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A R T I C L E I N F O A B S T R A C T

Editor: N. Lambert We establish simple formulae for computing Finkelstein–Rubinstein signs for Skyrme fields generated in two 
ways: from instanton ADHM data, and from rational maps. This may be used to compute homotopy classes of 
general loops in the configuration spaces of skyrmions, and as a result provide a useful tool for a quantum 
treatment beyond rigid-body quantisation of skyrmions.
1. Introduction

The Skyrme model [24] is a nonlinear model of nuclei, where 
baryons are interpreted as topological soliton solutions to static field 
equations called skyrmions. The model is recognised as an effective 
model of QCD [27]; since extracting properties of nuclei directly from 
QCD is beyond current computational capabilities, the Skyrme model 
acts as a simpler and more tractable alternative.

In this model pions are encoded by maps 𝑈 ∶ ℝ3 → SU(2) ≅ 𝑆3

which are continuous and satisfy 𝑈 → Id as |𝒙| →∞; these are called 
Skyrme fields. The space 𝑆 of all Skyrme fields can be identified with 
the space of based continuous maps from 𝑆3 to 𝑆3 via the one-point-
compactification 𝑆3 ≅ ℝ3 ∪ {∞}. Each Skyrme field has a topological 
degree 𝑁 ∈ 𝜋3(𝑆3) ≅ ℤ, physically identified as the baryon number, 
and this splits the configuration space into distinct connected compo-
nents 𝑆𝑁 , labelled by topological degree.

In order to make contact with real nuclear physics, one must quan-
tise the model. A key step in this process is to constrain the wave 
function, which is a map Ψ ∶ 𝑆𝑁 → ℂ defined on the universal cover 
𝑆𝑁 of 𝑆𝑁 . The space 𝑆𝑁 admits an action of the fundamental group 
𝜋1(𝑆𝑁 ) ≅ℤ2 = {±1}, and the wavefunction is required to satisfy

Ψ((−1) ⋅𝑈 ) = −Ψ(𝑈 ) (1.1)

for all points 𝑈 ∈ 𝑆𝑁 [7,27]. In practice, quantisation is often carried 
out on a subset 𝐶 ⊂ 𝑆𝑁 , lifted to 𝐶 ⊂ 𝑆𝑁 . In this case, for closed loops 
𝑈𝑡 in 𝐶 parametrised by 𝑡 ∈ [0, 1] and satisfying 𝑈1 = 𝑈0, one needs 
to calculate the corresponding element of 𝜋1(𝑆𝑁 ), denoted 𝜎(𝑈𝑡) = ±1. 
The wavefunction along the lift 𝑈𝑡 of the loop in 𝑆𝑁 is required to 
satisfy
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Ψ(𝑈1) = 𝜎(𝑈𝑡)Ψ(𝑈0). (1.2)

Constraints of the form (1.2) are known as Finkelstein–Rubinstein 
constraints [7]. The sign 𝜎(𝑈𝑡) ∈ 𝜋1(𝑆𝑁 ) is called the Finkelstein–
Rubinstein sign, or sometimes the Finkelstein–Rubinstein phase.
Finkelstein—-Rubinstein constraints play a vital role in quantisation. 
They ensure that the nucleon has odd spin and Fermi exchange statistics 
[7], and they are used to calculate spin and isospin quantum numbers 
of nuclei [3,15,17,19,21].

Various methods for calculating Finkelstein–Rubinstein signs are 
already known, applicable to Skyrme fields of particular forms. The 
simplest way to construct a degree 𝑁 Skyrme field is to take a product 
of 𝑁 degree 1 Skyrme fields. This is known as the product approxima-
tion. The Finkelstein–Rubinstein sign of a path generated in the product 
approximation by rotating and permuting the centres of the degree 1
Skyrme fields can be calculated explicitly using the original methods of 
Finkelstein and Rubinstein [7]. This process can be automated using an 
algorithm presented in [8].

Unfortunately, energy-minimising skyrmions rarely resemble prod-
ucts of degree 1 Skyrme fields. A more sophisticated approximation, 
which does accurately describe several minimal-energy Skyrme fields, 
is the rational map approximation [13]. This constructs a Skyrme field 
as a suspension of a rational map from 𝑆2 to 𝑆2. The calculation of 
Finkelstein–Rubinstein signs within the rational map approximation 
was addressed in [15]. In particular, a simple method was developed 
for calculating Finkelstein–Rubinstein signs of paths induced by rota-
tions of the domain and target. This method has been extended in [16]
and used extensively in rigid body quantisation [3,17,19,21]. The meth-
ods of [15,16] are not as easily applied to more general paths of rational 
maps, because they entail finding roots of degree 𝑁 polynomials.
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Several recent papers on the quantisation of skyrmions have made 
use of families of Skyrme fields which are not induced by rotations 
[9,11,12,22,25]. This motivates the search for more sophisticated meth-
ods to approximate Skyrme fields and calculate Finkelstein–Rubinstein 
signs. The Atiyah–Manton approximation [2] is a very powerful method 
to generate Skyrme fields which accurately describes numerous low-
energy skyrmions [5]. It has fruitfully been used for quantising of 
skyrmions [10,18,26]. This approximation generates Skyrme fields from 
Yang-Mills instantons, which are in turn easily produced using the 
ADHM construction [1,4,20].

In this paper we present a method to calculate Finkelstein–
Rubinstein signs for paths of Skyrme fields induced from ADHM data. 
We also present a new way to calculate Finkelstein–Rubinstein signs for 
paths generated using the rational map approximation. Both methods 
are very simple and widely applicable. They are not restricted to paths 
generated by rotations, and they do not require factorisation of poly-
nomials. The new methods are derived in the next two sections. The 
following sections illustrate the methods in some examples and present 
some concluding remarks.

2. Instantons and ADHM data

The Atiyah-Manton approximation constructs Skyrme fields from in-
stantons on ℝ4. The most powerful way of creating instantons is the 
ADHM construction [1,4,20], which produces all instantons on ℝ4 us-
ing just quaternionic linear algebra. It begins with a pair (𝐿, 𝑀) of 
quaternionic matrices 𝐿 ∈ Mat1×𝑁 (ℍ) and 𝑀 ∈ Mat𝑁×𝑁 (ℍ), with 𝑀
symmetric. From these, we build the operator

Δ𝑥 =
(

𝐿

𝑀 − 𝑥Id𝑁

)
, (2.1)

in which 𝑥 ∈ℍ represents a point in ℝ4 via

𝑥 = 𝑥1𝒊+ 𝑥2𝒋 + 𝑥3𝒋 + 𝑥4𝟏. (2.2)

We assume that Δ†
𝑥Δ𝑥 is invertible for all 𝑥; then the kernel of Δ𝑥 is 

spanned by a quaternionic column vector 𝑉𝑥 which can be normalised 
so that 𝑉 †

𝑥 𝑉𝑥 = 1. From this, one can construct the induced connection

𝐴𝜇 = 𝑉 †
𝑥

𝜕

𝜕𝑥𝜇
𝑉𝑥 (2.3)

on the kernel of Δ†
𝑥. This connection is a linear combination of 𝒊, 𝒋, 𝒌, 

which generate the Lie algebra 𝔰𝔲(2). It solves the self-dual Yang–Mills 
equation provided that the 𝑁 ×𝑁 matrix Δ†

𝑥Δ𝑥 is real.
It is easy to see show that the connection 𝐴𝜇 is unchanged by the 

transformation

(𝐿,𝑀)↦ (𝐿𝑃−1, 𝑃𝑀𝑃−1), 𝑃 ∈O(𝑁). (2.4)

Denote by 𝐷𝑁 the set of all pairs (𝐿, 𝑀) satisfying condition that Δ†
𝑥Δ𝑥

is real and invertible, and let 𝐼𝑁 = 𝐷𝑁
/
O(𝑁) be the moduli space 

of ADHM data. The above-described construction identifies 𝐼𝑁 with 
the moduli space of framed self-dual Yang–Mills instantons on ℝ4 with 
charge 𝑁 .

Atiyah–Manton [2] proposed an approximate description of
skyrmions by taking holonomy of instantons. More precisely, a Skyrme 
field 𝑈 (𝒙) =Ω(𝒙, ∞) is given by solving

𝜕

𝜕𝑥4
Ω(𝒙, 𝑥4) = Ω(𝒙, 𝑥4)𝐴4(𝒙, 𝑥4), Ω(𝒙,−∞) = 𝟏. (2.5)

This will satisfy the boundary condition 𝑈 (𝒙) → 𝟏 as |𝒙| →∞ provided 
that 𝑉𝑥 is chosen to satisfy 𝑉𝑥→ (𝟏, 0, … , 0)𝑡 as |𝑥| →∞.

Now suppose that (𝐿𝑡, 𝑀𝑡) describes a loop in 𝐼𝑁 , parameterised by 
𝑡 ∈ [0, 1]. This satisfies

1 1 0 −1 0 −1
2

(𝐿 ,𝑀 ) = (𝐿 𝑃 ,𝑃𝑀 𝑃 ). (2.6)
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for some 𝑃 ∈ O(𝑁). The Atiyah–Manton construction associates to this 
a loop 𝑈𝑡 in 𝑆𝑁 . The aim of this section is to prove the following simple 
method to extract the Finkelstein–Rubinstein sign 𝜎(𝑈𝑡) ∈ 𝜋1(𝑆𝑁 ) for 
this loop.

Theorem 1. Let (𝐿𝑡, 𝑀𝑡) ∈ 𝐼𝑁 be a loop of ADHM matrices satisfying 
(2.6) as above, and let 𝑈𝑡 be the corresponding loop in the space of Skyrme 
fields. The Finkelstein–Rubinstein sign of this loop is given by

𝜎(𝑈𝑡) = det 𝑃 . (2.7)

Proof. It is known by a result of Hurtubise [14] that 𝜋1(𝐼𝑁 ) =ℤ2. From 
this it follows that the universal cover 𝐼𝑁 → 𝐼𝑁 is two-to-one. There is 
another natural two-to-one cover of 𝐼𝑁 given by

ℤ2 ⟶𝐷𝑁
/
SO(𝑁) ⟶ 𝐼𝑁 . (2.8)

The associated exact sequence of homotopy groups includes a homo-
morphism

𝜋1(𝐼𝑁 )⟶ 𝜋0(ℤ2) ≅ℤ2. (2.9)

This homomorphism 𝜋1(𝐼𝑁 ) → ℤ2 is precisely the map [(𝐿𝑡, 𝑀𝑡)] ↦
det 𝑃 , where (𝐿𝑡, 𝑀𝑡) is the loop satisfying (2.6). On the other hand, 
the Atiyah–Manton construction gives rise to a map from 𝐼𝑁 to the 
space 𝑆𝑁 of Skyrme configurations, and hence a homomorphism

𝜋1(𝐼𝑁 )⟶ 𝜋1(𝑆𝑁 ) ≅ℤ2. (2.10)

So now we have two natural homomorphisms 𝜋1(𝐼𝑁 ) → ℤ2, and we 
need to show that these two homomorphisms agree.

To do so, consider the following family of ADHM matrices:

𝐿𝑡 =
(
1 1 ⋯ 1

)
,

𝑀𝑡 = diag{cos(𝜋𝑡)𝒊+ sin(𝜋𝑡)𝒋,−cos(𝜋𝑡)𝒊− sin(𝜋𝑡)𝒋,2𝒊,… , (𝑁 − 1)𝒊} .
(2.11)

It is straightforward to check that these satisfy the ADHM constraints, 
namely that Δ†

𝑥Δ𝑥 is real and invertible for all 𝑥. They moreover satisfy

(𝐿1,𝑀1) = (𝐿0𝑃−1, 𝑃𝑀0𝑃−1), 𝑃 =
⎛⎜⎜⎝
0 1
1 0 0

0 Id𝑁−2

⎞⎟⎟⎠ .
Since det 𝑃 = −1, it follows that the homomorphism (2.9) is surjective.

The family of connections determined by the data (2.11) may be 
written explicitly in the ’t Hooft ansatz describing 𝑁 instantons with the 
same scales and orientations, with positions given by the diagonal com-
ponents of 𝑀 . Since the positions were chosen inside ℝ3 ≅ im (ℍ), the 
corresponding Skyrme field has precisely the same physical interpreta-
tion. In this way, the family (2.11) generates a loop in the configuration 
space of Skyrme fields which swaps the positions of two individual 
skyrmions. This loop is known to be a generator of 𝜋1(𝑆𝑁 ) = ℤ2 [7]. 
So both of the homomorphisms 𝜋1(𝐼𝑁 ) → ℤ2 are surjective, and they 
therefore must agree as the only surjective homomorphism ℤ2 → ℤ2 is 
the identity. □

3. Rational maps

The rational map approximation [13] is a popular method of writing 
down Skyrme fields. A rational map 𝑅 ∶ ℂℙ1 → ℂℙ1 of degree 𝑁 can 
be written

𝑅(𝑧) = 𝑝(𝑧)
𝑞(𝑧)

, (3.1)

where 𝑝 =
∑𝑁
𝑖=0 𝑝𝑖𝑧

𝑖 and 𝑞(𝑧) =
∑𝑁
𝑖=0 𝑞𝑖𝑧

𝑖 are two complex polynomials 

satisfying
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det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑝0 ⋯ ⋯ 𝑝𝑁
𝑝0 ⋯ ⋯ 𝑝𝑁

⋱ ⋯ ⋯ ⋯
𝑝0 ⋯ ⋯ ⋯ 𝑝𝑁

𝑞0 ⋯ ⋯ 𝑞𝑁−1 𝑞𝑁
𝑞0 ⋯ ⋯ 𝑞𝑁−1 𝑞𝑁

⋱ ⋯ ⋯ ⋱ ⋱
𝑞0 ⋯ ⋯ 𝑞𝑁−1 𝑞𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=∶ Res(𝑝, 𝑞) ≠ 0.

(3.2)

The Skyrme field 𝑈 associated to a rational map 𝑅 takes the form

𝑈 (𝐱) = exp(𝑖 𝑓 (𝑟)𝑛𝑗 (𝑧)𝜎𝑗 ). (3.3)

Here 𝜎𝑗 are the Pauli matrices, 𝑟 = |𝐱| and 𝑧 ∈ ℂ is a stereographic 
coordinate defined by 𝑧 = (𝑥1 + 𝑖𝑥2)∕(𝑟 + 𝑥3). The 𝑆2-valued function 𝐧
is constructed from 𝑅 using inverse stereographic projection:

𝐧(𝑧) =
(

2ℜ(𝑅(𝑧))
1 + |𝑅(𝑧)|2 , 2ℑ(𝑅(𝑧))

1 + |𝑅(𝑧)|2 , 1 − |𝑅(𝑧)|2
1 + |𝑅(𝑧)|2

)
. (3.4)

Finally, the profile function 𝑓 ∶ [0, ∞] → [0, 𝜋] is required to satisfy 
𝑓 (0) = 𝜋, 𝑓 (∞) = 0 and in practice is usually chosen to minimise an en-
ergy. Suitable choices of rational maps 𝑅 lead to good approximations 
to minima of the Skyrme energy [13].

Now suppose that we have a loop 𝑅𝑡(𝑧) = 𝑝𝑡(𝑧)∕𝑞𝑡(𝑧) in the space 
of rational maps, parametrised by 0 ≤ 𝑡 ≤ 1 and satisfying 𝑝1(𝑧) = 𝑝0(𝑧)
and 𝑞1(𝑧) = 𝑞0(𝑧). This induces a loop 𝑈𝑡(𝐱) in the space of Skyrme 
fields. The problem of computing the Finkelstein–Rubinstein sign 𝜎(𝑈𝑡)
of such a loop was first considered in [15]. Here we present a new 
method to compute this sign:

Theorem 2. Let 𝑝𝑡, 𝑞𝑡, 𝑅𝑡, 𝑈𝑡 be as above. Let 𝛾 be the loop in ℂ∗ =ℂ ⧵{0}
given by 𝛾(𝑡) = Res(𝑝𝑡, 𝑞𝑡). Let 𝑤(𝛾) ∈ ℤ be the winding number of 𝛾 in 
𝜋1(ℂ∗) ≅ℤ. Then the Finkelstein–Rubinstein sign of the loop 𝑈𝑡 of Skyrme 
fields is given by

𝜎(𝑈𝑡) = (−1)𝑤(𝛾). (3.5)

Proof. Denote by 𝑀𝑁 the space of rational maps 𝑅 of degree 𝑁 , and 
by 𝑀∗

𝑁
the space of based rational maps satisfying 𝑅(∞) = ∞. It is 

known that 𝜋1(𝑀∗
𝑁
) ≅ ℤ and that 𝜋1(𝑀𝑁 ) ≅ ℤ2𝑁 , and that the map 

𝜋1(𝑀∗
𝑁
) → 𝜋1(𝑀𝑁 ) induced by the inclusion 𝑀∗

𝑁
→𝑀𝑁 is given by 

𝑛 ↦ 𝑛 mod 2𝑁 [6,23].
The rational map approximation is a map 𝑀𝑁 → 𝑆𝑁 . Krusch has 

shown that the composition 𝜋1(𝑀∗
𝑁
) → 𝜋1(𝑀𝑁 ) → 𝜋1(𝑆𝑁 ) induced 

by the rational map construction is given by 𝑛 ↦ (−1)𝑛. So the map 
𝜋1(𝑀𝑁 ) → 𝜋1(𝑆𝑁 ) ≅ ℤ2 must also be given by 𝑛 ↦ (−1)𝑛, where 
0 ≤ 𝑛 < 2𝑁 represents an element of ℤ2𝑁 .

Now let 𝑃𝑁 denote the space of pairs (𝑝, 𝑞) of polynomials with 
Res(𝑝, 𝑞) ≠ 0 and max{deg(𝑝), deg(𝑞)} =𝑁 . There are natural maps 𝑓∗ ∶
𝜋1(𝑃𝑁 ) → 𝜋1(𝑀𝑁 ) ≅ℤ2𝑁 and Res∗ ∶ 𝜋1(𝑃𝑁 ) → 𝜋1(ℂ∗) ≅ℤ induced by 
the projection 𝑓 ∶ (𝑝, 𝑞) ↦ 𝑅 = 𝑝∕𝑞 and the resultant Res ∶ 𝑃𝑁 → ℂ∗. 
Our preceding comments show that the left hand side of the identity 
(3.5) is equal to (−1)𝑓∗(𝑝𝑡,𝑞𝑡), while the right hand side is (−1)Res∗(𝑝𝑡,𝑞𝑡), 
with (𝑝𝑡, 𝑞𝑡) being a representative loop in 𝑃𝑁 of an element of 𝜋1(𝑃𝑁 ). 
To prove the theorem it suffices to show that these two are equal, in 
other words that the diagram

𝜋1(𝑃𝑁 ) 𝜋1(𝑀𝑁 ) ≅ℤ2𝑁

𝜋1(ℂ∗) ≅ℤ ℤ2

𝑓∗

Res∗ (3.6)

commutes.
Now let 𝑃 1

𝑁
⊂ 𝑃𝑁 denote the subset of pairs of polynomials with 

Res(𝑝, 𝑞) = 1, and consider the following commuting diagram of fibra-
3

tions.
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ℤ2𝑁 ℂ∗ × 𝑃 1
𝑁

𝑃𝑁

ℤ2𝑁 ×ℤ2𝑁 ℂ∗ × 𝑃 1
𝑁

ℂ∗ ×𝑀𝑁

Res×𝑓 (3.7)

The map ℂ∗ × 𝑃 1
𝑁
→ 𝑃𝑁 is given by (𝑎, (𝑝, 𝑞)) ↦ (𝑎𝑝, 𝑎𝑞); this is clearly 

a ℤ2𝑁 -fibration with fibres consisting of (𝑒−𝑖𝑛𝜋∕𝑁𝑎, (𝑒𝑖𝑛𝜋∕𝑁𝑝, 𝑒𝑖𝑛𝜋∕𝑁𝑞))
for 𝑛 ∈ ℤ2𝑁 . The central vertical map is the identity. The map ℂ∗ ×
𝑃 1
𝑁

→ ℂ∗ ×𝑀𝑁 is given by (𝑎, (𝑝, 𝑞)) ↦ (𝑎2𝑁, 𝑝∕𝑞), which is clearly a 
ℤ2𝑁 ×ℤ2𝑁 fibration with fibres (𝑒𝑖𝑚𝜋∕𝑁𝑎, (𝑒𝑖𝑛𝜋∕𝑁𝑝, 𝑒𝑖𝑛𝜋∕𝑁𝑞)). Then the 
right-most square commutes because Res(𝑎𝑝, 𝑎𝑞) = 𝑎2𝑁Res(𝑝, 𝑞). The 
left-most vertical map is clearly 𝑛 ↦ (−𝑛, 𝑛).

From the homotopy exact sequences of these two fibrations we ob-
tain the following commuting diagram.

𝜋1(𝑃𝑁 ) 𝜋0(ℤ2𝑁 )

𝜋1(ℂ∗) × 𝜋1(𝑀𝑁 ) 𝜋0(ℤ2𝑁 ) × 𝜋0(ℤ2𝑁 )

Res∗×𝑓∗ (3.8)

The lower horizontal arrow is a product of two maps. The first comes 
from the fibration ℤ2𝑁 → ℂ∗ → ℂ∗ and is given by 𝜋1(ℂ∗) ≅ℤ →ℤ2𝑁 , 
𝑛 ↦ 𝑛 mod 2𝑁 . The second is the map ℤ2𝑁 ≅ 𝜋1(𝑀𝑁 ) → 𝜋0(ℤ2𝑁 )
which arises from the fibration ℤ2𝑁 → 𝑃 1

𝑁
→𝑀𝑁 ; this is known to be 

an isomorphism [6]. The image of the right-most vertical arrow consists 
of (−𝑛, 𝑛) for 𝑛 ∈ℤ2𝑁 . Since the diagram commutes, it follows that

𝑓∗(𝑝𝑡, 𝑞𝑡) = −Res∗(𝑝𝑡, 𝑞𝑡) mod 2𝑁 (3.9)

for all loops (𝑝𝑡, 𝑞𝑡) in 𝑃𝑁 . This equality modulo 2𝑁 implies equality 
modulo 2, and hence the diagram (3.6) commutes as claimed. □

4. Examples

In this section we demonstrate the methods derived above in some 
examples.

Numerical studies have shown that the minimal-energy 𝑁 = 3
Skyrme field has tetrahedral symmetry. The quantisation of the 3-
skyrmion presented in [26] used a path in the 𝑁 = 3 configuration 
space of Skyrme fields which starts at this tetrahedron, passes through 
a torus, and ends at the dual tetrahedron. The dual tetrahedron may 
then be rotated and isorotated to go back to the original tetrahedron, 
forming a loop in the configuration space 𝑆3. Here we construct this 
path using both ADHM data and rational maps, and compute the corre-
sponding Finkelstein–Rubinstein sign.

Consider the following one-parameter family of ADHM data

𝐿(𝑡) =
(
𝒊 𝒋 𝑡𝒌

)
, 𝑀(𝑡) =

⎛⎜⎜⎝
0 𝑡𝒌 𝒋

𝑡𝒌 0 𝒊

𝒋 𝒊 0

⎞⎟⎟⎠ . (4.1)

The data has 𝐷2𝑑 symmetry for all 𝑡 ∈ℝ. At 𝑡 =±1 the data has tetrahe-
dral symmetry 𝑇𝑑 , and at 𝑡 = 0 the data has toroidal symmetry 𝐷∞ℎ. So 
varying 𝑡 between −1 and 1 and applying the Atiyah–Manton construc-
tion reproduces the path of Skyrme fields found in [26]. Charge density 
isosurface plots of this path at 𝑡 = −1, −0.5, 0, 0.5, 1 are given in Fig. 1.

The data at 𝑡 = −1 and 𝑡 = 1 are related as follows:

𝐿(1) = 𝑞𝐿(−1)𝑞−1𝑃−1, 𝑀(1) = 𝑞𝑃𝑀(−1)𝑃−1𝑞−1,

where 𝑞 =
√
2
2 (𝟏 + 𝒌) and 𝑃 =

⎛⎜⎜⎝
0 −1 0
1 0 0
0 0 −1

⎞⎟⎟⎠. In Skyrme language this 

means the tetrahedra are related by a rotation of space about the 𝑥3-axis 
through angle 𝜋2 and an isorotation of the target 3-sphere, also through 
angle 𝜋2 . Thus, the path formed by combining the path from 𝑡 = −1 to 
𝑡 = 1 with this rotation-isorotation pair is a loop in configuration space. 
Since det 𝑃 = −1, the Finkelstein–Rubinstein sign is −1. In other words, 

the loop is non-contractible.
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Fig. 1. The path in the 𝑁 = 3 configuration space generated by the data (4.1).
We can consider the same path of 𝑁 = 3 Skyrme fields using rational 
maps. The family corresponding to (4.1) is

𝑅(𝑧) =
√
3𝑖𝑡𝑧2 − 1

𝑧3 −
√
3𝑡𝑖𝑧

(4.2)

These satisfy 𝑅(−𝑧) = −𝑅(𝑧), 𝑅(1∕𝑧) = 1∕𝑅(𝑧), and 𝑅(𝑖�̄�) = 𝑖𝑅(𝑧), so 
they have 𝐷2𝑑 symmetry. The maps with 𝑡 = ±1 have tetrahedral 𝑇𝑑
symmetry, and the maps with 𝑡 = 0 have axial symmetry about the 𝑥3-
axis. The tetrahedral map with 𝑡 = −1 is related to the map with 𝑡 = 1
by a transformation

𝑅(𝑧)↦ −𝑖𝑅(𝑖𝑧). (4.3)

As before this is a combined rotation and isorotation through angles of 
𝜋

2 about the 𝑥3-axis.
The path obtained by varying 𝑡 from 1 to −1 and then rotating and 

isorotating through angle 𝜋2 is a closed loop in the space of rational 
maps. To calculate its Finkelstein-Rubinstein sign, we calculate the re-
sultant of the map

𝑒−𝑖𝜃𝑅(𝑒𝑖𝜃𝑧) = 𝑒−4𝑖𝜃
𝑒2𝑖𝜃

√
3𝑖𝑡𝑧2 − 1

𝑧3 − 𝑒−2𝑖𝜃
√
3𝑖𝑡𝑧

. (4.4)

The resultant turns out to be

𝑒−12𝑖𝜃

|||||||||||||||

−1 0 𝑒2𝑖𝜃
√
3𝑖𝑡 0 0 0

0 −1 0 𝑒2𝑖𝜃
√
3𝑖𝑡 0 0

0 0 −1 0 𝑒2𝑖𝜃
√
3𝑖𝑡 0

0 −𝑒−2𝑖𝜃
√
3𝑖𝑡 0 1 0 0

0 0 −𝑒−2𝑖𝜃
√
3𝑖𝑡 0 1 0

0 0 0 −𝑒−2𝑖𝜃
√
3𝑖𝑡 0 1

|||||||||||||||
= −𝑒−12𝑖𝜃(1 + 3𝑡2)2.

(4.5)

As 𝑡 varies from 1 to −1 and 𝜃 varies from 0 to 𝜋2 this circles the origin 
three times. So the winding number is 3 and the Finkelstein-Rubinstein 
sign is once again (−1)3 = −1.

As a final example, we consider paths induced by symmetries of ra-
tional maps, which were studied earlier in [15]. Suppose that a rational 
map 𝑅 is invariant under a simultaneous rotation of its domain through 
angle 𝛼 and isorotation of its target through angle 𝛽. Without loss of 
generality we may assume that both rotations are about the 𝑥3-axis and 
hence that

𝑅(𝑧) = 𝑒𝑖𝛽𝑅(𝑒−𝑖𝛼𝑧). (4.6)

The left and right hand sides of this equation are the start and end points 
of the following path in the space of rational maps:

𝑝𝑡(𝑧) = 𝑒𝑖𝑡𝛽 (𝑝0 + 𝑝1𝑒−𝑖𝑡𝛼𝑧+…+ 𝑝𝑁𝑒−𝑖𝑁𝑡𝛼𝑧𝑁 )

𝑞𝑡(𝑧) = (𝑞0 + 𝑞1𝑒−𝑖𝑡𝛼𝑧+…+ 𝑞𝑁𝑒−𝑖𝑁𝑡𝛼𝑧𝑁 ).
(4.7)

Recall that the resultant of 𝑝 and 𝑞 is the determinant of a matrix 𝑇 (𝑝, 𝑞)
given in (3.2). We find that
4

𝑇 (𝑝𝑡, 𝑞𝑡) =𝐷1𝑇 (𝑝0, 𝑞0)𝐷−1
2 (4.8)
𝐷1 = diag(𝑒𝑖𝑡(𝛼+𝛽), 𝑒𝑖𝑡(2𝛼+𝛽), 𝑒𝑖𝑡(𝑁𝛼+𝛽), 𝑒𝑖𝑡𝛼 , 𝑒2𝑖𝑡𝛼 ,… , 𝑒𝑁𝑖𝑡𝛼) (4.9)

𝐷2 = diag(𝑒𝑖𝑡𝛼 , 𝑒2𝑖𝑡𝛼 ,… , 𝑒2𝑁𝑖𝑡𝛼). (4.10)

Hence

Res(𝑝𝑡, 𝑞𝑡) = det(𝐷1) det(𝐷−1
2 )Res(𝑝0, 𝑞0) = 𝑒𝑖𝑡𝑁(𝛽−𝑁𝛼)Res(𝑝0, 𝑞0). (4.11)

The Finkelstein–Rubinstein sign is calculated from the winding number 
of this path in ℂ∗ and is given by

(−1)𝑁(𝛽−𝑁𝛼)∕2𝜋, (4.12)

in agreement with [15].

5. Conclusion and outlook

We have established two new methods for computing Finkelstein–
Rubinstein signs within the widely-used constructions of Skyrme fields: 
instantons and rational maps. Both methods are simple to use and can 
be applied to any loop; in particular, their use is not restricted to loops 
generated by symmetries. For symmetry-generated loops within the ra-
tional map approximation, we have obtained a simple derivation of 
the method introduced in [15] as a special case of our more general 
method. The methods developed here will prove useful in ongoing ef-
forts to quantise skyrmions using paths of Skyrme fields [5,25].
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