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Recent massive earthquakes have raised concerns that megathrust earthquakes

with magnitude 9 can occur in the near future. This article discusses the critical

behavior of structures involving torsion caused by extreme ground motions.

Unlike factors such as mass and stiffness eccentricity and accidental torsion in a

structure that induce torsion, torsional buckling can occur in a moment-resisting

frame (MRF) when all beamends in the longitudinal and transverse directions yield

in the lower stories, even if the frame is well designed and its eccentricity is

negligibly small. In this study, the theoretically predicted buckling load was

presented and validated via numerical analyses. This article shows that

excluding the P-Delta effect resulted not only in underestimated deformation

but also in overlooked torsional buckling. This study suggests that a high-riseMRF

designed in accordance with modern seismic design codes can suffer torsional

collapse when the beam ends of the lower stories yield owing to extreme ground

motion. Based on these findings, we recommend considering the P-Delta effect

when examining the critical behavior of high-rise buildings so as not to overlook

the brittle failure mode.

KEYWORDS

P-delta effect, Shanley column, inelastic buckling, bifurcation, stability,

comparison solid

1 Introduction

Recent massive earthquakes caused numerous buildings of various sizes, ages, and

constructions to collapse, making us aware of seismic risks that exist worldwide. For

example, several low-to-mid-rise buildings collapsed during the 2023 Turkey-Syria

Earthquake. According to the reports on ground motion records provided at an early

stage, this earthquake generated very intense ground motions with long-period directivity

pulses and fling steps exceeding the peak ground acceleration of a return period of 476 years

in 1.4% of Turkey’s land area (Baltzopoulos et al., 2023). In 2016 in Kumamoto, Japan, a

mainshock of moment magnitude (Mw) 7.1 followed a foreshock of Mw 6.1 that had

occurred the day before (Bhattacharya et al., 2018). This was the first event in which another

destructive earthquake followed an earthquake greater thanMw 6 in the recorded history of

Japan. The Great East Japan Earthquake in 2011 caused a tsunami that affected vast areas of

the country. The long-period ground motion generated by the earthquake traveled all the

way to Osaka, approximately 800 km away from the epicenter (Takewaki et al., 2011).

Further, this motion was amplified by the soft surface subsoil in the Osaka Bay area, causing
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a high-rise steel building in Osaka to resonate with a 1.4 m

maximum amplitude at the top. The resonance of structures with

ground motion can lead to structural collapse, as observed in the

Pino Suárez building group during the 1985 Mexico Earthquake

(Osteraas and Krawinkler, 1989; Ger et al., 1993). There are growing

concerns about the occurrence of massive earthquakes of magnitude

9, such as the potential Cascadia and Nankai Megathrust

Earthquakes, in the near future (Marafi et al., 2020; Fukushima

et al., 2023).

Many previous studies have focused on understanding the

critical behavior of structures subjected to massive earthquakes to

implement measures for protecting lives and properties from major

disasters. Uetani and Tagawa (1998) reported that the yield of beam

ends in a two-dimensional planer frame can lead to an undesirable

collapse mode referred to as “deformation concentration in lower

stories.” A similar phenomenon was also observed by Bernal (1992,

1998) in the study that estimated the response of a multi-DOF

system using an equivalent single-DOF system, which was further

developed by Adam et al. (2004). Efforts were made to track the

progressive collapse (Kiakojouri et al., 2020; Kiakojouri et al., 2021)

accurately and efficiently (Scott and Fenves, 2010; Lin et al., 2018),

including experiments on full-scale four-story and reduced-scale

eighteen-story specimens using E-Defense, which is the largest shake

table in the world (Nakashima et al., 2018; Nishi et al., 2023).

Torsional collapse continues to be a challenge in understanding

the critical behavior of building frames. Torsional irregularities and

accidental torsion are commonly considered in structural design;

however, torsional vibrations are often underestimated when the

eccentricity is very small (Flores et al., 2018). Jenning and Husid,

(1968), Wilson and Habibullah (1987), Osteraas and Krawinkler

(1989), Ger et al. (1993), Uetani and Tagawa (1998), and Bernal

(1992, 1998) revealed the influence of P-Delta effects on the behavior

of structures subjected to severe earthquakes. Flores et al. (2018)

reported that the P-Delta (P-Theta) effect accelerated torsion caused

by other factors such as eccentricity and uncertainty when

bidirectional ground motion was considered. Kohiyama and

Yokoyama (2018) noted that the geometric nonlinearity of frame

stiffness induced a parametric resonance in torsional vibration,

which was designated as Q-Delta resonance. Later, their research

works were further developed by Mizutori and Kohiyama (2021),

Kohiyama et al. (2022), Kohiyama and Maki (2023), and Kohiyama

and Kai (2023). Hong (2013) designated the second-order effect

caused by instantaneous load eccentricities due to the motion of the

center of mass as the A-Delta effect and noted that ignoring the

A-Delta effect might underestimate seismic displacement.

Furthermore, rotational components of ground motions can

introduce significant influence including torsional response.

Zhang et al. (2020) examined the seismic response of

transmission towers considering the rocking and torsion

components of the ground motion and noted that the rotational

ground motion components should not be neglected. Zhang et al.

(2021) realized that the nonuniformity and multidimensionality of

ground motion can increase the seismic response of a large-span

spatial structure; thus, the seismic response may be underestimated

when only translational components of the ground motion are

considered.

The inelastic torsional buckling examined in this study is

different than any other known phenomena involving torsion

(Uetani, 2018; Fukuda and Ikago, 2019; 2020; Fukuda et al.,

2023). In this study, a numerical example demonstrated that a

simple three-dimensional symmetric moment-resisting frame

(MRF) model subjected to a horizontal load suffered from

significant torsional deformation even though a horizontal load

was applied to the centroid of the roof slab. Therefore, this study

suggests that a well-designed high-rise building without eccentricity

can suffer non-negligible torsional deformation in the lower stories

when all beam ends of the lower stories in the longitudinal and

transverse frames yield under severe bidirectional ground motion.

The remainder of this article is organized as follows. Section 2

discusses the similarity between the inelastic buckling theory of a simple

three-dimensional frame and Shanley’s column theory (Shanley, 1947).

In Section 3, a prediction of the column axial load that causes torsional

buckling is derived from the condition that the uniqueness of the

solution of governing equations is violated. In Section 4, numerical

analyses are shown to validate the theoretically derived prediction of

buckling load. Section 5 presents conclusions and recommendations.

2 Inelastic torsional buckling theory for
a simple moment resisting frame

2.1 Inelastic three-dimensional moment
resisting frame

Figure 1 shows the three-dimensional MRF model employed in

this study. The model comprises four columns whose tops and

bottoms are connected via beams, thereby forming a rectangular

parallelepiped. The bottoms of the columns are supported by pins,

FIGURE 1

Three-dimensional MRF model.
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and the beams and columns are rigid bars. The vertical planes

formed by the MRFs are labeled (1), (2), (3), and (4), as shown in

Figure 1. The column tops and bottoms are connected to the beams

via elastoplastic hinges with the moment–rotation angle relationship

shown in Figure 2.

Mi and φi represent the moment and rotation angle of a beam-end

hinge in the i th frame, respectively; k and α represent the rotational

stiffness coefficients in the initial elastic state and the ratio of the post-

yield to initial elastic stiffness, respectively; andMy represents the yield

moment of the hinge. Note that φi equals the story-drift angle of i th

frame. The roof floor was modeled as a rigid diaphragm assuming that

the in-plane deformation of the slab could be neglected. Further, a and h

represent the span and story height, respectively. TheU and V axes are

perpendicular to each other and parallel to the diagonals of the square

roof slab. Further, the Z axis represents the vertical axis, and the origin

of theU,V, andZ axes is the centroid of the roof slab, designated as the

main node. u and v represent the displacements of themain node along

the U and V axes, respectively. θ represents the rotation of the main

node around the Z axis. A horizontal load H is applied in a direction

along the U axis at the main node. Two pairs of elastic shear springs

with stiffness K/2 were arranged parallel to the MRFs with an

eccentricity e from the centroid to impart horizontal and rotational

stiffness. A static vertical load W acts on the top of each column.

2.2 Review of inelastic buckling theory for a
column subjected to axial load

Figure 3 shows a simple model of a column subjected to axial

load P. Two elastoplastic springs are located at the center of the

column length lc. The axial force–deformation relationship of the

springs is bilinear, as shown at the top right of Figure 3.

Figure 4 shows the bifurcation process in a Shanley column

subjected to increasing axial loading. Both springs are in the loading

state because the axial force increases immediately before buckling.

When bifurcation occurs, the elongation and shrinkage caused by the

rotation and the increasing axial force cancel each other, resulting in a

neutral loading state of the left-hand side spring, while the spring on the

right-hand sidemaintains the loading state. Strain reversal occurs on the

left side of the spring after the column buckles. Thus, the Shanley

column does not involve strain reversal under buckling, implying that

replacing the elastic modulus with the tangent modulus in Euler’s

formula yields a better prediction of the inelastic buckling load than by

replacing it with the reduced modulus (von Kármán, 1910) when an

increase in the axial load is considered during buckling.

Figure 5 shows the top view of the bifurcation process of a simple

MRF subjected to increasing horizontal loading in the diagonal

direction. All beam ends are in the loading state immediately before

torsional buckling. When torsion occurs, a counterclockwise rotation θ

causes story drifts that oppose those caused by increasing the horizontal

forceH inMRFs (3) and (4), resulting in the neutral loading state hinges

in those MRFs. The strain reversal in these hinges occurs after torsional

buckling, and therefore, the state in which all hinges are in the loading

FIGURE 2

Moment–rotation angle relationship of beam-end spring.

FIGURE 3

Shanley column (Shanley, 1947).
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statemust be considered for predicting the axial force of the column that

can cause torsional buckling.

3 Prediction of the column axial force
for torsional buckling

The relationships between the story drift angle of the i thMRF φi

and (u, v, θ) are

φ1 �
1

h

1�
2

√ u − 1�
2

√ v + a

2
θ( )

φ2 �
1

h

1�
2

√ u + 1�
2

√ v + a

2
θ( )

φ3 �
1

h

1�
2

√ u − 1�
2

√ v − a

2
θ( )

φ4 �
1

h

1�
2

√ u + 1�
2

√ v − a

2
θ( )

(1)

when we assume that the following approximations hold:

sinφi ≈ φi, cosφi ≈ 1, sin θ ≈ θ, cos θ ≈ 1. (2)

The shear force of the i th MRF Qi is

Qi �
4Mi

h
. (3)

The equilibrium equations with respect to the U,V, and Θ axes are

1�
2

√ Q1 + Q2 + Q3 + Q4( ) + KGhu � H

1�
2

√ −Q1 + Q2 − Q3 + Q4( ) +KGhv � 0

a

2
Q1 + Q2 − Q3 − Q4( ) +KGrθ � 0

, (4)

where

KGh � K − 4W

h

KGr � 2Ke2 − 2a2W

h

. (5)

FIGURE 4

Bifurcation process in Shanley column. (A) Pre-buckling state (B) Neutral–loading state (C) Post-buckling state.

FIGURE 5

Bifurcation process in simple three-dimensional MRF. (A) Pre-buckling state (B) Neutral–loading state (C) Post-buckling state.
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The second terms on the righthand side of the above equations

represent geometrical stiffnesses derived from the P-Delta effect.

The constitutive law of the beam-end hinges is given as

_Mi � k _φi for elastic or unloading
_Mi � αk _φi for plastic loading

(6)

where (·) represents derivatives with respect to an independent

variable t that increases monotonically.

3.1 Uniqueness of the rate solution on the
fundamental path

In this study, the path in which no buckling occurred is referred

to as the fundamental path. Let the superscript f denote the

solutions on the fundamental path. Then, the governing

equations are expressed as

Compatibility condition

_φ
f
i � _uf�

2
√

h
q _vf � 0, _θ

f � 0( ). (7)

Equilibrium equations

1�
2

√ _Q
f

1 + _Q
f

2 + _Q
f

3 + _Q
f

4( ) + KGh _uf � _H

1�
2

√ − _Q
f

1 + _Q
f

2 − _Q
f

3 + _Q
f

4( ) � 0

a

2
_Q
f

1 + _Q
f

2 − _Q
f

3 − _Q
f

4( ) � 0

. (8)

Constitutive law

_Q
f

i � 4 _M
f

i

h
� 4αk

h
_φ
f
i � 2

�
2

√
αk

h2
_uf. (9)

Let superscript b denote the solutions on the post buckling path,

the governing equations are

Compatibility condition

_φb
1 �

1

h

1�
2

√ _ub − 1�
2

√ _vb + a

2
_θ
b( )

_φb
2 �

1

h

1�
2

√ _ub + 1�
2

√ _vb + a

2
_θ
b( )

_φb
3 �

1

h

1�
2

√ _ub − 1�
2

√ _vb − a

2
_θ
b( )

_φb
4 �

1

h

1�
2

√ _ub + 1�
2

√ _vb − a

2
_θ
b( )

. (10)

Equilibrium equations

1�
2

√ _Q
b

1 + _Q
b

2 + _Q
b

3 + _Q
b

4( ) +KGh _ub � _H

1�
2

√ − _Q
b

1 + _Q
b

2 − _Q
b

3 + _Q
b

4( ) + KGh _vb � 0

a

2
_Q
b

1 + _Q
b

2 − _Q
b

3 − _Q
b

4( ) + KGr
_θ
b � 0

. (11)

Constitutive law

_Q
b

i �
4 _M

b

i

h
�

4αk

h
_φb
i for _φb

i ≥ 0 loading( )
4k

h
_φb
i for _φb

i < 0 unloading( )
⎧⎪⎪⎪⎨⎪⎪⎪⎩ . (12)

Let us define (·)d ≡ (·)b − (·)f, then

_φd
1 �

1

h

1�
2

√ _ud − 1�
2

√ _vd + a

2
_θ
d( )

_φd
2 �

1

h

1�
2

√ _ud + 1�
2

√ _vd + a

2
_θ
d( )

_φd
3 �

1

h

1�
2

√ _ud − 1�
2

√ _vd − a

2
_θ
d( )

_φd
4 �

1

h

1�
2

√ _ud + 1�
2

√ _vd − a

2
_θ
d( )

. (13)

1�
2

√ _Q
d

1 + _Q
d

2 + _Q
d

3 + _Q
d

4( ) +KGh _ud � 0. (14)

1�
2

√ − _Q
d

1 + _Q
d

2 − _Q
d

3 + _Q
d

4( ) + KGh _vd � 0. (15)

a

2
_Q
d

1 + _Q
d

2 − _Q
d

3 − _Q
d

4( ) +KGr
_θ
d � 0. (16)

Multiplying Eqs. (14), (15), and (16) by _ud, _vd, and _θ
d
, respectively,

and adding the products obtains

∑4
i�1
h _Q

d

i _φd
i +KGh _ud( )2 + _vd( )2{ } +KGr

_θ
d( )2

� 0. (17)

Here, let us define vector _u and function Ω as

_u � _u, _v, _θ( ), (18)

Ω _u′, _u*( ) ≡ ∑4
i�1
h _Q

′

i − _Q
*

i( ) _φ′

i − _φ*
i( ) +KGh _u′ − _u*( )2 + _v′ − _v*( )2{ }

+KGr
_θ′ − _θ*( )2.

(19)

Then, Eq. (17) reduces to

Ω _u
b, _u

f( ) � 0. (20)

The above equation holds if the rate solution of the equilibrium

equation is not unique and a rate solution _u
b(≠ _u

f) exists on the

bifurcation path. Conversely, the contraposition of the above

condition provides a sufficient condition for the uniqueness of

the rate solution (Hill, 1956a; Hill, 1956b; Hill, 1957a; Hill,

1957b; Hill, 1958).

Sufficient condition for the uniqueness of the rate solution

for∀ _u′ ≠ _u
f,Ω _u′, _u

f( )> 0. (21)

We introduce a virtual hinge element that is always in a loading

state to simplify the evaluation of _Qi in Eq. (19).

Constitutive law for comparison hinge

_Qi �
4αk

h
_φi. (22)
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This virtual hinge element (hereafter, comparison hinge) corresponds to

the comparison solid (Sewell, 1973) proposed byHill (Hill, 1956a, 1956b,

1957a, 1957b, 1958). Replacing the beam-end hinges with the

comparison hinge enables simplifying the function Ω as

Ω
he

_u′, _u*( ) ≡ ∑4
i�1
4αk _φ′

i − _φ*
i( )2 +KGh _u′ − _u*( )2 + _v′ − _v*( )2{ }

+KGr
_θ′ − _θ*( )2

(23)

∑4
i�1
h _Q

′

i − _Q
*

i( ) _φ′

i− _φ*
i( )≥∑4

i�1
4αk _φ′

i− _φ*
i( )2, (24)

Because the above inequality holds,

Ω u′, u*( )≥Ω
he

u′, u*( ). (25)

The equality holds if and only if _φ′

i ≥ 0 and _φ*
i ≥ 0 for all i.

Thus, the following condition is sufficient for uniqueness.

for∀ _u′ ≠ _u
f,Ωhe

_u′, _u
f( )> 0. (26)

The above inequality is expanded as

for∀ _u′ ≠ _u
f,

8αk

h2
+KGh( ) _u′ − _uf( )2 + _v′ − _vf( )2{ }

+ 4a2αk

h2
+ KGr( ) _θ′ − _θ

f( )2

> 0. (27)

If the following equations hold, the above condition is violated.

8αk

h2
+ KGh ≤ 0. (28)

4a2αk

h2
+ KGr ≤ 0. (29)

Eqs. (28) and (29) indicate that the post-yielding stiffnesses in the

horizontal and rotational directions, respectively, become negative

because of the geometric stiffness.

Here, we consider the case in which only Eq. (29) holds

because torsional buckling is considered exclusively. Thus, we

assume that

8αk

h2
+ KGh > 0. (30)

Solving Eqs. (29) and (30) with respect to W yields the

buckling condition

Wcr ≤W<WVcr, (31)

where

Wcr �
2αk

h
+ Kh

e

a
( )2

,WVcr �
2αk

h
+ 1

4
Kh, e<

a

2
. (32)

3.2 Post buckling behavior

When we assume that Eq. (31) is satisfied, torsional buckling can

occur when all beam-end hinges yield. We assume that the

displacement perpendicular to the horizontal loading vb remains

zero because torsional buckling is observed exclusively.

This section demonstrates that MRFs (3) and (4) turn to

the unloading state after torsional buckling occurs with θb > 0.

To prove this, we first assume that all hinges act as

comparison hinges, and then, we show that the assumption is

contradictory.

The shear forces Qi of the MRF with comparison hinges are

expressed as

Qb
i � Q

y
i +

4αk

h
φb
i − φ

y
i( )

�
Q

y
i +

4αk

h2
ub�
2

√ + a

2
θb − uy�

2
√( ) for i � 1, 2( )

Q
y
i +

4αk

h2
ub�
2

√ − a

2
θb − uy�

2
√( ) for i � 3, 4( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(33)

where superscript y represents values when all hinges yield. Q
y
i

satisfies the equations

Q
y
1+Q

y
2 + Q

y
3 + Q

y
4 �

�
2

√
−KGhu

y +Hy( )
Q

y
1+Q

y
2 − Q

y
3 − Q

y
4 � 0

{ (34)

Substituting Eq. (33) into Eq. (4) yields

Hy + 8αk

h2
+ KGh( ) ub − uy( ) � Hb

4a2αk

h2
+ KGr( )θb � 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
. (35)

The equilibrium equation with respect to the V axis is trivial and

thus omitted. Provided that φb
i − φ

y
i ≥ 0, Eq. (35) can be solved with

respect to ub and θb as

ub � uy + Hb −Hy

8αk
h2

+KGh

, Hb
>Hy. (36)

θb � 0 for W>Wcr5
4a2αk

h2
+KGr < 0. (37)

−
�
2

√

a
ub − uy( )≤ θb ≤

�
2

√

a
ub − uy( ) for W � Wcr5

4a2αk

h2
+ KGr

� 0.

(38)

Eq. (37) contradicts the assumption that θb ≠ 0; Eq. (38) holds only

in the special case, where W � Wcr. Thus, in general cases in which

W>Wcr, some hinges enter the unloading state.

In the following, we assume that θb > 0 and the hinges in MRFs

(3) and (4) turn to the unloading state right after buckling occurs

(Fukuda and Ikago, 2019), as shown in Figure 5C. A similar

discussion applies when we assume θb < 0 given the symmetricity

of the model.

When W>Wcr, Q
b
i is expressed as

Qb
i �

Q
y
i +

4αk

h2
ub�
2

√ + a

2
θb − uy�

2
√( ) for i � 1, 2( )

Q
y
i +

4k

h2
ub�
2

√ − a

2
θb − uy�

2
√( ) for i � 3, 4( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
. (39)

Substituting Eq. (39) into Eq. (4) yields
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Hy + 4k

h2
1 + α( ) +KGh{ } ub − uy( ) − 4ak�

2
√

h2
1 − α( )θb � Hb

−2
�
2

√
ak

h2
1 − α( ) ub − uy( ) + 2a2k

h2
1 + α( ) + KGr{ }θb � 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
.

(40)

The equilibrium equation with respect to the V axis is trivial and

therefore omitted here. Solving the lower equation of Eq.

(40) yields

ub − uy � 2a2k 1 + α( ) + h2KGr

2
�
2

√
ak 1 − α( )

θb. (41)

Upon substituting Eq. (41) into the upper part of Eq. (40), we obtain

Hb � Hy + a�
2

√ Cθb, (42)

where

C � 4k

h2
1 + α( ) +KGh{ } 2a2k 1 + α( ) + h2KGr

2a2k 1 − α( ) − 4k

h2
1 − α( ). (43)

If C is positive, an increase in θb ensures an increase inHb, namely,

the bifurcation is stable. φb
i − φ

y
i can be derived from Eq. (41) as

φb
i − φ

y
i �

1�
2

√
h

4a2k + h2KGr

2
�
2

√
ak 1 − α( )( )θb for i � 1, 2( )

1�
2

√
h

4a2αk + h2KGr

2
�
2

√
ak 1 − α( )( )θb for i � 3, 4( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
. (44)

Provided that 4a2αk
h2

+ KGr < 0 and θb > 0, the unloading conditions

φb
i − φ

y
i < 0 hold for i � 3, 4. To ensure that φb

i − φ
y
i > 0 holds for

i � 1, 2, the following condition must be satisfied.

4a2k

h2
+ KGr > 0. (45)

The above condition yields the upper bound of column axial

force W.

W<WU � 2k

h
+ Kh

e

a
( )2

. (46)

By combining the conditions in Eqs. (31) and (46), the condition for

torsional buckling can be modified as

Wcr <W< min WVcr,WU{ }. (47)

4 Numerical analysis

4.1 Analytical model

Tables 1 and 2 summarize the specifications of the analytical

model and its critical vertical loads and constants. Further details

regarding the modeling and analytical options are presented in the

Supplementary Appendix.

Table 3 lists the values of the vertical and horizontal loads (W

and H) and the initial imperfections imparted to the numerical

model. A total of 97%, 99%, 101%, and 118%Wcr was applied on the

top of each column. A maximum horizontal force of 60 kN was

divided into 100,000 steps and incrementally applied to the main

node in theU direction. Imperfections of 0.01%, 0.1%, 1%, and 3% in

the hinge-yielding moment were subtracted from M
y
1 and M

y
2 . A

0.01% imperfection was set as control, and the remaining cases were

analyzed to examine the sensitivity of the buckling behavior against

the imperfections.

4.2 Analytical result

4.2.1 Verification of the theoretical buckling load
and the relationship between the horizontal load
and rotational angle

Figures 6A,B show the deformation of theMRFmodel at the end

of the analysis forW � 0.99Wcr and 1.01Wcr; the circles at the beam

ends indicate yield hinges. The 1% difference from the theoretically

predicted buckling load Wcr resulted in clear differences. The case

with a 1% larger vertical load than that predicted resulted in

torsional buckling, whereas no torsional displacement was

observed for a vertical load 1% smaller than the predicted load,

validating the theory to predict the buckling load. The beam-end

hinges in MRFs (3) and (4) were in the unloading state.

Figures 7A,B show the H − θ and θ − u relationships,

respectively. The initial imperfection was 0.01%. Figure 7A shows

that the numerical analysis result for W � 1.01Wcr agreed very well

with the theoretical result, whereas W � 0.99Wcr exhibited a small

error in θ after the horizontal load exceeded Hy. The same

TABLE 1 Model parameters.

Parameters Values

Height h 4 m

Span a 4 m

E 0 m

Stiffness of the horizontal elastic shear spring K 40 kN/m

Initial rotational stiffness of hinge k 5304.4 kNm/rad

Yielding moment of hinge M
y
i 16 kNm

Yielding angle of hinge φ
y
i M

y
i /k ≈ 0.003 rad

Ratio of initial and post-yielding stiffnesses α 0.01 [-]

Dummy stiffness (for rigid bars) 1010

Dummy stiffness (for pin connections) 10–15

TABLE 2 Predicted values from torsional buckling theory.

Critical parameters Values

Wcr Eq. (32) 26.5 kN

WVcr Eq. (32) 66.5 kN < WU

WU Eq. (46) 2652.2 kN

Hy|W�Wcr
Eq. (34) 45.5 kN

C|W�Wcr
Eq. (43) 40 kN/rad >0
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maximum story drift angle can be achieved with approximately half

the displacement in the U direction when torsional

buckling occurred.

An additional analysis was conducted for the case with a vertical

load of W � 1.18Wcr to examine the sensitivity of the buckling

behavior to the vertical load. Figure 8A compares the H − θ

relationships for W � 1.01Wcr and 1.18Wcr. Figure 8B shows an

enlarged view of the area near the bifurcation point. The inclination

of the post buckling H − θ curve can be estimated by Eq. (42). The

inclination forW � 1.18Wcr was approximately 10 kN/rad lower than

that for W � 1.01Wcr because of a 5 kN increase in the vertical load.

Similarly, the horizontal load at which the bifurcation occurred was

slightly smaller forW � 1.18Wcr than that forW � 1.01Wcr because of

the increased P-Delta effect. Each case demonstrates the validity of Eq.

(42) in predicting the H − θ curve.

4.2.2 Sensitivity analysis with respect to the initial
imperfection

The analytical results suggested that the buckling load

Wcr decreased with an increase in the initial imperfection.

A decrease of at least 3% from the theoretical prediction of the

axial load was observed when the imperfection increased to 1%,

which is attributed to the reduced yield moment in MRFs in

(3) and (4).

Figures 9 and 10 show H − θ and u − θ relationships with

vertical loads of W � 0.99Wcr and 0.97Wcr. The bifurcations

were not deemed to occur despite the small numerical error in

rotational angle θ when the imperfection was 0.01%, whereas the

cases with imperfections beyond 1% exhibited bifurcation not only

for W � 0.99Wcr but also for W � 0.97Wcr.

In cases where imperfections are very small (0.01% and

0.1%) and the vertical load is very close to the buckling load, the

H − θ and u − θ curves returned to the fundamental path ( _θ � 0)

after bifurcation occurred. The solution for the fundamental

path is also correct, even when the vertical load is larger than

the buckling load. The analyses tracked the fundamental path

rather than the bifurcation path because of the numerical

errors when the vertical load was very close to the

buckling load.

4.2.3 Comparison of the analytical results with and
without considering the P-Delta effect

The PDelta and Linear Transformation options for geometric

transformation command in OpenSees are specified in the

numerical model for cases with and without the P-Delta effect,

respectively (Denavit and Hajjar, 2013). The static vertical load

acting on each column and the initial imperfection were W �
1.18Wcr and 0.01%, respectively.

Figure 11 compares the overall deformation of the MRF at the

end of the analysis (H � 60 kN) for the cases with and without the

P-Delta effect. As shown on the right-hand side of the figure, no

torsional deformation is observed, and the maximum inter-story

drift angle barely exceeds 1/25 when the P-Delta effect is not

considered (Figure 12). In contrast, torsional deformation is

clearly observed when the P-Delta effect is considered. Thus,

this comparison demonstrates the importance of considering the

material and geometric nonlinearities in the design of structures

(Wilson and Habibullah, 1987).

FIGURE 6

Comparison of overall deformation at the end of the analysis (Initial imperfection: 0.01%) (A) W � 0.99Wcr (B) 1.01Wcr .

TABLE 3 Load and initial imperfection.

Parameter Values

W 97%, 99%, 101%, and 118% of Wcr

H Up to 60 kN with 100,000 steps

Initial Imperfection

of M
y
i

M
y
1 and M

y
2 are reduced by 0.01%, 0.1%, 1%, and 3%

relative to M
y
3 and M

y
4
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5 Conclusion

This article presented the inelastic torsional buckling theory for

a simple three-dimensional MRF model. The torsional buckling

examined in this study was different from the torsional behavior

caused by the eccentricity of the weight and/or stiffness in a structure

or Q-Delta resonance.

The MRF examined in this study was designed such that the

yielding of the beam ends preceded that of the columns following

structural design practices. It was theoretically elucidated that a

simple three-dimensional MRF, which was perfectly symmetric

and had no eccentricity, suffered large torsional deformation

when subjected to a horizontal force acting on the center of

gravity of the structure in a diagonal direction. Similar to

Shanley’s theory for the inelastic buckling of a column,

bifurcation could occur without strain reversal in all beam-

end hinges, and therefore, the critical vertical load that causes

torsional buckling could be predicted assuming that all beam-

end hinges were in the loading state, acting as

comparison hinges.

FIGURE 8

H − θ relationships for W � 1.01Wcr and 1.18Wcr (Initial imperfection: 0.01%). (A) H − θ relationships. (B) enlarged view.

FIGURE 7

H − θ and θ − u relationships for W � 0.99Wcr and 1.01Wcr (Initial imperfection: 0.01%). (A) H − θ. (B) θ − u.
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An analytical example was used to validate the buckling load and

post buckling force–deformation relationship predicted by the proposed

theory. The analytical model yielded torsional deformation that did not

occur when not considering the P-Delta effect and only occurred when it

was considered. Further, the maximum interstory drifts of the frames

were found to be larger than those when they were not considered.

Designing a steel MRF such that the yielding of the beam ends

precedes that of the columns is a common practice to ensure

ductility in the case of a severe seismic event. However, this

study suggests that the lower part of a high-rise MRF can still

suffer torsional buckling, thereby losing ductility despite the design

intention when all beams end in the longitudinal and transverse

FIGURE 9

H − θ and θ − u relationships for W � 0.99Wcr (A) H − θ. (B) θ − u.

FIGURE 10

H − θ and θ − u relationships for W � 0.97Wcr (A) H − θ. (B) θ − u.
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frames yield owing to the bi-directional horizontal forces. The

prediction of column axial force that can cause torsional buckling

presented in this study is useful in deciding if the P-Delta effect

should be considered.
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FIGURE 11

Comparison of the overall deformation (W � 1.18Wcr , Initial imperfection: 0.01%) (A) with P-Delta effect (B) without P-Delta effect.

FIGURE 12

H − θ and θ − u relationships with and without the P-Delta effect (W � 1.18Wcr , Initial imperfection: 0.01%). (A) H − θ. (B) θ − u.
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