
This is a repository copy of Towards real-time G-buffer-guided style transfer in computer 
games.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/209827/

Version: Accepted Version

Article:

Ioannou, E. and Maddock, S. orcid.org/0000-0003-3179-0263 (2024) Towards real-time G-
buffer-guided style transfer in computer games. IEEE Transactions on Games. ISSN 2475-
1502 

https://doi.org/10.1109/TG.2024.3372829

© 2024 The Author(s). Except as otherwise noted, this author-accepted version of a 
journal article published in IEEE Transactions on Games is made available via the 
University of Sheffield Research Publications and Copyright Policy under the terms of the 
Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits 
unrestricted use, distribution and reproduction in any medium, provided the original work is
properly cited. To view a copy of this licence, visit 
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



1

Towards Real-time G-buffer-Guided Style Transfer

in Computer Games
Eleftherios Ioannou and Steve Maddock

Abstract—Artistic Neural Style Transfer (NST) has achieved
remarkable success for images. However, this is not the case
for dynamic 3D environments, such as computer games, where
temporal coherence remains a challenge. Our paper presents
an approach that uses the G-buffer information available in
a game pipeline to generate robust and temporally consistent
in-game artistic stylizations based on a style reference image.
We use a synthetic dataset created from open-source computer
games and demonstrate that the utilization of depth, normals,
and edge information enables the stylization process to be more
aware of the geometric and semantic aspects of a game scene.
The proposed approach builds on previous work by injecting
style transfer in the rendering pipeline, while also utilizing
G-buffer information during inference time to improve upon
the stability of the stylizations, offering a controllable way to
stylize computer games in terms of temporal coherence and
content preservation. Qualitative and quantitative evaluations of
our in-game stylization network demonstrate significantly higher
temporal stability compared to existing style transfer approaches
when stylizing 3D computer games.

Index Terms—Neural style transfer, computer games, G-buffer,
convolutional neural network (CNN), graphics pipeline.

I. INTRODUCTION

Neural Style Transfer (NST) is the process of transferring

the style of an artwork onto an input content image. The

objective of Artistic Image NST methods is to synthesize an

output image that seamlessly blends the style elements, such

as colors and textures, from the reference style image with

the content information present in the input content image.

Since the seminal work by Gatys et al. [1], NST research has

shown remarkable advances with a variety of approaches [2]–

[5] capable of producing visually impressive results.

Despite the great progress of NST, and its applicability

to different data spaces (e.g., image, video, 3D, radiance

fields), its utilization in 3D computer games remains relatively

unexplored. Stylizing computer games could be treated simi-

larly to the problem of stylizing videos or image sequences,

as temporal consistency is the main challenge. However,

our experiments have shown that utilizing image [2], [6] or

video [7]–[9] NST methods to stylize each rendered frame

sequentially does not result in appealing stylizations that are

also temporally consistent.

Whilst 3D computer games encapsulate more difficulties,

such as the synthetic nature of the data, they offer additional

three-dimensional information that can be exploited [10]–[12].

Previous work has shown that stylizations of game scenes can

be significantly improved when employing G-buffer data [10],

[11]. Nevertheless, temporal consistency is not addressed. An

attempt was made to integrate NST in the game’s pipeline

using color buffer data [12], yet G-buffer data is underutilized

and temporal stability remains unsolved. In addition to improv-

ing stylization quality utilizing G-buffer data and integrating

NST in the rendering process [12], here, we demonstrate more

ways in which a game pipeline’s intermediate data can be used

to generate enhanced and temporally stable in-game artistic

stylizations.

Fig. 1. Our stylization network is trained on G-buffer data. It is then integrated
into the 3D rendering pipeline, while G-buffer information is also used in a
novel algorithm to improve the quality and temporal coherence of stylized
game scenes.

In this paper, we propose a solution that not only considers

G-buffer data during training but also embeds an NST module

in the rendering pipeline and makes use of depth, normal and

motion vector data during inference for improved temporal

stability (Figure 1). Our stylization framework is specifically

trained on data extracted from open-source games. The trained

stylization network is injected in the 3D rendering pipeline

[12], while G-buffer information is employed to enforce con-

sistency across subsequent frames. The contributions of the

proposed in-game stylization approach can be summarized as

follows:

• We develop a novel G-buffer-guided stylization algorithm

seamlessly integrated into a graphics pipeline. As G-

buffer data is available during rendering, motion vectors,

depth and normal data are used to significantly improve

the quality and stability of the stylizations. Motion vectors

track the color of the stylized frame’s pixels to the pre-

vious stylized frame. Linear interpolation is employed to

calculate the final color. Depth information fine-tunes this

interpolation, while the inclusion of depth and normals

ensures the preservation of global structures.

• We design a simple, yet effective stylization network

whose composition allows for utilization in a computer

games pipeline. A synthetic dataset is used to train

the network with G-buffer fusion. Concatenated depth,

normal, and edge features are fused into the stylization

network making it more aware of the geometric and

semantic aspects of a game scene. The stylization network

is injected into the 3D rendering pipeline before the post-

process stage.

• Synthetic datasets that encapsulate a wide variety of light-

ing and environment characteristics are notably limited.



2

We create a synthetic dataset from open-source computer

games. A small dataset of ∼10k images is compiled from

3D scenes with randomized environment conditions, such

as lighting and post-process effects.

• Qualitative and quantitative experiments validate the ef-

fectiveness of our approach which showcases the poten-

tial of integrating NST in computer games.

II. RELATED WORK

A. Image style transfer

Initially, Gatys et al. [1], [13] suggested an image-

optimization technique based on content and style features ex-

tracted from Convolutional Neural Networks (CNNs), which is

capable of faithfully reproducing artistic qualities of artworks

on photographs. To alleviate the computational cost required to

generate one stylized image, NST research progressed towards

offline model optimization methods [14]. These approaches

train a model that can be used to produce a stylized result

with a single forward pass [15]–[18]. Instead of capturing and

transferring the style of one particular artwork, methods for

transferring the style of one artist (e.g., Cezanne, Van Gogh)

have been developed [19], [20]. Additionally, depth maps and

image edges have been used to generate stylized results of

high quality and retained structural information [21]–[23].

Arbitrary-style-per-model methods have also emerged [24],

garnering considerable attention within NST research in recent

years [4]–[6], [8], [25]–[34].

B. Video style transfer

Inconsistent stylizations across subsequent frames, visual

artefacts and undesired flickering effects are the challenges in

artistic video style transfer. To mitigate these issues, Ruder et

al. [35], [36] introduced a temporal constraint leveraging op-

tical flow information and considering disoccluded regions and

motion boundaries. Motion field data has also been utilized

for the synthesis of stable example-based stylized videos [37],

[38]. Other video NST studies attempt to improve stylization

quality [19] or computation speed [39], [40]. Similarly to

image NST, video NST methods focused on retaining depth

and structural information were also proposed [41], [42], as

well as multiple-style-per-model [7] and arbitrary-style-per-

model techniques [8], [9], [43]–[45]. Some image style transfer

approaches have also shown suitability for video style transfer

when trained with additional temporal considerations [2], [29],

[46].

C. Style transfer for Computer Games

Style transfer approaches tailored for computer game appli-

cations primarily focus on bridging the gap between synthetic

and realistic worlds [10], [11]. Richter et al. [10] leveraged

real-world datasets to improve the photorealism of the Grand

Theft Auto V game. Taking into consideration G-buffer infor-

mation, such as normal, depth, albedo, and glossiness, their

suggested image enhancement network intercepts a rendered

frame and outputs an enhanced photorealistic image. Later,

Mittermueller et al. [11] validated the effectiveness of using

intermediate data from a game engine’s rendering process

in an approach that reduces the gap between real-world and

synthetic domains for the image-to-image translation task.

There is only limited work for artistic style transfer applied

in a computer game setting. Employing the method of Ghiasi et

al. [6], Unity’s implementation [47] showcases the integration

of an artistic stylization network at the end of the rendering

pipeline. Despite achieving multi-style style transfer in a game,

the approach is agnostic to any three-dimensional information.

This also shows that it is possible to achieve artistic in-game

stylizations by attaching any image or video style transfer

approach (e.g., [2], [15], [24], [28]) at the end of the post-

process stage of a game’s rendering pipeline, yet it can

be ineffective in terms of temporal stability and structural

preservation. To alleviate this issue, an approach to inject

style transfer in the rendering pipeline has been suggested

[12]. Although integrating a stylization network earlier in the

rendering process results in improved artistic stylizations, the

method does not take into account G-buffer information but

only trains the stylization network on a combination of real-

world and synthetic images.

Here, we propose a stylization framework that not only

integrates a trained stylization network in the game’s rendering

pipeline but also takes advantage of the available G-buffer data

both in training and during inference. Experiments demon-

strate that this leads to significant improvements in the quality

and stability of the stylized gameplay.

III. OUR APPROACH

A. Dataset Generation

The available synthetic/game datasets are only restricted

to one particular game [48] or animation style [49]. Previ-

ous photorealistic style transfer approaches [10], [11] utilize

datasets that capture a specific look-and-feel from a real-world

dataset [50] or a specific game (Red-Dead-Redemption 2). For

a more generalizable approach, we utilize four available open-

source computer games [51]–[54] to generate a small-scale

dataset using the Unity game engine. Employing the Unity

Perception package [55] we are able to capture approximately

10 thousand frames with their corresponding depth and normal

maps. We configure multiple scenes in each of the games,

with cameras wandering in the synthetic worlds and capturing

frames at particular time intervals. To introduce variation in

the generated frames, we randomize environment parameters

related to the lighting and the post-process effects applied

in the game scene. Dataset examples are included in the

supplementary material.

B. Stylization Network & G-buffer Fusion

Our stylization network is adopted from the transformation

networks suggested by state-of-the-art approaches [15], [21],

learning to reproduce a reference style artwork. This design

of convolutional layers followed by instance normalization

has been shown to produce aesthetically pleasing stylizations

that preserve content structures, necessary for an in-game

setting. Utilizing simple convolution operations also offers the

advantage of exporting the trained model to a format (ONNX



3

Fig. 2. System Architecture. At Training Stage 1, the stylization network is pre-trained on the MS COCO dataset mixed with MPI Sintel frames. At Training
Stage 2, the stylization network is trained on the created synthetic dataset with G-buffer features fusion.

[56]) recognizable by a conventional game engine. Here, we

propose some important modifications to the suggested CNN

architecture [15], [21], [23] in order to create a G-buffer-aware

stylization framework.

Figure 2 displays the overall system architecture. A two-

stage progressive training strategy is used [7]. The stylization

network is pre-trained on conventional datasets [49], [57]

without G-buffer data (Training Stage 1). The incorporation

of the MS COCO [57] dataset facilitates the generalization of

the model to photorealistic scenes. Preliminary experiments

have indicated that integrating real-world data contributes to

reducing artifacts. Simultaneously, this integration extends the

synthetic dataset generated that includes approximately ∼ 10k
frames. For Training Stage 2, firstly, we design a G-buffer

encoder, a simple CNN architecture that is used to create

feature representations of input concatenated G-buffer data.

In addition to depth and normals, the Sobel operator [58] is

used to generate an edge map of the input RGB frame. Depth,

normal, and edge maps are then concatenated and used as

input to the G-buffer encoder. To intercept the learnt G-buffer

features (g), we introduce four fusion layers, embedded before

and after each of the three residual layers. The input y of each

fusion layer is then transformed to account for the G-buffer

information:

y′ = y · (alpha · (f l
W (g)) + ((1− alpha) · f l

W (g)) (1)

where f l denotes a linear transformation layer (l) of the

trained transformation network (fW ) applied to the input G-

buffer features (g), and alpha is a scalar value, set to 0.9.

The G-buffer encoder implementation and the setting of the

alpha value are adapted from the implementation of Richter et

al. [10]. Inspired by this work that aims to enhance the

photorealism of game scenes [10], we also resort to a CNN

architecture for the G-buffer encoder and demonstrate that

global structures and geometry can be maintained.

1) Loss functions: The content and style losses are adopted

from previous work on image stylization [15], [23]. A pre-

trained VGG-16 [59] (denoted by φ) is used to extract feature

representations of the original input frames x and the trans-

formed images ŷ. Feature representations are extracted from

j = relu2 2 layer to define the content loss as:

Lφ0

content(ŷ, x) =
1

CjHjWj

∥φj
0
(ŷ)− φ

j
0
(x)∥2

2
(2)

where H × W × C is the shape of the processed image. To

capture the style information, features are extracted from mul-

tiple layers of the image recognition network. Style loss is then

defined using the calculated Gram-based style representations

(G) that give feature correlations:

Lφ0,j
style(ŷ, y) = ∥Gφ0

j (ŷ)−G
φ0

j (y)∥2F (3)

and it is summed up for all layers j in J =
{relu1 2, relu2 2, relu3 3, relu4 3}.

To enforce depth preservation and retain the global structure

of the game frames, we utilize MiDaS [60] and train the system

to minimize a depth reconstruction loss defined as:

LMiDaS
depth (ŷ, x) = ∥MiDaS1(ŷ)−MiDaS1(x)∥

2

2
(4)

This has been shown to effectively preserve depth in the output

images while improving the overall quality [21], [23].

C. Style Transfer in the rendering process

Following previous work for in-game artistic stylization

[12], we implement a Custom Pass in the Unity High Defini-

tion Rendering Pipeline (HDRP) [61]. We inject the trained

NST network before the Post-Process stage. This leads to

improved temporal coherence. It is an efficient way to generate

artistic stylizations for game frames while preventing the

post-process effects (e.g., Depth-of-Field, Bloom) from being

diminished [12].



4

Fig. 3. Implementation of the Compute Shader that is used for in-game G-
buffer-guided stylization. The shader intercepts the stylized frame and the
previous stylized frame, along with the original input frame, the normal map,
the depth map and the motion vector texture. The computation outputs a
stylized result that is then passed through the game’s pipeline post-process
stage before being rendered. Motion Vectors are used to trace the pixel color
values of the stylized frame on the previous stylized frame. Lerp is used to
denote linear interpolation.

1) G-buffer-Guided real-time stylization: In addition, our

stylization framework takes advantage of the intermediate

data that is available through the rendering process. Figure 3

gives an overview of the implemented shader’s algorithm that

intercepts the stylized frame along with G-buffer data. The

shader computes the new pixel values and outputs the final

stylized frame that is rendered after the post-processing stage.

Initially, a normal intensity is calculated based on the input

normal map:

n = max(normal · viewDirection, 0) + 1.0 (5)

where viewDirection = (0, 0, 1) is the camera’s facing

direction. The original input frame (x) is multiplied by the

computed normal intensity and a new stylized output is

calculated based on the frame’s depth map. Using the normal

map (and calculated normal intensity), the color frame’s pixel

values are modulated based on the orientation of the surfaces –

the original frame’s pixel values are fine-tuned according to the

geometric characteristics of the scene. Applying stylization in

a game frame often results in a loss of structure and blurring of

the edges between the objects. Using normal intensity allows

us to apply stylization based on the surface normals and

thus emphasize (low-level) features when applying the stylistic

effect. Also, using the combination of depth and the original

frame (modulated using normal intensity), we can distribute

the stylization effect on the input frame in a way that allows

for more depth preservation and structure enhancement. The

new version of the stylization is calculated as:

y′ = Lerp(y, n · x, a× d) (6)

where Lerp is used to denote a linear interpolation between

the pixels of the stylized frame y and the pixels of the input

frame multiplied by the normal intensity, based on the depth

value d. The intensity of the depth value is adjusted with a

scalar value a. The closer a× d is to 0, the closer the final y′

value is to y; the closer it is to 1, the closer y′ is to n · x.

During the execution of the Custom Pass, the previous

stylized frame is stored at each time step. This is then passed

into the implemented shader. Using the motion vectors, we

find the pixel color values of the stylized frame on the previous

stylized frame, denoted by z. The color of the pixels of the

current stylized frame is then computed as an interpolation

between the current color of the pixels (of the stylized current

frame) and the color of the pixels of the stylized previous

frame, controlled by a scaled depth value. The final frame is

then computed as:

y′ = Lerp(y′, z, b× d) (7)

where b is a scale factor that can be freely adjusted to control

the amount of the weight of the depth value d on the linear

interpolation.

Our proposed system uses G-buffer data not only during

training but also during inference in order to guide the styliza-

tion process. The suggested shader algorithm provides a robust

way to control the trade-off between temporal coherence

and content preservation. By adjusting the a and b values,

we can control the intensity of the depth-based stylization

and the intensity of pixel changes between sequential frames

respectively.

IV. EXPERIMENTS

A. Training Details

As the compiled synthetic dataset is not large, we pre-

train the stylization network on the MS COCO dataset [57]

combined with frames from the MPI Sintel dataset [49], for 2

epochs, and batch size of 2. At this stage, the G-buffer Encoder

is not trained and the linear layer of the transformation network

is frozen. We then train the entire stylization network and the

G-buffer Encoder using the synthetic dataset. The G-buffer

features are encoded and fused into the stylization network

as described in Section III-B. We train for 2 epochs, a batch

size of 2 and the training images are resized to 360 × 360.

The stylization network and the G-buffer encoder are jointly

optimized using the Adam optimizer [62] and a learning rate

of 1 × 10−3. The weights for content, style and depth loss

are adopted from previous implementations [12], [15], [23].

Similarly to [12], we train a single network for each style.

B. G-buffer-Guided In-Game Style Transfer

Our proposed in-game stylization system is composed of

a stylization network pre-trained on a combination of real-

world and synthetic frames and then trained on a synthetic

dataset with G-buffer information. In addition, G-buffer data



5

Fig. 4. Our results on different game scenes. The odd columns show the original input frames; the even columns show the corresponding stylizations using
our approach. The bottom row shows the temporal error heatmap. Our in-game G-buffer-Guided Stylization framework produces temporally coherent results
while capturing the style of the reference artwork.

that is available during the 3D rendering process is utilized to

guide the stylization process and produce temporally consis-

tent artistically stylized game scenes. Figure 4 demonstrates

examples of our method running on different game scenes and

for different styles. To demonstrate the effectiveness of our ap-

proach in producing temporally coherent in-game stylizations,

heatmaps of the temporal error (difference between the current

and previous frame) are provided (bottom row). For each input

frame, the difference from the previous frame is calculated.

We do the same for the frames generated with our stylization

framework. It is noticeable that the heatmaps generated from

the stylized frames are very close to the input’s temporal error

heatmaps – visually coherent results are produced while the

style of the reference artwork is captured.

C. Comparisons with State-of-the-Art Methods

For an in-depth evaluation of our approach, we compare

against state-of-the-art image (AdaAttN [2]), video (CSBNet

[9], MCCNet [8], FVMST [7]) and in-game (NSTFCG [12])

artistic style transfer approaches. As we optimize for stable

and temporally coherent in-game stylizations we opt to com-

pare our approach with methods that are also optimized for

temporal consistency. Evaluation is performed using frames

in Full HD (1920× 1080) resolution). For fairer comparisons,

for the training of our models, the images are kept at a lower

resolution, similar to the training practice of the in-comparison

methods.

D. Qualitative Results

Figure 5 demonstrates that our approach is better than

the state-of-the-art approaches in terms of visual quality and

temporal stability. As shown in the zoomed-in cut-outs in

cyan, some approaches alter the stylization of the same pixels

in two sequential frames [2], [7], [8] or introduce artefacts

that do not exist in the previous frame [9], [12]. In contrast,

our method preserves the fine details and generates clean

stylizations without undesired flickering. The zoomed-in cut-

outs in pink show that our system reduces the halo effects

around objects that are apparent in other approaches [7]–[9].

Although the stylization effect is not clear in the approach of

Liu et al. (AdaAttN [2]), it still produces an intense light blue

line around the tree’s edge. For the method that applies the

stylization as part of the rendering process [12], the halo effect

is reduced but it is still visible. Our approach eliminates this.

To more adequately visualize temporal stability comparisons,

Figure 6 plots the heatmap of temporal error between the

demonstrated frame and its previous frame. Our method is

closer in appearance to the input temporal error heatmap. More

qualitative results are included in the supplementary material.

E. Quantitative Results

We use a range of different computational metrics to gauge

the performance of our approach quantitatively. From the four

open-source games used to create the training dataset, a test

set is also compiled composed of 2100 frames (9 gameplays ×
200 frames and 3 gameplays × 100 frames). The same dataset

was used in the evaluation of [12]. The gameplays encompass

a wide range of environment characteristics, complicated light-

ing scenes and moving objects. Evaluation is performed using

10 different styles and results are reported in Table I.

Warping error and Learnt Perceptual Image Patch Similarity

(LPIPS) Error [63] are used to measure temporal coherence

performance. Warping error is computed as the difference be-

tween a warped next frame (using optic flow) and the original

next frame. Optical flow information of the original gameplay

videos is computed using FlowNetS [64]. The LPIPS metric

is calculated as the average perceptual distances between

consecutive frames, which is an additional measure of the

stability of the generated sequential stylizations. As depicted

in Table I, our method significantly outperforms state-of-the-

art methods and produces the most consistent stylizations of

the input game sequences.

To measure content preservation and perceptual similarity

to the original input frames, we employ the LPIPS metric

[63], SSIM [65], and the content loss (Lc) [1] with a pre-

trained VGG-16 network [59]. Style loss (Ls) [1] is also used

to assess style fidelity, along with the SIFID metric [66]. In

addition, the MiDaS [60] depth estimation network is used to

measure the difference in depth maps between the input and

stylized frames. The Depth Error gives an approximation of

how well depth is retained. Our system performs competently

in perceptual and style performance metrics. When embed-

ding the trained stylization network as part of the rendering

process, some of the perceptual information is lost, as post-

process effects are applied over. Our method applied as a

post-effect (image) outperforms state-of-the-art approaches in

some metrics and it illustrates the trade-off between tempo-

ral stability and content-style performance degradation. We



6

Fig. 5. Comparison against state-of-the-art methods. The first row shows
the original input consecutive frames with the style image provided at the
top-left. Zoomed-in cut-outs illustrate the effectiveness of our method in
preserving fine details, avoiding undesired artefacts, and eliminating the halo
effect around objects.

tailor our in-game method for optimized temporal coherence

which is desirable in a game context. As seen in Table I,

our algorithm’s performance is comparable to state-of-the-art

methods while it surpasses most of the approaches in content

and depth preservation. This is achieved due to the geometry

and depth information fused into the stylization network and

also due to the depth reconstruction loss optimized during

training. It is important to notice that although AdaAttN [2]

performs favorably in perceptual metrics, it does not produce

stylizations with sufficient style intensity (Figure 5).

F. Ablation Study

1) Synthetic Dataset: From Table I, the best-performing

method, after our approach, in terms of temporal coherence

that is not game-specific is the method of Liu et al. [2].

To assess the effectiveness of the utilization of the created

dataset during training, we fine-tune the trained AdaAttN

model using the synthetic game-specific dataset (Section III-A)

for 2 epochs. The performance of the AdaAttN is signifi-

cantly degraded. Our stylization network’s implementation is

straightforward, yet it can capture the synthetic nature of the

dataset and generate effective stylizations. Table II captures the

performance of the AdaAttN model [2] trained on the synthetic

dataset; for reference, the performance of the original AdaAttN

model is also included.

2) G-buffer Fusion: The consideration of G-buffer infor-

mation during training has been shown to improve the quality

of generated imagery [10], [11]. To illustrate the effectiveness

of our G-buffer Encoder network and its utilization for the

injection of geometry and structure-related features in the

stylization network, we train the stylization network on the

generated synthetic dataset but without G-buffer fusion. Fig-

ure 7 demonstrates the degraded performance of these models.

It is noticeable that when using G-buffer fusion, the objects’

boundaries are respected and the halo effect around objects is

reduced. As shown in the third row of Figure 7, the lighting

and geometry of the input scene are captured and preserved

more effectively than without this component.

3) G-buffer-Guided In-Game Stylization: To assess the

effectiveness of the proposed Compute Shader (Figure 3),

we remove the shader from the implementation of the in-

game stylization framework. Stylization is still injected in the

pipeline before the post-process stage, but G-buffer informa-

tion such as depth, and motion vectors are not considered

during inference. We evaluate the results of the modified

framework on a random scene of 200 frames and 10 different

styles. Table III shows that the warping error performance

decreases, as well as the efficiency in preserving the content in-

formation of the input frame (LPIPS is calculated between the

original input frames and the corresponding stylized frames).

The implemented shader considers the color of the pixels of

the previous stylized frame before calculating the final frame

that is passed through the post-process stage. It also offers a

controllable way to preserve structural and depth information.

This is illustrated in Figure 8; depth is better retained when

the shader is not removed. Removing the shader that performs

G-buffer-Guided stylization from the pipeline, the system is

similar to the approach described in [12]; nevertheless this

has a significant impact on the performance.

G. Limitations

Our in-game G-buffer-guided stylization shader implemen-

tation is suitable for any style transfer model applied in a game

setting. The developed shader is efficient in improving the

temporal stability of the stylized game frames by intercepting

stylized frames alongside G-buffer information. Experiments

have shown its effectiveness that comes without any time

constraints as it does not introduce further delays in the



7

Fig. 6. Visual comparisons with state-of-the-art methods. The bottom rows show heatmap of temporal error between the current and previous frame. Our
approach produces appealing stylizations while the temporal error heatmap is the closest to the input’s heatmap.

TABLE I
QUANTITATIVE RESULTS. WARPING ERROR AND LPIPS ERROR ARE BOTH IN THE FORM ×10. SSIM AND Lc RELATE TO CONTENT PRESERVATION, AND

SIFID AND Ls QUANTIFY THE STYLE PERFORMANCE. DEPTH ERROR MEASURES THE RETAINMENT OF DEPTH IN THE STYLIZED FRAMES. WE PROVIDE

RESULTS FOR OUR SYSTEM INJECTED IN THE PIPELINE PERFORMING G-BUFFER-GUIDED STYLIZATION (IN-GAME) AND FOR THE TRAINED STYLIZATION

NETWORK APPLIED AS A POST-PROCESS EFFECT (IMAGE).

Method Warping Error ↓ LPIPS Error ↓ SSIM ↑ LPIPS ↓ SIFID ↓ Lc ↓ Ls ↓ Depth Error ↓

AdaAttN [2] 1.6477 0.3217 0.7820 0.2692 1.6115 0.4945 1.0391 5.1716

CSBNet [9] 1.7458 0.3908 0.6370 0.3378 2.2468 0.8674 1.0053 11.6661
MCCNet [8] 1.6519 0.3547 0.6637 0.3468 1.5555 0.8065 1.0042 13.6036
FVMST [7] 1.8524 0.3215 0.5855 0.3806 2.2529 0.7834 1.0077 19.1459
NSTFCG [12] 1.5798 0.2930 0.6057 0.3879 1.8679 0.7830 1.0612 13.9274

Ours (image) 1.6039 0.3611 0.7107 0.3132 1.0973 0.6205 0.9796 8.13575
Ours (in-game) 1.2984 0.2515 0.5914 0.3494 1.9401 0.7514 1.0674 8.8524

TABLE II
AdaAttN [2] PERFORMANCE WHEN TRAINED ON THE SYNTHETIC DATASET

IN COMPARISON WITH THE ORIGINAL TRAINED AdaAttN MODEL.

Method Warping Er. ↓ LPIPS Er. ↓ LPIPS ↓

AdaAttN [2]
Original 1.6477 0.3217 0.2692
+ Synthetic 1.7742 0.5322 0.3301

rendering pipeline. In Unity HDRP, a game that is stylized

using our approach in Full HD resolution has a frame rate

of ∼10fps, similar to previous work on computer games [12].

To improve upon the game’s frame rate, future work could

consider model compression approaches [67], [68] to reduce

the complexity and memory size of the stylization network or

TABLE III
ABLATION STUDY ON THE EFFECT OF THE SHADER DURING INFERENCE.
RESULTS ARE AVERAGED FOR A RANDOM SCENE OF 200 FRAMES AND

FOR 10 DIFFERENT STYLE IMAGES.

Configuration Warping Error ↓ LPIPS ↓

w/ Shader 0.1578 0.3315
w/o Shader 0.1803 0.3652

explore the utilization of temporal upsampling [47].

In addition, for this work, we have trained a model that

captures intercepted G-buffer features, yet is capable of repro-

ducing one style image. As such methods can offer unlimited

possibilities within the game community, arbitrary-style-per-

models can be explored. Creating more diverse datasets that



8

Fig. 7. Ablation study on the effect of G-buffer feature fusion in the
Stylization network. Learning G-buffer features and fusing this knowledge
in the stylization network has a visible benefit to the resulting stylizations.

Fig. 8. Ablation Study on the effect of the implemented shader during
stylization. Results are shown for two different styles. Utilizing the shader
during inference results in higher quality and better preservation of depth
information.

encompass a wider variety of game genres would also en-

hance the effectiveness of the algorithm and ensure broader

applicability. This would allow users to upload any artwork to

be immersed in any game stylized according to their personal

preferences.

V. CONCLUSION

In this work, we study the problem of artistic style transfer

for computer games. We have proposed a G-buffer-guided

stylization framework capable of significantly improving the

temporal consistency of stylized game scenes compared to

state-of-the-art methods. Our stylization network is trained on

a synthetic dataset that includes depth and normal data. Learnt

G-buffer features are injected into the stylization network

that becomes more aware of the geometric and semantic

aspects of the game scene. The trained network is injected

into the 3D rendering pipeline avoiding diminished post-

process effects. A novel algorithm is developed that utilizes

G-buffer information during inference time to further improve

temporal coherence. Our shader implementation also offers a

controllable way to stylize computer games in terms of tuning

the trade-off between temporal stability and content preser-

vation. Qualitative and quantitative experiments have shown

that our method achieves significantly higher temporal stability

with comparable perceptual and stylization performance when

compared with state-of-the-art approaches.

ACKNOWLEDGMENTS

This research was funded by the EPSRC. For the purpose of

open access, the author has applied a Creative Commons At-

tribution (CC BY) licence to any Author Accepted Manuscript

version arising.

REFERENCES

[1] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer using
convolutional neural networks,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2016, pp. 2414–2423.

[2] S. Liu, T. Lin, D. He, F. Li, M. Wang, X. Li, Z. Sun, Q. Li, and E. Ding,
“Adaattn: Revisit attention mechanism in arbitrary neural style transfer,”
in Proceedings of the IEEE/CVF international conference on computer

vision, 2021, pp. 6649–6658.

[3] Y. Deng, F. Tang, W. Dong, C. Ma, X. Pan, L. Wang, and C. Xu,
“Stytr2: Image style transfer with transformers,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 11 326–11 336.

[4] S. Huang, J. An, D. Wei, J. Luo, and H. Pfister, “Quantart: Quantizing
image style transfer towards high visual fidelity,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 5947–5956.

[5] W. Xu, C. Long, and Y. Nie, “Learning dynamic style kernels for
artistic style transfer,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2023, pp. 10 083–10 092.

[6] G. Ghiasi, H. Lee, M. Kudlur, V. Dumoulin, and J. Shlens, “Exploring
the structure of a real-time, arbitrary neural artistic stylization network,”
arXiv preprint arXiv:1705.06830, 2017.

[7] W. Gao, Y. Li, Y. Yin, and M.-H. Yang, “Fast video multi-style transfer,”
in Proceedings of the IEEE/CVF winter conference on applications of

computer vision, 2020, pp. 3222–3230.

[8] Y. Deng, F. Tang, W. Dong, H. Huang, C. Ma, and C. Xu, “Arbitrary
video style transfer via multi-channel correlation,” Proceedings of

the AAAI Conference on Artificial Intelligence, vol. 35, no. 2, pp.
1210–1217, May 2021. [Online]. Available: https://ojs.aaai.org/index.
php/AAAI/article/view/16208

[9] H. Lu and Z. Wang, “Universal video style transfer via crystalliza-
tion, separation, and blending,” in Proc. Int. Joint Conf. on Artif.

Intell.(IJCAI), vol. 36, 2022, pp. 4957–4965.

[10] S. R. Richter, H. A. AlHaija, and V. Koltun, “Enhancing photorealism
enhancement,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 45, no. 2, pp. 1700–1715, 2022.

[11] M. Mittermueller, Z. Ye, and H. Hlavacs, “EST-GAN: Enhancing style
transfer gans with intermediate game render passes,” in 2022 IEEE

Conference on Games (CoG), 2022, pp. 25–32.

[12] E. Ioannou and S. Maddock, “Neural style transfer for computer games,”
in British Machine Vision Conference 2023, BMVC 2023, 2023.

[13] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of artistic
style,” arXiv preprint arXiv:1508.06576, 2015.

[14] Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song, “Neural style
transfer: A review,” IEEE transactions on visualization and computer

graphics, 2019.

[15] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in European conference on computer

vision. Springer, 2016, pp. 694–711.

[16] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky, “Texture
networks: Feed-forward synthesis of textures and stylized images.” in
ICML, vol. 1, 2016, p. 4.

[17] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Improved texture networks:
Maximizing quality and diversity in feed-forward stylization and texture
synthesis,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2017, pp. 6924–6932.

[18] C. Li and M. Wand, “Precomputed real-time texture synthesis with
markovian generative adversarial networks,” in Computer Vision–ECCV

2016: 14th European Conference, Amsterdam, The Netherlands, October

11-14, 2016, Proceedings, Part III 14. Springer, 2016, pp. 702–716.

[19] A. Sanakoyeu, D. Kotovenko, S. Lang, and B. Ommer, “A style-aware
content loss for real-time hd style transfer,” in Proceedings of the

European Conference on Computer Vision (ECCV), 2018, pp. 698–714.

[20] D. Kotovenko, A. Sanakoyeu, S. Lang, and B. Ommer, “Content and
style disentanglement for artistic style transfer,” in Proceedings of the

IEEE/CVF international conference on computer vision, 2019, pp. 4422–
4431.

[21] X.-C. Liu, M.-M. Cheng, Y.-K. Lai, and P. L. Rosin, “Depth-aware
neural style transfer,” in Proceedings of the Symposium on Non-

Photorealistic Animation and Rendering, 2017, pp. 1–10.



9

[22] M.-M. Cheng, X.-C. Liu, J. Wang, S.-P. Lu, Y.-K. Lai, and P. L. Rosin,
“Structure-preserving neural style transfer,” IEEE Transactions on Image

Processing, vol. 29, pp. 909–920, 2019.

[23] E. Ioannou and S. Maddock, “Depth-aware neural style transfer using
instance normalization,” in Computer Graphics & Visual Computing

(CGVC) 2022. Eurographics Digital Library, 2022.

[24] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with
adaptive instance normalization,” in Proceedings of the IEEE Interna-

tional Conference on Computer Vision, 2017, pp. 1501–1510.

[25] S. Gu, C. Chen, J. Liao, and L. Yuan, “Arbitrary style transfer with deep
feature reshuffle,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 8222–8231.

[26] F. Shen, S. Yan, and G. Zeng, “Neural style transfer via meta networks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2018, pp. 8061–8069.

[27] J. Svoboda, A. Anoosheh, C. Osendorfer, and J. Masci, “Two-stage peer-
regularized feature recombination for arbitrary image style transfer,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2020, pp. 13 816–13 825.

[28] J. An, S. Huang, Y. Song, D. Dou, W. Liu, and J. Luo, “Artflow: Unbi-
ased image style transfer via reversible neural flows,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 862–871.

[29] X.-C. Liu, Y.-L. Yang, and P. Hall, “Learning to warp for style transfer,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2021, pp. 3702–3711.

[30] J. Huo, S. Jin, W. Li, J. Wu, Y.-K. Lai, Y. Shi, and Y. Gao, “Manifold
alignment for semantically aligned style transfer,” in Proceedings of

the IEEE/CVF International Conference on Computer Vision, 2021, pp.
14 861–14 869.

[31] H. Tang, S. Liu, T. Lin, S. Huang, F. Li, D. He, and X. Wang,
“Master: Meta style transformer for controllable zero-shot and few-shot
artistic style transfer,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2023, pp. 18 329–18 338.

[32] K. Hong, S. Jeon, J. Lee, N. Ahn, K. Kim, P. Lee, D. Kim, Y. Uh, and
H. Byun, “AesPA-Net: Aesthetic pattern-aware style transfer networks,”
in Proceedings of the IEEE/CVF International Conference on Computer

Vision, 2023, pp. 22 758–22 767.

[33] B. Gu, H. Fan, and L. Zhang, “Two birds, one stone: A unified
framework for joint learning of image and video style transfers,” arXiv

preprint arXiv:2304.11335, 2023.

[34] Y. Ma, C. Zhao, X. Li, and A. Basu, “RAST: Restorable arbitrary style
transfer via multi-restoration,” in Proceedings of the IEEE/CVF Winter

Conference on Applications of Computer Vision, 2023, pp. 331–340.

[35] M. Ruder, A. Dosovitskiy, and T. Brox, “Artistic style transfer for
videos,” in Pattern Recognition, B. Rosenhahn and B. Andres, Eds.
Cham: Springer International Publishing, 2016, pp. 26–36.

[36] ——, “Artistic style transfer for videos and spherical images,” CoRR,
2017. [Online]. Available: http://arxiv.org/abs/1708.04538

[37] J. Fišer, O. Jamriška, D. Simons, E. Shechtman, J. Lu, P. Asente,
M. Lukáč, and D. Sỳkora, “Example-based synthesis of stylized facial
animations,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, pp.
1–11, 2017.

[38] O. Jamriška, Šárka Sochorová, O. Texler, M. Lukáč, J. Fišer, J. Lu,
E. Shechtman, and D. Sýkora, “Stylizing video by example,” ACM

Transactions on Graphics, vol. 38, no. 4, 2019.

[39] H. Huang, H. Wang, W. Luo, L. Ma, W. Jiang, X. Zhu, Z. Li, and W. Liu,
“Real-time neural style transfer for videos,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2017, pp. 783–
791.

[40] C. Gao, D. Gu, F. Zhang, and Y. Yu, “ReCoNet: Real-time coherent
video style transfer network,” in Computer Vision–ACCV 2018: 14th

Asian Conference on Computer Vision, Perth, Australia, December 2–6,

2018, Revised Selected Papers, Part VI 14. Springer, 2019, pp. 637–
653.

[41] S. Liu and T. Zhu, “Structure-guided arbitrary style transfer for artistic
image and video,” IEEE Transactions on Multimedia, 2021.

[42] E. Ioannou and S. Maddock, “Depth-aware neural style transfer for
videos,” Computers, vol. 12, no. 4, p. 69, 2023.

[43] W. Wang, S. Yang, J. Xu, and J. Liu, “Consistent video style transfer via
relaxation and regularization,” IEEE Transactions on Image Processing,
vol. 29, pp. 9125–9139, 2020.

[44] X. Luo, Z. Han, L. Yang, and L. Zhang, “Consistent style transfer,”
arXiv preprint arXiv:2201.02233, 2022.

[45] Z. Wu, Z. Zhu, J. Du, and X. Bai, “CCPL: Contrastive coherence
preserving loss for versatile style transfer,” in Computer Vision–ECCV

2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,

Proceedings, Part XVI. Springer, 2022, pp. 189–206.
[46] X. Li, S. Liu, J. Kautz, and M.-H. Yang, “Learning linear transformations

for fast image and video style transfer,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2019, pp.
3809–3817.

[47] T. Deliot, F. Guinier, and K. Vanhoey, “Real-time
style transfer in unity using deep neural networks,”
2020. [Online]. Available: https://blog.unity.com/engine-platform/
real-time-style-transfer-in-unity-using-deep-neural-networks

[48] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data:
Ground truth from computer games,” in Computer Vision–ECCV 2016:

14th European Conference, Amsterdam, The Netherlands, October 11-

14, 2016, Proceedings, Part II 14. Springer, 2016, pp. 102–118.
[49] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic

open source movie for optical flow evaluation,” in European Conf. on

Computer Vision (ECCV), ser. Part IV, LNCS 7577, A. Fitzgibbon et al.
(Eds.), Ed. Springer-Verlag, Oct. 2012, pp. 611–625.

[50] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp. 3213–
3223.

[51] Unity Technologies, “Unity Terrain - HDRP demo scene,”
2022. [Online]. Available: https://assetstore.unity.com/packages/3d/
environments/unity-terrain-hdrp-demo-scene-213198

[52] ——, “Fontainebleau Demo,” 2022. [Online]. Available: https:
//github.com/Unity-Technologies/FontainebleauDemo

[53] POLYGONAUTIC, “Seed hunter,” 2020. [Online]. Available: https:
//assetstore.unity.com/packages/3d/environments/seed-hunter-143414

[54] Unity Technologies, “Book of the dead: Environ-
ment: HDRP: Tutorial projects,” 2023. [Online]. Avail-
able: https://assetstore.unity.com/packages/essentials/tutorial-projects/
book-of-the-dead-environment-hdrp-121175

[55] ——, “Unity Perception package,” 2020. [Online]. Available: https:
//github.com/Unity-Technologies/com.unity.perception

[56] ONNX, “Open neural network exchange,” 2019. [Online]. Available:
https://onnx.ai/

[57] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[58] N. Kanopoulos, N. Vasanthavada, and R. L. Baker, “Design of an image
edge detection filter using the sobel operator,” IEEE Journal of solid-

state circuits, vol. 23, no. 2, pp. 358–367, 1988.
[59] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
[60] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun, “Towards

robust monocular depth estimation: Mixing datasets for zero-shot cross-
dataset transfer,” IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 2020.
[61] Unity Technologies, “High definition Render Pipeline: 12.1.12,”

2021. [Online]. Available: https://docs.unity.cn/Packages/com.unity.
render-pipelines.high-definition@12.1/manual/index.html

[62] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[63] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,” in
Proceedings of the IEEE conference on computer vision and pattern

recognition, 2018, pp. 586–595.
[64] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,

“Flownet 2.0: Evolution of optical flow estimation with deep networks,”
in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2017, pp. 2462–2470.
[65] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image

quality assessment: from error visibility to structural similarity,” IEEE

transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.
[66] T. R. Shaham, T. Dekel, and T. Michaeli, “SinGAN: Learning a

generative model from a single natural image,” in Proceedings of the

IEEE/CVF international conference on computer vision, 2019, pp. 4570–
4580.

[67] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[68] H. Wang, Y. Li, Y. Wang, H. Hu, and M.-H. Yang, “Collaborative
distillation for ultra-resolution universal style transfer,” in Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 1860–1869.


