆
Q,z

)

=1. (47)

Proof: The proof is presented in Appendix H.

Note that if the ERM problem in (4) possesses at least

one solution and such solution is within the support of the

measure Q, i.e., T (z) ∩ suppQ 6= ∅, then, when λ tends

to zero from the right, the probability measure P
(Q,λ)
Θ|Z=z

asymptotically concentrates on the solution (or the set of

solutions within the support of Q) to the ERM problem in (4).

Alternatively, in the case in which L⋆
Q,z ∩T (z) = ∅, when λ

tends to zero from the right, the probability measure P
(Q,λ)
Θ|Z=z

asymptotically concentrates on a set that does not contain the

set of solutions to the ERM problem in (4). This observation

leads to the introduction to two new classes of reference

measures, namely, coherent and consistent measures, in the

following section.

IV. REFERENCE MEASURES

This section introduces two classes of reference measures,

namely coherent and consistent measures, and discusses the

special case of Gibbs reference measures.

A. Coherent and Consistent Reference Measures

A class of reference measures of particular importance to

establish connections between the set of solutions to the ERM

problem in (4) and the solution to the ERM-RER problem

in (19) is that of coherent measures. Let ρ⋆ > 0 be the infimum

of the empirical risk Lz in (3). That is,

ρ⋆ , inf{Lz (θ) : θ ∈ M}. (48)

Using this notation, coherent measures are defined as fol-

lows.

Definition 3 (Coherent Measures): The σ-finite measure Q
in (19) is said to be coherent if, for all δ ∈ (ρ⋆,+∞), with

ρ⋆ in (48), it holds that

Q (Lz (δ)) > 0, (49)

where the set Lz (δ) is defined in (37).

When the reference measure Q in the EMR-RER problem

in (19) is a coherent measure, it holds that for all δ > ρ⋆, the

set Lz (δ) in (37) exhibits positive probability with respect to

the probability measure P
(Q,λ)
Θ|Z=z

in (25). The following lemma

highlights this observation.

Lemma 8: The probability measure P
(Q,λ)
Θ|Z=z

in (25) satisfies

for all δ ∈ (ρ⋆,+∞), with ρ⋆ in (48), that

P
(Q,λ)
Θ|Z=z

(Lz (δ))>0, (50)

with Lz (δ) in (37), if and only if the σ-finite measure Q
in (19) is coherent.

Proof: The proof is presented in Appendix I.

Under the assumption that the ERM problem in (4) possesses

a solution, it holds that

min
θ∈M

Lz (θ)=inf{Lz (θ) : θ ∈ M}. (51)

Hence, when the σ-finite measure Q in (19) is coherent,

then

δ⋆Q,z = ρ⋆, (52)
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with δ⋆Q,z in (38) and ρ⋆ in (48), which implies that

L⋆
Q,z ⊆ T (z) , (53)

with T (z) in (5) and L⋆
Q,z in (39). This observation, together

with Lemma 7, leads to the following result.

Lemma 9: Assume that the ERM problem in (4) possesses a

solution. Then, the probability measure P
(Q,λ)
Θ|Z=z

in (25) and

the sets T (z) in (5) and L⋆
Q,z in (39) satisfy

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(

L⋆
Q,z ∩ T (z)

)

=1, (54)

if and only if the σ-finite measure Q in (19) is coherent.

Proof: The proof follows by observing that if Q is a coherent

measure and the ERM problem in (4) possesses a solution,

the inclusion in (53) holds. Thus, from Lemma 7, the equality

in (54) holds. Alternatively, when the measure Q in (19) is

noncoherent, then δ⋆Q,z > ρ⋆, which implies that L⋆
Q,z ∩

T (z) = ∅. Hence, from Lemma 7, it follows that

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(

L⋆
Q,z ∩ T (z)

)

=0, (55)

and completes the proof.

The relevance of coherent measures in ERM-RER problems

is well highlighted by Lemma 9. Essentially, when the ERM

problem in (4) possesses at least one solution, the concen-

tration of the probability measure P
(Q,λ)
Θ|Z=z

in (25) on the set

(or a subset) of solutions to the ERM problem in (4) occurs

asymptotically when λ tends to zero from the right, if only if

the reference measure Q in (19) is coherent. Nonetheless, such

asymptotic concentration is not a guarantee that for strictly

positive values of λ in (19), the set T (z) in (5) and the

measure P
(Q,λ)
Θ|Z=z

in (25) satisfy P
(Q,λ)
Θ|Z=z

(T (z)) > 0. In order

to ensure this, another class of reference measures, known as

consistent measures, is introduced.

Definition 4 (Consistent Measure): The σ-finite measure Q
in (19) is said to be consistent if Q

Ä

L⋆
Q,z

ä

> 0, with L⋆
Q,z

in (39).

Note that every consistent measure is not necessarily coherent.

For instance, if Q is consistent but δ⋆Q,z > ρ⋆, with ρ⋆ in (48)

and δ⋆Q,z in (38), then, for all δ ∈ (ρ⋆, δ⋆Q,z), it follows that

Q (Lz (δ)) = 0, and thus, Q is not coherent. Alternatively,

every coherent measure is not necessarily consistent. For

instance, if
∣

∣

∣L⋆
Q,z

∣

∣

∣ = 1 and Q is coherent and absolutely

continuous with respect to the Lebesgue measure, it follows

that Q
Ä

L⋆
Q,z

ä

= 0, and thus, Q is not consistent.

The relevance of consistent measures is highlighted by the

following lemma.

Lemma 10: The probability measure P
(Q,λ)
Θ|Z=z

in (25) and the

set L⋆
Q,z in (39) satisfy

P
(Q,λ)
Θ|Z=z

(

L⋆
Q,z

)

>0, (56)

if and only if the σ-finite measure Q in (19) is consistent.

Proof: When Q is nonconsistent, it holds that Q
Ä

L⋆
Q,z

ä

= 0

and thus, from the fact that the measure P
(Q,λ)
Θ|Z=z

in (25)

is absolutely continuous with respect to Q, it holds that

P
(Q,λ)
Θ|Z=z

Ä

L⋆
Q,z

ä

= 0. When Q is consistent, it holds

that Q
Ä

L⋆
Q,z

ä

> 0. Moreover, for all θ ∈ L⋆
Q,z , it holds

that Lz (θ) < +∞ and thus, from Lemma 2, it follows that
dP

(Q,λ)

Θ|Z=z

dQ (θ) > 0. Hence,

P
(Q,λ)
Θ|Z=z

(

L⋆
Q,z

)

=

∫

L⋆
Q,z

dP
(Q,λ)
Θ|Z=z

(θ) (57)

=

∫

L⋆
Q,z

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) > 0, (58)

which completes the proof.

The following lemma highlights a central property of con-

sistent measures when the ERM problem in (4) possesses a

solution.

Lemma 11: Assume that the ERM problem in (4) possesses a

solution in the support of Q. The probability measure P
(Q,λ)
Θ|Z=z

in (25) and the sets T (z) in (5) and L⋆
Q,z in (39) satisfy

P
(Q,λ)
Θ|Z=z

(

L⋆
Q,z ∩ T (z)

)

>0, (59)

if and only if the σ-finite measure Q in (19) is consistent.

Proof: The proof follows from Lemma 10 by noticing that

when the ERM problem in (4) possesses a solution in the

support of Q, the inclusion in (53) holds.

The distinction between coherent and consistent measures

becomes more evident under certain conditions. Consider the

case in which M is finite. In this case, if the solution to

the ERM problem in (4) is in the support of the σ-finite

measure Q, then Q is both coherent and consistent. This is es-

sentially because all measurable singletons (models) in suppQ
exhibit positive measure with respect to Q. Alternatively, if the

solution to the ERM problem in (4) is not in the support of

Q, then Q is consistent but not coherent. Consider the case in

which M is the set Rd; the loss function ℓ in (2) is continuous;

and the ERM problem in (4) admits a unique solution. In this

case, any probability measure Q absolutely continuous with

respect to the Lebesgue measure is a coherent measure, but it is

not a consistent measure. Alternatively, if the set of solutions to

the ERM problem in (4) exhibits positive Lebesgue measure,

then, the measure Q is both coherent and consistent.

B. Gibbs Reference Measures

In model selection, a natural idea is to proceed by successive

approximations in the seek of lower computation complexity.

From this perspective, one might wonder whether the solution

to a current instance of an ERM-RER problem might serve as

reference measure for the next instance. In this section, it is

shown that this yields no benefit. Composing two successive

ERM-REM problems boils down to a unique ERM-RER

problem with the initial reference measure and a particular
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regularization factor. Under the assumption that λ ∈ KQ,z ,

with KQ,z in (23), the problem of interest is:

min
P∈△Q(M,B(M))

Rz (P ) + αD
Ä

P‖P (Q,λ)
Θ|Z=z

ä

, (60a)

s. t.

∫

dP (θ) = 1, (60b)

where α > 0; the reference measure P
(Q,λ)
Θ|Z=z

, which satis-

fies (25), is the solution of the ERM-RER problem in (19);

and the functional Rz is defined in (18). From Theorem 3, the

solution to the ERM-RER problem in (60), which is denoted

by P

Ä

P
(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z
, satisfies for all θ ∈ suppQ that

dP

Ä

P
(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z

dP
(Q,λ)
Θ|Z=z

(θ)=exp

Å

−K
P

(Q,λ)

Θ|Z=z
,z

Å

− 1

α

ã

− 1

α
Lz (θ)

ã

. (61)

The log-partition functions KQ,z in (22) and K
P

(Q,λ)

Θ|Z=z
,z

in (61) are strongly related, as shown by the following

lemma.

Lemma 12: The functions KQ,z in (22) and K
P

(Q,λ)

Θ|Z=z
,z

in (61)

satisfy for all t ∈ R,

K
P

(Q,λ)

Θ|Z=z
,z
(t)=KQ,z

Å

t− 1

λ

ã

−KQ,z

Å

− 1

λ

ã

. (62)

Moreover, for all t 6 0,

K
P

(Q,λ)

Θ|Z=z
,z
(t)60. (63)

Proof: The proof of (62) relies on the fact that for all

t ∈
ß

ν ∈ R : K
P

(Q,λ)

Θ|Z=z
,z
(ν) < ∞

™

, the function K
P

(Q,λ)

Θ|Z=z
,z

in (61) satisfies

K
P

(Q,λ)

Θ|Z=z
,z
(t) (64)

=log

Å∫

exp (t Lz (θ)) dP
(Q,λ)
Θ|Z=z

(θ)

ã

(65)

=log

Ñ

∫

exp (t Lz (θ))
dP

(Q,λ)
Θ|Z=z

dQ
(θ) dQ(θ)

é

(66)

=log

Å∫

exp

ÅÅ

t−1

λ

ã

Lz(θ)−KQ,z

Å

−1

λ

ãã

dQ(θ)

ã

(67)

=log

Å∫

exp

ÅÅ

t−1

λ

ã

Lz(θ)

ã

dQ(θ)

ã

−KQ,z

Å

−1

λ

ã

(68)

=KQ,z

Å

t− 1

λ

ã

−KQ,z

Å

− 1

λ

ã

, (69)

where the equality in (67) follows from (25). Moreover,

from Lemma 15, it follows that the function K
P

(Q,λ)

Θ|Z=z
,z

is

continuous and nondecresing. Let s⋆ ∈ R∪{+∞} be defined

by

s⋆,sup

ß

ν ∈ R : K
P

(Q,λ)

Θ|Z=z
,z
(ν) < ∞

™

. (70)

If s⋆ = +∞, then for all t ∈ R, K
P

(Q,λ)

Θ|Z=z
,z
(t) < +∞, and

the proof of (62) is completed.

Alternatively, if s⋆ < +∞, it follows that for all t > s⋆,

K
P

(Q,λ)

Θ|Z=z
,z
(t) = +∞, which implies that KQ,z

(

t− 1
λ

)

=

+∞, as the function KQ,z is also continuous (Lemma 15)

and KQ,z

(

− 1
λ

)

< ∞ (due to the choice of λ). Hence, in this

case, the equality in (62) is of the form +∞ = +∞. This

completes the proof of (62).

The proof of (63) follows by noticing that for all t 6 0
and for all θ ∈ suppQ, it holds that exp (t Lz (θ)) 6 1.

Hence,

K
P

(Q,λ)

Θ|Z=z
,z
(t)=log

Å∫

exp (t Lz (θ)) dP
(Q,λ)
Θ|Z=z

(θ)

ã

(71)

6log

Å∫

dP
(Q,λ)
Θ|Z=z

(θ)

ã

(72)

=0, (73)

which completes the proof.

The following lemma establishes that the solution to the ERM-

RER problem in (60) is identical to the solution to another

ERM-RER problem of the form

min
P∈△Q(M,B(M))

Rz (P ) +

Ç

1
1
α
+ 1

λ

å

D (P‖Q) , (74a)

s. t.

∫

dP (θ) = 1, (74b)

with λ ∈ KQ,z , with KQ,z in (23), and whose solution,

denoted by P

Å

Q, 1
1
λ

+ 1
α

ã

Θ|Z=z
, satisfies for all θ ∈ suppQ,

dP

Å

Q, 1
1
λ

+ 1
α

ã

Θ|Z=z

dQ
(θ)

=exp

Å

−KQ,z

Å

− 1

λ
− 1

α

ã

−
Å

1

λ
+

1

α

ã

Lz (θ)

ã

. (75)

The formal statement is as follows.

Lemma 13: Let α ∈ (0,+∞) and λ ∈ KQ,z , with KQ,z

in (23). Then, the probability measures P

Ä

P
(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z
in (61)

and P

Å

Q, 1
1
λ

+ 1
α

ã

Θ|Z=z
in (75) are identical.
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Proof: For all θ ∈ suppQ,

dP

Ä

P
(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z

dQ
(θ)

=
dP

Ä

P
(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z

dP
(Q,λ)
Θ|Z=z

(θ)
dP

(Q,λ)
Θ|Z=z

dQ
(θ) (76)

=exp

(

−K
P

(Q,λ)

Θ|Z=z
,z

Å

− 1

α

ã

−KQ,z

Å

− 1

λ

ã

−
Å

1

α
+
1

λ

ã

Lz(θ)

)

(77)

=exp

Å

−KQ,z

Å

− 1

α
− 1

λ

ã

−
Å

1

α
+

1

λ

ã

Lz (θ)

ã

(78)

=
dP

Å

Q, 1
1
λ

+ 1
α

ã

Θ|Z=z

dQ
(θ), (79)

where the equality in (76) follows from the fact that the

measure P

Ä

P
(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z
is absolutely continuous with respect to

P
(Q,λ)
Θ|Z=z

and P
(Q,λ)
Θ|Z=z

is absolutely continuous with respect to

the measure Q; the equality in (77) follows from Lemma 12;

and the equality in (79) follows from Theorem 3.

For all measurable subsets A of M, the following

holds:

P

Ä

P
(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z
(A)=

∫

A

dP

Ä

P
(Q,λ)

Θ|Z=z
,α
ä

Θ|Z=z

dQ
(θ)dQ(θ) (80)

=

∫

A

dP

Å

Q, 1
1
λ

+ 1
α

ã

Θ|Z=z

dQ
dQ(θ) (81)

=

∫

A

dP

Å

Q, 1
1
λ

+ 1
α

ã

Θ|Z=z
(θ) (82)

=P

Å

Q, 1
1
λ

+ 1
α

ã

Θ|Z=z
(A), (83)

where the equality in (81) follows from (79). This completes

the proof.

The following theorem establishes a relation between the

solutions to the following optimization problems

min
P∈△Q(M,B(M))

Rz (P ) , (84a)

s. t. D
Ä

P‖P (Q,λ)
Θ|Z=z

ä

6 c, and (84b)
∫

dP (θ) = 1, (84c)

and

min
P∈△Q(M,B(M))

Rz (P ) + ωD (P‖Q) , (85a)

s. t.

∫

dP (θ) = 1, (85b)

with c > 0 and ω ∈ KQ,z , with KQ,z in (23), two constants;

P
(Q,λ)
Θ|Z=z

the probability measure in (25); and Rz the functional

in (18).

From Theorem 3, the solution to the ERM-RER problem

in (85), which is denoted by P
(Q,ω)
Θ|Z=z

, satisfies for all θ ∈
suppQ that

dP
(Q,ω)
Θ|Z=z

dQ
(θ)=exp

Å

−KQ,z

Å

− 1

ω

ã

− 1

ω
Lz (θ)

ã

, (86)

where the function KQ,z is in (22).

The following theorem formalizes the relation between both

optimization problems.

Theorem 4: Assume that c and ω in (84) and (85) satisfy

D
Ä

P
(Q,ω)
Θ|Z=z

‖P (Q,λ)
Θ|Z=z

ä

= c, (87)

with P
(Q,λ)
Θ|Z=z

and P
(Q,ω)
Θ|Z=z

being the probability measures

in (25) and (86), respectively. Then, the solution to the opti-

mization problem in (84) is the probability measure P
(Q,ω)
Θ|Z=z

.

Proof: The proof is presented in Appendix J.

V. THE LOG-PARTITION FUNCTION

This section introduces some properties of the log-partition

function KQ,z in (22) using the notion of separable empirical

risk functions.

A. Separable Empirical Risk Functions

Separable empirical risk functions are defined with respect to

a measure P ∈ △ (M).

Definition 5 (Separable Empirical Risk Function): The em-

pirical risk function Lz in (3) is said to be separable with

respect to a σ-finite measure P ∈ △ (M), if there exist a

positive real c > 0 and two subsets A and B of M that are

nonnegligible with respect to P , and for all (θ1,θ2) ∈ A×B,

Lz (θ1)< c <Lz (θ2) < +∞. (88)

In a nutshell, a nonseparable empirical risk function with

respect to the measure Q is a constant almost surely. More

specifically, there exists a real a > 0, such that

Q ({θ ∈ M : Lz (θ) = a}) = 1. (89)

From this perspective, nonseparable empirical risk functions

exhibit little practical interest for model selection.

The definition of separability in Definition 5 and Lemma 3

lead to the following lemma.

Lemma 14: The empirical risk function Lz in (3) is separable

with respect to the σ-finite measure Q in (19) if and only if it

is separable with respect to the probability measure P
(Q,λ)
Θ|Z=z

in (25).

Proof: Consider first that the function Lz is separable with

respect to the σ-finite measure Q. Hence, there exist a positive

real c > 0 and two subsets A and B of M that are nonneg-

ligible with respect to Q, such that for all (θ1,θ2) ∈ A × B
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the inequality in (88) holds. Hence, from (88) the following

inequalities hold:

− 1

λ
Lz (θ1)>− c

λ
> − 1

λ
Lz (θ2) > −∞, and (90)

exp

Å

− 1

λ
Lz (θ1)

ã

>exp
(

− c

λ

)

> exp

Å

− 1

λ
Lz (θ2)

ã

> 0. (91)

This implies that

dP
(Q,λ)
Θ|Z=z

dQ
(θ1) > exp

Å

−KQ,z

Å

− 1

λ

ã

− c

λ

ã

(92)

>
dP

(Q,λ)
Θ|Z=z

dQ
(θ2) (93)

> 0. (94)

Using the inequality in (92) and the facts that Q (A) > 0
and Q (B) > 0, the following holds

P
(Q,λ)
Θ|Z=z

(A)=

∫

A

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) > 0, (95)

and

P
(Q,λ)
Θ|Z=z

(B)=
∫

B

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) > 0. (96)

which implies that the function Lz is separable with respect

to the probability measure P
(Q,λ)
Θ|Z=z

.

Consider now that the function Lz is separable with respect to

the probability measure P
(Q,λ)
Θ|Z=z

. Hence, there exist a positive

real c > 0 and two subsets A and B of M that are nonnegligi-

ble with respect to P
(Q,λ)
Θ|Z=z

, such that for all (θ1,θ2) ∈ A×B
the inequality in (88) holds. More specifically, P

(Q,λ)
Θ|Z=z

(A) >

0 and P
(Q,λ)
Θ|Z=z

(B) > 0. From Lemma 2 and the inequal-

ity in (88), it follows that for all pairs (θ1,θ2) ∈ A ×
B,

dP
(Q,λ)

Θ|Z=z

dQ (θ1) > 0 and
dP

(Q,λ)

Θ|Z=z

dQ (θ2) > 0. Hence, from the

fact that P
(Q,λ)
Θ|Z=z

(A) > 0 and P
(Q,λ)
Θ|Z=z

(B) > 0, it follows

that Q (A) > 0 and Q (B) > 0, which implies that the

function Lz is separable with respect to the σ-finite measure Q.

This completes the proof.

Lemma 14 shows that separable empirical risk functions, and

only these functions, lead to ERM-RER-optimal probability

measures from which models are sampled with different

probabilities. For the case of nonseparable empirical risk

functions, all models are sampled from the ERM-RER-optimal

probability measure with the same probability.

B. Properties of the Log-Partition Function

The log-partition function KQ,z in (22) is a nondecreasing

continuous convex function as shown by the following lem-

mas.

Lemma 15: The function KQ,z in (22) is nondecreasing

and differentiable infinitely many times in the interior of

{t ∈ R : KQ,z(t) < +∞}.

Proof: The proof is presented in Appendix K.

Lemma 16: The function KQ,z in (22) is convex in

{t ∈ R : KQ,z(t) < +∞}. Moreover, it is strictly convex if

and only if the empirical risk function Lz in (3) is separable

with respect to the σ-finite measure Q in (19).

Proof: The proof is presented in Appendix L.

In Lemma 15, it has been established that the log-partition

function KQ,z in (22) is differentiable infinitely many times in

the interval {t ∈ R : KQ,z(t) < +∞}. Let the m-th derivative

of the function KQ,z in (22) be denoted by K
(m)
Q,z : R → R,

with m ∈ N. Hence, for all s ∈ KQ,z ,

K
(m)
Q,z

Å

−1

s

ã

,
dm

dtm
KQ,z (t)

∣

∣

∣

t=− 1
s

. (97)

The following lemma provides explicit expressions for the

first, second and third derivatives of the function KQ,z

in (22).

Lemma 17: The first, second and third derivatives of the

function KQ,z in (22), denoted respectively by K
(1)
Q,z , K

(2)
Q,z ,

and K
(3)
Q,z , satisfy for all λ ∈ intKQ,z , with KQ,z in (23),

K
(1)
Q,z

Å

− 1

λ

ã

=

∫

Lz (θ) dP
(Q,λ)
Θ|Z=z

(θ), (98)

K
(2)
Q,z

Å

− 1

λ

ã

=

∫ Å

Lz (θ)−K
(1)
Q,z

Å

− 1

λ

ãã2

dP
(Q,λ)
Θ|Z=z

(θ), (99)

K
(3)
Q,z

Å

− 1

λ

ã

=

∫ Å

Lz(θ)−K
(1)
Q,z

Å

−1

λ

ãã3

dP
(Q,λ)
Θ|Z=z

(θ), (100)

where the function Lz is defined in (3) and the mea-

sure P
(Q,λ)
Θ|Z=z

satisfies (25).

Proof: The proof is presented in Appendix M.

From Lemma 17, it follows that if Θ ∼ P
(Q,λ)
Θ|Z=z

, with P
(Q,λ)
Θ|Z=z

in (25), the random variable

W , Lz (Θ) , (101)

with the function Lz in (3), possesses a mean, variance, and

third cumulant that are equivalent to K
(1)
Q,z

(

− 1
λ

)

in (98),

K
(2)
Q,z

(

− 1
λ

)

in (99), and K
(3)
Q,z

(

− 1
λ

)

in (100), respec-

tively.

Note that if there exists a δ > 0 such that the log-partition

function KQ,z is differentiable within the open interval (−δ, δ)
and Q in (19) is a probability measure, the function KQ,z

is the cumulant generating function of the random vari-

able

V , Lz (Θ) , with Θ ∼ Q. (102)

The following lemma leverages this observation.

Lemma 18: Assume that Q in (19) is a probability measure

and that there exists real δ > 0 such that the log-partition

function KQ,z in (22) is differentiable within (−δ, δ). Then,
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the first, second and third derivatives of KQ,z , denoted respec-

tively by K
(1)
Q,z , K

(2)
Q,z , and K

(3)
Q,z , satisfy

K
(1)
Q,z (0)=

∫

Lz (θ) dQ(θ), (103)

K
(2)
Q,z (0)=

∫ Å

Lz(θ)−K
(1)
Q,z

Å

−1

λ

ãã2

dQ(θ), (104)

K
(3)
Q,z (0)=

∫ Å

Lz(θ)−K
(1)
Q,z

Å

−1

λ

ãã3

dQ(θ), (105)

where the function Lz is defined in (3).

Proof: The proof follows along the same arguments of the

proof of Lemma 17.

The mean, variance, and third cumulant of the random vari-

able V in (102) are K
(1)
Q,z (0) in (103), K

(2)
Q,z (0) in (104),

and K
(3)
Q,z (0) in (105), respectively.

VI. EXPECTATION OF THE EMPIRICAL RISK

The mean of the random variable W in (101) is equivalent

to the expectation of the empirical risk function Lz with

respect to the probability measure P
(Q,λ)
Θ|Z=z

in (25), which

is equal to Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

, with the functional Rz in (18).

Often, Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

is referred to as the ERM-RER-optimal

expected empirical risk to emphasize that this is the expected

value of the empirical risk when models are sampled from

the solution of the ERM-RER problem in (19). The following

corollary of Lemma 17 formalizes this observation.

Corollary 2: The probability measure P
(Q,λ)
Θ|Z=z

in (25) verifies

that

Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

= K
(1)
Q,z

Å

− 1

λ

ã

, (106)

where the functional Rz and the function K
(1)
Q,z are defined

in (18) and (98), respectively.

The expected empirical risk Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

in (106) exhibits

the following property.

Theorem 5: The expected empirical risk Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

in (106) is nondecreasing with λ ∈ KQ,z , with KQ,z in (23).

Moreover, Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

is strictly increasing with λ ∈ KQ,z

if and only if the function Lz in (3) is separable with respect

to the measure Q.

Proof: The proof is presented in Appendix N.

The expected empirical risk Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

in (106) has been

shown to be nondecreasing with λ in [9, Appendix E.4] for

the special case in which Q is a probability measure.

A question that arises from Theorem 5 is whether the

value Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

in (106) can be made arbitrarily close

to δ⋆Q,z , with δ⋆Q,z in (38), by making λ arbitrarily small. The

following lemma shows that the value Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

is often

bounded away from δ⋆Q,z , even for arbitrarily small values

of λ.

Lemma 19: The expected empirical risk Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

in (106)

satisfies,

Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

> δ⋆Q,z, (107)

where δ⋆Q,z is defined in (38). Moreover, the inequality in (107)

is strict if and only if the function Lz in (3) is separable with

respect to the measure Q in (19).

Proof: The proof is presented in Appendix O.

In the asymptotic regime when λ tends to zero, the expected

empirical risk Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

in (106) is equal to δ⋆Q,z , as

shown by the following lemma.

Theorem 6: The expected empirical risk Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

in (106) satisfies,

lim
λ→0+

Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

=δ⋆Q,z, (108)

where δ⋆Q,z is defined in (38).

Proof: The proof is presented in Appendix P.

The following lemma determines the value of the objec-

tive function of the ERM-RER problem in (19) when it is

evaluated at its solution. This result appeared first in [11,

Lemma 3].

Lemma 20 (Lemma 3 in [11]): The probability mea-

sure P
(Q,λ)
Θ|Z=z

in (25) and the σ-finite measure Q in (19) satisfy

Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

+λD
Ä

P
(Q,λ)
Θ|Z=z

‖Q
ä

=−λKQ,z

Å

− 1

λ

ã

. (109)

Moreover, if the condition in (27) holds, then,

Rz (Q)− λD
Ä

Q‖P (Q,λ)
Θ|Z=z

ä

=−λKQ,z

Å

− 1

λ

ã

, (110)

where the functional Rz is defined in (18); and the func-

tion KQ,z is defined in (22).

Proof: From Theorem 3, it follows that for all θ ∈
suppQ,

log

Ñ

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

é

=−KQ,z

Å

− 1

λ

ã

− 1

λ
Lz (θ) ,(111)

where the function Lz is defined in (3). Thus,

D
Ä

P
(Q,λ)
Θ|Z=z

‖Q
ä

=

∫

log

Ñ

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

é

dP
(Q,λ)
Θ|Z=z

(θ) (112)

=−KQ,z

Å

− 1

λ

ã

−1

λ

∫

Lz (θ)dP
(Q,λ)
Θ|Z=z

(θ) (113)

=−KQ,z

Å

− 1

λ

ã

− 1

λ
Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

, (114)

where the functional Rz is defined in (18). This completes the

proof of (109).
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From Lemma 3 and (111), it follows that

D
Ä

Q‖P (Q,λ)
Θ|Z=z

ä

=−
∫

log

Ñ

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

é

dQ (θ) (115)

=KQ,z

Å

− 1

λ

ã

+
1

λ

∫

Lz (θ) dQ (θ) (116)

=KQ,z

Å

− 1

λ

ã

+
1

λ
Rz (Q) , (117)

which completes the proof of (110).

The following corollary of Lemma 20 characterizes the differ-

ence between the expected values of the random variables W
and V in (101) and (102), respectively.

Corollary 3: If measures Q and P
(Q,λ)
Θ|Z=z

in (25) are both

probability measures, then,

Rz (Q)− Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

=λ
Ä

D
Ä

Q‖P (Q,λ)
Θ|Z=z

ä

+D
Ä

P
(Q,λ)
Θ|Z=z

‖Q
ää

. (118)

The right-hand side of (118) is a symmetrized Kullback-

Liebler divergence, also known as Jeffrey’s divergence [66],

between the measures Q and P
(Q,λ)
Θ|Z=z

. More importantly, when

Q is a probability measure, it follows that D
Ä

P
(Q,λ)
Θ|Z=z

‖Q
ä

>

0 and D
Ä

Q‖P (Q,λ)
Θ|Z=z

ä

> 0, which leads to the following

corollary from Lemma 20.

Corollary 4: If the σ-finite measure Q in (19) is a probability

measure, then, the probability measure P
(Q,λ)
Θ|Z=z

in (25) satis-

fies

Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

6 Rz (Q) , (119)

where, the functional Rz is defined in (18).

VII. VARIANCE OF THE EMPIRICAL RISK

In Lemma 15, it has be established that if there exists a

δ > 0 such that the log-partition function KQ,z in (22) is

finite within the open interval (−δ, δ) the log-partition function

KQ,z is differentiable infinitely many times within the interval

(−∞, δ). This together with the mean value theorem [67,

Theorem 5.10] lead to the following characterization of the

differences of the values K
(2)
Q,z

(

− 1
t

)

and K
(2)
Q,z (0), with

t > 0.

Lemma 21: If the measure Q in (19) is a probability measure

and there exists a δ > 0 such that the function KQ,z in (22)

is differentiable within the open interval (−δ, δ), then for all

t > 0,

K
(2)
Q,z

Å

−1

t

ã

−K
(2)
Q,z (0)=−1

t
K

(3)
Q,z

Å

− 1

β

ã

< +∞, (120)

for some β ∈ (t,+∞), where the functions K
(2)
Q,z , and K

(3)
Q,z

are defined in (97).

Proof: The proof is an immediate consequence of Lemma 15

and the mean value theorem [67, Theorem 5.10].

The relevance of Lemma 21 lies on the fact that K
(2)
Q,z

(

− 1
λ

)

and K
(2)
Q,z (0) are the variances of the random variables W in

(101) and V in (102). See Lemma 17 and Lemma 18. Under

the assumptions of Lemma 21, it follows that the function

K
(3)
Q,z is continuous in (−∞, δ), where δ > 0. Hence, for all

t > 0, the function K
(3)
Q,z achieves a maximum and a minimum

within the interval
[

− 1
t
, 0
]

. Such extrema allow providing

lower and upper bounds on the variance K
(2)
Q,z

(

− 1
λ

)

of the

random variable W in terms of the variance K
(2)
Q,z (0) of the

random variable V , as shown hereunder.

Corollary 5: If the measure Q in (19) is a probability measure

and there exists a δ > 0 such that the function KQ,z in (22)

is differentiable within the open interval (−δ, δ), then for all

t > 0,

K
(2)
Q,z (0)−

1

t
c26 K

(2)
Q,z

Å

−1

t

ã

6K
(2)
Q,z (0)−

1

t
c1,(121)

where,

c1= min
s∈[− 1

t
,0]

K
(3)
Q,z (s) and (122)

c2= max
s∈[− 1

t
,0]

K
(3)
Q,z (s) , (123)

and the functions K
(2)
Q,z , and K

(3)
Q,z are defined in (97).

The inequality in (121) reveals that under the assumptions of

Corollary 5, in the asymptotic regime when t → +∞, the

variances of the random variables W in (101) and V in (102)

are identical. Additionally, unlike the means K
(1)
Q,z

(

− 1
λ

)

and K
(1)
Q,z (0) of the random variables W and V , which

satisfy K
(1)
Q,z

(

− 1
λ

)

6 K
(1)
Q,z (0) (Corollary 4), their vari-

ances K
(2)
Q,z

(

− 1
λ

)

and K
(2)
Q,z (0) might satisfy K

(2)
Q,z

(

− 1
λ

)

<

K
(2)
Q,z (0) or K

(2)
Q,z

(

− 1
λ

)

> K
(2)
Q,z (0) depending on whether

the function K
(3)
Q,z is positive or negative within the interval

[− 1
λ
, 0]. Using this observation the values K

(2)
Q,z

(

− 1
t

)

, with

t > 0, and K
(2)
Q,z (0) can be compared as follows.

Lemma 22: Assume that the measure Q in (19) is a probability

measure and there exists a δ > 0 such that the function

KQ,z in (22) is differentiable within the open interval (−δ, δ).
Hence, the following holds for all t > 0:

• If for all s > t, K
(3)
Q,z

(

− 1
s

)

< 0, then

K
(2)
Q,z (0) < K

(2)
Q,z

Å

−1

t

ã

< +∞; (124)

• If for all s > t, K
(3)
Q,z

(

− 1
s

)

> 0, then

K
(2)
Q,z

Å

−1

t

ã

<K
(2)
Q,z (0) < +∞; (125)
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• If for some s > t, K
(3)
Q,z

(

− 1
s

)

= 0, then there exists two

positive reals c1 and c2 such that

c16min{K(2)
Q,z

Å

−1

t

ã

,K
(2)
Q,z (0)} (126)

6max{K(2)
Q,z

Å

−1

t

ã

,K
(2)
Q,z (0)} (127)

6c2. (128)

Proof: The proofs of the inequalities in (124) and (125) are

immediate consequences of Lemma 21. The inequalities in

(126) and (128) follow from the fact that the function K
(2)
Q,z ,

which is continuous, exhibits critical points at − 1
s

, with s

satisfying K
(3)
Q,z

(

− 1
s

)

= 0. Some of such critical points might

be local extrema of the function K
(2)
Q,z , either local minima or

local maxima. Hence, the inequalities (126) and (128) follow

by choosing c1 as the smallest minimum of the function K
(2)
Q,z

within the interval
[

− 1
t
, 0
]

; and c2 as the biggest maximum

of the function K
(2)
Q,z within the interval

[

− 1
t
, 0
]

. If none of

such critical points is a local extremum, then, (126) and (128)

hold with equality.

Lemma 21 and Lemma 22 show that the monotonicity of

the expectation of the random variable W in (101), stated

by Theorem 5, is not a property exhibited by the variance

nor the third cumulant. The following example highlights this

observation.

Example 1: Consider the ERM-RER problem in (19), under

the assumption that Q is a probability measure and the

empirical risk function Lz in (3) is such that for all θ ∈ M,

Lz (θ) =

ß

0 if θ ∈ A
1 if θ ∈ M \A,

(129)

where the sets A ⊂ M and M \ A are nonnegligible with

respect to the reference probability measure Q. In this case,

the function KQ,z in (22) satisfies for all λ > 0,

KQ,z

Å

− 1

λ

ã

=log

Å

Q(A)+exp

Å

− 1

λ

ã

(1−Q(A))

ã

. (130)

The derivatives K
(1)
Q,z , K

(2)
Q,z , and K

(3)
Q,z in (97) of the func-

tion KQ,z in (130) satisfy for all λ > 0,

K
(1)
Q,z

Å

−1

λ

ã

=
exp

(

− 1
λ

)

(1−Q (A))

Q (A) + exp
(

− 1
λ

)

(1−Q (A))
; (131)

K
(2)
Q,z

Å

−1

λ

ã

=
Q (A) (1−Q (A)) exp

(

− 1
λ

)

(

Q (A) + exp
(

− 1
λ

)

(1−Q (A))
)2 ; and (132)

K
(3)
Q,z

Å

−1

λ

ã

=K
(2)
Q,z

Å

− 1

λ

ã

Ç

Q(A)−(1−Q(A))exp
(

−1
λ

)

Q(A)+exp
(

−1
λ

)

(1−Q(A))

å

. (133)

Note that K
(3)
Q,z

(

− 1
λ

)

> 0 if and only if

Q (A)− (1−Q (A)) exp

Å

− 1

λ

ã

> 0. (134)

Assume that Q (A) > 1
2 . Thus, it holds that for all λ > 0,

the inequality in (134) is always satisfied. This follows from

observing that for all λ > 0,

exp

Å

− 1

λ

ã

< 1 6
Q (A)

1−Q (A)
. (135)

Hence, if Q (A) > 1
2 , for all decreasing sequences of positive

reals λ1 > λ2 > . . . > 0, it holds that

1

4
> K

(2)
Q,z

Å

− 1

λ1

ã

> K
(2)
Q,z

Å

− 1

λ2

ã

> . . . > 0. (136)

Alternatively, assume that Q (A) < 1
2 . In this case, the

inequality in (134) is satisfied if and only if

λ <

Å

log

Å

1−Q (A)

Q (A)

ãã−1

. (137)

Hence, if Q (A) < 1
2 , then for all decreasing sequences of

positive reals

Å

log

Å

1−Q (A)

Q (A)

ãã−1

> λ1 > λ2 > . . . > 0,

it holds that

1

4
> K

(2)
Q,z

Å

− 1

λ1

ã

> K
(2)
Q,z

Å

− 1

λ2

ã

> . . . > 0. (138)

Moreover, for all decreasing sequences of positive reals

λ1 > λ2 > . . . >

Å

log

Å

1−Q (A)

Q (A)

ãã−1

,

it holds that

K
(2)
Q,z

Å

− 1

λ1

ã

< K
(2)
Q,z

Å

− 1

λ2

ã

< . . . <
1

4
. (139)

The upperbound by 1
4 in (136), (138) and (139) follows by

noticing that the value K
(2)
Q,z

(

− 1
λ

)

is maximized when λ =
Ä

log
Ä

1−Q(A)
Q(A)

ää−1
and K

(2)
Q,z

(

− 1
λ

)

= 1
4 .

Example 1 provides important insights on the choice of the

reference measure Q. Note for instance that when the reference

measure assigns a probability to the set of models T (z) in (5)

that is greater than or equal to the probability of suboptimal

models M \ T (z), i.e., Q (T (z)) > 1
2 , the variance is

strictly decreasing to zero when λ decreases. See for instance,

Figure 1 and Figure 2. That is, when the reference measure

assigns higher probability to the set of solutions to the ERM

problem in (4), the variance is monotone with respect to the

parameter λ.

Alternatively, when the reference measure assigns a probability

to the set T (z) that is smaller than the probability of the

set M\T (z), i.e., Q (T (z)) < 1
2 , there exists a critical point

for λ at
Ä

log
Ä

1−Q(A)
Q(A)

ää−1
. See for instance, Figure 3. More

importantly, such a critical point can be arbitrarily close to zero

depending on the value Q (A). The variance strictly decreases

when λ decreases beyond the value
Ä

log
Ä

1−Q(A)
Q(A)

ää−1
. Other-

wise, reducing λ above the value
Ä

log
Ä

1−Q(A)
Q(A)

ää−1
increases

the variance.
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In general, these observations suggest that reference mea-

sures Q that allocate small measures to the sets containing the

set T (z) might require reducing the value λ beyond a small

threshold in order to observe small values of K
(2)
Q,z

(

− 1
λ

)

,

which is the variance of the random variable W , in (101).

These observations are central to understanding the concen-

tration of probability that occurs when λ decreases to zero, as

discussed in Section IX.

10
-1

10
0

10
1

10
2

Regularization Factor ( )

0

0.05

0.1

0.15

0.2

0.25

Fig. 1. Mean K
(1)
Q,z

(

−
1
λ

)

, variance K
(2)
Q,z

(

−
1
λ

)

, and third central moment

K
(3)
Q,z

(

−
1
λ

)

of the empirical risk in Example 1, with Q (A) = 3
4

10
-1

10
0

10
1

10
2

Regularization Factor ( )

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 2. Mean K
(1)
Q,z

(

−
1
λ

)

, variance K
(2)
Q,z

(

−
1
λ

)

, and third central moment

K
(3)
Q,z

(

−
1
λ

)

of the empirical risk in Example 1, with Q (A) = 1
2

VIII. CUMULANT GENERATING FUNCTION OF THE

EMPIRICAL RISK

Consider the transport of the measure P
(Q,λ)
Θ|Z=z

in (25)

from (M,B (M)) to ([0,+∞],B ([0,+∞])) through the

function Lz in (3). Denote the resulting probability measure

10
-1

10
0

10
1

10
2

Regularization Factor ( )

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 3. Mean K
(1)
Q,z

(

−
1
λ

)

, variance K
(2)
Q,z

(

−
1
λ

)

, and third central moment

K
(3)
Q,z

(

−
1
λ

)

of the empirical risk in Example 1, with Q (A) = 1
4

in ([0,+∞],B ([0,+∞])) by P
(Q,λ)
W |Z=z

. That is, for all A ∈
B ([0,+∞]),

P
(Q,λ)
W |Z=z

(A) = P
(Q,λ)
Θ|Z=z

(

L
−1
z (A)

)

, (140)

where the term L−1
z (A) represents the set

L
−1
z (A),{ν ∈ M : Lz(ν) ∈ A} . (141)

Note that the random variable W in (101) induces the probabil-

ity measure P
(Q,λ)
W |Z=z

in ([0,+∞],B ([0,+∞])). The objective

of this section is to study the properties of the cumulant

generating function of the probability measure P
(Q,λ)
W |Z=z

, de-

noted by Jz,Q,λ : R → R ∪ {+∞}, which satisfies for

all t ∈ R,

Jz,Q,λ(t) = log

Å∫

exp (tw) dP
(Q,λ)
W |Z=z

(w)

ã

(142)

= log

Å∫

exp (t Lz (θ)) dP
(Q,λ)
Θ|Z=z

(θ)

ã

, (143)

where the equality in (143) follows from [56, Theo-

rem 1.6.12].

The following lemma provides an expression for Jz,Q,λ in

terms of the log-partition function KQ,z in (22).

Lemma 23: If λ ∈ KQ,z , with KQ,z in (23), then, the

function Jz,Q,λ in (142), verifies for all t ∈ R,

Jz,Q,λ(t) = K
P

(Q,λ)

Θ|Z=z
,z
(t) (144)

= KQ,z

Å

t− 1

λ

ã

−KQ,z

Å

− 1

λ

ã

(145)

=

+∞
∑

m=1

tm

m!
K

(m)
Q,z

Å

− 1

λ

ã

, (146)

with the function KQ,z in (22) and the function K
(m)
Q,z in (97).
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Proof: The proof of (144) follows immediately from (22) and

(143). The proof of (145) follows from Lemma 12. Finally, the

proof of (146) follows by observing that a Taylor expansion

of the function KQ,z in (22) at the point − 1
λ

, yields for all

t ∈ {ν ∈ R : KQ,z(ν) < +∞},

KQ,z (t)=KQ,z

Å

− 1

λ

ã

+

+∞
∑

s=1

K
(s)
Q,z

(

− 1
λ

)

s!

Å

t+
1

λ

ãs

. (147)

Choosing α ∈
{

ν ∈ R : KQ,z(ν − 1
λ
) < +∞

}

such that t =
α− 1

λ
in (147) yields

KQ,z

Å

α− 1

λ

ã

=KQ,z

Å

− 1

λ

ã

+
+∞
∑

s=1

αs

s!
K

(s)
Q,z

Å

− 1

λ

ã

, (148)

which implies that for all t ∈
{

ν ∈ R : KQ,z(ν − 1
λ
) < +∞

}

,

KQ,z

Å

t− 1

λ

ã

−KQ,z

Å

− 1

λ

ã

=
+∞
∑

s=1

ts

s!
K

(s)
Q,z

Å

− 1

λ

ã

. (149)

Let s⋆ ∈ R ∪ {+∞} be defined by

s⋆,sup

ß

ν ∈ R : KQ,z

Å

ν − 1

λ

ã

< ∞
™

. (150)

If s⋆ = +∞, then for all t ∈ R, KQ,z

(

t− 1
λ

)

−KQ,z

(

− 1
λ

)

<
+∞, and thus,

+∞>Jz,Q,λ(t) = K
P

(Q,λ)

Θ|Z=z
,z
(t) (151)

= KQ,z

Å

t− 1

λ

ã

−KQ,z

Å

− 1

λ

ã

(152)

=

+∞
∑

m=1

tm

m!
K

(m)
Q,z

Å

− 1

λ

ã

. (153)

Alternatively, if s⋆ < +∞, it follows that for all t > s⋆,

KQ,z

(

t− 1
λ

)

= +∞. From the fact that the function KQ,z

is continuous (Lemma 15) and KQ,z

(

− 1
λ

)

< ∞ (due to the

fact that λ ∈ KQ,z in (23)), it follows that

+∞= Jz,Q,λ(t) = KQ,z

Å

t− 1

λ

ã

−KQ,z

Å

− 1

λ

ã

(154)

=

+∞
∑

m=1

tm

m!
K

(m)
Q,z

Å

− 1

λ

ã

, (155)

which implies that
∑+∞

m=1
tm

m!K
(m)
Q,z

(

− 1
λ

)

= +∞. Hence, in

this case, the equality in (146) is of the form +∞ = +∞.

This completes the proof.

Alternative expressions for Jz,Q,λ in (142) are provided here-

under.

Lemma 24: If λ ∈ KQ,z , with KQ,z in (23), then, the

function Jz,Q,λ in (142), verifies for all t ∈ (0,+∞),

Jz,Q,λ

Å

−1

t

ã

= −1

t
Rz

Ñ

P

Å

Q, 1
1
λ

+1
t

ã

Θ|Z=z

é

−D

Ñ

P

Å

Q, 1
1
λ

+1
t

ã

Θ|Z=z
‖P (Q,λ)

Θ|Z=z

é

(156)

= −1

t
Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

+D

Ñ

P
(Q,λ)
Θ|Z=z

‖P

Å

Q, 1
1
λ

+1
t

ã

Θ|Z=z

é

(157)

6 0, (158)

where the functional Rz is in (18); the function K
P

(Q,λ)

Θ|Z=z
,z

is

in (61); and the probability measures P
(Q,λ)
Θ|Z=z

and P

Å

Q, 1
1
λ

+1
t

ã

Θ|Z=z

are respectively in (25) and (75).

Proof: The proof of (156) follows from (109) in Lemma 20

by observing that for all t ∈ (0,+∞),

−tK
P

(Q,λ)

Θ|Z=z
,z

Å

−1

t

ã

=Rz

Å

P

Ä

P
(Q,λ)

Θ|Z=z
,t
ä

Θ|Z=z

ã

+tD

Å

P

Ä

P
(Q,λ)

Θ|Z=z
,t
ä

Θ|Z=z
‖P (Q,λ)

Θ|Z=z

ã

(159)

=Rz

Ñ

P

Å

Q, 1
1
λ
+1
t

ã

Θ|Z=z

é

+tD

Ñ

P

Å

Q, 1
1
λ
+1
t

ã

Θ|Z=z
‖P (Q,λ)

Θ|Z=z

é

, (160)

where the equality in (160) follows from Lemma 13. The proof

of (157) follows from (110) in Lemma 20 by observing that

for all t ∈ (0,+∞),

−tK
P

(Q,λ)

Θ|Z=z
,z

Å

−1

t

ã

=Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

−tD

Å

P
(Q,λ)
Θ|Z=z

‖P
Ä

P
(Q,λ)

Θ|Z=z
,t
ä

Θ|Z=z

ã

(161)

=Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

−tD

Ñ

P
(Q,λ)
Θ|Z=z

‖P

Å

Q, 1
1
λ
+1
t

ã

Θ|Z=z

é

, (162)

where the equality in (162) follows from Lemma 13, which

completes the proof.

From Lemma 15 and Lemma 23, it follows that the function

Jz,Q,λ in (142) is increasing and differentiable infinitely many

times in the interior of
{

t ∈ R : KQ,z

(

t− 1
λ

)

< +∞
}

. More-

over, note that
(

−∞, 1
λ

]

⊂
{

t ∈ R : KQ,z

(

t− 1
λ

)

< +∞
}

.

Denote by J
(m)
z,Q,λ : R → R ∪ {+∞}, with m ∈ N, the m-

th derivative of the function Jz,Q,λ in (142). That is, for

all s ∈ R,

J
(m)
z,Q,λ(s) =

dm

dtm
Jz,Q,λ(t)

∣

∣

∣

t=s
. (163)

From Lemma 23, it follows that for all m ∈ N, and for all α ∈
R, the following holds,

J
(m)
z,Q,λ(α) = K

(m)
Q,z

Å

α− 1

λ

ã

, (164)

where the function K
(m)
Q,z denotes the m-th derivative of the

function KQ,z in (22). See for instance, Lemma 17. The
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equality in (164) establishes a relation between the cumulant

generating function Jz,Q,λ and the function KQ,z . This ob-

servation becomes an alternative proof to Lemma 17.

The following theorem presents the relation between the

cumulant generating function Jz,Q,λ and the functions K
(1)
Q,z

and K
(2)
Q,z in (98) and (99).

Theorem 7: For all α ∈ R, the function Jz,Q,λ in (142) verifies

the following equality

Jz,Q,λ(α) = αK
(1)
Q,z

Å

− 1

λ

ã

+
1

2
α2K

(2)
Q,z (ξ) (165)

with

ξ ∈
Å

min

ß

− 1

λ
, α− 1

λ

™

,max

ß

− 1

λ
, α− 1

λ

™ã

, (166)

where the functions K
(1)
Q,z and K

(2)
Q,z are defined in (98)

and (99), respectively.

Proof: From Lemma 15, it follows that the function KQ,z

is differentiable infinitely many times in the interior of

{t ∈ R : KQ,z(t) < +∞}. Then, a Taylor expansion of the

function KQ,z in (22) at the point − 1
λ

yields for all t ∈
{ν ∈ R : KQ,z(ν) < +∞},

KQ,z (t)=KQ,z

Å

− 1

λ

ã

+

+∞
∑

s=1

1

s!

Å

t+
1

λ

ãs

K
(s)
Q,z

Å

− 1

λ

ã

. (167)

Choosing t = α − 1
λ

, with α ∈
{

ν ∈ R : KQ,z(ν − 1
λ
) < +∞

}

in (167), it holds from

the Taylor-Lagrange theorem [68, Theorem 2.5.4] that

KQ,z

Å

α− 1

λ

ã

=KQ,z

Å

− 1

λ

ã

+ αK
(1)
Q,z

Å

− 1

λ

ã

+
1

2
α2K

(2)
Q,z (ξ) , (168)

where ξ ∈
(

min{− 1
λ
, α− 1

λ
},max{− 1

λ
, α− 1

λ
},
)

.

Let s⋆ ∈ R ∪ {+∞} be defined by

s⋆,sup

ß

ν ∈ R : KQ,z

Å

ν − 1

λ

ã

< ∞
™

. (169)

If s⋆ = +∞, then for all α ∈ R, KQ,z

(

α− 1
λ

)

−
KQ,z

(

− 1
λ

)

< +∞, and thus, the proof is completed by

noticing that from Lemma 23, it holds that Jz,Q,λ(α) =
KQ,z

(

α− 1
λ

)

−KQ,z

(

− 1
λ

)

.

Alternatively, if s⋆ < +∞, it follows that for all α > s⋆,

KQ,z

(

α− 1
λ

)

= +∞. From from Lemma 23, it holds that

Jz,Q,λ(α) = +∞, which implies that +∞ = αK
(1)
Q,z

(

− 1
λ

)

+
α2

2 K
(2)
Q,z (ξ), and thus, K

(2)
Q,z (ξ) is infinite. Hence, in this

case, the equality in (165) is of the form +∞ 6 +∞. This

completes the proof.

In (165), the parameter ξ depends on α, as shown in

(166). To highlight this dependence, in the following,

the parameter ξ is denoted by ξα. Using this notation,

the focus is now on the term K
(2)
Q,z (ξα), when α ∈

{t ∈ R : Jz,Q,λ(t) < +∞}.

Theorem 8: The function Jz,Q,λ in (142) verifies the following

inequality, for all α ∈ {t ∈ R : Jz,Q,λ(t) < +∞},

Jz,Q,λ(α) 6 αK
(1)
Q,z

Å

− 1

λ

ã

+
1

2
α2β2

Q,z (170)

where βQ,z is finite, and satisfies

βQ,z=sup

ß
√

K
(2)
Q,z (α) :α∈

Å

−∞,b− 1

λ

ã™

, (171)

with

b , sup {t ∈ R : Jz,Q,λ(t) < +∞} , (172)

and the functions K
(1)
Q,z and K

(2)
Q,z defined in (98) and (99),

respectively.

Proof: The proof of the inequality in (170) is trivial from

Theorem 7 and the choice of βQ,z in (171). Hence, the

remainder of the proof focuses on proving that βQ,z < +∞.

From Lemma 15 and Lemma 23, it holds that

{t ∈ R : Jz,Q,λ(t) < +∞}=
ß

t∈R :KQ,z

Å

t− 1

λ

ã

<+∞
™

,

which implies that the set {t ∈ R : Jz,Q,λ(t) < +∞} is an

interval of the form (−∞, b), with b in (172). This follows

from the fact that the function KQ,z is continuous and

nondecreasing (Lemma 15) and the fact that

lim
t→b

Jz,Q,λ(t)=+∞. (173)

For all α ∈ (−∞, b), the function K
(2)
Q,z is

continuous (Lemma 15). Hence, for all t ∈
(

min
{

− 1
λ
, α− 1

λ

}

,max
{

− 1
λ
, α− 1

λ

})

⊂ (−∞, b),

the value K
(2)
Q,z (t) is finite. Moreover, the values

K
(2)
Q,z

(

min
{

− 1
λ
, α− 1

λ

})

and K
(2)
Q,z

(

max
{

− 1
λ
, α− 1

λ

})

are both finite. This implies that the function K
(2)
Q,z

achieves a minimum and maximum within the closed

interval
[

min
{

− 1
λ
, α− 1

λ

}

,max
{

− 1
λ
, α− 1

λ

}]

. Thus, the

corresponding term K
(2)
Q,z (ξα) is finite.

In the asymptotic regime, when α → −∞, the following

holds:

lim
α→−∞

ξα∈
Å

−∞,− 1

λ

ã

. (174)

The function K
(2)
Q,z is continuous in

(

−∞,− 1
λ

)

, as a con-

sequence of the inclusion
(

−∞,− 1
λ

)

⊂ (−∞, b), and thus,

for all t ∈
(

−∞,− 1
λ

)

, K
(2)
Q,z(t) < +∞. Moreover, from

the assumption that λ ∈ KQ,z , with KQ,z in (23), it holds

that

lim
t→− 1

λ

K
(2)
Q,z (t)=K

(2)
Q,z

Å

− 1

λ

ã

< +∞. (175)
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Alternatively,

lim
t→−∞

K
(2)
Q,z(t) (176)

= lim
t→0+

K
(2)
Q,z

Å

−1

t

ã

(177)

= lim
t→0+

∫ Å

Lz (θ)−K
(1)
Q,z

Å

−1

t

ãã2

dP
(Q,t)
Θ|Z=z

(θ), (178)

= lim
t→0+

∫

(Lz (θ))
2
dP

(Q,t)
Θ|Z=z

(θ)

− lim
t→0+

Å

K
(1)
Q,z

Å

−1

t

ãã2

, (179)

= lim
t→0+

∫

(Lz(θ))
2
dP

(Q,t)
Θ|Z=z

(θ)−
(

δ⋆Q,z

)2
(180)

= lim
t→0+

∫

(Lz(θ))
2
dP

(Q,t)
Θ|Z=z

dQ
(θ)dQ(θ)−

(

δ⋆Q,z

)2
(181)

=

∫

(Lz(θ))
2

Ñ

lim
t→0+

dP
(Q,t)
Θ|Z=z

dQ
(θ)

é

dQ(θ)−
(

δ⋆Q,z

)2
(182)

=

∫

(Lz(θ))
2

Ñ

1

Q
Ä

L⋆
Q,z

ä1{θ∈L⋆
Q,z}

é

dQ(θ)−
(

δ⋆Q,z

)2
(183)

=
1

Q
Ä

L⋆
Q,z

ä

∫

L⋆
Q,z

(Lz(θ))
2
dQ(θ)−

(

δ⋆Q,z

)2
(184)

=
(

δ⋆Q,z

)2 −
(

δ⋆Q,z

)2
= 0, (185)

where the equality in (178) follows from Lemma 17; the

equality in (180) follows from Theorem 6, with δ⋆Q,z in (38);

the equality in (182) follows from the dominated convergence

theorem [56, Theorem 1.6.9]; the equality in (183) follows

from Lemma 6; and the equality in (185) follows from the

definition of the set L⋆
Q,z in (39).

Hence, from (174), (175), and (185), it follows that

lim
α→−∞

K
(2)
Q,z (ξα) ∈

[

0, max
c∈(−∞,− 1

λ ]
K

(2)
Q,z (c)

]

, (186)

where the maximum exists and is finite.

On the other hand, in the asymptotic regime, when α → b−,

two cases are considered: (i) b > 0; and (ii) b < 0. In the

first case, the following holds from (166):

lim
α→b−

ξα∈
ï

− 1

λ
, b− 1

λ

ã

. (187)

The function K
(2)
Q,z is continuous in

(

− 1
λ
, b− 1

λ

)

, as a con-

sequence of the inclusion
(

− 1
λ
, b− 1

λ

)

⊂ (−∞, b), and thus,

for all t ∈
(

− 1
λ
, b− 1

λ

)

, K
(2)
Q,z(t) < +∞. Moreover,

K
(2)
Q,z

Å

− 1

λ

ã

<+∞, and (188)

K
(2)
Q,z

Å

b− 1

λ

ã

<+∞. (189)

This implies that when b > 0,

lim
α→b−

K
(2)
Q,z (ξα) ∈

[

0, max
c∈[− 1

λ
,b− 1

λ ]
K

(2)
Q,z (c)

]

, (190)

where the maximum exists and is finite.

The function K
(2)
Q,z is differentiable infinitely many times

(Lemma 15) within the interval (−∞, b). More specifically,

for all t ∈ (−∞, b),

K
(2)
Q,z (t) =

∫

(Lz (θ))
2
exp (tLz (θ)−KQ,z (t)) dQ(θ)

−
Ä

K
(1)
Q,z (t)

ä2
, (191)

Finally, In the second case, the following holds from

(166):

lim
α→b−

ξα∈
Å

b− 1

λ
,− 1

λ

ã

. (192)

The function K
(2)
Q,z is continuous in

(

b− 1
λ
,− 1

λ

)

, as a con-

sequence of the inclusion
(

b− 1
λ
,− 1

λ

)

⊂ (−∞, b), and thus,

for all t ∈
(

b− 1
λ
,− 1

λ

)

, K
(2)
Q,z(t) < +∞. Moreover,

K
(2)
Q,z

Å

b− 1

λ

ã

<+∞, and (193)

K
(2)
Q,z

Å

− 1

λ

ã

<+∞. (194)

This implies that when b < 0,

lim
α→b−

K
(2)
Q,z (ξα) ∈

[

0, max
c∈(b− 1

λ
,− 1

λ ]
K

(2)
Q,z (c)

]

, (195)

where the maximum exists and is finite. From all the above,

it holds that for all α ∈ {t ∈ R : Jz,Q,λ(t) < +∞}, the value

K
(2)
Q,z (ξα) is finite, and this completes the proof.

The main implication of Theorem 8 is that the random

variable W in (101) is a sub-Gaussian random variable with

sub-Gaussianity parameter βQ,z in (171) [54, Section 2.3].

This follows by noticing that the function Jz,Q,λ in (143) is

the cumulant generating function of the random variable W .

Hence, whenever it is finite, it is upper bounded as shown in

Theorem 8. The following corollary of Theorem 8 highlights

this observation.

Corollary 6: The random variable W in (101) is a sub-

Gaussian random variable with sub-Gaussianity parameter

βQ,z in (171).

The relevance of Corollary 6 is that it highlights the fact that

when the models are sampled from the ERM-RER optimal

measure P
(Q,λ)
Θ|Z=z

in (25), the empirical risk with respect to

the dataset z is a sub-Gaussian random variable with sub-

Gaussianity parameter βQ,z in (171).

IX. CONCENTRATION OF PROBABILITY

Consider the following set,

NQ,z(λ),
¶

θ ∈ M : Lz (θ) 6 Rz

Ä

P
(Q,λ)
Θ|Z=z

ä©

, (196)

where the function Lz is defined by (3); the functional Rz

is defined by (18); and the probability measure P
(Q,λ)
Θ|Z=z

is

in (25). This section introduces two results. First, in Theo-

rem 9, it is shown that when λ tends to zero, the set NQ,z(λ)
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forms an indexed family of sets that is monotonic and de-

creases to the set

N ⋆
Q,z , Lz

(

δ⋆Q,z

)

, (197)

where δ⋆Q,z is defined in (38); and the set Lz(δ
⋆
Q,z) is defined

in (37). Second, in Theorem 10, it is shown that the probabil-

ity P
(Q,λ)
Θ|Z=z

(NQ,z(λ)) strictly increases when λ tends to zero.

More importantly, in Theorem 11, it is shown that the limit

of the probability P
(Q,λ)
Θ|Z=z

(NQ,z(λ)), when λ → 0, is equal

to one. These observations justify referring to the set N ⋆
Q,z as

the limit set. These observations are complementary to those

stated in Section III-B and Section III-C. This section ends

by showing that the probability measure P
(Q,λ)
Θ|Z=z

concentrates

on a specific subset L⋆
Q,z in (39) of the set N ⋆

Q,z . At the

light of this observation, the set L⋆
Q,z is referred to as the

nonnegligible limit set. Finally, it is shown that when the σ-

finite measure Q in (19) is coherent, the sets N ⋆
Q,z and L⋆

Q,z

are identical.

A. The Limit Set

The set NQ,z(λ) in (196), with λ ∈ KQ,z and KQ,z in (23),

contains all the models that induce an empirical risk that is

smaller than or equal to Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

, i.e., the ERM-RER-

optimal expected empirical risk in (106). This observation

unveils the existence of a relation between the set N ⋆
Q,z

in (197) and the set T (z) in (5), as shown by the following

lemma.

Lemma 25: The set N ⋆
Q,z in (197) satisfies

T (z) ⊆ N ⋆
Q,z, (198)

where the set T (z) is in (5). Moreover,

T (z) = N ⋆
Q,z, (199)

if and only if (a) the ERM problem in (4) possesses a solution;

and (b) the reference measure Q in (19) is coherent.

Proof: If the set T (z) in (5) is empty, the inclusion in (198)

is trivially true. Assume that |T (z)| > 0. Hence, the proof of

the inclusion in (198) follows from observing that for all θ ∈
T (z), it holds that Lz (θ) = ρ⋆ 6 δ⋆Q,z , with δ⋆Q,z in (38)

and ρ⋆ in (48). Hence, θ ∈ N ⋆
Q,z . This completes the proof

of the inclusion in (198).

The proof of the equality in (199) is presented in two parts.

In the first part, it is proved that if (199) holds, then the ERM

problem in (4) possesses a solution and the measure Q is

coherent. The second part proves the converse. The proof of

the first part is as follows. Under the assumption that T (z) =
N ⋆

Q,z holds, it follows that δ⋆Q,z = ρ⋆, with ρ⋆ in (48), which

implies that the ERM problem in (4) possesses a solution.

Moreover, for all δ ∈ (ρ⋆,+∞), it holds that Q (Lz (δ)) > 0,

which verifies that the measure Q is coherent and completes

the proof of the first part. The proof of the second part is as

follows. Under the assumption that the ERM problem in (4)

possesses a solution and the measure Q is coherent, it follows

that δ⋆Q,z = ρ⋆. Hence, T (z) = N ⋆
Q,z , which completes the

proof of the second part.

The following theorem highlights that the set NQ,z (λ) is

decreasing with λ.

Theorem 9: For all (λ1, λ2) ∈ KQ,z×KQ,z , with KQ,z in (23)

and λ1 > λ2, the sets NQ,z (λ1) and NQ,z (λ2) in (196)

satisfy

M ⊇ NQ,z(λ1) ⊇ NQ,z(λ2) ⊇ N ⋆
Q,z, (200)

with N ⋆
Q,z being the set defined in (197). Moreover, if the

empirical risk function Lz in (3) is continuous on M and

separable with respect to the measure Q in (19), then,

M ⊃ NQ,z(λ1) ⊃ NQ,z(λ2) ⊃ N ⋆
Q,z. (201)

Proof: The proof is presented in Appendix Q.

An interesting observation is that for all λ ∈ KQ,z , with KQ,z

in (23), only a subset of NQ,z (λ) might exhibit nonzero

probability with respect to the measure P
(Q,λ)
Θ|Z=z

in (25).

Consider for instance that the measure Q in (19) is non-

coherent (Definition 3). That is, δ⋆Q,z > ρ⋆, with δ⋆Q,z

in (38) and ρ⋆ in (48). Thus, for all γ ∈
Ä

ρ⋆, δ⋆Q,z

ä

, it

holds that Q (Lz (γ)) = 0, with the set Lz(·) in (37). From

Lemma 3, this implies that for all γ ∈
Ä

ρ⋆, δ⋆Q,z

ä

, the

measure P
(Q,λ)
Θ|Z=z

in (25) satisfies P
(Q,λ)
Θ|Z=z

(Lz (γ)) = 0, while

verifying that Lz (γ) ⊆ NQ,z (λ). These observations lead to

the analysis of the asymptotic concentration of probability in

the following section.

B. The Nonnegligible Limit Set

The first step in the analysis of the asymptotic concentration

of the probability measure P
(Q,λ)
Θ|Z=z

in (25) is to show that

the probability P
(Q,λ)
Θ|Z=z

(NQ,z(λ)) increases when λ tends to

zero, as shown by the following theorem.

Theorem 10: For all (λ1, λ2) ∈ KQ,z × KQ,z , with KQ,z

in (23) and λ1 > λ2, assume that the measures P
(Q,λ1)
Θ|Z=z

and P
(Q,λ2)
Θ|Z=z

satisfy (25) with λ = λ1 and λ = λ2, respec-

tively. Then, the set NQ,z (λ2) in (196) satisfies

0 < P
(Q,λ1)
Θ|Z=z

(NQ,z(λ2)) 6 P
(Q,λ2)
Θ|Z=z

(NQ,z(λ2)), (202)

where strict inequality holds if and only if the function Lz is

separable with respect to the σ-finite measure Q.

Proof: The proof is presented in Appendix R.

The following lemma highlights a case in which a stronger

concentration of probability is observed.

Lemma 26: Let the function Lz in (3) be separable with respect

to the σ-finite measure Q in (19). Let also (λ1, λ2) ∈ KQ,z ×
KQ,z , with KQ,z in (23), be two positive reals such that λ1 >
λ2 and

Q

Å

NQ,z (λ1) ∩ (NQ,z (λ2))
c

ã

= 0, (203)

with the complement with respect to the set of models M.

Then, two measures P
(Q,λ1)
Θ|Z=z

and P
(Q,λ2)
Θ|Z=z

that respectively

satisfy (25) with λ = λ1 and λ = λ2 verify that

P
(Q,λ1)
Θ|Z=z

(NQ,z(λ1)) < P
(Q,λ2)
Θ|Z=z

(NQ,z(λ2)), (204)
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where, the set NQ,z (·) is defined in (196).

Proof: The proof is presented in Appendix S.

The following example shows the relevance of Lemma 26 in

the case in which the empirical risk function Lz in (3) is

a simple function and separable with respect to the σ-finite

measure Q in (19).

Example 2: Consider Example 1. Note that, for all λ > 0,

0 < Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

< 1, (205)

where Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

is the ERM-RER-optimal expected em-

pirical risk in (106). The equality in (205) implies that given

two reals λ1 and λ2 such that λ1 > λ2 > 0, it holds that,

NQ,z (λ1) ∩ (NQ,z (λ2))
c

=
¶

ν ∈M :Rz

Ä

P
(Q,λ2)
Θ|Z=z

ä

< Lz (ν)6Rz

Ä

P
(Q,λ1)
Θ|Z=z

ä©

(206)

=∅, (207)

and moreover, NQ,z(λ1) = NQ,z(λ2). Finally, from

Lemma 26,

P
(Q,λ1)
Θ|Z=z

(NQ,z(λ1)) < P
(Q,λ2)
Θ|Z=z

(NQ,z(λ2)). (208)

The main result of this section is presented by the following

theorem.

Theorem 11: The probability measure P
(Q,λ)
Θ|Z=z

in (25) satisfies

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(NQ,z (λ)) = 1, (209)

where, the set NQ,z (λ) is defined in (196).

Proof: The proof follows immediately from Lemma 7 and

by noticing that for all λ ∈ KQ,z , with KQ,z in (23), the

sets L⋆
Q,z in (39) and NQ,z (λ) in (196) satisfies L⋆

Q,z ⊆
NQ,z (λ).

Note that Theorem 11 and Lemma 7 lead to the following

conclusion

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(

NQ,z (λ) \ L⋆
Q,z

)

= 0, (210)

which follows from the fact that L⋆
Q,z ⊂ NQ,z (λ), with L⋆

Q,z

in (39). This justifies referring to the set L⋆
Q,z as the nonneg-

ligible limit set.

X. (δ, ǫ)-OPTIMALITY

This section introduces a PAC guarantee of optimality for the

models that are sampled from the probability measure P
(Q,λ)
Θ|Z=z

in (25) with respect to the ERM problem in (4). Such guarantee

is defined as follows.

Definition 6 ((δ, ǫ)-Optimality): Given a pair of positive re-

als (δ, ǫ), with ǫ < 1, the probability measure P
(Q,λ)
Θ|Z=z

in (25)

is said to be (δ, ǫ)-optimal, if the set Lz (δ) in (37) satisfies

P
(Q,λ)
Θ|Z=z

(Lz (δ)) > 1− ǫ. (211)

If the probability measure P
(Q,λ)
Θ|Z=z

in (25) is (δ, ǫ)-optimal,

then it assigns a probability that is always greater than 1− ǫ

to a set that contains models that induce an empirical risk that

is smaller than δ. From this perspective, particular interest is

given to the smallest δ and ǫ for which P
(Q,λ)
Θ|Z=z

is (δ, ǫ)-
optimal.

The main result of this section is presented by the following

theorem.

Theorem 12: For all (δ, ǫ) ∈ (δ⋆Q,z,+∞) × (0, 1), with δ⋆Q,z

in (38), there exists a real λ ∈ KQ,z , with KQ,z in (23), such

that the probability measure P
(Q,λ)
Θ|Z=z

is (δ, ǫ)-optimal.

Proof: Let δ be a real in
Ä

δ⋆Q,z,+∞
ä

, with δ⋆Q,z in (38). Let

also λ ∈ KQ,z satisfy the following equality:

K
(1)
Q,z

Å

− 1

λ

ã

6 δ. (212)

Note that from Lemma 15, it follows that the function K
(1)
Q,z

is continuous. Moreover, from Theorem 6, it follows that such

a λ in (212) always exists. From (37) and (196), it holds

that

NQ,z(λ) ⊆ Lz (δ) , (213)

and thus,

P
(Q,λ)
Θ|Z=z

(Lz (δ)) > P
(Q,λ)
Θ|Z=z

(NQ,z(λ)) . (214)

Let γ be a positive real such that γ 6 λ and

P
(Q,γ)
Θ|Z=z

(NQ,z(γ)) > 1− ǫ. (215)

The existence of such a positive real γ follows from Theo-

rem 11. Hence, from (215), it holds that,

1− ǫ<P
(Q,γ)
Θ|Z=z

(NQ,z(γ)) (216)

6P
(Q,γ)
Θ|Z=z

(Lz (δ)) , (217)

where the inequality in (217) follows from the fact

that NQ,z(γ) ⊆ NQ,z(λ) ⊆ Lz (δ). Finally, the inequality

in (217) implies that the probability measure P
(Q,λ)
Θ|Z=z

is (δ, ǫ)-
optimal (Definition 6). This completes the proof.

A stronger optimality claim can be stated when the reference

measure is coherent.

Theorem 13: For all (δ, ǫ) ∈ (ρ⋆,+∞)×(0, 1), with ρ⋆ in (48),

there always exists a λ ∈ KQ,z , with KQ,z in (23), such that

the probability measure P
(Q,λ)
Θ|Z=z

is (δ, ǫ)-optimal if and only

if the reference measure Q is coherent.

Proof: The proof is divided into two parts. The first part shows

that if for all (δ, ǫ) ∈ (ρ⋆,+∞) × (0, 1), there always exists

a λ ∈ KQ,z , with KQ,z in (23), such that the probability

measure P
(Q,λ)
Θ|Z=z

in (25) is (δ, ǫ)-optimal, then, the measure Q
is coherent. The second part deals with the converse.

The first part is as follows. Let γ ∈ KQ,z be such that

P
(Q,γ)
Θ|Z=z

(Lz (δ))>1− ǫ, (218)
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then, for all measurable subsets A of Lz (δ), it holds

that

1−ǫ < P
(Q,γ)
Θ|Z=z

(Lz (δ)) (219)

=

∫

A

dP
(Q,γ)
Θ|Z=z

dQ
(ν)dQ(ν)+

∫

Lz(δ)\A

dP
(Q,γ)
Θ|Z=z

dQ
(ν)dQ(ν),

which, together with Lemma 2, implies that there exists at

least one measurable subset A for which Q (A) > 0, and

thus,

Q (Lz (δ))>Q (A) > 0, (220)

which implies that the measure Q is coherent. This completes

the first part of the proof.

The second part of the proof is as follows. Under the assump-

tion that the measure Q is coherent, it follows that δ⋆Q,z = ρ⋆.

Then, from Theorem 12, it follows that for all (δ, ǫ) ∈
(δ⋆Q,z,+∞) × (0, 1), there always exists a λ ∈ KQ,z ,

with KQ,z in (23), such that the probability measure P
(Q,λ)
Θ|Z=z

is (δ, ǫ)-optimal. This completes the second part of the proof.

XI. SENSITIVITY AND GENERALIZATION

This section introduces the notion of sensitivity and establishes

its connections with the notion of generalization error of the

Gibbs algorithm, cf. [9].

A. Sensitivity

The sensitivity of the expected empirical risk Rz in (18) to

deviations from the probability measure P
(Q,λ)
Θ|Z=z

in (25) to-

wards an alternative probability measure P ∈ △ (M,B (M))
is introduced as a novel metric to evaluate the generaliza-

tion capabilities of the ERM-RER-optimal measure P
(Q,λ)
Θ|Z=z

.

Deviations from the probability measure P
(Q,λ)
Θ|Z=z

towards

an alternative probability measure P would allow comparing

the ERM-RER-optimal measure with alternative measures (or

algorithms). For instance, if new datasets become available,

a new ERM-RER problem can be formulated using a larger

dataset obtained by aggregating the old and the new datasets,

cf. [11] and [69]. Intuitively, the ERM-RER-optimal measure

obtained after the aggregation of datasets might exhibit better

generalization capabilities, see for instance [11]. This analy-

sis is the motivation of the sensitivity, which is defined as

follows.

Definition 7 (Sensitivity): Given the σ-finite measure Q and

the positive real λ > 0 in (19), let SQ,λ : (X × Y)
n ×

△Q (M,B (M)) → (−∞,+∞] be a functional such that

SQ,λ(z,P )=

®

Rz (P )−Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

if λ∈KQ,z

+∞ otherwise,
(221)

where the functional Rz is defined in (18) and the probability

measure P
(Q,λ)
Θ|Z=z

is in (25). The sensitivity of the expected

empirical risk Rz due to a deviation from P
(Q,λ)
Θ|Z=z

to P

is SQ,λ (z, P ).

Recently, the following exact expression for the sensitivity

SQ,λ (z, P ) in (221) was introduced in [11].

Theorem 14 (Theorem 1 in [11]): The sensitivity SQ,λ (z, P )
in (221) satisfies

SQ,λ(z,P )

=λ
(

D
Ä

P
(Q,λ)
Θ|Z=z

‖Q
ä

+D
Ä

P‖P (Q,λ)
Θ|Z=z

ä

−D(P‖Q)
)

, (222)

where the probability measure P
(Q,λ)
Θ|Z=z

is in (25).

The following theorem introduces an upper bound on the

absolute value of the sensitivity SQ,λ (z, P ) in (221), which

requires the calculation of only one of the relative entropies

in Theorem 14.

Theorem 15: For all P ∈ △Q (M,B (M)), the sensitivity

SQ,λ (z, P ) in (221) satisfies

|SQ,λ (z, P )|6
√

2β2
Q,zD

Ä

P‖P (Q,λ)
Θ|Z=z

ä

, (223)

where the constant βQ,z is defined in (171).

Proof: The proof is presented in Appendix T.

Note that equality holds in (223) in the trivial case in which

the empirical risk function is not separable with respect to Q
(Definition 5). In such case, for all P ∈ △Q (M,B (M)), it

holds that SQ,λ (z, P ) = 0 and βQ,z = 0.

Theorem 15 establishes an upper and a lower bound on the

increase and decrease of the expected empirical risk that

can be obtained by deviating from the optimal solution of

the ERM-RER problem in (19). More specifically, note that

for all probability measures P ∈ △Q (M,B (M)), it holds

that,

Rz (P )>Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

−
√

2β2
Q,zD

Ä

P‖P (Q,λ)
Θ|Z=z

ä

and (224)

Rz (P )6Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

+
√

2β2
Q,zD

Ä

P‖P (Q,λ)
Θ|Z=z

ä

. (225)

B. Generalization Error

This section unveils the interesting connection between the

notion of sensitivity and the notion of generalization error

of the Gibbs algorithm, cf. [9]. The Generalization error is

defined under the assumption that datasets are sampled from

a probability measure

PZ ∈ △ ((X × Y)
n
,F ) , (226)

where F denotes a given σ-field on the set (X × Y)
n

. For

such a probability measure PZ in (226), let the set KQ,PZ
⊂ R

be

KQ,PZ
=

⋂

z∈suppPZ

KQ,z, (227)

where the σ-finite measure Q is in (19). The set KQ,PZ

in (227) can be empty for some choices of the σ-finite

measure Q. Nonetheless, from Lemma 1, it follows that if Q
is a probability measure, then,

KQ,PZ
= (0,+∞) . (228)
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Under the assumption that datasets are sampled from PZ

in (226), the generalization error of the Gibbs algorithm with

parameters Q and λ, is defined as the expectation with respect

to the product measure P
(Q,λ)
Θ|Z · PZ , with P

(Q,λ)
Θ|Z in (25), of

difference between: (a) the population risk due to a model

θ ∈ M,
∫

Lz (θ) dPZ (z) (229)

with the function Lz defined in (3); and (b) The empirical risk

induced by the model θ with respect to a training dataset z,

that is, Lz (θ). More specifically, the generalization error of

the Gibbs algorithm with parameters Q and λ is
∫ ∫ Å∫

Lz (θ) dPZ (z)− Lν (θ)

ã

dP
(Q,λ)
Θ|Z=ν

(θ) dPZ(ν)

=

∫ Å∫

Lz (θ) dPZ (z)

ã

dP
(Q,λ)
Θ

(θ)

−
∫

Lν (θ) dP
(Q,λ)
Θ|Z=ν

(θ) dPZ(ν) (230)

=

∫ Å∫

Lz (θ) dP
(Q,λ)
Θ

(θ)

ã

dPZ (z)

−
∫

Lν (θ) dP
(Q,λ)
Θ|Z=ν

(θ) dPZ(ν) (231)

=

∫

Ä

Rν

Ä

P
(Q,λ)
Θ

ä

−Rν

Ä

P
(Q,λ)
Θ|Z=ν

ää

dPZ(ν), (232)

where the probability measure P
(Q,λ)
Θ

satisfies for all sets A ∈
B (M),

P
(Q,λ)
Θ

(A) =

∫

P
(Q,λ)
Θ|Z=ν

(A) dPZ (ν) , (233)

and the functional Rν is defined in (18).

The following theorem establishes a connection between sen-

sitivity and generalization error in the particular case in which

Q in (19) is a probability measure.

Theorem 16: Under the assumption that datasets are sampled

from PZ in (226), the generalization error of the Gibbs

algorithm with parameters Q (a probability measure) and

λ > 0, is
∫

SQ,λ

Ä

ν, P
(Q,λ)
Θ

ä

dPZ(ν), (234)

where the functional SQ,λ is in (221); and the probability

measure P
(Q,λ)
Θ

is in (233).

Proof: The proof uses the fact that under the assumption that

Q is a probability measure, for all ν ∈ suppPZ , it follows

from Lemma 1 that KQ,ν = (0,+∞). This implies that for

all z ∈ suppPZ and for all λ > 0, the ERM-RER problem

in (19), always possesses as solution the measure P
(Q,λ)
Θ|Z=z

in (25). Thus, the measure P
(Q,λ)
Θ

in (233) is well defined.

Moreover, SQ,λ

Ä

z, P
(Q,λ)
Θ

ä

= Rz

Ä

P
(Q,λ)
Θ

ä

− Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

and the integral in (232) is also well defined, which completes

the proof.

Theorem 16 provides an interesting viewpoint of the gener-

alization error. For instance, the probability measure P
(Q,λ)
Θ

in (226) can be understood as the barycenter of a subset

of △ (M,B (M)) containing the solutions to ERM-RER

problems of the form in (19), with z ∈ suppPZ in (226).

Hence, the generalization error of the Gibbs algorithm is the

expectation (with respect to PZ) of the sensitivity of the

expected empirical risks Rz in (18) to variations from the

ERM-RER-optimal measure P
(Q,λ)
Θ|Z=z

towards the barycenter,

i.e., the measure P
(Q,λ)
Θ

.

The following definition extends the notion of generalization

error to Gibbs algorithms obtained by assuming that the refer-

ence measure Q in (19) is a σ-finite measure. This definition

also exploits the relation between the notions of sensitivity

and generalization error introduced by Theorem 16.

Definition 8 (Generalization Error of the Gibbs Algorithm):

Given a σ-finite measure Q ∈ △ (M,B (M)) and a real λ >
0, let the functional GQ,λ : △ ((X × Y)

n
,F ) → (−∞,+∞]

be such that

GQ,λ(PZ)=







∫

SQ,λ

Ä

ν,P
(Q,λ)
Θ

ä

dPZ(ν) if λ∈KQ,PZ

+∞ otherwise,
(235)

where the functional SQ,λ is in (221); the set KQ,PZ
is

in (227); and the probability measure P
(Q,λ)
Θ

is in (233).

The generalization error induced by the Gibbs algorithm with

parameters Q and λ under the assumption that datasets are

sampled from the probability measure PZ , is GQ,λ (PZ).

The main difficulty for extending the notion of generalization

error to Gibbs algorithms obtained under the assumption that

the reference measure is not a probability measure, but a σ-

finite measure, is that the integrals in (232) and (233) might not

be well defined. This is essentially due to the fact that, while

the ERM-RER problem in (19) always possesses a solution

when Q is a probability measure, the existence of a solution

when Q is not a probability measure is subject to the condition

that for all z ∈ suppPZ , λ ∈ KQ,z , with KQ,z in (23). This

leads to the condition that λ ∈ KQ,PZ
, with the set KQ,PZ

in (227). When such a condition is not met, the definition of

sensitivity is void.

The following theorem provides a closed-form expression for

the generalization error of the Gibbs algorithm in the general

case in which the reference measure Q in (19) is a σ-finite

measure.

Theorem 17: If λ ∈ KQ,PZ
, with KQ,PZ

in (227), the

generalization error GQ,λ (PZ) in (235) satisfies

GQ,λ (PZ) = λ

(

∫

D
Ä

P
(Q,λ)
Θ|Z=ν

‖P (Q,λ)
Θ

ä

dPZ(ν)

+

∫

D
Ä

P
(Q,λ)
Θ

‖P (Q,λ)
Θ|Z=ν

ä

dPZ(ν)

)

, (236)

where for all z ∈ suppPZ , the probability measure P
(Q,λ)
Θ|Z=z

is

in (25); and the probability measure P
(Q,λ)
Θ

is defined in (233).

Proof: The proof is presented in Appendix U.
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The terms
∫

D
Ä

P
(Q,λ)
Θ|Z=ν

‖P (Q,λ)
Θ

ä

dPZ(ν) and
∫

D
Ä

P
(Q,λ)
Θ

‖P (Q,λ)
Θ|Z=ν

ä

dPZ(ν) in the right-hand side

of (236) are respectively the mutual and the lautum

information [53] induced by a joint probability measure PΘ,Z

whose marginals are PZ in (226) and P
(Q,λ)
Θ

in (233). When

the reference measure Q in (19) is a probability measure,

Theorem 17 reduces to [9, Theorem 1]. Interestingly,

independently of whether the reference measure Q in (19)

is a probability measure, or whether the n data points in

the datasets are independent and identically distributed, the

generalization error GQ,λ (PZ) in (235) is always a factor of

the sum of the mutual and lautum information induced by

the joint probability measure PΘ,Z mentioned above.

Theorem 17 also provides an alternative interpretation of the

generalization error GQ,λ (PZ) in (235). Note that by writing

one of the factors in the right-hand side of (236) as
∫

Ä

D
Ä

P
(Q,λ)
Θ|Z=ν

‖P (Q,λ)
Θ

ä

+D
Ä

P
(Q,λ)
Θ

‖P (Q,λ)
Θ|Z=ν

ää

dPZ(ν),

it becomes clear that GQ,λ (PZ) is the expectation with respect

to PZ of the symmetrized Kullback-Leibler divergence, also

known as Jeffrey’s divergence [66], of the probability measures

P
(Q,λ)
Θ|Z=z

and P
(Q,λ)
Θ

. That is, the solution to the ERM-RER

problem in (19) and the barycenter induced by PZ .

The following theorem provides an upper-bound on the gen-

eralization error of the Gibbs algorithm only in terms of

the lautum information induced by such a joint probability

measure PΘ,Z .

Theorem 18: The generalization error GQ,λ (PZ) in (235)

satisfies for all λ ∈ KQ,PZ
,

0 6GQ,λ(PZ)6

 

2σ2
Q

∫

D
Ä

P
(Q,λ)
Θ

‖P (Q,λ)
Θ|Z=ν

ä

dPZ(ν), (237)

where for all z ∈ suppPZ , the probability measure P
(Q,λ)
Θ|Z=z

is in (25); the probability measure P
(Q,λ)
Θ

is defined in (233);

and

σQ=sup {βQ,z : z ∈ (X × Y)
n} , (238)

with βQ,z in (166).

Proof: The proof of the inequality GQ,λ (PZ) > 0 fol-

lows from observing that for all ν ∈ (X × Y)
n

, the terms

D
Ä

P
(Q,λ)
Θ|Z=ν

‖P (Q,λ)
Θ

ä

and D
Ä

P
(Q,λ)
Θ

‖P (Q,λ)
Θ|Z=ν

ä

in (236) are

nonnegative (Theorem 1). The proof of the remaining inequal-

ity follows from (235) and the following inequalities:

GQ,λ (PZ)=

∣

∣

∣

∣

∫

SQ,λ

Ä

ν, P
(Q,λ)
Θ

ä

dPZ(ν)

∣

∣

∣

∣

(239)

6

∫

∣

∣

∣SQ,λ

Ä

ν, P
(Q,λ)
Θ

ä

∣

∣

∣ dPZ(ν) (240)

6

∫

√

2βQ,νD
Ä

P
(Q,λ)
Θ

‖P (Q,λ)
Θ|Z=ν

ä

dPZ(ν), (241)

6

∫

√

2σ2
QD
Ä

P
(Q,λ)
Θ

‖P (Q,λ)
Θ|Z=ν

ä

dPZ(ν) (242)

6

 

2σ2
Q

∫

D
Ä

P
(Q,λ)
Θ

‖P (Q,λ)
Θ|Z=ν

ä

dPZ(ν), (243)

where the equality in (239) follows from (235); the inequality

in (240) follows from [56, Theorem 1.5.9(c)]; the inequality

in (241) follows from Theorem 15; the inequality in (242)

follows from (238); and the inequality in (243) follows from

Jensen’s inequality [56, Section 6.3.5]. This completes the

proof.

In a nutshell, the generalization error GQ,λ (PZ) in (235) is

upper bounded up to a constant factor by the square root

of the lautum information induced by the joint probability

measure PΘ,Z mentioned above. Theorem 18 is reminiscent

of [30, Theorem 1], which provides a similar upper-bound on

GQ,λ (PZ) using the mutual information instead of the lautum

information induced by the joint probability measure PΘ,Z .

The interest in Theorem 18 for the specific case of the Gibbs

algorithm, lies on the fact that it holds under milder conditions

than those in [30, Theorem 1]. For instance, no additional

conditions on the loss function ℓ in (2) concerning sub-

Gaussianity are assumed. Moreover, the probability measure

PZ from which datasets are sampled is not necessarily a

product measure.

XII. CONCLUSIONS AND FINAL REMARKS

The classical ERM-RER problem in (19) has been studied

under the assumption that the reference measure Q is a σ-

finite measure, instead of a probability measure, which leads

to a more general problem that includes the ERM problem

with (discrete or differential) entropy regularization and the

information-risk minimization problem. While in the case in

which the reference measure is a probability measure the so-

lution to the ERM-RER problem always exists, in this general

case, the existence of a solution is subject to a condition

that depends on the loss function, the reference measure, the

regularization factor, and the training dataset. When a solution

exists, it has been proved that it is unique. Additionally, if it

exists, such a solution and the reference measure are mutually

absolutely continuous in most of the practical cases of interest.

Interestingly, the empirical risk observed when models are

sampled from the ERM-RER-optimal probability measure is a

sub-Gaussian random variable that exhibits a PAC guarantee

for the ERM problem. That is, for some positive δ and ǫ,
it is shown that there always exist some parameters for the

ERM-RER problem such that the set of models that induce an

empirical risk smaller than δ exhibits a probability that is not

smaller that 1− ǫ. Interestingly, none of these results relies on

statistical assumptions on the datasets.

The sensitivity of the expected empirical risk to deviations

from the ERM-RER-optimal measure to alternative measures

is introduced as a new performance metric to evaluate the

generalization capabilities of the Gibbs algorithm. In particu-

lar, an upper bound on the absolute value of the sensitivity,

which depends on the training dataset, is presented. This bound

is formed by a constant factor and the square root of the

relative entropy of the alternative measure (the deviation) with

respect to the ERM-RER solution. Finally, it is shown that

the expectation of the sensitivity (with respect to the datasets)

to deviations towards a particular measure is equivalent to
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the generalization error of the Gibbs algorithm. Equipped

with this observation, the generalization error is shown to be

in the most general case, up to a constant factor, the sum

of the mutual and lautum information between the models

and the datasets, which was a result known exclusively for

the case in which the reference is a probability measure,

cf. [9]. From this perspective, it is argued that the study of

the generalization capabilities of the Gibbs algorithm based

on generalization error is a significantly narrow view. This

is essentially because it is looking at an expectation of the

sensitivity to deviations to a particular measure, i.e., the

barycenter of the set of ERM-RER solutions induced by a prior

on the datasets. A broader view is offered by the study of the

sensitivity to deviations towards other measures, i.e., ERM-

RER-optimal measures obtained with different training data

sets. This approach has lead already to a few initial results in

[11] that highlight the connections to sensitivity, training error,

and test error. Nonetheless, the study of the sensitivity in the

aim of describing the generalization capabilities of learning

algorithms remains by now as an open problem.
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APPENDIX A

PROOF OF THEOREM 2

Consider the function f : [0,+∞) → R such that

f(x) =

ß

x log(x) if x > 0
0 if x = 0,

(244)

and note that it is strictly convex. From the assumption that

for all i ∈ {1, 2}, Pi and Qi are both measures on the same

measurable space (Ω,F ), with Pi absolutely continuous with

respect to Qi, let g : Ω → [0,∞) be the function

g(x)=
d (λP1 + (1− λ)P2)

d (λQ1 + (1− λ)Q2)
(x) , (245)

where
d(λP1+(1−λ)P2)
d(λQ1+(1−λ)Q2)

is the Radon-Nikodym derivative of the

measure λP1 + (1− λ)P2 with respect to λQ1 + (1− λ)Q2.

Using this notation, for all λ ∈ (0, 1),

D (λP1 + (1− λ)P2‖λQ1 + (1− λ)Q2)

−λD (P1‖Q1) + (1− λ)D (P2‖Q2) (246)

=

∫

log(g(x))d(λP1+(1−λ)P2)(x)

−λ

∫

log

Å

dP1

dQ1
(x)

ã

dP1(x)−(1−λ)

∫

log

Å

dP2

dQ2
(x)

ã

dP2(x)

=λ

∫

log (g (x)) dP1(x) + (1− λ)

∫

log (g (x)) dP2(x)

−λ

∫

log

Å

dP1

dQ1
(x)

ã

dP1(x)−(1−λ)

∫

log

Å

dP2

dQ2
(x)

ã

dP2(x)

=λ

∫

log

Ç

Å

dP1

dQ1
(x)

ã−1

g(x)

å

dP1(x)

+(1−λ)

∫

log

Ç

Å

dP2

dQ2
(x)

ã−1

g(x)

å

dP2(x)

=λ

∫

dP1

dQ1
(x)log

Ç

Å

dP1

dQ1
(x)

ã−1

g(x)

å

dQ1(x)

+(1−λ)

∫

dP2

dQ2
(x)log

Ç

Å

dP2

dQ2
(x)

ã−1

g(x)

å

dQ2(x)

=λ

∫ g(x) dP1

dQ1
(x)

g(x)
log

Ç

Å

dP1

dQ1
(x)

ã−1

g(x)

å

dQ1(x)

+(1−λ)

∫ g(x) dP2

dQ2
(x)

g(x)
log

Ç

Å

dP2

dQ2
(x)

ã−1

g(x)

å

dQ2(x)

=−λ

∫

g(x)f

Å

dP1

dQ1
(x)(g(x))

−1
ã

dQ1(x)

−(1−λ)

∫

g(x)f

Å

dP2

dQ2
(x)(g(x))

−1
ã

dQ2(x), (247)

where the function f is defined in (244). Let β1 and β2 be the

following constants:

β1 ,

∫

g(ν)dQ1(ν) and β2 ,

∫

g(ν)dQ2(ν). (248)

From (247) and (248), it follows that for all λ ∈ (0, 1),

D (λP1 + (1− λ)P2‖λQ1 + (1− λ)Q2)

−λD (P1‖Q1) + (1− λ)D (P2‖Q2)

=−λβ1

∫

g(x)

β1
f

Å

dP1

dQ1
(x)(g(x))

−1
ã

dQ1(x)

−(1−λ)β2

∫

g(x)

β2
f

Å

dP2

dQ2
(x)(g(x))

−1
ã

dQ2(x)

6−λβ1f

Å∫

g(x)

β1

dP1

dQ1
(x)(g(x))

−1
dQ1(x)

ã

(249)

−(1−λ)β2f

Å∫

g(x)

β2

dP2

dQ2
(x)(g(x))

−1
dQ2(x)

ã

=−λβ1f

Å

1

β1

∫

dP1(x)

ã

−(1−λ)β2f

Å

1

β2

∫

dP2(x)

ã

(250)

=−λβ1f

Å

1

β1

ã

−(1−λ)β2f

Å

1

β2

ã

(251)

6−f

Å

λβ1
1

β1
+ (1− λ)β2

1

β2

ã

(252)

=−f (1) (253)

=0, (254)

where the inequalities in (249) and (252) follow from Jensen’s

inequality [56, Section 6.3.5] and the fact that the function f
in (247) is strictly concave. Note that from (248), in (249), for

all i ∈ {1, 2},
∫ g(x)

βi
dQi(x) = 1; while in (252),

λβ1 + (1− λ)β2=

∫

g(ν)d(λQ1+(1−λ)Q2)(ν) (255)

=

∫

d (λP1 + (1− λ)P2) (ν) (256)

=λ

∫

dP1(ν)+(1−λ)

∫

dP2(ν) (257)

=1. (258)

Given the strict convexity of the function f in (244), equality

in (249) and (252) hold if and only if P1 = P2 and Q1 = Q2.

This completes the proof.

APPENDIX B

PROOF OF LEMMA 1

The proof is divided into two parts. The first part is as follows.

Under the assumption that the set KQ,z in (23) is empty, there

is nothing to prove. Alternatively, under the assumption that

the set KQ,z is not empty, there always exists a real b ∈ KQ,z ,

such that KQ,z

(

− 1
b

)

< +∞. Note that for all θ ∈ M,

d

dt
exp

Å

−1

t
Lz (θ)

ã

=
1

t2
Lz (θ)exp

Å

−1

t
Lz (θ)

ã

> 0, (259)

with Lz in (3). Thus, from (22), it follows that KQ,z

(

− 1
b

)

is

nondecreasing with b. This implies that (0, b] ⊆ KQ,z .

Let b⋆ ∈ (0,+∞] be

b⋆ = supKQ,z. (260)

Hence, if b⋆ = +∞, it follows from (23) that

KQ,z = (0,+∞). (261)
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Alternatively, if b⋆ < +∞, it holds that

(0, b⋆) ⊆ KQ,z ⊆ (0, b⋆]. (262)

In either case, it follows that KQ,z is a convex set. This

completes the first part of the proof.

The second part of the proof is under the assumption that Q is

a probability measure. Under this assumption, for all θ ∈ M
and for all for all t > 0, it follows that

exp

Å

−1

t
Lz (θ)

ã

6 1, (263)

with Lz in (3). Thus,

KQ,z

Å

−1

t

ã

=log

Å∫

exp

Å

−1

t
Lz (θ)

ã

dQ(θ)

ã

(264)

6log

Å∫

dQ(θ)

ã

(265)

=0, (266)

which implies that (0,+∞) ⊆ KQ,z . Thus, if Q is a probabil-

ity measure, from (23), it holds that KQ,z = (0,+∞), which

completes the proof.

APPENDIX C

PROOF OF THEOREM 3

The optimization problem in (19) can be re-written in terms of

the Radon-Nikodym derivative of the optimization measure P
with respect to the measure Q, denoted by dP

dQ : M → [0,∞),
which yields:

min
P∈△Q(M,B(M))

∫

Lz (θ)
dP

dQ
(θ)dQ(θ)

+λ

∫

dP

dQ
(θ)log

Å

dP

dQ
(θ)

ã

dQ(θ) (267a)

s. t.

∫

dP

dQ
(θ)dQ (θ) = 1. (267b)

The remainder of the proof focuses on the problem in which

the optimization is over the function dP
dQ instead of the measure

P . This is due to the fact that for all P ∈ △Q (M), the Radon-

Nikodym derivate dP
dQ is unique up to sets of zero measure with

respect to the measure Q. Let M be the set of measurable

functions M → R with respect to the measurable spaces

(M,B (M)) and (R,B (R)) that are absolutely integrable

with respect to Q. That is, for all ĝ ∈ M , it holds that
∫

|ĝ(θ)| dQ(θ)<∞. (268)

Hence, the optimization problem of interest is:

min
g∈M

∫

Lz(θ)g(θ)dQ(θ)+λ

∫

g(θ)log(g(θ))dQ(θ) (269a)

s. t.

∫

g(θ)dQ (θ) = 1. (269b)

Let the Lagrangian of the optimization problem in (269) be

the functional L : M ×R → R such that

L (g, β)=

∫

Lz (ν)g(ν)dQ(ν)+λ

∫

g(ν)log(g(ν))dQ(ν)

+β

Å∫

g (ν) dQ (ν)− 1

ã

, (270)

where β is a real that acts as a Lagrangian multiplier due

to the constraint (269b). Let ĝ : M → R be a function in

M . The Gateaux differential of the functional L in (270) at

(g, β) ∈ M ×R in the direction of ĝ, if it exists, is

∂L(g, β; ĝ),
d

dγ
L(g + γĝ, β)

∣

∣

∣

∣

γ=0

. (271)

The proof continues under the assumption that the functions

g and ĝ are such that the Gateaux differential in (271) exists.

Under such an assumption, let the function r : R → R satisfy

for all α ∈ (−ǫ, ǫ), with ǫ arbitrarily small, that

r(α)=

∫

Lz (ν) (g (ν) + αĝ (ν)) dQ (ν)

+β

Å∫

(g (ν) + αĝ (ν)) dQ (ν)− 1

ã

+λ

∫

(ĝ(ν)+αĝ(ν))log(g(ν)+αĝ(ν))dQ(ν) (272)

=

∫

g (ν) (Lz (ν) + β) dQ (ν)− β

+α

Å∫

ĝ (ν) (Lz (ν) + β) dQ (ν)

ã

+λ

∫

(g(ν)+αĝ(ν))log(g(ν)+αĝ(ν))dQ(ν), (273)

where the last equality is simply an algebraic re-arrangement

of terms. From the assumption that the functions g and ĝ are

such that the Gateaux differential in (271) exists, it follows

that the function r in (273) is differentiable at zero. Note that

the first two terms in (273) are independent of α; the third term

is linear with α; and the fourth term can be written using the

function r̂ : R → R such that for all α ∈ (−ǫ, ǫ), with ǫ
arbitrarily small, satisfies

r̂(α)=λ

∫

(g(ν)+αĝ(ν))log(g(ν)+αĝ(ν))dQ(ν) (274)

=λ

∫

f (g (ν) + αĝ (ν)) dQ (ν) , (275)

where f : (0,+∞) → R is such that f(t) = t log(t). Under

the same assumption, it follows that the function r̂ in (274) is

differentiable at zero. That is, the limit

lim
δ→0

1

δ
(r̂(γ + δ)− r̂(γ)) (276)

exists for all γ ∈ (−ǫ, ǫ), with ǫ arbitrarily small. Note that the

function f in (275) is continuous and differentiable (with finite

derivate) in (0,+∞). Thus, the function f is also Lipschitz

continuous. This implies that for all θ ∈ suppQ, and for all

γ ∈ (−ǫ, ǫ), with ǫ > 0 arbitrarily small, it holds that

|f(g(θ) + (γ + δ)ĝ(θ))− f(g(θ) + γĝ(θ))|6c|ĝ(θ)||δ|, (277)

with δ > 0, for some constant c positive and finite. This

implies that

∣

∣

∣

∣

f(g(θ) + (γ + δ)ĝ(θ))− f(g(θ) + γĝ(θ))

δ

∣

∣

∣

∣

6c|ĝ(θ)|. (278)
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Using these arguments, the limit in (276) satisfies for all γ ∈
(−ǫ, ǫ), with ǫ > 0 arbitrarily small, that

lim
δ→0

1

δ
(r̂(γ + δ)− r̂(γ))

=λ lim
δ→0

∫

f(g(θ) + (γ + δ)ĝ(θ))− f(g(θ) + γĝ(θ))

δ
dQ(θ)

=λ

∫

ḟ(g(θ) + γĝ(θ))ĝ(θ) dQ(θ) (279)

<∞, (280)

where the function ḟ : (0,+∞) → R is the derivative of

f . That is, ḟ(t) = 1 + log(t). The equality in (279) and the

inequality in (280) follow from noticing that the conditions for

the dominated convergence theorem hold [56, Theorem 1.6.9],

namely:

• For all γ ∈ (−ǫ, ǫ), with ǫ > 0, the inequality in (278)

holds;

• The function ĝ in (278) satisfies the inequality in (268);

and

• For all θ ∈ suppQ and for all γ ∈ (−ǫ, ǫ), with ǫ > 0
arbitrarily small, it holds that

lim
δ→0

f(g(θ) + (γ + δ)ĝ(θ))− f(g(θ) + γĝ(θ))

δ

=
d

dγ
f(g(θ) + γĝ(θ)) (281)

=ḟ(g(θ) + γĝ(θ))ĝ(θ). (282)

Hence, the derivative of the real function r in (273) is

d

dα
r(α)=

∫

Lz(ν)ĝ(ν)dQ(ν)+β

∫

ĝ(ν)dQ(ν)

+λ

∫

ĝ(ν)(1+log(g(ν)+αĝ(ν)))dQ(ν). (283)

From (271) and (283), it follows that

∂L (g, β; ĝ)

=

∫

ĝ(ν)(Lz(ν)+λ(1+log(g(ν)))+β)dQ(ν). (284)

The relevance of the Gateaux differential in (284) stems from

[70, Theorem 1, page 178], which unveils the fact that a

necessary condition for the functional L in (270) to have

a minimum at

Å

dP
(Q,λ)

Θ|Z=z

dQ , β

ã

∈ M × R is that for all

functions ĝ ∈ M ,

∂L

Ñ

dP
(Q,λ)
Θ|Z=z

dQ
, β; ĝ

é

= 0. (285)

From (285), it follows that
dP

(Q,λ)

Θ|Z=z

dQ must satisfy for all

functions ĝ in M that

0 =
∫

ĝ(ν)

Ñ

Lz(ν)+λ

Ñ

1+log

Ñ

dP
(Q,λ)
Θ|Z=z

dQ
(ν)

éé

+β

é

dQ(ν),

which implies that for all ν ∈ suppQ,

Lz (ν) + λ

Ñ

1 + log

Ñ

dP
(Q,λ)
Θ|Z=z

dQ
(ν)

éé

+ β = 0, (286)

and thus,

dP
(Q,λ)
Θ|Z=z

dQ
(ν) = exp

Å

−β + λ

λ

ã

exp

Å

−Lz (ν)

λ

ã

, (287)

with β chosen to satisfy (267b). That is,

dP
(Q,λ)
Θ|Z=z

dQ
(ν)=

exp
Ä

−Lz(ν)
λ

ä

∫

exp

Å

−Lz (θ)

λ

ã

dQ (θ)

(288)

=exp

Å

−KQ,z

Å

− 1

λ

ã

− 1

λ
Lz (ν)

ã

.(289)

The proof continues by verifying that the measure P
(Q,λ)
Θ|Z=z

that

satisfies (288) is the unique solution to the ERM-RER problem

in (19). Such verification is done by showing that the objective

function in (19) is strictly convex with the optimization

variable. Let P1 and P2 be two different probability measures

in (M,B (M)) and let α be in (0, 1). Hence,

Rz (αP1 + (1− α)P2) + λD (αP1 + (1− α)P2‖Q)

=αRz (P1)+(1−α)Rz (P2)+λD(αP1+(1−α)P2‖Q)

>α(Rz (P1)+λD(P1‖Q))+(1−α)(Rz (P2)+λD(P2‖Q))

where the functional Rz is defined in (18). The equality above

follows from the properties of the Lebesgue integral, while

the inequality follows from Theorem 2. This proves that the

solution is unique due to the strict concavity of the objective

function, which completes the proof.

APPENDIX D

PROOF OF LEMMA 2

From Theorem 3, it follows that for all θ ∈ suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=exp

Å

−KQ,z

Å

− 1

λ

ã

− 1

λ
Lz (θ)

ã

(290)

6exp

Å

−KQ,z

Å

− 1

λ

ãã

(291)

<+∞, (292)

where the inequality in (291) follows from the fact that the

function Lz is nonnegative; and the equality in (292) follows

from the fact that λ ∈ KQ,z . This completes the proof of

finiteness.

The proof of positivity follows from observing

that λ ∈ KQ,z and thus, KQ,z

(

− 1
λ

)

< +∞,

and thus, exp
(

−KQ,z

(

− 1
λ

))

> 0. Moreover, for

all θ ∈ suppQ, it holds that Lz (θ) 6 +∞, which implies

that − 1
λ
Lz (θ) > −∞, and thus, exp

(

− 1
λ
Lz (θ)

)

> 0, with
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equality if and only if Lz (θ) = +∞. These two observations

put together yield

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=exp

Å

−KQ,z

Å

− 1

λ

ã

− 1

λ
Lz (θ)

ã

(293)

=exp

Å

−KQ,z

Å

− 1

λ

ãã

exp

Å

− 1

λ
Lz (θ)

ã

(294)

>0, (295)

with equality if and only if Lz (θ) = +∞. This completes the

proof.

APPENDIX E

PROOF OF LEMMA 3

The probability measure P
(Q,λ)
Θ|Z=z

in (25) satisfies for all C ∈
B (M),

P
(Q,λ)
Θ|Z=z

(C)=
∫

C

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) , (296)

and thus, if Q (C) = 0, then

P
(Q,λ)
Θ|Z=z

(C)=0, (297)

which implies the absolute continuity of P
(Q,λ)
Θ|Z=z

with respect

to Q.

Alternatively, given a set C ∈ B (M), assume now

that P
(Q,λ)
Θ|Z=z

(C) = 0. Hence, it follows that

0=P
(Q,λ)
Θ|Z=z

(C) (298)

=

∫

C

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) . (299)

From Lemma 2, and the assump-

tion Q ({θ ∈ M : Lz (θ) = +∞}) = 0, it holds that

for all θ ∈ suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ) > 0, (300)

which implies that

∫

C

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ)=0, (301)

if and only if Q (C) = 0. This verifies the absolute continuity

of Q with respect to P
(Q,λ)
Θ|Z=z

, and completes the proof.

APPENDIX F
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Consider the function g : M → [0,+∞),

g(θ) =
dP

(Q,α)
Θ|Z=z

dQ
(θ)

Ñ

dP
(Q,β)
Θ|Z=z

dQ
(θ)

é−1

, (302)

and note that for all θ ∈ suppQ \
{

ν ∈
M: Lz (ν) = +∞

}

, g (θ) > 0. Alternatively, for

all θ ∈ {ν ∈ M : Lz (ν) = +∞} , g (θ) = 0, which

follows from the assumption 0 · 1
0 = 0.

Consider a measure P on (M,B (M)), such that for all

sets A ∈ B (M),

P (A) =

∫

A

g(θ)dP
(Q,β)
Θ|Z=z

(θ), (303)

and note that if P
(Q,β)
Θ|Z=z

(A) = 0, then P (A) = 0. This implies

that P is absolutely continuous with respect to P
(Q,β)
Θ|Z=z

(A).
Moreover, from (303), it follows that

P (A)

=

∫

A

dP
(Q,α)
Θ|Z=z

dQ
(θ)

Ñ

dP
(Q,β)
Θ|Z=z

dQ
(θ)

é−1

dP
(Q,β)
Θ|Z=z

(θ) (304)

=

∫

A

dP
(Q,α)
Θ|Z=z

dQ
(θ)

Ñ

dP
(Q,β)
Θ|Z=z

dQ
(θ)

é−1

dP
(Q,β)
Θ|Z=z

dQ
(θ)dQ(θ) (305)

=

∫

A

dP
(Q,α)
Θ|Z=z

dQ
(θ) dQ(θ) (306)

=

∫

A

dP
(Q,α)
Θ|Z=z

(θ) (307)

= P
(Q,α)
Θ|Z=z

(A), (308)

which implies that the probability measures P in (303) and

P
(Q,α)
Θ|Z=z

are identical. Thus, P
(Q,α)
Θ|Z=z

is absolutely continuous

with respect to P
(Q,β)
Θ|Z=z

. The proof that P
(Q,β)
Θ|Z=z

is absolutely

continuous with respect to P
(Q,α)
Θ|Z=z

follows the same argu-

ment. This completes the proof.
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From Theorem 3, the probability measure P
(Q,λ)
Θ|Z=z

in (25)

satisfies for all θ ∈ suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)=

exp
Ä

−Lz(θ)
λ

ä

∫

exp

Å

−Lz (ν)

λ

ã

dQ (ν)

(309)

=

Å

exp

Å

Lz(θ)

λ

ã∫

exp

Å

−Lz(ν)
λ

ã

dQ(ν)

ã−1

(310)

=

Å∫

exp

Å

1

λ
(Lz(θ)−Lz(ν))

ã

dQ(ν)

ã−1

. (311)

Given θ ∈ suppQ, consider the partition of suppQ formed

by the sets A0 (θ), A1 (θ), and A2 (θ), which satisfy the

following:

A0 (θ),{ν ∈ suppQ : Lz (θ)− Lz (ν) = 0} , (312a)

A1 (θ),{ν ∈ suppQ : Lz (θ)− Lz (ν) < 0} , and (312b)

A2 (θ),{ν ∈ suppQ : Lz (θ)− Lz (ν) > 0} . (312c)
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Using the sets A0 (θ), A1 (θ), and A2 (θ) in (311), the

following holds for all θ ∈ suppQ,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

=

(

∫

A0(θ)

exp

Å

1

λ
(Lz (θ)−Lz (ν))

ã

dQ(ν)

+

∫

A1(θ)

exp

Å

1

λ
(Lz (θ)−Lz (ν))

ã

dQ(ν)

+

∫

A2(θ)

exp

Å

1

λ
(Lz(θ)−Lz(ν))

ã

dQ(ν)

)−1

(313)

=

(

Q(A0(θ))+

∫

A1(θ)

exp

Å

1

λ
(Lz(θ)−Lz(ν))

ã

dQ(ν)

+

∫

A2(θ)

exp

Å

1

λ
(Lz(θ)−Lz(ν))

ã

dQ(ν)

)−1

. (314)

Note that the sets

{

ν ∈ suppQ : Lz (ν) = δ⋆Q,z

}

, (315)
{

ν ∈ suppQ : Lz (ν) > δ⋆Q,z

}

, and (316)
{

ν ∈ suppQ : Lz (ν) < δ⋆Q,z

}

, (317)

with δ⋆Q,z in (38), form a partition of the set suppQ. Following

this observation, the rest of the proof is divided into three

parts. The first part evaluates limλ→0+
dP

(Q,λ)

Θ|Z=z

dQ (θ), with θ ∈
¶

ν ∈ M : Lz (ν) = δ⋆Q,z

©

. The second part considers the case

in which θ ∈
¶

ν ∈ M : Lz (ν) > δ⋆Q,z

©

. The third part

considers the remaining case.

The first part is as follows. Consider that θ ∈
¶

ν ∈ M : Lz (ν) = δ⋆Q,z

©

and note that
¶

ν ∈ M : Lz (ν) = δ⋆Q,z

©

= L⋆
Q,z . Hence, the

sets A0 (θ), A1 (θ), and A2 (θ) in (312) satisfy the

following:

A0 (θ) = L⋆
Q,z, (318a)

A1 (θ) =
{

µ ∈ suppQ : Lz (µ) > δ⋆Q,z

}

, and (318b)

A2 (θ) =
{

µ ∈ suppQ : Lz (µ) < δ⋆Q,z

}

. (318c)

From the definition of δ⋆Q,z in (38), it follows

that Q (A2 (θ)) = 0. Plugging the equalities in (318)

in (314) yields for all θ ∈
¶

ν ∈ M : Lz (ν) = δ⋆Q,z

©

,

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

=

Å

Q
(

L⋆
Q,z

)

+

∫

A1(θ)

exp

Å

1

λ
(Lz(θ)−Lz(ν))

ã

dQ(ν)

ã−1

. (319)

The equality in (319) implies that for all θ ∈
¶

ν ∈ M : Lz (ν) = δ⋆Q,z

©

,

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

=

Å

lim
λ→0+

∫

A1(θ)

exp

Å

1

λ
(Lz (θ)−Lz (ν))

ã

dQ(ν)+

+Q
(

L⋆
Q,z

)

ã−1

(320)

=

{

+∞ if Q
Ä

L⋆
Q,z

ä

= 0
1

Q(L⋆
Q,z)

otherwise.
(321)

where the equality in (321) follows from verifying that the

dominated convergence theorem [56, Theorem 2.6.9] holds.

That is,

(a) For all ν ∈ A1 (θ), it holds that exp
(

1
λ
(Lz (θ)− Lz (ν))

)

< 1; and

(b) For all ν ∈ A1 (θ), it holds that

lim
λ→0+

exp

Å

1

λ
(Lz (θ)− Lz (ν))

ã

= 0. (322)

This completes the first part of the proof.

The second part is as follows. For all δ > δ⋆Q,z and for all θ

∈
{

ν ∈ suppQ : Lz (ν) = δ
}

, the sets A0 (θ), A1 (θ),
and A2 (θ) in (312) satisfy the following:

A0 (θ)={µ ∈ suppQ : Lz (µ) = δ} , (323a)

A1 (θ)={µ ∈ suppQ : Lz (µ) > δ} , and (323b)

A2 (θ)={µ ∈ suppQ : Lz (µ) < δ} . (323c)

Consider the sets

A2,1 (θ),
{

µ ∈ A2 (θ) : Lz (µ) < δ⋆Q,z

}

, and (324)

A2,2 (θ),
{

µ ∈ A2 (θ) : δ
⋆
Q,z 6 Lz (µ) < δ

}

, (325)

and note that A2,1 (θ) and A2,2 (θ) form a partition of A2 (θ).
Moreover, from the definition of δ⋆Q,z in (38), it holds

that

Q (A2,1 (θ)) = 0. (326)

Hence, plugging the equalities in (323) and (326)

in (314) yields, for all δ > δ⋆Q,z and for

all θ ∈ {ν ∈ M : Lz (ν) = δ},

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

=

Å

Q(A0(θ))+

∫

A1(θ)

exp

Å

1

λ
(Lz(θ)−Lz(ν))

ã

dQ(ν)

+

∫

A2,2(θ)

exp

Å

1

λ
(Lz (θ)− Lz (ν))

ã

dQ (ν)

ã−1

. (327)
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The equality in (327) implies that for all δ > δ⋆Q,z and for

all θ ∈
{

ν ∈ M: Lz (ν) = δ
}

,

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

=

(

lim
λ→0+

∫

A1(θ)

exp

Å

1

λ
(Lz (θ)− Lz (ν))

ã

dQ (ν)

+ lim
λ→0+

∫

A2,2(θ)

exp

Å

1

λ
(Lz (θ)− Lz (ν))

ã

dQ (ν) (328)

+Q (A0 (θ))

)−1

(329)

=

(

lim
λ→0+

∫

A2,2(θ)

exp

Å

1

λ
(Lz (θ)− Lz (ν))

ã

dQ (ν)

+Q (A0 (θ))

)−1

(330)

=
(

Q (A0 (θ)) +∞
)−1

(331)

=0, (332)

where the equality in (330) follows by verifying that the

dominated convergence theorem [56, Theorem 2.6.9] holds.

That is,

(a) For all ν ∈ A1 (θ), it holds that exp
(

1
λ
(Lz (θ)− Lz (ν))

)

< 1; and

(b) For all ν ∈ A1 (θ), it holds that

lim
λ→0+

exp

Å

1

λ
(Lz (θ)− Lz (ν))

ã

= 0. (333)

This completes the second part.

The third part of the proof follows by noticing that the

set
{

ν ∈ suppQ: Lz (ν) < δ⋆Q,z

}

is a negligible

set with respect to Q and thus, for all θ ∈
{

ν ∈
suppQ : Lz (ν) < δ⋆Q,z

}

, the value
dP

(Q,λ)

Θ|Z=z

dQ (θ) is im-

material. Hence, it is arbitrarily assumed that for all θ ∈
¶

ν ∈ suppQ : Lz (ν) < δ⋆Q,z

©

, it holds that

dP
(Q,λ)
Θ|Z=z

dQ
(θ) = 0. (334)

This completes the third part and completes the proof.
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Consider the following partition of the set M formed by the

sets

A0,
{

θ ∈ M : Lz (θ) = δ⋆Q,z

}

, (335a)

A1,
{

θ ∈ M : Lz (θ) < δ⋆Q,z

}

, and (335b)

A2,
{

θ ∈ M : Lz (θ) > δ⋆Q,z

}

, (335c)

with δ⋆Q,z in (38) and the function Lz in (3). Note that A0 =
L⋆
Q,z , with L⋆

Q,z in (39) and

1=P
(Q,λ)
Θ|Z=z

(A0) + P
(Q,λ)
Θ|Z=z

(A1) + P
(Q,λ)
Θ|Z=z

(A2) (336)

=P
(Q,λ)
Θ|Z=z

(A0) + P
(Q,λ)
Θ|Z=z

(A2) (337)

=P
(Q,λ)
Θ|Z=z

(A0) +

∫

A2

dP
(Q,λ)
Θ|Z=z

(θ), (338)

where, the equality in (337) follows from noticing that

P
(Q,λ)
Θ|Z=z

(A1) = 0, which follows from the definition of δ⋆Q,z

in (38) and the fact that the probability measure P
(Q,λ)
Θ|Z=z

is

absolutely continuous with respect to the measure Q.

The above implies that

1= lim
λ→0+

P
(Q,λ)
Θ|Z=z

(A0)+ lim
λ→0+

∫

A2

dP
(Q,λ)
Θ|Z=z

dQ
(θ)dQ(θ) (339)

= lim
λ→0+

P
(Q,λ)
Θ|Z=z

(A0)+

∫

A2

lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ)dQ(θ) (340)

= lim
λ→0+

P
(Q,λ)
Θ|Z=z

(A0) , (341)

where, the equality in (340) follows from the dominated

convergence theorem [56, Theorem 1.6.9], given that the

Randon-Nikodym derivative
dP

(Q,λ)

Θ|Z=z

dQ is positive and finite

(Lemma 2); and the inequality in (341) holds from the fact

that for all θ ∈ A2, it holds that limλ→0+
dP

(Q,λ)

Θ|Z=z

dQ (θ) = 0
(Lemma 6). Hence, it finally holds that

lim
λ→0+

P
(Q,λ)
Θ|Z=z

(

L⋆
Q,z

)

= 1, (342)

which completes the proof.
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The proof is presented in two parts. The first part shows that

if for all δ ∈ (ρ⋆,+∞), the inequality in (50) holds, then, Q
is coherent. The second part shows that if Q is not coherent,

then there exists a δ ∈ (ρ⋆,+∞) such that

P
(Q,λ)
Θ|Z=z

(Lz (δ))=0. (343)

The first part is as follows. Note that for all δ ∈ (ρ⋆,+∞)
and for all θ ∈ Lz (δ) ∩ suppQ, it holds from Lemma 2

that

dP
(Q,λ)
Θ|Z=z

dQ
(θ) > 0. (344)

Hence, if for all δ ∈ (ρ⋆,+∞), the inequality in (50) holds,

then

0 < P
(Q,λ)
Θ|Z=z

(Lz (δ)) (345)

=

∫

Lz(δ)

dP
(Q,λ)
Θ|Z=z

(θ) (346)

=

∫

Lz(δ)

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ (θ) , (347)
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which, together with (344), implies that for all δ ∈
(ρ⋆,+∞), Q (Lz (δ)) > 0. Hence, Q is coherent.

The second part is as follows. Assume that Q is not coherent.

Then, there exists a δ ∈ (ρ⋆,+∞) such that Q (Lz (δ)) = 0.

Hence, from the fact that P
(Q,λ)
Θ|Z=z

is absolutely continuous

with respect to Q, it follows that P
(Q,λ)
Θ|Z=z

(Lz (δ)) = 0. This

completes the proof.

APPENDIX J
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The optimization problem in (84) can be re-written in terms

of the Radon-Nikodym derivative of the optimization measure

P with respect to the measure P
(Q,λ)
Θ|Z=z

, denoted by dP

dP
(Q,λ)

Θ|Z=z

:

M → [0,+∞), which yields:

min
P∈△Q(M,B(M))

∫

Lz (ν)
dP

dP
(Q,λ)
Θ|Z=z

(ν)dP
(Q,λ)
Θ|Z=z

(ν), (348a)

subject to:

∫

dP

dP
(Q,λ)
Θ|Z=z

(ν)log

Ñ

dP

dP
(Q,λ)
Θ|Z=z

(ν)

é

dP
(Q,λ)
Θ|Z=z

(ν)6c, and (348b)

∫

dP

dP
(Q,λ)
Θ|Z=z

(θ) dP
(Q,λ)
Θ|Z=z

(θ) = 1. (348c)

The remainder of the proof focuses on the problem in which

the optimization is over the function dP

dP
(Q,λ)

Θ|Z=z

instead of the

measure P . This is due to the fact that for all P ∈ △Q (M),
the Radon-Nikodym derivate dP

dP
(Q,λ)

Θ|Z=z

is unique up to sets of

zero measure with respect to the measure P
(Q,λ)
Θ|Z=z

. Let M

be the set of measurable functions M → R with respect to

the measurable spaces (M,B (M)) and (R,B (R)) that are

absolutely integrable with respect to P
(Q,λ)
Θ|Z=z

. That is, for all

ĝ ∈ M , it holds that
∫

|ĝ(θ)| dP (Q,λ)
Θ|Z=z

(θ)<∞. (349)

Hence, the optimization problem of interest is:

min
g∈M

∫

Lz (ν) g (ν) dP
(Q,λ)
Θ|Z=z

(ν) (350a)

s.t:

∫

g (ν) log (g (ν)) dP
(Q,λ)
Θ|Z=z

(ν) 6 c, and (350b)

∫

g (θ) dP
(Q,λ)
Θ|Z=z

(θ) = 1. (350c)

The Lagrangian of the optimization problem in (350) is a

functional L : M × [0,+∞)2 → R of the form

L (g, α, β)=

∫

Lz (ν) g (ν) dP
(Q,λ)
Θ|Z=z

(ν)

+α

Å∫

g (ν) log (g (ν)) dP
(Q,λ)
Θ|Z=z

(ν)− c

ã

+β

Å∫

g (ν) dP
(Q,λ)
Θ|Z=z

(ν)− 1

ã

, (351)

where the reals α and β are both nonnegative and act as La-

grangian multipliers due to the constraints (350b) and (350c),

respectively.

Let h : M → R be a function in M . The Gateaux differential

of the functional L in (351) at (g, α, β) ∈ M × [0,+∞)2 in

the direction of h, if it exists, is

∂L (g, α, β;h) ,
d

dγ
r(γ)

∣

∣

∣

∣

γ=0

, (352)

where the real function r : R → R is such that for all γ ∈
(−ǫ, ǫ), with some ǫ > 0, satisfies

r(γ)

=

∫

Lz (ν) (g (ν) + γh (ν)) dP
(Q,λ)
Θ|Z=z

(ν)

+α

Å∫

(g(ν)+γh(ν))log(g(ν)+γh(ν))dP
(Q,λ)
Θ|Z=z

(ν)−c

ã

+β

Å∫

(g (ν) + γh (ν)) dP
(Q,λ)
Θ|Z=z

(ν)− 1

ã

. (353)

The proof continues under the assumption that the functions

g and h are such that the Gateaux differential in (352) exists.

That is, the function r in (353) is differentiable in (−ǫ, ǫ),
with some ǫ > 0. Using the same arguments as in the proof of

Theorem 3, it follows that the derivative of the real function r
in (353) is

d

dγ
r(γ)

=

∫

Lzh (ν) dP
(Q,λ)
Θ|Z=z

(ν) + α

∫

h (ν) dP
(Q,λ)
Θ|Z=z

(ν)

+α

∫

h (ν) log (g (ν) + γh (ν)) dP
(Q,λ)
Θ|Z=z

(ν)

+β

∫

h (ν) dP
(Q,λ)
Θ|Z=z

(ν) . (354)

From (352) and (354), it follows that

∂L (g, α, β;h)

=

∫

h (ν) (Lz (ν) + α (1 + log g (ν)) + β) dP
(Q,λ)
Θ|Z=z

(ν) . (355)

From [70, Theorem 1, page 217], it holds that a necessary

condition for the functional L in (351) to have a mini-

mum at (g, α, β) ∈ M × [0,+∞)2 is that for all func-

tions h ∈ M ,

∂L (g, α, β;h) = 0, (356)

which implies that for all ν ∈ M,

Lz (ν) + α (1 + log g (ν)) + β = 0. (357)

Thus,

g (ν) = exp

Å

−Lz (ν)

α

ã

exp

Å

−β + α

α

ã

, (358)

where α and β are chosen to satisfy their corresponding

constraints with equality. Denote by P ⋆ the solution of the

optimization problem in (84). Hence, from (358), it follows

that

dP ⋆

dP
(Q,λ)
Θ|Z=z

(ν) =
exp
Ä

−Lz(ν)
α

ä

∫

exp

Å

−Lz (θ)

α

ã

dP
(Q,λ)
Θ|Z=z

(θ)

, (359)
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where α is chosen to satisfy

D
Ä

P ⋆‖P (Q,λ)
Θ|Z=z

ä

= c. (360)

From Lemma 3, it follows that the probability measure P ⋆

and the σ-finite measure Q satisfy,

dP ⋆

dQ
(ν)=

dP ⋆

dP
(Q,λ)
Θ|Z=z

(ν)
dP

(Q,λ)
Θ|Z=z

dQ
(ν) (361)

=

Ü

exp
Ä

−Lz(ν)
α

ä

∫

exp

Å

−Lz (θ)

α

ã

dP
(Q,λ)
Θ|Z=z

(θ)

ê

Ü

exp
Ä

−Lz(ν)
λ

ä

∫

exp

Å

−Lz (θ)

λ

ã

dQ (θ)

ê

(362)

=





















exp
Ä

−Lz(ν)
α

ä

∫ exp
Ä

−Lz(θ)
α

ä

exp
Ä

−Lz(θ)
λ

ä

∫

exp

Å

−Lz (α)

λ

ã

dQ (α)

dQ (θ)





















Ü

exp
Ä

−Lz(ν)
λ

ä

∫

exp

Å

−Lz (θ)

λ

ã

dQ (θ)

ê

(363)

=
exp

(

−
(

1
α
+ 1

λ

)

Lz (ν)
)

∫

exp

Å

−
Å

1

α
+

1

λ

ã

Lz (ν)

ã

dQ (θ)

, (364)

which implies that P ⋆ is a Gibbs probability measure

on (M,B (M)), with energy function Lz , reference mea-

sure Q, and regularization parameter 1
1
α
+ 1

λ

, where α is chosen

to satisfy (360). Let the positive real ω be ω , αλ
α+λ

and note

that ω ∈ (0, λ] and satisfies D
Ä

P
(Q,ω)
Θ|Z=z

(ν) ‖P (Q,λ)
Θ|Z=z

ä

= c.
The proof ends by verifying that the objective function in (351)

is strictly convex, and thus, the measure P
(Q,ω)
Θ|Z=z

is the unique

minimizer. This completes the proof.
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Note that for all (λ1, λ2) ∈ {x ∈ R : KQ,z(x) < +∞}2, such

that λ1 > λ2, it follows that for all θ ∈ suppQ, the inequality

exp (λ2 Lz (θ)) 6 exp (λ1 Lz (θ)) holds. This implies that

KQ,z (λ2) 6 KQ,z (λ1) < +∞, which proves that the

function is nondecreasing.

The proof of continuity of the function KQ,z follows from

observing that for all α ∈ {x ∈ R : KQ,z(x) < +∞}, it holds

that

lim
t→α

KQ,z(t)=lim
t→α

log

Å∫

exp (t Lz (θ)) dQ(θ)

ã

(365)

=log

Å

lim
t→α

∫

exp (t Lz (θ)) dQ(θ)

ã

(366)

=log

Å∫

lim
t→α

exp (t Lz (θ)) dQ(θ)

ã

(367)

=log

Å∫

exp (α Lz (θ)) dQ(θ)

ã

(368)

=KQ,z(α), (369)

where (366) and (368) follow from the fact that both the

logarithmic and exponential functions are continuous; and the

equality in (367) follows from the monotone convergence

theorem [56, Theorem 1.6.2]. This shows that the function

KQ,z is continuous in {x ∈ R : KQ,z(x) < +∞}.

The proof of differentiability follows by considering

the transport of the σ-finite measure Q in (22) from

the measure space (M,B (M)) to the measure

space ([0,+∞) ,B ([0,+∞))) through the function Lz in (3).

Denote the resulting measure in ([0,+∞) ,B ([0,+∞)))
by P . More specifically, for all A ∈ B ([0,+∞)),
it holds that P (A) = Q ({θ ∈ M : Lz (θ) ∈ A}).
Hence, the function KQ,z satisfies for all t ∈
{ν ∈ R : KQ,z(ν) < +∞},

KQ,z (t)=log

Å∫

exp (t Lz (θ)) dQ(θ)

ã

(370)

=log

Å∫

exp (t w) dP (w)

ã

, (371)

where the equality (371) follows from [56, Theorem 1.6.12].

Denote by φ the Laplace transform of the measure P . That is,

for all t ∈ {x ∈ R : KQ,z(x) < +∞},

φ(t) =

∫

exp (t v) dP (v). (372)

Hence, φ(t) = exp (KQ,z (t)). From [71, Theorem 1a (page

439)], it follows that the function φ has derivatives of all

orders in {x ∈ R : KQ,z(x) < +∞}, and thus, so does the

function KQ,z in the interior of {x ∈ R : KQ,z(x) < +∞}.

This completes the proof.
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Let (γ1, γ2) ∈ R
2, with γ1 6= γ2 and α ∈ [0, 1] be fixed.

Assume that KQ,z (γ1) < +∞ and KQ,z (γ2) < +∞. Then,

for all α ∈ (0, 1), the following holds

αKQ,z (γ1) + (1− α)KQ,z (γ2)

=α log

Å∫

exp (γ1 Lz (θ)) dQ(θ)

ã

+(1− α) log

Å∫

exp (γ2 Lz (θ)) dQ(θ)

ã

(373)

=log

ÅÅ∫

exp (γ1 Lz (θ)) dQ(θ)

ãαã

+ log

Ç

Å∫

exp (γ2 Lz (θ)) dQ(θ)

ã(1−α)
å

(374)
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=log

ÅÅ∫

exp (γ1 Lz (θ)) dQ(θ)

ãα

Å∫

exp(γ2 Lz(θ))dQ(θ)

ã(1−α)ã

(375)

=log

(

Å∫

exp (γ1αLz (θ))
p
dQ(θ)

ã
1
p

Å∫

exp (γ2(1− α)Lz (θ))
q
dQ(θ)

ã
1
q

)

(376)

>log

Å∫

exp(γ1αLz(θ))exp(γ2(1−α)Lz(θ))dQ(θ)

ã

(377)

=log

Å∫

exp

Å

(γ1α+ γ2(1− α)) Lz (θ)

ã

dQ(θ)

ã

(378)

=KQ,z (γ1α+ γ2(1− α)) , (379)

where the inequality in (376) follows with α , 1
p

and 1−α ,
1
q

; the inequality in (377) follows from Hölder’s inequality.

Hence, equality in (377) holds if and only if there exist two

constants β1 and β2, not simultaneously equal to zero, such

that the set

A , {θ ∈ M : β1 exp (γ1Lz (θ)) = β2 exp (γ2Lz (θ))}

=

ß

θ ∈ M : exp ((γ1 − γ2) Lz (θ)) =
β2

β1

™

(380)

=

{

θ ∈ M : Lz (θ) =
log β2

β1

(γ1 − γ2)

}

, (381)

satisfies Q (A) = 1. That is, strict inequality in (377) holds if

and only if the function Lz is separable with respect to the σ-

finite measure Q. When α = 0 or α = 1, the proof is trivial.

This completes the proof.
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For all s ∈ KQ,z , with KQ,z in (23), the equality in (97)

implies the following,

K
(1)
Q,z

Å

−1

s

ã

=
d

dt
log

Å∫

exp (t Lz (θ)) dQ(θ)

ã

∣

∣

∣

∣

∣

t=− 1
s

(382)

=

∫

Lz (θ) exp (t Lz (θ))
∫

exp (t Lz (v)) dQ(v)
dQ(θ)

∣

∣

∣

∣

∣

t=− 1
s

(383)

=

∫

Lz (θ) exp
(

− 1
s
Lz (θ)

)

∫

exp
(

− 1
s
Lz (v)

)

dQ(v)
dQ(θ) (384)

=exp

Å

−KQ,z

Å

−1
s

ãã∫

Lz(θ)exp

Å

−1

s
Lz(θ)

ã

dQ(θ) (385)

=

∫

Lz (θ) exp

Å

−KQ,z

Å

−1

s

ã

− 1

s
Lz (θ)

ã

dQ(θ) (386)

=

∫

Lz (θ) dP
(Q,s)
Θ|Z=z

(θ), (387)

where the equality in (383) holds from the dominated

convergence theorem [56, Theorem 1.6.9]; the equality

in (385) follows from (22); and the equality in (387) follows

from (25).

For all s ∈ KQ,z , with KQ,z in (23), the equalities in (97)

and (386) imply that

K
(2)
Q,z

Å

−1

s

ã

=
d

dt

∫

Lz (θ) exp (−KQ,z (t) + t Lz (θ)) dQ(θ)

∣

∣

∣

∣

∣

t=− 1
s

(388)

=

∫

Lz (θ)
Ä

−K
(1)
Q,z (t) + Lz (θ)

ä

exp (−KQ,z (t) + tLz (θ)) dQ(θ)

∣

∣

∣

∣

∣

t=− 1
s

(389)

=

∫

Lz (θ)

Å

−K
(1)
Q,z

Å

−1

s

ã

+ Lz (θ)

ã

exp

Å

−KQ,z

Å

−1

s

ã

− 1

s
Lz (θ)

ã

dQ(θ) (390)

=

∫

Lz (θ)

Å

−K
(1)
Q,z

Å

−1

s

ã

+ Lz (θ)

ã

dP
(Q,s)
Θ|Z=z

(θ) (391)

=−K
(1)
Q,z

Å

−1

s

ã∫

Lz (θ) dP
(Q,s)
Θ|Z=z

(θ)

+

∫

(Lz (θ))
2
dP

(Q,s)
Θ|Z=z

(θ) (392)

=−
Å

K
(1)
Q,z

Å

−1

s

ãã2

+

∫

(Lz (θ))
2
dP

(Q,s)
Θ|Z=z

(θ) (393)

=

∫ Å

Lz (θ)−K
(1)
Q,z

Å

−1

s

ãã2

dP
(Q,s)
Θ|Z=z

(θ) , (394)

where the equality in (389) follows from the dominated

convergence theorem [56, Theorem 1.6.9]; the equality

in (391) is due to a change of measure through the Radon-

Nikodym derivative in (25); and the equality in (393) follows

from (387).

For all s ∈ KQ,z , with KQ,z in (23), the equalities in (97)

and (393) imply that

K
(3)
Q,z

Å

−1

s

ã

=
d

dt

Å∫

(Lz (θ))
2
dP

(Q,− 1
t )

Θ|Z=z
(θ)−

Ä

K
(1)
Q,z (t)

ä2
ã

∣

∣

∣

∣

∣

t=− 1
s

(395)

=
d

dt

(

∫ Å

(Lz (θ))
2
exp (−KQ,z (t) + tLz (θ))

ã

dQ (θ)

−
Ä

K
(1)
Q,z (t)

ä2

)∣

∣

∣

∣

∣

t=− 1
s

(396)

=

∫

(Lz (θ))
2

Ñ

d

dt
exp(−KQ,z (t)+ tLz (θ))

∣

∣

∣

∣

∣

t=− 1
s

é

dQ(θ)

−2K
(1)
Q,z (t)K

(2)
Q,z (t)

∣

∣

∣

∣

∣

t=− 1
s

(397)
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=

∫

(Lz (θ))
2

Ä

Lz(θ)−K
(1)
Q,z(t)

ä

exp(−KQ,z(t)+tLz(θ))

∣

∣

∣

∣

∣

t=−1
s

dQ(θ)

−2K
(1)
Q,z (t)K

(2)
Q,z (t)

∣

∣

∣

∣

∣

t=− 1
s

(398)

=

∫

(Lz (θ))
2
Å

Lz (θ)−K
(1)
Q,z

Å

−1

s

ãã

exp

Å

−KQ,z

Å

−1

s

ã

− 1

s
Lz (θ)

ã

dQ (θ)

−2K
(1)
Q,z

Å

−1

s

ã

K
(2)
Q,z

Å

−1

s

ã

(399)

=

∫

(Lz (θ))
2
Å

Lz (θ)−K
(1)
Q,z

Å

−1

s

ãã

dP
(Q,s)
Θ|Z=z

(θ)

−2K
(1)
Q,z

Å

−1

s

ã

K
(2)
Q,z

Å

−1

s

ã

(400)

=

∫

(Lz (θ))
3
dP

(Q,s)
Θ|Z=z

(θ)

−K
(1)
Q,z

Å

−1

s

ã∫

(Lz (θ))
2
dP

(Q,s)
Θ|Z=z

(θ)

−2K
(1)
Q,z

Å

−1

s

ã

K
(2)
Q,z

Å

−1

s

ã

(401)

=

∫

(Lz (θ))
3
dP

(Q,s)
Θ|Z=z

(θ)

−K
(1)
Q,z

Å

−1

s

ã

Ç

K
(2)
Q,z

Å

−1

s

ã

+

Å

K
(1)
Q,z

Å

−1

s

ãã2
å

−2K
(1)
Q,z

Å

−1

s

ã

K
(2)
Q,z

Å

−1

s

ã

(402)

=

∫

(Lz (θ))
3
dP

(Q,s)
Θ|Z=z

(θ)−K
(1)
Q,z

Å

−1

s

ã3

(403)

−3K
(1)
Q,z

Å

−1

s

ã

K
(2)
Q,z

Å

−1

s

ã

(404)

=

∫ Å

Lz (θ)−K
(1)
Q,z

Å

−1

s

ãã3

dP
(Q,s)
Θ|Z=z

(θ) , (405)

where the equality in (396) follows from (25); and the equality

in (397) follows from the dominated convergence theorem [56,

Theorem 1.6.9]; the equality in (400) follows from (25); and

the equality in (402) follows from (393).

This completes the proof.
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The proof is based on the analysis of the derivative

of K
(1)
Q,z

(

− 1
λ

)

with respect to λ in intKQ,z . This is due to

Corollary 2. For instance, note that

d

dλ
Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

=
d

dλ
K

(1)
Q,z

Å

− 1

λ

ã

(406)

=
1

λ2
K

(2)
Q,z

Å

− 1

λ

ã

(407)

>0, (408)

where the equality in (407) follows from Lemma 17. The

inequality in (408) implies that the expected empirical

risk Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

= K
(1)
Q,z

(

− 1
λ

)

in (106) is nondecreasing

with respect to λ. The rest of the proof consists in showing

that for all α ∈ KQ,z , the function K
(2)
Q,z in (97) satis-

fies K
(2)
Q,z

(

− 1
α

)

> 0 if and only if the function Lz in (3) is

separable. For doing so, a handful of preliminary results are

described in the following subsection. The proof of Theorem 5

resumes in Subsection N-B

A. Preliminaries

Given a positive real λ ∈ KQ,z , with KQ,z in (23), consider a

partition of M formed by the sets R0(λ), R1(λ) and R2(λ),
such that

R0(λ),
¶

ν ∈ M : Lz (ν) = Rz

Ä

P
(Q,λ)
Θ|Z=z

ä©

, (409a)

R1(λ),
¶

ν ∈ M : Lz (ν) < Rz

Ä

P
(Q,λ)
Θ|Z=z

ä©

, and (409b)

R2(λ),
¶

ν ∈ M : Lz (ν) > Rz

Ä

P
(Q,λ)
Θ|Z=z

ä©

, (409c)

where the functional Rz is in (18) and the probability mea-

sure P
(Q,λ)
Θ|Z=z

is in (25). The sets in (409) exhibit several

properties that are central for proving the main results of this

section.

Lemma 27: The probability measure P
(Q,λ)
Θ|Z=z

in (25), satisfies

P
(Q,λ)
Θ|Z=z

(R1(λ)) > 0, (410)

if and only if

P
(Q,λ)
Θ|Z=z

(R2(λ)) > 0, (411)

where the sets R1(·) and R2(·) are in (409b) and (409c),

respectively.

Proof: The proof is divided into two parts. In the first part,

given a real α ∈ KQ,z , it is proven that if the set R1 (α) is

nonnegligible with respect to P
(Q,α)
Θ|Z=z

, then the set R2 (α)

is nonnegligible with respect to P
(Q,α)
Θ|Z=z

. The second part

proves the converse.

The first part is proved by contradiction. Assume that

set R2 (α) is negligible with respect to P
(Q,α)
Θ|Z=z

. Hence, from
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Lemma 17, it holds that

K
(1)
Q,z

Å

− 1

α

ã

=

∫

R0(α)

Lz (ν) dP
(Q,α)
Θ|Z=z

(ν) +

∫

R1(α)

Lz (ν) dP
(Q,α)
Θ|Z=z

(ν)

+

∫

R2(α)

Lz (ν) dP
(Q,α)
Θ|Z=z

(ν) (412)

=

∫

R0(α)

Lz (ν) dP
(Q,α)
Θ|Z=z

(ν) +

∫

R1(α)

Lz (ν) dP
(Q,α)
Θ|Z=z

(ν) (413)

=K
(1)
Q,z

Å

− 1

α

ã

P
(Q,α)
Θ|Z=z

(R0(α)) (414)

+

∫

R1(α)

Lz (ν) dP
(Q,α)
Θ|Z=z

(ν) (415)

<K
(1)
Q,z

Å

− 1

α

ã

P
(Q,α)
Θ|Z=z

(R0(α))

+K
(1)
Q,z

Å

− 1

α

ã

P
(Q,α)
Θ|Z=z

(R1(α)) (416)

=K
(1)
Q,z

Å

− 1

α

ã

(

P
(Q,α)
Θ|Z=z

(R0(α)) + P
(Q,α)
Θ|Z=z

(R1(α))
)

(417)

=K
(1)
Q,z

Å

− 1

α

ã

, (418)

which is a contradiction.

The second part of the proof follows the same arguments as

in the first part. Assume that the set R1 (α) is negligible

with respect to P
(Q,α)
Θ|Z=z

. Hence, from Lemma 17, it holds

that

K
(1)
Q,z

Å

− 1

α

ã

=

∫

R0(α)

Lz (ν) dP
(Q,α)
Θ|Z=z

(ν) +

∫

R1(α)

Lz (ν) dP
(Q,α)
Θ|Z=z

(ν)

+

∫

R2(α)

Lz (ν) dP
(Q,α)
Θ|Z=z

(ν) (419)

=

∫

R0(α)

Lz (ν) dP
(Q,α)
Θ|Z=z

(ν) +

∫

R2(α)

Lz (ν) dP
(Q,α)
Θ|Z=z

(ν) (420)

=K
(1)
Q,z

Å

− 1

α

ã

P
(Q,α)
Θ|Z=z

(R0(α))

+

∫

R2(α)

Lz (ν) dP
(Q,α)
Θ|Z=z

(ν) (421)

>K
(1)
Q,z

Å

− 1

α

ã

P
(Q,α)
Θ|Z=z

(R0(α))

+K
(1)
Q,z

Å

− 1

α

ã

P
(Q,α)
Θ|Z=z

(R2(α)) (422)

=K
(1)
Q,z

Å

− 1

α

ã

Ä

P
(Q,α)
Θ|Z=z

(R0(α)) + P
(Q,α)
Θ|Z=z

(R2(α))
ä

(423)

=K
(1)
Q,z

Å

− 1

α

ã

, (424)

which is also a contradiction. This completes the proof.

A more general result can be immediately obtained by com-

bining Lemma 4 and Lemma 27.

Lemma 28: For all α ∈ KQ,z , with KQ,z in (23), the

measure P
(Q,λ)
Θ|Z=z

in (25), satisfies

P
(Q,λ)
Θ|Z=z

(R1(α)) > 0, (425)

if and only if

P
(Q,λ)
Θ|Z=z

(R2(α)) > 0, (426)

where the sets R1(α) and R2(α) are in (409b) and (409c),

respectively.

B. The proof

The rest of the proof of Theorem 5 is divided into two

parts. In the first part, it is shown that if for all α ∈
KQ,z , K

(2)
Q,z

(

− 1
α

)

> 0, then the function Lz in (3) is

separable. The second part of the proof, consists in show-

ing that if the function Lz is separable, then, for all α ∈
KQ,z , K

(2)
Q,z

(

− 1
α

)

> 0.

The first part is as follows. From Lemma 17, it holds that for

all α ∈ KQ,z ,

K
(2)
Q,z

Å

− 1

α

ã

=

∫ Å

Lz (θ)−K
(1)
Q,z

Å

− 1

α

ãã2

dP
(Q,α)
Θ|Z=z

(θ) (427)

=

∫

R0(α)

Å

Lz (θ)−K
(1)
Q,z

Å

− 1

α

ãã2

dP
(Q,α)
Θ|Z=z

(θ) (428)

+

∫

R1(α)

Å

Lz (θ)−K
(1)
Q,z

Å

− 1

α

ãã2

dP
(Q,α)
Θ|Z=z

(θ) (429)

+

∫

R2(α)

Å

Lz (θ)−K
(1)
Q,z

Å

− 1

α

ãã2

dP
(Q,α)
Θ|Z=z

(θ) , (430)

where the sets R0(α), R1(α), and R2(α) are respectively

defined in (409). Hence,

K
(2)
Q,z

Å

− 1

α

ã

=

∫

R1(α)

Å

Lz (θ)−K
(1)
Q,z

Å

− 1

α

ãã2

dP
(Q,α)
Θ|Z=z

(θ) (431)

+

∫

R2(γ)

Å

Lz (θ)−K
(1)
Q,z

Å

− 1

α

ãã2

dP
(Q,α)
Θ|Z=z

(θ) . (432)

Under the assumption that for all α ∈ KQ,z the function K
(2)
Q,z

in (97) satisfies K
(2)
Q,z

(

− 1
α

)

> 0, it follows that at least one

of the following claims is true:

(a) P
(Q,α)
Θ|Z=z

(R1(α)) > 0; and

(b) P
(Q,α)
Θ|Z=z

(R2(α)) > 0.

Nonetheless, from Lemma 27, it follows that both claims (a)

and (b) hold simultaneously. Hence, the sets R1(α) and R2(α)

are both nonnegligible with respect to P
(Q,α)
Θ|Z=z

and moreover,

it holds that for all (ν1,ν2) ∈ R1(α)×R2(α),

+∞ > Lz (ν1)> K
(1)
Q,z

Å

− 1

α

ã

>Lz (ν2) , (433)

where Lz (ν1) < +∞ follows from the fact that

P
(Q,λ)
Θ|Z=z

({θ ∈ M : Lz (θ) = +∞}) = 0 (Lemma 2). This
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proves that under the assumption that for all α ∈
KQ,z , K

(2)
Q,z

(

− 1
α

)

> 0, the function Lz in (3) is separable

with respect to P
(Q,α)
Θ|Z=z

. From Lemma 14, it holds that the

function Lz is separable with respect to Q. This completes

the first part of the proof.

The second part of the proof is simpler. Assume that the

empirical risk function Lz in (3) is separable with respect

to P
(Q,α)
Θ|Z=z

. That is, for all γ ∈ KQ,z , there exist a positive

real cγ > 0; and two subsets A(γ) and B(γ) of M that are

nonnegligible with respect to P
(Q,γ)
Θ|Z=z

in (25) and verify that

for all (ν1,ν2) ∈ A(γ)× B(γ),
+∞ > Lz (ν1)> cγ >Lz (ν2) . (434)

From Lemma 17, it holds that

K
(2)
Q,z

Å

− 1

γ

ã

=

∫ Å

Lz (θ)−K
(1)
Q,z

Å

− 1

γ

ãã2

dP
(Q,γ)
Θ|Z=z

(θ) (435)

=

∫

A(γ)

Å

Lz (θ)−K
(1)
Q,z

Å

− 1

γ

ãã2

dP
(Q,γ)
Θ|Z=z

(θ) (436)

+

∫

B(γ)

Å

Lz (θ)−K
(1)
Q,z

Å

− 1

γ

ãã2

dP
(Q,γ)
Θ|Z=z

(θ) (437)

+

∫

M\(A(γ)∪B(γ))

Å

Lz(θ)−K
(1)
Q,z

Å

−1

γ

ãã2

dP
(Q,γ)
Θ|Z=z

(θ) (438)

>0, (439)

where the inequality (439) follows from the following facts.

First, if cγ < K
(1)
Q,z

Ä

− 1
γ

ä

, with cγ in (434), then for

all ν ∈ B(γ), it holds that K
(1)
Q,z

Ä

− 1
γ

ä

> cγ > Lz (ν), and

thus,
Å

Lz (ν)−K
(1)
Q,z

Å

− 1

γ

ãã2

>

Å

cγ −K
(1)
Q,z

Å

− 1

γ

ãã2

, (440)

which implies,

∫

B(γ)

Å

Lz (θ)−K
(1)
Q,z

Å

− 1

γ

ãã2

dP
(Q,γ)
Θ|Z=z

(θ)

>

Å

cγ −K
(1)
Q,z

Å

− 1

γ

ãã2

P
(Q,γ)
Θ|Z=z

(B (γ)) (441)

>0. (442)

Second, if cγ > K
(1)
Q,z

Ä

− 1
γ

ä

then for all ν ∈ A(γ), it holds

that Lz (ν) > cγ > K
(1)
Q,z

Ä

− 1
γ

ä

, and thus,

Å

Lz (ν)−K
(1)
Q,z

Å

− 1

γ

ãã2

>

Å

cγ −K
(1)
Q,z

Å

− 1

γ

ãã2

, (443)

which implies,

∫

A(γ)

Å

Lz (θ)−K
(1)
Q,z

Å

− 1

γ

ãã2

dP
(Q,γ)
Θ|Z=z

(θ)

>

Å

cγ −K
(1)
Q,z

Å

− 1

γ

ãã2

P
(Q,γ)
Θ|Z=z

(A (γ)) (444)

>0. (445)

Hence, under the assumption that the empirical risk func-

tion Lz in (3) is separable, it holds that for all γ ∈ KQ,z ,

K
(2)
Q,z

Ä

− 1
γ

ä

> 0. This completes the proof.
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PROOF OF LEMMA 19

Consider the partition of the set M formed by the sets A0,

A1, and A2 in (335). From (98), for all λ ∈ KQ,z , with KQ,z

in (23), it holds that,

K
(1)
Q,z

Å

− 1

λ

ã

=

∫

A0

Lz (θ) dP
(Q,λ)
Θ|Z=z

(θ) +

∫

A1

Lz (θ) dP
(Q,λ)
Θ|Z=z

(θ) (446)

+

∫

A2

Lz (θ) dP
(Q,λ)
Θ|Z=z

(θ) (447)

=

∫

A0

Lz (θ) dP
(Q,λ)
Θ|Z=z

(θ) +

∫

A2

Lz (θ) dP
(Q,λ)
Θ|Z=z

(θ) (448)

=δ⋆Q,zP
(Q,λ)
Θ|Z=z

(L⋆
Q,z) +

∫

A2

Lz (θ) dP
(Q,λ)
Θ|Z=z

(θ) (449)

>δ⋆Q,zP
(Q,λ)
Θ|Z=z

(L⋆
Q,z) + δ⋆Q,zP

(Q,λ)
Θ|Z=z

(A2) (450)

=δ⋆Q,z, (451)

where the equality in (448) follows by noticing that Q (A1) =

0, which implies that P
(Q,λ)
Θ|Z=z

(A1) = 0 (Lemma 3); the equal-

ity in (449) follows from noticing that A0 = L⋆
Q,z , with L⋆

Q,z

in (39); and the equality in (450) follows from (335c). This

completes the proof.

APPENDIX P

PROOF OF THEOREM 6

From (449) in the proof of Lemma 19, it holds that

lim
λ→0+

K
(1)
Q,z

Å

− 1

λ

ã

= lim
λ→0+

δ⋆Q,zP
(Q,λ)
Θ|Z=z

(L⋆
Q,z)+ lim

λ→0+

∫

A2

Lz(θ)dP
(Q,λ)
Θ|Z=z

(θ) (452)

= lim
λ→0+

δ⋆Q,zP
(Q,λ)
Θ|Z=z

(L⋆
Q,z)

+ lim
λ→0+

∫

A2

Lz (θ)
dP

(Q,λ)
Θ|Z=z

dQ
(θ) dQ(θ) (453)

= lim
λ→0+

δ⋆Q,zP
(Q,λ)
Θ|Z=z

(L⋆
Q,z)

+

∫

A2

Lz (θ) lim
λ→0+

dP
(Q,λ)
Θ|Z=z

dQ
(θ) dQ(θ) (454)

=δ⋆Q,z lim
λ→0+

P
(Q,λ)
Θ|Z=z

(L⋆
Q,z) (455)

=δ⋆Q,z, (456)

where, the equality in (454) follows from noticing two

facts: (a) For all λ ∈ KQ,z , the Randon-Nikodym deriva-

tive
dP

(Q,λ)

Θ|Z=z

dQ is positive and finite (Lemma 2); and (b)

For all θ ∈ A2, it holds that limλ→0+
dP

(Q,λ)

Θ|Z=z

dQ (θ) = 0
(Lemma 6). Hence, the dominated convergence theorem [56,

Theorem 1.6.9] holds. The inequality in (455) follows from

Lemma 7. This completes the proof.
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APPENDIX Q

PROOF OF THEOREM 9

From Theorem 5, it follows that for all (λ1, λ2) ∈ KQ,z×KQ,z

with λ1 > λ2,

∫

Lz(α)
dP

(Q,λ1)
Θ|Z=z

dQ
(α)dQ(α)>

∫

Lz(α)
dP

(Q,λ2)
Θ|Z=z

dQ
(α)dQ(α),

which implies the following inclusions:

R1(λ2)⊆R1(λ1), and (457a)

R2(λ1)⊆R2(λ2), (457b)

with the sets R1(·) and R2(·) in (409). From (196), it holds

that for all i ∈ {1, 2},

NQ,z(λi) = R2(λi)
c, (458)

where the complement is with respect to M. Thus, the

inclusion in (457b) and the equality in (458) yields,

NQ,z(λ1) ⊇ NQ,z(λ2). (459)

The inclusion M ⊇ NQ,z(λ1) follows from (196). Al-

ternatively, the inclusion NQ,z(λ2) ⊇ N ⋆
Q,z , follows from

Lemma 19 and from observing that for all ν ∈ N ⋆
Q,z ,

Rz

Ä

P
(Q,λ2)
Θ|Z=z

ä

>δ⋆Q,z = Lz (ν) , (460)

which implies that ν ∈ NQ,z(λ2). This completes the proof

of (200).

The proof of (201) is as follows. From the intermediate value

theorem [67, Theorem 4.23] and the assumption that the

empirical risk function Lz in (3) is continuous on M, it follows

that for all λ ∈ KQ,z , there always exists a model θ ∈ M,

such that

Lz (θ) =

∫

Lz (α) dP
(Q,λ)
Θ|Z=z

(α) , (461)

which implies that R0 (λ) is not empty, and as a conse-

quence, NQ,z (λ) = R0 (λ)∪R1 (λ) is not empty. Hence, for

all θ ∈ R0 (λ1) it holds that θ /∈ NQ,z (λ2). This proves that

the elements of R0 (λ1) are in NQ,z (λ1) but not in NQ,z (λ2).
This, together with (459), verifies that

NQ,z (λ1)⊃NQ,z (λ2) . (462)

The strict inclusion M ⊃ NQ,z(λ1) is proved by

contradiction. Assume that there exists a λ ∈ KQ,z

such that M = NQ,z(λ). Then, R2 (λ) = ∅ and

thus, P
(Q,λ)
Θ|Z=z

(R2 (λ)) = 0, which together with Lemma 27,

implies that P
(Q,λ)
Θ|Z=z

(R1 (λ)) = 0 and consequently,

P
(Q,λ)
Θ|Z=z

(R0 (λ)) = 1. (463)

This contradicts the assumption that the function Lz is sepa-

rable (Definition 5). Hence, M ⊃ NQ,z(λ1).

Finally, the strict inclusion NQ,z(λ2) ⊃ N ⋆
Q,z is proved by

contradiction. Assume that there exists a λ ∈ KQ,z such

that N ⋆
Q,z = NQ,z(λ). That is,

{

θ ∈ M : Lz (θ) 6 δ⋆Q,z

}

= N ⋆
Q,z (464)

= NQ,z(λ) (465)

=

ß

θ ∈ M : Lz (θ) 6 K
(1)
Q,z

Å

− 1

λ

ã™

. (466)

Hence, three cases might arise:

(a) there exists a λ ∈ KQ,z , such that δ⋆Q,z < K
(1)
Q,z

(

− 1
λ

)

and it holds that
ß

ν ∈ M : δ⋆Q,z < Lz (ν) 6 K
(1)
Q,z

Å

− 1

λ

ã™

= ∅;

(b) there exists a λ ∈ KQ,z , such that δ⋆Q,z > K
(1)
Q,z

(

− 1
λ

)

and

it holds that
ß

ν ∈ M : K
(1)
Q,z

Å

− 1

λ

ã

< Lz (ν) 6 δ⋆Q,z

™

= ∅;

or (c) there exists a λ ∈ KQ,z , such that δ⋆Q,z =

K
(1)
Q,z

(

− 1
λ

)

.

The cases (a) and (b) are absurd. Hence, the proof is complete

only by considering the case (c). In the case (c), it holds

that,

R1 (λ)=
{

ν ∈ M : Lz (ν) < δ⋆Q,z

}

, (467)

and from the definition of δ⋆Q,z in (38), it holds that

P
(Q,λ)
Θ|Z=z

(R1 (λ)) = 0. (468)

From Lemma 27 and (468), it follows that,

P
(Q,λ)
Θ|Z=z

(R2 (λ)) = 0. (469)

Finally, by noticing that

1=P
(Q,λ)
Θ|Z=z

(R0 (λ)) + P
(Q,λ)
Θ|Z=z

(R1 (λ))

+P
(Q,λ)
Θ|Z=z

(R2 (λ)) (470)

=P
(Q,λ)
Θ|Z=z

(R0 (λ)) , (471)

reveals a contradiction to the assumption that the function Lz

is separable with respect to P
(Q,λ)
Θ|Z=z

(and thus, separable

with respect to Q by Lemma 14). This completes the proof

of (201).

APPENDIX R

PROOF OF THEOREM 10

The proof of (202) is based on the analysis of the derivative

of P
(Q,λ)
Θ|Z=z

(A) with respect to λ, for some fixed set A ⊆
B (M). More specifically, given a γ ∈ KQ,z , it holds

that

P
(Q,γ)
Θ|Z=z

(A)=

∫

A

dP
(Q,γ)
Θ|Z=z

dQ
(α) dQ (α) , (472)
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and from the fundamental theorem of calculus [67, Theo-

rem 6.21], it follows that for all (λ1, λ2) ∈ KQ,z × KQ,z

with λ1 > λ2,

P
(Q,λ1)
Θ|Z=z

(A)− P
(Q,λ2)
Θ|Z=z

(A)

=

∫ λ1

λ2

d

dγ
P

(Q,γ)
Θ|Z=z

(A) dγ (473)

=

∫ λ1

λ2

d

dγ

∫

A

dP
(Q,γ)
Θ|Z=z

dQ
(α) dQ (α) dγ (474)

=

∫ λ1

λ2

∫

A

d

dγ

dP
(Q,γ)
Θ|Z=z

dQ
(α) dQ (α) dγ, (475)

where the equality in (474) follows from (472); and the

equality in (475) holds from Lemma 2 and the dominated

convergence theorem [56, Theorem 1.6.9].

For all θ ∈ suppQ, the following holds,

d

dλ

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

=
d

dλ

exp
Ä

−Lz(θ)
λ

ä

∫

exp

Å

−Lz (ν)

λ

ã

dQ (ν)

(476)

=

1
λ2 Lz (θ) exp

Ä

−Lz(θ)
λ

ä

∫

exp

Å

−Lz (ν)

λ

ã

dQ (ν)

−
1
λ2 exp

Ä

−Lz(θ)
λ

ä

∫

Lz (α) exp

Å

−Lz (α)

λ

ã

dQ (α)

Å∫

exp

Å

−Lz (ν)

λ

ã

dQ (ν)

ã2 (477)

=
1

λ2
Lz (θ)

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

− 1

λ2

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

∫

Lz (ν)
dP

(Q,λ)
Θ|Z=z

dQ
(ν) dQ (ν) (478)

=
1

λ2

dP
(Q,λ)
Θ|Z=z

dQ
(θ)

Å

Lz (θ)−
∫

Lz (ν)dP
(Q,λ)
Θ|Z=z

(ν)

ã

. (479)

Plugging (479) into (475) yields,

P
(Q,λ1)
Θ|Z=z

(A)− P
(Q,λ2)
Θ|Z=z

(A)

=

∫ λ1

λ2

∫

A

1

γ2

dP
(Q,γ)
Θ|Z=z

dQ
(α)

Å

Lz (α)−
∫

Lz (ν) dP
(Q,γ)
Θ|Z=z

(ν)

ã

dQ (α) dγ (480)

=

∫ λ1

λ2

∫

A

1

γ2

Å

Lz(α)−
∫

Lz(ν)dP
(Q,γ)
Θ|Z=z

(ν)

ã

dP
(Q,γ)
Θ|Z=z

(α)dγ.

(481)

Note that for all α ∈ NQ,z (λ2), it holds that for all γ ∈
(λ2, λ1),

Lz (α)−
∫

Lz (ν) dP
(Q,γ)
Θ|Z=z

(ν) 6 0, (482)

and thus,
∫

NQ,z(λ2)

1

γ2

Å

Lz(α)−
∫

Lz(ν)dP
(Q,γ)
Θ|Z=z

(ν)

ã

dP
(Q,γ)
Θ|Z=z

(α)60.

(483)

The equalities in (481) and (483), with A = NQ,z (λ), imply

that

P
(Q,λ1)
Θ|Z=z

(NQ,z (λ2))− P
(Q,λ2)
Θ|Z=z

(NQ,z (λ2))60. (484)

The inequality 0 < P
(Q,λ1)
Θ|Z=z

(NQ,z(λ2)) in (202) is

proved by contradiction. Assume that for some λ ∈
KQ,z it holds that 0 = P

(Q,λ)
Θ|Z=z

(NQ,z(λ2)). Then,

P
(Q,λ)
Θ|Z=z

(R0(λ2)) + P
(Q,λ)
Θ|Z=z

(R1(λ2)) = 0, which implies

that P
(Q,λ)
Θ|Z=z

(R2(λ2)) = 1, which is a contradiction. See for

instance, Lemma 28. This completes the proof of (202).

The proof of strict inequality in (202) is divided into two parts.

The first part shows that if for all pairs (λ1, λ2) ∈ KQ,z×KQ,z

with λ1 > λ2,

P
(Q,λ1)
Θ|Z=z

(NQ,z(λ2)) < P
(Q,λ2)
Θ|Z=z

(NQ,z(λ2)), (485)

then the function Lz is separable with respect to Q. The second

part of the proof shows that if the function Lz is separable

with respect to Q, then, for all pairs (λ1, λ2) ∈ KQ,z ×KQ,z

with λ1 > λ2, the inequality in (485) holds.

The first part is as follows. In the proof of Theorem 9 it is

shown (see (481)) that for all pairs (λ1, λ2) ∈ KQ,z × KQ,z

with λ1 > λ2,

P
(Q,λ1)
Θ|Z=z

(NQ,z (λ2))− P
(Q,λ2)
Θ|Z=z

(NQ,z (λ2))

=

∫ λ1

λ2

∫

NQ,z(λ2)

1

γ2

Å

Lz(α)−K
(1)
Q,z

Å

−1

γ

ãã

dP
(Q,γ)
Θ|Z=z

(α)dγ.

(486)

Assume that for a given pair (λ1, λ2) ∈ KQ,z × KQ,z ,

with λ1 > λ2, the inequality in (485) holds. Then,

from (486),

0

>

∫ λ1

λ2

∫

NQ,z(λ2)

1

γ2

Å

Lz (α)−K
(1)
Q,z

Å

− 1

γ

ãã

dP
(Q,γ)
Θ|Z=z

(α)dγ

=

∫ λ1

λ2

∫

R1(λ2)

1

γ2

Å

Lz (α)−K
(1)
Q,z

Å

− 1

γ

ãã

dP
(Q,γ)
Θ|Z=z

(α)dγ,

(487)

where the equality in (487) follows from noticing

that R0 (λ2) and R1 (λ2) form a partition of NQ,z (λ2),
with the sets R0 (λ2), R1 (λ2) and NQ,z (λ2) defined

in (409a), (409b), and (196), respectively.

The inequality in (487) implies that the set R1 (λ2) is nonneg-

ligible with respect to P
(Q,γ)
Θ|Z=z

, for some γ ∈ (λ2, λ1). Hence,

from Lemma 28, it follows that both sets R1 (λ2) and R2 (λ2)

are nonnegligible with respect to P
(Q,γ)
Θ|Z=z

.
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From the arguments above, it has been proved that given a

pair (λ1, λ2) ∈ KQ,z ×KQ,z with λ1 > λ2, if

P
(Q,λ1)
Θ|Z=z

(NQ,z(λ2)) < P
(Q,λ2)
Θ|Z=z

(NQ,z(λ2)), (488)

then there always exists a positive γ ∈ (λ1, λ2) such that

the sets R1 (λ2) and R2 (λ2) are not negligible with respect

to P
(Q,γ)
Θ|Z=z

. Moreover, such sets R1 (λ2) and R2 (λ2) satisfy

for all (ν1,ν2) ∈ R2 (λ)×R1 (λ),

+∞ > Lz (ν1)> K
(1)
Q,z

Å

− 1

λ

ã

>Lz (ν2) , (489)

which together with Definition 14 verify that the function Lz is

separable with respect to P
(Q,γ)
Θ|Z=z

(and thus, with respect to Q
by Lemma 14). This ends the first part of the proof.

The second part of the proof is under the assumption that

the empirical risk function Lz in (3) is separable with respect

to Q (and thus, with respect to P
(Q,γ)
Θ|Z=z

by Lemma 14).

That is, from Definition 14, for all γ ∈ KQ,z , there exist

a positive real cγ > 0 and two subsets A(γ) and B(γ) of M
nonnegligible with respect to P

(Q,γ)
Θ|Z=z

in (25) that verify that

for all (ν1,ν2) ∈ A(γ)× B(γ),
Lz (ν1)> cγ >Lz (ν2) . (490)

In the proof of Theorem 9, cf. (481), it has been proved that

given a pair (α1, α2) ∈ KQ,z × KQ,z , with α1 > γ > α2, it

holds that for all subsets A of M,

P
(Q,α1)
Θ|Z=z

(A)− P
(Q,α2)
Θ|Z=z

(A)

=

∫ α1

α2

∫

A

1

λ2

dP
(Q,λ)
Θ|Z=z

dQ
(α)

Å

Lz (α)−K
(1)
Q,z

Å

− 1

λ

ãã

dP (α)dλ

=

∫ α1

α2

∫

A

1

λ2

Å

Lz (α)−K
(1)
Q,z

Å

− 1

λ

ãã

dP
(Q,λ)
Θ|Z=z

(α)dλ. (491)

Hence, two cases are studied. The first case considers

that

cγ < K
(1)
Q,z

Å

− 1

γ

ã

, (492)

with cγ in (490). The second case considers that

cγ > K
(1)
Q,z

Å

− 1

γ

ã

. (493)

In the first case, it follows from (196) that

B (γ) ⊂ NQ,z (γ) , (494)

which implies that

P
(Q,γ)
Θ|Z=z

(NQ,z (γ))>P
(Q,γ)
Θ|Z=z

(B (γ)) (495)

>0, (496)

where, the inequality in (496) follows from the fact that B (γ)

is nonnegligible with respect to P
(Q,γ)
Θ|Z=z

. This implies that the

set NQ,z (γ) is not negligible with respect P
(Q,γ)
Θ|Z=z

. Moreover,

from (196) and (494), it follows that for all α ∈ NQ,z (γ) and

for all λ ∈ (γ, α1),

Lz (α)−
∫

Lz (ν) dP
(Q,λ)
Θ|Z=z

(ν)<Lz (α)− cγ (497)

<0, (498)

where the inequality in (497) follows from (492); and the

inequality in (498) follows from (490). Thus,

∫ α1

γ

∫

NQ,z(γ)

1

λ2

Å

Lz (α)−K
(1)
Q,z

Å

− 1

λ

ãã

dP
(Q,λ)
Θ|Z=z

(α)dλ<0,

which implies, from (491), that

P
(Q,α1)
Θ|Z=z

(NQ,z (γ))− P
(Q,γ)
Θ|Z=z

(NQ,z (γ))<0. (499)

Assume now that cγ > K
(1)
Q,z

Ä

− 1
γ

ä

. Hence, the following

holds

A (γ) ⊆ R2 (γ) , (500)

which implies that

P
(Q,γ)
Θ|Z=z

(R2 (γ))>P
(Q,γ)
Θ|Z=z

(A (γ)) (501)

>0, (502)

where the inequality in (502) follows from the fact that A (γ)

is nonnegligible with respect to P
(Q,γ)
Θ|Z=z

. This implies that

the set R2 (γ) is not negligible with respect P
(Q,γ)
Θ|Z=z

. From

Lemma 27, it follows that both R1 (γ) and R2 (γ) are nonneg-

ligible with respect to P
(Q,γ)
Θ|Z=z

. Using this result, the following

holds,

P
(Q,γ)
Θ|Z=z

(NQ,z (γ))>P
(Q,γ)
Θ|Z=z

(R1 (γ)) (503)

>0, (504)

which proves the set NQ,z (γ) is nonnegligible with respect

to P
(Q,γ)
Θ|Z=z

.

From (196) and Theorem 5, it follows that for all α ∈
NQ,z (γ) and for all λ ∈ (γ, α1),

0>Lz (α)−
∫

Lz (ν) dP
(Q,γ)
Θ|Z=z

(ν) (505)

>Lz (α)−
∫

Lz (ν) dP
(Q,λ)
Θ|Z=z

(ν) . (506)

Thus,

∫ α1

γ

∫

NQ,z(γ)

1

λ2

Å

Lz (α)−K
(1)
Q,z

Å

− 1

λ

ãã

dP
(Q,λ)
Θ|Z=z

(α)dλ<0,

which implies, from (491), that

P
(Q,α1)
Θ|Z=z

(NQ,z (γ))− P
(Q,γ)
Θ|Z=z

(NQ,z (γ))<0. (507)

This completes the proof.
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The proof is based on the following two observations. First,

note that (NQ,z (λ2))
c

= R2 (λ2), with the set R2 (·) defined

in (409c). Second, note that

NQ,z (λ1)=NQ,z (λ2) ∪ (NQ,z (λ1) ∩R2 (λ2)) , (508)
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and the fact that the sets NQ,z (λ2) and (NQ,z (λ1) ∩R2 (λ2))
are disjoint. Hence, for all i ∈ {1, 2},

P
(λi)
Θ|Z=z

(NQ,z(λ1))

=P
(λi)
Θ|Z=z

Å

NQ,z(λ2)∪(NQ,z(λ1)∩R2(λ2))

ã

(509)

=P
(λi)
Θ|Z=z

Å

NQ,z (λ2)

ã

+P
(λi)
Θ|Z=z

Å

NQ,z (λ1) ∩R2 (λ2)

ã

(510)

=P
(λi)
Θ|Z=z

Å

NQ,z (λ2)

ã

, (511)

where the equality in (510) follows from Lemma 3 and the

equality in (203).

Finally, under the assumption that the empirical function Lz

in (3) is separable, it holds from Theorem 10 that

P
(Q,λ1)
Θ|Z=z

(NQ,z(λ2)) < P
(Q,λ2)
Θ|Z=z

(NQ,z(λ2)). (512)

Plugging (511) into (512), with i = 1, yields,

P
(Q,λ1)
Θ|Z=z

(NQ,z(λ1)) < P
(Q,λ2)
Θ|Z=z

(NQ,z(λ2)), (513)

and this completes the proof.

APPENDIX T
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Consider the following lemma.

Lemma 29: Given two probability measures P1 and P2

over (M,B (M)), with P2 absolutely continuous with respect

to P1, the following holds for all z ∈ (X × Y)
n

,

Rz (P2)− Rz (P1) (514)

6inf
t<0

Ç

D(P2‖P1)+log
(∫

exp(t (Lz(θ)−Rz(P1)))dP1(θ)
)

t

å

,

where the function Lz and the functional Rz are defined in (3)

and in (18), respectively.

Proof: From [54, Corollary 4.15, Page 100], it follows that the

probability measures P1 and P2 in (M,B (M)) satisfy the

following equality:

D(P2‖P1)=sup
f

∫

f(θ)dP2(θ)−log

∫

exp(f(θ))dP1(θ), (515)

where the supremum is over the space of all measurable func-

tions f with respect to (M,B (M)) and (R,B (R)), such

that
∫

exp (f (θ)) dP1 (θ) < ∞. Hence, for all z ∈ (X × Y)
n

and for all t ∈ (−∞, 0), it follows that the empirical risk

function Lz in (3) satisfies that

D (P2‖P1) (516)

>

∫

tLz (θ) dP2 (θ)− log

∫

exp (tLz (θ)) dP1 (θ) (517)

>

∫

tLz (θ) dP2 (θ)

− log

∫

exp (tLz (θ) + tRz (P1)− tRz (P1)) dP1 (θ) (518)

=

∫

tLz (θ) dP2 (θ)− tRz (P1)

− log

∫

exp (tLz (θ)− tRz (P1)) dP1 (θ) (519)

=tRz(P2)−tRz(P1)−log

∫

exp(tLz(θ)−tRz(P1))dP1(θ), (520)

which leads to

Rz(P2)−Rz(P1)

6
D(P2‖P1)+log

∫

exp(t(Lz(θ)−Rz(P1)))dP1(θ)

t
. (521)

Given that t can be chosen arbitrarily in (−∞, 0), it holds

that

Rz(P2)−Rz(P1)

6 inf
t∈(−∞,0)

D(P2‖P1)+log
∫

exp(t(Lz(θ)−Rz(P1)))dP1(θ)

t
, (522)

which completes the proof.

From Lemma 29, it holds that the probability measure P
(Q,λ)
Θ|Z=z

in (25), satisfies for all P ∈ △Q (M,B (M)),

Rz (P )− Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

6 inf
t∈(−∞,0)

(

D
Ä

P‖P (Q,λ)
Θ|Z=z

ä

t

+
log
Ä

∫

exp
Ä

t
Ä

Lz(θ)−K
(1)
Q,z

(

−1
λ

)

ää

dP
(Q,λ)
Θ|Z=z

(θ)
ä

t

)

, (523)

where the function K
(1)
Q,z is defined in (98) and satisfies (106).

Moreover, for all t ∈ (−∞, 0),

log

Å∫

exp

Å

t

Å

Lz (θ)−K
(1)
Q,z

Å

− 1

λ

ããã

dP
(Q,λ)
Θ|Z=z

(θ)

ã

=log

Å∫

exp (t Lz (θ)) dP
(Q,λ)
Θ|Z=z

(θ)

ã

− tK
(1)
Q,z

Å

− 1

λ

ã

(524)

=Jz,Q,λ(t)− tK
(1)
Q,z

Å

− 1

λ

ã

(525)

6
1

2
t2β2

Q,z, (526)

where the equality in (525) follows from (143); the inequality

in (526) follows from Theorem 7; and the constant βQ,z is

defined in (166).

Plugging (526) into (523) yields for all t ∈ (−∞, 0),

Rz (P )− Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

6 inf
t∈(−∞,0)

D
Ä

P‖P (Q,λ)
Θ|Z=z

ä

+ 1
2 t

2β2
Q,z

t
. (527)
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Let the c ∈ R be defined as follows:

c , Rz (P )− Rz

Ä

P
(Q,λ)
Θ|Z=z

ä

. (528)

Hence, from (527), it follows that for all t ∈ (−∞, 0),

c t− 1

2
t2β2

Q,z 6 D
Ä

P‖P (Q,λ)
Θ|Z=z

ä

. (529)

The rest of the proof consists in finding an explicit expression

for the absolute value of c in (529). To this aim, consider the

function φ : R → R such that

φ(α) =
1

2
α2β2

Q,z, (530)

and note that φ is a positive and strictly convex function

with φ(0) = 0. Let the Legendre-Fenchel transform of φ be

the function φ∗ : R → R, and thus for all x ∈ R,

φ∗(x) = max
t∈(−∞,0)

xt− φ(t). (531)

In particular, note that

φ∗(c) 6 D
Ä

P‖P (Q,λ)
Θ|Z=z

ä

. (532)

Note that for all x ∈ R and for all t ∈ (−∞, 0), the

function φ⋆ in (531) satisfies

x t− 1

2
t2β2

Q,z 6 φ⋆(x) = xα⋆(x)− φ (α⋆(x)) , (533)

where the term α⋆(x) represents the unique solution in α
within the interval (−∞, 0) to

d

dα
(xα− φ (α)) = x− αβ2

Q,z = 0. (534)

That is,

α⋆(x)=
x

β2
Q,z

. (535)

Plugging (535) into (533) yields,

φ⋆(x)=
x2

2β2
Q,z

. (536)

Hence, from (532) and (533), given c in (528) for all t ∈
(−∞, 0),

c t− 1

2
t2β2

Q,z 6 φ⋆(c) 6 D
Ä

P‖P (Q,λ)
Θ|Z=z

ä

, (537)

and thus,
c2

2β2
Q,z

6 D
Ä

P‖P (Q,λ)
Θ|Z=z

ä

. (538)

This implies that

c 6
√

2β2
Q,zD

Ä

P‖P (Q,λ)
Θ|Z=z

ä

(539)

and

c > −
√

2β2
Q,zD

Ä

P‖P (Q,λ)
Θ|Z=z

ä

, (540)

which leads to
∣

∣

∣

∣

∫

Lz(θ)dP (θ)−
∫

Lz(θ)dP
(Q,λ)
Θ|Z=z

(θ)

∣

∣

∣

∣

6
√

2β2
Q,zD

Ä

P‖P (Q,λ)
Θ|Z=z

ä

, (541)

and completes the proof.

APPENDIX U

PROOF OF THEOREM 17

Under the condition that λ ∈ KQ,PZ
, from Theorem 14 and

Definition 8, it follows that the generalization error GQ,λ (PZ)
in (235) satisfies

GQ,λ (PZ) = λ

∫

(

D
Ä

P
(Q,λ)
Θ|Z=ν

‖Q
ä

+D
Ä

P
(Q,λ)
Θ

‖P (Q,λ)
Θ|Z=ν

ä

−D
Ä

P
(Q,λ)
Θ

‖Q
ä

)

dPZ(ν), (542)

= λ

(

∫

D
Ä

P
(Q,λ)
Θ|Z=ν

‖P (Q,λ)
Θ

ä

dPZ(ν)

+

∫

D
Ä

P
(Q,λ)
Θ

‖P (Q,λ)
Θ|Z=ν

ä

dPZ(ν)

)

, (543)

where the equality in (543) follows from the fact that
∫

(

D
Ä

P
(Q,λ)
Θ|Z=ν

‖Q
ä

−D
Ä

P
(Q,λ)
Θ

‖Q
ä

)

dPZ(ν)

=

∫

D
Ä

P
(Q,λ)
Θ|Z=ν

‖Q
ä

dPZ(ν)−D
Ä

P
(Q,λ)
Θ

‖Q
ä

(544)

=

∫

Ñ

∫

log

Ñ

dP
(Q,λ)
Θ|Z=ν

dQ
(θ)

é

dP
(Q,λ)
Θ|Z=ν

(θ)

é

PZ(ν)

−D
Ä

P
(Q,λ)
Θ

‖Q
ä

(545)

=

∫

Ñ

∫

log

Ñ

dP
(Q,λ)
Θ|Z=ν

dQ
(θ)

é

dP
(Q,λ)
Θ|Z=ν

(θ)

é

dPZ(ν)

−
∫

log

Ç

dP
(Q,λ)
Θ

dQ
(θ)

å

dP
(Q,λ)
Θ

(θ) (546)

=

∫

Ñ

∫

log

Ñ

dP
(Q,λ)
Θ|Z=ν

dQ
(θ)

é

dP
(Q,λ)
Θ|Z=ν

(θ)

é

dPZ(ν)

−
∫

Ç

∫

log

Ç

dP
(Q,λ)
Θ

dQ
(θ)

å

dP
(Q,λ)
Θ|Z=ν

(θ)

å

dPZ(ν) (547)

=

∫

(

∫

(

log

Ñ

dP
(Q,λ)
Θ|Z=ν

dQ
(θ)

é

+log

Ç

dQ

dP
(Q,λ)
Θ

(θ)

å

)

dP
(Q,λ)
Θ|Z=ν

(θ)

)

dPZ(ν) (548)

=

∫

(

∫

log

Ñ

dP
(Q,λ)
Θ|Z=ν

dP
(Q,λ)
Θ

(θ)

é

dP
(Q,λ)
Θ|Z=ν

(θ)

)

dPZ(ν) (549)

=

∫

D
Ä

P
(Q,λ)
Θ|Z=ν

‖P (Q,λ)
Θ

ä

dPZ(ν). (550)

The equality in (547) follows from (233); and the equality

in (548) follows from the fact that the measures Q and

P
(Q,λ)
Θ|Z=ν

, with ν ∈ suppPZ , are mutually absolutely con-

tinuous. This completes the proof.
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