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A B S T R A C T   

Despite being the most widely prescribed and misused type of medication, opioids continue to function as robust 
pain relief agents; however, overdosing is a significant cause of fatalities among opioid users. The δ-opioid re-
ceptor (DOR) has immense promise in treating long-term pain by producing anxiolytic and antidepressant-like 
outcomes. Although DOR agonists play a crucial role, their clinical implementation is restricted because of 
the probable manifestation of severe, life-threatening complications. A Python-based machine learning approach 
was employed to develop a quantitative structure–activity relationship (QSAR) model in this study. To address 
this, 4217 compounds and their associated biological inhibition activities were retrieved from the gpcrdb 
database. The K-best features selection method revealed three key structural features such as SLOGPVSA2, 
Chi6ch, and S17 contributed significantly to the best model performance. Statistical analysis, K-fold cross- 
validation, applicability domain analysis, and external validation using 38 unseen FDA-approved drug data 
confirmed the robustness of the predictive model. A molecular docking study in along with Ligand–Receptor 
Contact Fingerprints (LRCFs) using the essential chemical interactions described for analog ligands releaved the 
key contact interactions of Asp 128, Tyr 129, Met 132, Trp 274, Ile 277, and Tyr 308 residues in the total binding 
affinities upon complexation. Our combinatorial study using regression QSAR and ligand–receptor Contact, 
analysis could serve in the design of more rational compounds for drug discovery targeting DOR.   

1. Introduction 

Opioids, which are highly potent pain-relieving agents, continue to 
be extensively prescribed and misused medications, with overdose being 
a primary cause of death among individuals who utilize them. In 2019, 
around 275 million individuals worldwide engaged in drug use at least 
once. Among this population, approximately 62 million individuals 
specifically used opioids, and out of those, about 36.3 million in-
dividuals experienced drug use disorders [1]. Despite the existence of 
effective treatment interventions for opioid dependence that can reduce 
the chances of overdose, fewer than 10 % of individuals requiring such 
treatment are currently accessing it [2]. As a result, healthcare has 
placed significant emphasis on prioritizing the development of new 
opioid painkillers, antitussives, antidepressants, and antipruritic 

therapies that carry a reduced risk of abuse and overdose. Despite its 
significant adverse effects, morphine, which serves as the primary 
component of opium, remains the most potent opiate and the most 
commonly utilized painkiller in modern medicine [3,4]. Heroin, an 
illicit substance derived from the Morphine family, carries substantial 
societal impact as a highly abused drug. Opioids exert their effects by 
binding to opioid receptors (ORs), specifically the Mu (µ) [5], Kappa (κ) 
[5,6], and Delta receptors (δ) [7,8] which belong to a crucial subfamily 
of G protein-coupled receptors (GPCRs). These receptors serve as sig-
nificant protein targets for the treatment of both acute and chronic pain 
[9]. The Delta opioid receptors are composed of a solitary polypeptide 
chain that includes an N-terminal region on the extracellular side where 
glycosylation occurs (Fig. 1). The receptors also possess seven trans-
membrane alpha helices domains (TM) where ligands bind, namely 
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TM1: Leu 48-Val 75; TM2: Ile 86-Leu 110; TM3: Ala 123-Val 144; TM4: 
Ile 168-Met 186; TM5: Trp 207-Leu 238; TM6: Met 262-Trp 284; TM7: 
Leu 300-Leu 321, and an intracellular C-terminal tail responsible for 
phosphorylation. 

Claff et al. reported two agonist-bound crystal structures of thermo-
stabilized DOP in an activated state and in complex with the peptide 
KGCHM07 (Ki = 5.17 ± 1.57 nM) and the small-molecule DPI-287 (Ki =
0.39 ± 0.12 nM) at 2.8 Å and 3.3 Å resolutions [10]. The trans-
membrane binding site of DOR is hydrophobic and consists of 10 key 
residues of Asp 128, Tyr 129, Met 132, Trp 274, Ile 277, His 278, Val 
281, Trp 284, Leu 300, and Tyr 308 (Fig. 2) [10–12]. Among these 
binding site residues, Asp 128 plays a critical role in DOR activation and 
is considered to be the active site of the protein [13]. 

Nevertheless, researchers have extensively explored alternative 
opioid receptors as promising targets for the development of safer 
treatments for chronic pain. Among these receptors, the δ opioid re-
ceptor (DOR) has demonstrated significant potential for addressing 
chronic pain [14,15] displaying anxiolytic and antidepressant-like ef-
fects [16,17]. Apart from their crucial role in pain management, the use 
of DOR agonists has been explored for their potential in treating 
depression and alleviating spasms related to Parkinson’s disease. How-
ever, the clinical application of DOR agonists is restricted due to the 
potential occurrence of severe and life-threatening side effects such as 
tolerance, convulsions, and seizures [18]. Despite numerous efforts, 
molecules that selectively target the delta opioid receptor have not been 
successfully translated into clinical applications [19]. This advanta-
geous psychopharmacological profile with the undesired adverse effects 
puts DOR agonists at the forefront of the development of novel com-
pounds and candidate drugs. 

Computational intelligence techniques are utilized throughout the 
entire drug development process to enhance efficiency and automate 
research analysis. This approach aids in assessing risks, estimating costs, 
and expediting clinical trials in the field of drug discovery. Although the 
Delta opioid receptor (DOR) plays a crucial role in various diseases, such 
as migraine, alcohol use disorder, ischemia, and neurodegenerative 
diseases, there seems to be a scarcity of reported computational intel-
ligence endeavors focused on DOR inhibitors within the realm of drug 
discovery research. Over the past few years, machine learning (ML) 
techniques have emerged as a prominent and powerful toolset in the 
pharmaceutical industry, enabling the extraction of valuable insights 
from vast datasets. Machine learning is widely applied in drug discovery 

to establish the correlation between the chemical properties of mole-
cules and their biological activity. Recently, Podlewska et al., [20] 
published a comparative case study of ORs on the application of ligand- 
based classification ML models and structure-based docking methods. In 
their study, the authors failed to interpret the importance of interaction 
fingerprint-derived docking analysis of ligands-ORs complexes. In their 
study three crystal structures of the three ORs were considered in which 
two crystals of δ and k are mutated in the binding site, but the μ receptor 
is wild type. This might be the main reason for the negative impact of 
ligand–protein interaction fingerprints in this study. In another study by 
Sakamuru et al., [21] a virtual screening-based classification ML was 
performed on their in-house active compounds’ library targeting ORs, 
and they developed classifier models to predict the OPR activity of small 
molecules. In the current project, we constructed a Python-based ML 
approach encompassing a regression quantitative structure–activity 
relationship [22,23] (QSAR) study using two widely applied machine 
learning algorithms in a Python environment, namely, XGBOOST and 
RF, to predict the inhibitory constant activities of 4,217 compounds 
against delta opioid receptors. This analysis identified the critical 
structural features that contribute to the agonist activity of the ligands 
and devised a novel template that closely resembles the highly potent 
bioactive compounds. A molecular docking study along with 
ligand–receptor Contact Fingerprints (LRCFs) [24] was conducted to 
elucidate the key contact interactions in the total binding affinities of 
ligands-DOR upon complexation. In this study, the regressor QSAR 
model along with ligand–receptor Contact analysis could serve as a 
robust predictive model for designing new inhibitors. 

2. Methodologies 

2.1. Data set collection 

Out of total 7,154 compounds targeting DOR, a collection of 4,217 
agonist ligands, filtered and downloaded from the G protein-coupled 
receptor database, was compile [11,25–27] (https://gpcrdb.org/). 
These agonist ligands were measured for their inhibition constant values 
using a standardized bioassay procedure, and the data was recorded in 
Ki format. An exploratory data analysis (EDA) approach was applied to 
refine SMILES notations, duplicate molecules, salt forms, heavy metals 
and fragments. Finally, the compounds were filtered on the basis of 
Lipinski’s rule of five (RO5) [28]. 

Fig. 1. A: 3D structural overview of δ opioid receptor (Chain-A) in complex with the DPI-287 agonist (PDB code: 6PT3); B: seven transmembrane (TM) alpha helices 
domains where DPI-287 ligand bind (yellow meshed surface). 
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The LigPrep module of the Schrodinger Suite was employed to 
perform geometric minimization of the compounds [29]. This process 
involved adding hydrogen atoms, adjusting bond lengths and angles to 
realistic values, correcting chiralities, ionization states, tautomers, ste-
reochemistries, and ring conformations. The structures were assigned 
partial charges utilizing the OPLS-2005 force-field [30,31], and energy 
minimization was performed until the average root-mean-square devi-
ation (RMSD) reached 0.001 Å. The ionization state at pH = 7 was 
determined using Epik’s ionization tool. [32,33]. 

2.2. Calculation and selection of the chemical descriptors 

Chemical descriptors can be described as numerical values or out-
comes derived from mathematical operations that convert the encoded 
chemical information of a molecule into a meaningful representation. 
Alternatively, they can also be obtained through standardized experi-
ments. Two-dimensional (2D) and three-dimensional (3D) molecular 
descriptors were calculated using PyBioMed [34] and PaDEL [35] li-
braries. The library PyBioMed is implemented in Python and is mainly 
based on toolkit RDKit (https://www.rdkit.org/) and Pybel [36] 
implementation, and depends on SciPy [37] and NumPy [38] python 
modules. Generally, each descriptor has different units and there are 
significant differences between different descriptors. The descriptors of 
all compounds in the training set were normalized and standardized 
using the scikit-learn ML library (https://scikit-learn.org/), and the re-
sults were transformed and appended to the internal test. 

To identify the most pertinent descriptors and determine an appro-
priate number of features, highly correlated descriptors were initially 
eliminated using Pearson correlation analysis [39,40]. The ‘’select K- 
Best method’’ [41] was employed as a supervised learning approach, 
utilizing the f-regressor function, to perform a univariate feature selec-
tion on the remaining descriptors. This method was utilized to reduce 
noise, eliminate redundancy, and effectively decrease the dimensions of 
the data. K-Best is an algorithm based on filtering that chooses pro-
spective features based on a specific function σ (f, c), where f represents 
a feature and c represents a label. 

2.3. Nonlinear machine learning algorithms 

From the multitude of modeling machine learning approaches 
available, random forest (RF) [42] and extreme gradient boosting (XGB) 
[43,44] have been chosen for constructing the models in this study due 
to their proven effectiveness, robustness, and extensive utilization in 

QSAR modelling [43,45–48]. RF, introduced by Leo Breiman and Adele 
Cutler [42], is an extensively employed algorithm in machine learning 
for drug discovery tasks, regardless of the specific problem at hand. 
While it is challenging to designate a single model as the absolute best 
for all problem types, RF stands out for its exceptional performance, 
speed, and generalizability [21,22,49,50]. This algorithm utilizes mul-
tiple decision trees to train and predict samples. RF works by creating 
numerous decision trees during the training phase and then determining 
the most common class across all the trees to produce the final output 
[51]. This approach combines the concept of “bagging” with random 
feature selection to create an ensemble of decision trees that exhibit 
controlled variation [52]. Chen and Guestrin introduced XGBoost [44] a 
tree-boosting system that is widely used and effective in machine 
learning. The method builds upon the tree-based ensemble methods, but 
with the addition of a boosting step that improves the trees step-by-step 
by minimizing errors. Friedman [53] established the roots of this 
method. XGBoost’s success can be attributed to its scalability on mul-
tiple levels and faster computation speed compared to other solutions. It 
is currently one of the best algorithms for solving a wide range of 
problems, particularly with larger datasets. The method’s usefulness is 
demonstrated by its successful applications in machine learning and 
data mining challenges [43,54]. Currently, the algorithm produces 
state-of-the-art solutions for a wide range of problems, especially in 
larger datasets. Its advantages are clearly emphasized by the fruitful 
applications of the method in machine learning and data mining chal-
lenges. The RF and XGBOOST algorithms are highly renowned and 
extensively employed machine learning techniques that have found 
widespread application in resolving classification and regression prob-
lems [55–58]. 

2.4. The evaluation of prediction regression model 

To assess the performance and goodness-of-fit of the models, a sta-
tistical analysis of various metrics including the regression coefficient 
(R), determination coefficient (R2), mean squared error (MSE), and root 
mean squared error (RMSE) was conducted for each machine learning 
algorithm. The hyperparameter model selection was determined based 
on the algorithm that yielded the lowest root mean squared error 
(RMSE): 

R = 1 −
∑

(yi − ŷi)
∑

(yi − yi)
(1)  

Fig. 2. Close-up view of the binding pocket of δ opioid receptors in complex with the DPI-287 agonist: PDB code: 6PT3.  
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∑n
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(yi − ŷi)

2

√

(4) 

where yi, ŷi, yi and n are the actual values, predicted values, actual 
average values, and the size of the dataset, respectively. 

2.5. Applicability domain 

The assessment of the applicability domain (AD) of the QSAR model 
is a crucial step in ensuring the reliability of predictions within the 
specific chemical space for which the model was developed [59–61]. 
The leverage approach was employed to establish the applicability 
domain for a specific compound [62–65]. In this context, our QSAR 
model was utilized to forecast the compound’s activity: 

hi = xT
i

(
XT X

)− 1xi (5) 

Where, xi denotes the descriptor row vector for the compound in 
question, while X represents the descriptor matrix for the compounds in 
the training set. The warning leverage, which serves as an indicator of 
potential extrapolation, was also considered: 

h* =
(p + 1)

n
(6) 

In this equation, n is the number of training compounds used for 
model fitting and p is the number of descriptors. The Williams plot [66] 
is used to interpret the AD inside a squared area within the leverage 
threshold (hi < h*) and ± 3.0 standard residual deviations (±δ). 

2.6. Ligand-target interaction fingerprint 

The ligand-receptor molecular docking experiments of 1,793 ligands 
inside the active site of DOR (PDB code: 6PT3) [10] were performed 
using the Glide module implemented in the Schrödinger suite [67,68]. 
The enzyme structure was preprocessed, minimized, and refined using 
the Protein Preparation Wizard [69] in Schrödinger Suite [70]. To 
prepare the receptor structure at pH = 7, several actions were taken. 
These included removing any crystallographic waters, inserting any 
missing hydrogen or side chain atoms, and determining the correct 
charge and protonation state of the structure. Additionally, the ioniza-
tion states of acidic and basic amino acid residues were taken into ac-
count. Furthermore, the protein structure went through an energy 
minimization process using the OPLS-2005 force-field This was done to 
alleviate any steric clashes that may have arisen due to the addition of 
hydrogen atoms among closely-spaced residues. A root mean square 
deviation (RMSD) cut-off value of 0.30 Å was used for this purpose. 
Preparation of the reference inhibitors (DPI-287: Ki = 0.39 nM; 
KGCHM07: Ki = 5.17 ± 1.57 nM) [10] were accomplished by applying 
the LigPrep module from the Schrodinger Suite [29]. This process 
involved adding hydrogen atoms, fine-tuning bond lengths and angles to 
a realistic configuration, addressing chirality concerns, determining 
ionization states, adjusting tautomers, stereochemistries, and opti-
mizing ring conformations. Additionally, partial charges were assigned, 
and the ionization state was set to pH = 7 [33,71]. Out of the six 
available crystal structures for the δ opioid receptor with PDB codes 
6PT3, 6PT2, 4RWA, 4RWD, 4N6H, and 4EJ4, only the 6PT3 and 6PT2 
structures are in the active and native forms. In contrast, the 4RWA, 
4RWD, 4N6H, and 4EJ4 structures are crystallized in mutated and 
inactive forms. As a result, this study has specifically chosen to focus on 
the 6PT3 and 6PT2 crystal structures along with their co-crystallized 
ligands, the small-molecule DPI-287 and the peptide KGCHM07. 

In the next step, protein coordinates were extracted from the crystal 
structure of DOR bound to the selective agonist DPI-287 (PDB code: 
6PT3). The appropriate receptor grid was generated based on a set of 
center coordinates (X = 4.22, Y = -40.91, Z = -46.61) using two cubical 
boxes having a common centroid to organize the calculations: a larger 
enclosing box and a smaller binding box with dimensions of 12 × 12 ×
12 Å and 31 × 31 × 31 Å, respectively. The grid box was centered on the 
centroid of the crystallized inhibitor as a reference in the complex 
covering the binding site of DOR, which was sufficiently large to explore 
a larger region of the enzyme structure. The Glide extra-precision [67] 
(XP) mode was employed to obtain poses that fit the known pharma-
cophore of the DPI-287 and KGCHM07 ligands as well as 1,793 com-
pounds. The best docking pose for each compound was the pose with the 
best docking scoring index that complied with the essential chemical 
interactions described for analog ligands (ECIDALs) [72,73]. The most 
obvious essential chemical interactions are the presence of interactions 
between the active residue of His278 and the co-crystal ligand (DPI-287) 
in the crystal structure of DOR (6PT3) [10] or interactions between Tyr 
129 and Trp 284 and the co-crystal ligand (Peptide agonist KGCHM07) 
in the crystal structure of DOR (6PT2) [10] forming anπ-π stacking 
interaction. 

In the second path, the selected poses from the previous step with 
docking scores lower than − 5.0 kcalmol− 1 were considered for the 
Structural Interaction Fingerprints [74,75] (SIFt) analysis. The 
Schrödinger Suite’s Maestro module incorporates SIFt, which provides 
data regarding the ligand’s proximity to receptor residues and the spe-
cific types of residues it interacts with [76]. The presence of various 
chemical interactions between ligands and the binding site residues of 
the target receptor is quantified using “bits.” To establish the binding 
site, distance cut-offs are employed, and the interacting set consists of 
residues with atoms falling within the specified cut-off distance from 
ligand atoms. These bits are then recorded in an interaction matrix, 
which documents the specific chemical interactions between each ligand 
and each interacting residue within the receptor. Finally, the residual 
decomposition interaction energies were calculated to determine the 
key interacting residues involved in the binding affinities of the selected 
docked complexes. 

3. Results 

3.1. Exploratory data set analysis 

Exploratory data analysis was applied to the data retrieved from G 
protein-coupled receptor database [11,25–27] (https://gpcrdb.org/). Of 
4,217 molecules, 1,793 unique molecules were passed. As per the Rule 
of Five (RO5), compounds are more inclined towards oral absorption if 
they possess fewer than 5 hydrogen bond donors, fewer than 10 
hydrogen bond acceptors, a molecular weight below 500 Daltons, and a 
logarithm of the partition coefficient (log P) less than 5.0. To eliminate 
the influence of magnitude, we converted the biological activities of the 
compounds to the logarithmic scale (pKi = − log (Ki)) and used them as 
dependent variables. The range of pKi values was from 4 to 10 in the 
dataset. The SMILES notations of 1,793 compounds and their corre-
sponding pKi values are listed in csv format in the Supplementary Ma-
terial. This dataset was randomly split into two sets of training, 
including cross validation sets and an external set (test set), with a ratio 
of 70:30, containing 1,255 training and 538 internal test sets. The 
training set was used for model generation, and the test set for model 
evaluation. Another 38 FDA-approved drugs targeting DOR were 
collected from the CHEMBL database (https://www.ebi.ac.uk/chembl/) 
[77], as an unseen external validation test set to further evaluate the 
selected predictive model (Data available as csv format in the Supple-
mentary Materials). 
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3.2. Descriptor selection 

A number of 1,211 two-dimensional (2D) and three-dimensional 
(3D) molecular descriptors of Basak, Burden, Molecular Constitu-
tional, Geary Autocorrelation, Moran Autocorrelation, Moreau-Broto 
Autocorrelation, CATS2D, Charge, Molecular Connectivity Indices, 
Electro-topological State indices, Topological, MOE-type, Autocorrela-
tion, Charged partial surface area (CPSA), Radial Distribution Function 
(RDF), Petitjean shape index, and Weighted Holistic Invariant Molecular 
(WHIM) descriptors were derived using PyBioMed [34] and PaDEL [35] 
libraries, Table 1. 

To scale the total input descriptors with different units, the variables 
of the training set were normalized and standardized, and the results 
were transformed and appended to the internal test. The mean squared 
error (RMSE) was calculated using two ML regression models of RF 
(original = 0.688, normalized = 0.681, standardized = 0.680) and 
XGBOOST (original = 0.693, normalized = 0.685, standardized =
0.683). Finally, negligible RMSE variations were observed between the 
raw descriptors and the normalized/standardized values. Therefore, in 
this study, the raw descriptors were selected for further feature selection 
methods. 

In the first stage of the feature selection method, from the total 
number of 1,211 descriptors, the highly correlated features with the a of 
0.8 threshold were removed using Pearson correlation [39,40,78], 
which resulted in 520 variables. One strategy for enhancing QSAR 
models involves eliminating or reducing uninformative descriptors. 
Therefore, this process can enhance both the precision and resilience of 
the model. In the next stage, to evaluate the contribution of each 520 
descriptors on the regression model performance and generalization 
ability, the K-best feature selection method-based f-regressor from the 
scikit-learn [79] Python module was used. According to the statistical 
analysis of the regression coefficient (R), determination coefficient for 
training (R2), and determination coefficient for test (Q2) from our 
models using ML algorithms, the ranking list of the most contributing 
descriptors is given in Supplementary Table S1. 

Among the obtained results, K-best = 3 showed that the three fea-
tures SLOGPVSA2, Chi6ch, and S17 from MOE-type descriptors through 
the contributions of SLogP and surface area as well as connectivity 
[80,81], and electrotopological state [82] from the 2D-descriptors 
category contributed significantly to the model performance (Fig. 3). 

3.3. Model construction using ML algorithms 

Two machine learning methods including RF and XGB, were 
employed for the regression model’s construction for different numbers 
of features based on the K-best selection method. In this prediction, the 
RF parameters were set to n_estimators = 100 and the XGB parameters 
were defined with boosting rounds parameter values of 1000, maximum 
depth 7 and eta 0.1. Some statistical parameters, regression coefficient 
(R), determination coefficient for training (R2), and determination co-
efficient for test (Q2), as well as root mean squared error (RMSE) of five- 
fold cross validation (CV) from the training data were used to evaluate 
the performance of the regression models. 

At the outset of the modeling process, 30 % of the dataset was chosen 
randomly and set aside as the hold-out test dataset, separate from the 
training phase. Following the execution of each algorithm run employ-
ing the SLOGPVSA2, Chi6ch, and S17 descriptors, the ultimate algo-
rithm model was chosen by considering the R2 value for the training set 
and the cross-validation root mean square error (CV_RMSE). The sta-
tistical analysis of the QSAR models based on three key features derived 
from the K-best feature selection method is presented in Table 2. 

The model that was created using the training dataset of compounds 
was employed to forecast the (pKi) activity of the testing dataset of 
compounds. According to the obtained statistical parameters in Table 2, 
the XGB model was selected as the final algorithm with high activity- 
descriptor relationship efficiency based on the determination coeffi-
cient of the train set (R2 = 0.978), determination coefficient for test (Q2 

= 0.998), regression coefficient for train set (R_train = 0.989), regres-
sion coefficient for test set (R_test = 0.999) and Root Mean Squared 
Error of fivefold cross validation (CV_RMSE = 0.461). The robustness of 
the best-generated model using the XGBOOST algorithm is depicted via 
the activity interactive graph that presents the predicted against 
experimental (pKi) activity, as shown in Fig. 4. 

Knowing the high predictive and descriptive ability, the generated 
model was considered to be highly robust in predicting the agonist ac-
tivity of these compounds against Delta opioid receptor (DOR). The 
predicted activities of the studied compounds against DOR by the built 
QSAR model are provided in csv format in the Supplementary Materials. 
The model’s capacity to establish a correlation between activity and 
structure is demonstrated by the smaller residual values observed in 
both the training and internal testing sets, as provided in the supple-
mentary material in CSV format. The correlation between the experi-
mental activity and the predicted activity according to the model was 
highly significant as determined by statistical analysis. The closeness of 
regression-coefficient (R_train and R_test) to 1.0 indicates that the 

Table 1 
2D and 3D-descriptors generated for 1,793 compounds using PyBioMed and 
PaDEL libraries.  

Descriptors and Fingerprints Number of 
Features 

Type of 
Descriptors 

Libraries 

Basak 21 2D PyBioMed 
Burden 64 2D PyBioMed 
Molecular Constitutional 30 2D PyBioMed 
Geary Autocorrelation 32 2D PyBioMed 
Moran Autocorrelation 32 2D PyBioMed 
Moreau-Broto 

Autocorrelation 
32 2D PyBioMed 

CATS2D 150 2D PyBioMed 
Charge 25 2D PyBioMed 
Molecular Connectivity 

Indices 
44 2D PyBioMed 

Electrotopological State 
Indices 

237 2D PyBioMed 

Topological 35 2D PyBioMed 
MOE-type 60 2D PyBioMed 
Autocorrelation 70 3D PaDEL 
CPSA 29 3D PaDEL 
RDF 18 3D PaDEL 
Petitjeanshapeindex 3 3D PaDEL 
WHIM 92 3D PaDEL  

Fig. 3. Comparative model performance based on the number of features.  
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developed model elaborated a large portion of the descriptor-variation 
large enough for a good QSAR model, indicating that the model is 
highly predictive and excellent. The high R test value in the developed 
model signifies that the model is capable of delivering reliable and ac-
curate predictions for novel compounds. A good and acceptable QSAR 
model must obey the following criteria: regression-coefficient for train 
and test sets (R_train and R_test) values close to one and the lowest RMSE 
value for cross validation close to zero [39,58,65,83]. The generated 
QSAR model met the criteria and was therefore statistically acceptable. 
To further validate the predictive model verification, 38 FDA-approved 
drugs as an unseen external test set were given to our studied models. 
Determination of coefficient (R2_Testext = 0.986) and regression coeffi-
cient (R_Testext = 0.993) of the XGB model reconfirmed the robustness of 
our proposed model (Table 2). The predicted activity values of 38 drugs 
in csv format are presented in the Supplementary Materials. 

3.4. Applicability domain analysis 

An essential aspect of confirming the validity of the QSAR model’s 
predictions is the establishment of its applicability domain (AD). Reli-
able predictions can only be made by a QSAR model for chemicals that 
fall within its applicable domain (AD), and not through extrapolation 
beyond this domain. Various techniques exist to establish the applica-
bility domain (AD) of QSAR models [59], with the most prevalent 
approach being the calculation of leverage values for each compound 
[66]. To visualize the applicability domain, a Williams plot, which 
represents the standardized residuals against the leverage (hi), was 
employed [84]. A molecule with a leverage value (hi) greater than h* 
has an impact on the performance of the QSAR model and can be 
excluded from AD. Additionally, the range within ± 3 δ (standard de-
viations) of standardized residuals is commonly adopted as a threshold 
for confirming predictions regarding a molecule. This is because data 
points falling within ± 3 δ of standardized residuals from the mean 
encompass 99 % of the data in a normal distribution [85]. 

From the Williams plot (Fig. 5), thirteen test compounds were found 
to be out of the warning leverage (h*) criteria, which indicates potential 
model extrapolation (the warning leverage limit is 0.010). 

This plot placed the AD within ± 3.0 standard residual deviations 
and the warning leverage (0.010) (Fig. 5). thirteen test compounds were 
found to be outside the warning leverage, indicating potential model 
extrapolation. Among the total number of 1,793 compounds, the insig-
nificant numbers of 16 test sets and 38 train sets were observed as outlier 
compounds with standardized residuals with more/less than 3 δ /-3 δ 
standard deviation units. Notably, 98 % of the input compounds fell 
within the AD acceptable criteria, confirming the reliability of the 
model. 

3.5. Ligand-target interaction contact analysis 

A systematic and detailed analysis of all possible interactions 
involved in forming protein–ligand complexes between DOR and 1,793 
compounds was investigated using Docking [67,68,86] calculations and 
the Interaction Fingerprints (IFPs) [87–89] panel of Maestro [76] 
implemented in the Schrodinger suite. 

To verify the conducted docking simulations for subsequent analysis 
of interaction fingerprints (IFPs), we conducted docking of the co-crystal 
DOP-DPI-287and KGCHM07 inhibitors with the DOR protein. The most 
favorable docking orientation was determined based on factors such as 
binding energy and interactions between the ligand and receptor within 
the active site pocket. This optimal docking pose was then aligned with 
the co-crystallized structure of the DOP-DPI-287 inhibitor, resulting in a 
calculated RMSD of 0.102 Å, Fig. 6. 

The value of IFPs lies in their capacity to encompass a wide range of 
interaction types that take place between a target protein and its ligands. 
Various categories of chemistries are considered in IFP calculations, 
including polar (P), hydrophobic (HP), hydrogen bond acceptor (HBA), 
where the residue accepts a hydrogen bond, hydrogen bond donor 
(HBD), where the residue donates a hydrogen bond, aromatic (Ar), and 
interactions with charged groups through electrostatic forces (CH). In-
formation about contacts with backbone and side-chain groups is also 
provided in Figures S1, S2, S7, S8, S13, and S14. First, we calculated IFPs 
by considering two DOR–inhibitor complexes reported in PDB (PDB IDs 
6PT2, and 6PT3) and presented in Figures S1-S12. Subsequently, we 
conducted a similar calculation, taking into account the complexes that 
were established through docking calculations involving our set of 1,793 
compound structures (Figures S13-S20). We anticipate that there is a 
similarity between the IFPs of our docking poses and those of the DOR- 
inhibitor complexes reported in PDB format. The outcome of our 
docking calculations resulted in 10,857 poses for 1,793 compounds by 
considering 10 poses for each compound in our docking protocol. 
Among 10,875 poses, the best docking pose for each compound was 
selected based on the best docking scoring that complies with the 
essential chemical interactions described for analog ligands (ECIDALs) 
[72,73] These selection criteria filtered our docked poses to 1,051 
complex structures. The IFP analysis applied to the two DOR–inhibitor 
complexes reported in PDB revealed 13 common DOR residual contacts 
with the co-crystalized Peptide agonists KGCHM07 and DPI-287 (Fig. 7). 

These binding site residues include Asp 128, Tyr 129, and Met 132 of 
the TM3 region, Val 217 of TM5, Trp 274, Ile 277, His 278, Phe 280, Val 
281, and Trp 284 of TM 6, Leu 300, Ile 304, and Tyr 308 of TM7. 

Conversely, when the IFP analysis was used on the 1,051 complexes 
involving DOR and the optimal pose of each compound obtained 
through docking, it disclosed that there were 10 shared residues making 

Table 2 
Statistical parameters for train, test, cross validation, and unseen external test sets for both considered algorithms presented.  

Statistical analysis R2 Q2 R_train R_test CV_RMSE R2_Testext R_Testext 

RF  0.922  0.927  0.965  0.749  0.514  0.841  0.949 
XGB  0.978  0.998  0.989  0.999  0.461  0.986  0.993  

Fig. 4. The graphical representation of the predicted activities versus experi-
mental activities of both the train and test sets for the best predictive 
xgboost model. 

Z. Fakhar et al.                                                                                                                                                                                                                                  



Medicine in Drug Discovery 21 (2024) 100176

7

contact with the co-crystallized ligands in the DOR complexes with the 
contributions of Asp 128 (100 %), Tyr 129 (80 %), Met 132 (90 %), Val 
217 (50 %), Trp 274 (95 %), Ile 277 (90 %), Val 281 (70 %), Leu 300 (50 
%), Ile 304 (90 %), and Tyr 308 (95 %) (Fig. 8). 

Since the DOR binding site is predominantly hydrophobic, there 
were no instances of hydrogen bonding interactions observed when 
examining the occurrence of chemical contacts in the structures docu-
mented in PDB entries. The HBD and HBA showed negligible contribu-
tions in the docked structures, (Figures S17 and S18). The obtained IFP 
calculations indicated that our docking results conserve the main in-
teractions observed for the available PDB structures: Asp 128 showed 
100 % polar and electrostatic common contributions in the docked 
complexes and PDB structures (FiguresS6 and S12). The residues of Tyr 
129, Met 132, Trp 274, Ile 277, Val 281, and Tyr 308 exhibited more 
than 70 % hydrophobic contribution, whereas Val 217 and Ile 304 

exhibited > 50 % hydrophobic contribution in the docked complexes 
(Figure S19). Tyr 129, Met 132, Val 217, Trp 274, Ile 277, Phe 280, Val 
281, Trp 284, Leu 300, Ile 304, and Tyr 304 residues are common 
binding site residues with 100 % hydrophobic contributions in the co- 
crystalized Peptide agonists KGCHM07 and DPI-287 bound to DOR 
(Figures S5 and S11). The IFPs used for both the PDB and docked 
structures validate the accuracy of our docking experiments, as they 
reveal that the residues present in the DOR binding site of the structures 
determined through X-ray crystallography are consistent with the ones 
identified in our docking poses. 

To obtain detailed information about the key residues’ contribution 
to the binding affinities of the docked complexes, the residual decom-
position interaction energies were plotted. This analysis was considered 
for four docked complexes containing ligands with less potent inhibitory 
activities (low pKi value and higher docking score), such as 
CHEMBL3695269, CHEMBL3698762, CHEMBL3698760, and 
CHEMBL3698851, as well as four docked structures containing ligands 
with more potent inhibitory activities (high pKi value and more favor-
able docking score), namely, CHEMBL3965191, CHEMBL4587201, 
CHEMBL605293, and CHEMBL2370431. 

As depicted in Fig. 9, the most significant interaction in all eight 
studied complexes is related to Asp 128 as a key active site residue 
responsible for DOR activation. The strength of this interaction is 
considerably higher for inhibitors with high pKi values and docking 
score. According to Fig. 9, Among the four inhibitors with stronger ac-
tivity, CHEMBL2370431 exhibited significantly high affinity for the Asp 
128 active site residue (Eint: − 40.0 kcalmol− 1). Although, in all eight 
docked complexes, Tyr 129, Met 132, Trp 274, Ile 277, and Tyr 308 
residues showed acceptable interactions with the ligands but these in-
teractions are not comparable with the affinity magnitude of Asp 128. 
The depiction of the orientations of the docked complexes is acknowl-
edged as a valuable insight into potent DOR inhibitors, which could be 
instrumental in the development of new, effective inhibitors. 

4. Discussion 

A thorough exploratory data analysis conducted on a GPCR (G 
Protein-Coupled Receptor) database, with the aim of developing a pre-
dictive model for agonist activity against the Delta opioid receptor 
(DOR). The analysis encompasses various aspects of the analysis, 
including dataset characteristics, selection criteria based on the Rule of 

Fig. 5. Williams plot presented to evaluate the applicability domain of the best XGBOOST predictive model.  

Fig. 6. The superposition of the co-crystallized DPI-287 and its best-docked 
pose based on the ECIDALs approach is presented. 
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Five (RO5) for oral absorption, conversion of biological activity to pKi 
values, division of the dataset into training, test, and external validation 
sets, feature selection process, identification of influential descriptors, 
construction of regression models using machine learning algorithms, 
validation of the models’ predictive performance, determination of the 
applicability domain, and analysis of protein–ligand interactions be-
tween DOR and compounds. In the first step, a description of the dataset 
used for the analysis is provided, which consists of 4,217 molecules. 
Based on the criteria defined by the Rule of Five (RO5), a total of 1,793 
unique molecules were generated. The conversion of biological activity 
to pKi values is explained to enable the use of a logarithmic scale. The 
dataset is then divided into a training set (70 %) and an internal test set 
(30 %) for model generation and evaluation, respectively. Additionally, 
a separate set of 38 FDA-approved drugs targeting DOR is used as an 
external validation test set. The second step focuses on the feature se-
lection process and the identification of influential descriptors for the 
regression model. A wide range of 1,211 2D and 3D molecular de-
scriptors from various libraries were derived, covering categories and 
properties related to molecular structure and properties. Normalization 
and standardization of the variables were performed to handle de-
scriptors with different units. Notably, the performance of models using 
raw, normalized, or standardized descriptors showed negligible varia-
tions. Highly correlated features were removed early in the feature 

selection stage to enhance model accuracy and robustness. The 
remaining 520 descriptors were evaluated using the K-best feature se-
lection method to determine their contribution to the model’s perfor-
mance and generalization ability. The most influential descriptors, 
namely SLOGPVSA2, Chi6ch, and S17, belonging to the MOE-type 
descriptor category, provided valuable information about octanol/ 
water partition coefficient, surface area, connectivity, and electro-
topological state, shedding light on their relevance in predicting the 
target properties. 

Continuing the analysis, machine learning algorithms, specifically 
Random Forest (RF) and XGBoost (XGB), were utilized to construct 
regression models based on the selected features. The parameters of RF 
and XGB were defined, and statistical parameters such as regression 
coefficient (R), determination coefficients (R2 and Q2), and Root Mean 
Squared Error (RMSE) were employed to evaluate the models’ perfor-
mance. The XGB model was ultimately selected as the final algorithm 
due to its high efficiency in capturing the activity-descriptor relation-
ship, supported by favorable determination coefficients and regression 
coefficients. The model’s predictive capability and descriptive ability 
were demonstrated through an activity interactive graph, and its 
compliance with key criteria for a good QSAR (Quantitative Structure- 
Activity Relationship) model further confirmed its acceptability statis-
tically. Validation of the model using an external test set of FDA- 

Fig. 7. Interaction map of all-in-contact residues for co-crystalized DPI-287 (PDB code:6PT3) and the peptide agonist KGCHM07 (PDB code: 6PT2) at the DOR–ligand 
binding interface. 
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Fig. 8. A: Interaction map of all-in-contact residues for 1,050 docked complexes at the DOR–ligand binding interface; B: Close up of the residues contributing to the 
contact analysis for a docked compound with a higher Glide score and pKi. 

Fig. 9. Bar contribution of binding site residues to binding affinities of more potent docked inhibitors.  
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approved drugs strengthened its robustness and accuracy in predicting 
agonist activity against DOR. The next step of the analysis focused on the 
importance of validating the predicted QSAR model through the appli-
cability domain (AD). The AD defines the range of compounds for which 
the model’s predictions are reliable, avoiding extrapolations beyond the 
trained data. The Williams plot, which visualizes standardized residuals 
versus leverage values, was used to define the AD. Compounds 
exceeding the warning leverage threshold and those with standardized 
residuals outside the defined range were identified as potential outliers 
and typically excluded from the AD. The analysis revealed that a sig-
nificant majority of the compounds fell within the acceptable criteria of 
the AD, confirming the model’s reliability for most of the dataset. 

Lastly, protein–ligand interactions between DOR and compounds 
were explored. Docking calculations and IFPs (Interaction Fingerprints) 
were employed for this analysis. The docking simulations were validated 
by comparing the docked pose of the co-crystallized inhibitors with the 
corresponding experimental structure, showing good alignment. IFPs 
were calculated to capture various types of interactions between DOR 
and ligands. The analysis revealed common binding site residues 
involved in the interactions and confirmed the reliability of the docking 
experiments. Important residues, particularly Asp 128, were identified, 
and their interactions with ligands were analyzed, providing insights for 
the design of novel DOR inhibitors. 

Overall, the presented results provide a comprehensive analysis of 
the GPCR database, covering feature selection, model construction, 
validation, determination of the applicability domain, and analysis of 
protein–ligand interactions. This research serves as a foundation for the 
development of a robust predictive model for agonist activity against 
DOR, demonstrating high predictive performance and the potential for 
practical application in drug discovery. 

5. Conclusion 

In this study, a comprehensive QSAR model-based machine learning 
approach was constructed using 4,218 agonist compounds with inhibi-
tory bioactivities measured using a consistent bioassay procedure in Ki 
format. An exploratory data analysis (EDA) approach was applied to 
refine SMILES notations, duplicate molecules, salt forms, heavy metals 
and fragments. Finally, the compounds were filtered based on Lipinski’s 
rule of five (RO5). The compounds underwent geometric optimization, 
which entailed the addition of hydrogen atoms, fine-tuning bond lengths 
and angles to realistic values, rectifying chirality, addressing ionization 
states, optimizing tautomers, stereochemistry, and ring shapes. Subse-
quently, partial charges were assigned to the structures, followed by an 
energy minimization process at pH = 7. A total of 1,211 2D and 3D 
molecular descriptors were derived using PyBioMed and PaDEL li-
braries. The K-best features selection method revealed three key struc-
tural features such as SLOGPVSA2, Chi6ch, and S17 contributed 
significantly to the XGBOOST model performance. Statistical analysis, 
internal K-fold cross-validation, and external validation using 38 unseen 
FDA-approved drug data confirmed the robustness of the predictive 
model. Applicability domain (AD) analysis using William plot confirmed 
the reliability of the model by falling 98 % of the input compounds 
within its acceptable ± 3.0 standard residual deviations. A molecular 
docking study along with ligand–receptor contacts fingerprints (LRCFs) 
analysis revealed the key contact interactions of Asp 128, Tyr 129, Met 
132, Trp 274, Ile 277, and Tyr 308 residues in the total binding affinities 
upon complexation of the ligands-DOR. Our study using regression 
QSAR along with ligand–receptor contact fingerprints analysis could 
serve in designing new agonist compounds to effectively target DOR. 
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