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1. Introduction

The classical discriminant D( f ) of a polynomial f in one variable over a field k detects whether f
has a multiple root. If f is of degree d, then its discriminant can be expressed as an irreducible quasi-
homogeneous polynomial in the coefficients of f , and D( f ) vanishes exactly when f has a multiple 
root. In general, an explicit formula for D( f ) consists of many monomial terms (e.g., for d = 6 the 
discriminant has 246 terms), and several compact determinantal formulae are known, that is, D( f ) can 
be written as determinant of a matrix with entries polynomials in the coefficients of f : the most 
famous determinantal formula is due to Sylvester, and there are other determinantal representations 
due to Bezout and Cayley, see (Gelfand et al., 2008, Chapter 12, 1). One can show that these matrices 
are equivalent in the sense that they have isomorphic cokernels, see (Hovinen, 2009, Thm. 2.2.6). From 
a more homological point of view, making use of matrix factorizations, these cokernels yield maximal 
Cohen–Macaulay (= CM)-modules of rank 1 over the hypersurface ring defined by D( f ).

Now a guiding question for our investigations is: can one find other non-equivalent determinantal 
formulae for D( f ), and more generally, find other matrix factorizations of D( f ), and even classify them?

In this paper we will explicitly determine several matrix factorizations of D( f ) that are coming 
from an interpretation of D( f ) as discriminant of the reflection group action of Sn on kn , in particular, 
our matrix factorizations will correspond to isotypical components of the coinvariant algebra.

Before commenting on the contents of the present paper, we review some results that lead to our 
work. When f has degree four, Hovinen studied matrix factorizations for the classical discriminant 
in his thesis (Hovinen, 2009), where he describes several non-equivalent determinantal formulae (in 
particular, the open swallowtail) using deformation theory and also gives a complete classification 
of the homogeneous rank 1 modules of D( f ) (Hovinen, 2009, Thm. 3.2.1, Thm. 4.4.7). In singularity 
theory, discriminants occur in various guises, often as so-called free divisors. Free divisors were first 
studied by Saito (1980) and are hypersurfaces, whose singular locus is a CM-module over the co-
ordinate ring. Discriminants of reflection groups have been studied from this point of view in Saito 
(1993); Orlik and Terao (1992), and other discriminants include discriminants of versal deformations 
of several types of singularities, see Buchweitz et al. (2009) for an overview and further references.

Here we interpret the classical discriminant as the discriminant of the reflection group Sn acting 
on kn: let G be any finite reflection group G ⊆ GL(n, k) acting on the vector space kn . Then G also 
acts on S := Symk(k

n). Denote by R := SG the invariant ring under the group action and further by 
A(G) the reflection arrangement in kn , and by V (�) the discriminant in the (smooth) quotient space 
kn/G . Note that the hypersurface V (�) is given by the reduced polynomial � ∈ R and is simply the 
projection of A(G) onto the quotient. Moreover, in the case of G = Sn and k = C, it is well-known 
that V (�) is isomorphic to the classical discriminant V (D( f )), where f is a polynomial of degree n, 
see Section 2.4.

This interpretation allows us to use representation theory, in particular the McKay correspondence 
(see e.g. Buchweitz, 2012 for more background information and references). In Buchweitz et al. (2020)
a McKay correspondence was established for the discriminants V (�) of true reflection groups, also 
see Buchweitz et al. (2018) for a more leisurely account:

Theorem (Cor. 4.20 in Buchweitz et al., 2020). Let G ⊆ GL(n, k) be a true reflection group acting on S and let 
R = SG be the invariant ring, � ∈ R be the discriminant polynomial, and z ∈ S be the polynomial defining 
the reflection arrangement A(G). Then the nontrivial irreducible G-representations are in bijection with the 
isomorphism classes of (graded) R/(�)-direct summands of the CM module S/(z) over R/(�).

In particular, these direct summands are unique up to isomorphism of R/(�)-modules, and hence 
so are their matrix factorizations.

Now we can state a refined version of our guiding question: Can we write down matrix factorizations 
for the direct summands of S/(z) explicitly and also find a geometric interpretation of them?

So far, all matrix factorizations for isotypical components have been determined for the case when 
G is a true reflection group of rank 2, see Buchweitz et al. (2020), and for the case of the family of 
rank 2 complex reflection groups G(m, p, 2), see May (2023). For higher rank reflection groups, a com-
plete answer is only known for the special case S4 (Buchweitz et al., 2020, Section 6). There has been 
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progress on determining the direct summands of S/(z) that correspond to logarithmic (co-)residues 
(Buchweitz et al., 2020, Thm. 5.9). The other isotypical components have yet to be determined in gen-
eral. However, in this paper we determine explicit matrix factorizations for S/(z) for G = Sn , which 
answers the first part of the question above for these G . In order to find a geometric interpretation, a 
starting point would be to analyze the matrix factorizations yielding CM modules of rank 1, and thus 
determinantal formulae for the discriminant.

The main problem in writing down the matrix factorizations is to find a suitable R-basis of S/(z)
that respects the decomposition in isotypical components. To this end we will use modifications of 
higher Specht polynomials. Higher Specht polynomials themselves are a generalization of the classical 
Specht polynomials and were introduced by Ariki et al. (1997) for the groups G(m, p, n), also see 
Terasoma and Yamada (1993) for the case Sn . These polynomials were further studied for generaliza-
tions of coinvariant rings (Gillespie and Rhoades, 2021), such as Garsia–Procesi modules (introduced 
in Garsia and Procesi, 1992). They form a basis of the coinvariant algebra and are indexed by standard 
Young tableaux T , P of shape λ, where λ is a partition of n. Note that partitions of n are in bijection 
with the irreducible representations of Sn .

Our main result is the following:

Theorem 1.1 (cf. Theorem 3.14). Let � ∈ R be the discriminant polynomial of G = Sn under the action on S, 
let λ be a partition of n and denote by T ∈ ST(λ) a standard Young tableau of shape λ. Then multiplication by 
z on S defines a matrix factorization (z, z) of �, which decomposes as

(z, z) =
⊕
λ�n

⊕
T ∈ST(λ)

(z|MT , z|NT ′ ) , (1)

where MT is the R-module generated by the modified higher Specht polynomials, and NT ′ is the R-module 
generated by the higher Specht polynomials for the conjugate tableau T ′. In terms of CM-modules, this decom-
position can be written as

S/(z) =
⊕
λ�n

⊕
T ∈ST(λ)

MT ∼=
⊕
λ�n

⊕
T ′∈ST(λ)

NT ′ .

We will define modified Higher Specht polynomials H P
T so that matrix given by multiplication by z

in terms of the bases F P
T and H P

T of S as an R-module, is block diagonal as written in equation (1).
For our computations we used the computer algebra system Macaulay2 (Grayson and Stillman). In 

Section 3.1 the code is described in more detail and also a link to a GitHub repository is provided.
Furthermore, we follow Ariki et al. (1997) and also determine a decomposition of S/(z) into iso-

typical components corresponding to Young subgroups Sn1 ×· · ·× Snm � Sn , where 
∑m

i=1 ni = n, using 
our modified higher Specht polynomials, see Theorem 4.14.

In Subsection 4.1 we indicate how to generalize our results to the family of complex reflection 
groups G(m, p, n), with the explicit examples of G(2, 1, n), also known as hyperoctahedral groups 
and denoted by Bn . These groups are of interest in many combinatorial applications, see e.g. Debus 
et al. (2023) for more detail. Writing down higher Specht polynomials and subsequently our matrix 
factorizations for more general groups G(m, p, n) become notationally quite challenging and we will 
not pursue this topic further in this paper.

In order to get a complete answer for the question above, one also needs to consider the ex-
ceptional reflection groups of rank � 2 (for k = C these are the 15 groups G23, . . . , G37 in the 
Shephard–Todd classification). Beyond the case of the family G(m, p, n), it is not quite clear how 
to find an equivalent of a “Specht basis” so we pose the

Question 1.2. Can one find analogues for Higher Specht polynomials for all pseudo-reflection groups 
G , that is, find a natural basis of the coinvariant algebra S/R+ which is compatible with the decom-
position of S/R+ into G-irreducible modules?
3
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The paper is structured as follows: in Section 2 we recall basics of matrix factorizations, Young 
diagrams and introduce � as the discriminant of Sn acting on kn . In Section 3 we prove our main 
result (Theorem 3.14) about the decomposition S/(z) into isotypical components, using (modified) 
Higher Specht polynomials. We also give an explicit description of the matrix factorization for an 
isotypical component in Theorem 3.20 and close the section with examples and a description of our 
code in Section 3.1. Finally, in Section 4 we generalize this decomposition to Young subgroups of Sn

and treat the groups Bn = G(2, 1, n).

Acknowledgments

The authors want to thank the reviewers for their helpful comments, in particular Reviewer 1, 
whose suggestions certainly improved the quality of the paper.

2. Preliminaries

2.1. Matrix factorizations

Matrix factorizations were introduced by Eisenbud (1980) to study homological properties of hy-
persurface rings. Here we recall the main results that will be needed later, following the expositions 
in Leuschke and Wiegand (2012); Yoshino (1990).

Definition 2.1. Let B be a commutative ring and let f ∈ B . A matrix factorization of f is a pair (ϕ, ψ)

of homomorphisms between free B-modules of the same rank n, with ϕ : F −→ G and ψ : G −→ F , such 
that

ψϕ = f · 1F and ϕψ = f · 1G .

We may choose bases for F , G , and then, equivalently, ϕ , ψ are square matrices of size n × n over B , 
such that

ψ · ϕ = f · 1Bn and ϕ · ψ = f · 1Bn .

In the following, we will always assume that B is either a regular local ring or that B is a graded 
polynomial ring.

Recall that a morphism of matrix factorizations (ϕ1, ψ1) and (ϕ2, ψ2) of f is a pair of matrices (α, β)

such that the following diagram commutes:

Bn1 Bn1 Bn1

Bn2 Bn2 Bn2

α

ψ1

β

ϕ1

α

ψ2 ϕ2

We say that two matrix factorizations are equivalent if there is a morphism (α, β) in which α, β are 
isomorphisms. Furthermore, for two matrix factorizations (ϕ1, ψ1) and (ϕ2, ψ2) of f , their sum is 
defined as

(ϕ1,ψ1) ⊕ (ϕ2,ψ2) =
([

ϕ1 0
0 ϕ2

]
,

[
ψ1 0
0 ψ2

])
.

With these notions, matrix factorizations of f form an additive category, denoted by MFB( f ).
The main reason to consider matrix factorizations is that they correspond to maximal Cohen–

Macaulay modules over a hypersurface ring: For any non-unit f 	= 0 in B we denote by A = B/( f )
the hypersurface ring defining V ( f ) ⊆ Spec(B). Let further C(A) be the category of maximal Cohen-
Macaulay modules over the ring A.
4
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Theorem 2.2 (Eisenbud’s matrix factorization theorem, see Eisenbud, 1980, 6.1, 6.3). Assume that B is a reg-
ular local ring. Let A = B/( f ) be as above and let (ϕ, ψ) be a matrix factorization of f . Then the functor 
Coker(ϕ, ψ) = Coker(ϕ) induces an equivalence of categories

M F B( f ) := M F B( f )/{(1, f )} 
 C(A) .

This shows that instead of directly calculating the maximal Cohen-Macaulay modules over A, we 
can instead construct matrix factorizations of f .

Remark 2.3. This theorem also holds in the graded case, that is, when B is a graded polynomial ring 
and f is a homogeneous element. Then one considers the categories of graded matrix factorizations 
and of graded CM-modules, see e.g., Yoshino (1990). In this paper we implicitly work in the graded 
situation, although we will not care too much about the actual degrees.

Remark 2.4. Note that when our ring B is an integral domain, then given one component of a matrix 
factorization ϕ , the other is uniquely determined by the formula

ψ = f ϕ−1.

In fact, ϕ is a component of a matrix factorization precisely when ϕ is invertible in the fraction field 
of B and ψ defined above has entries in B rather than in its fraction field. In addition, when we 
consider minimal generators of the kernel of the map ϕ : (B/( f ))n1 → (B/( f ))n1 , it is the image of 
the map ψ : (B/( f ))n1 → (B/( f ))n1 . Hence, ψ gives the reduced first reduced syzygy of ϕ and we 
write ψ = syz1

Bϕ .

2.2. Young diagrams

Here we recall basic facts about Young diagrams and representations of Sn , for more detail see 
Fulton (1996).

Consider n ∈ N \ {0}. Let λ be a partition of n, denoted λ � n, i.e. λ = (λ0, . . . , λk−1), such that 
1 � k � n, 0 < λi+1 � λi and 

∑
i λi = n. A partition can also be represented as a Young diagram, which 

is constructed in the following way: Given a partition λ of n, the Young diagram associated to λ is 
a collection of left justified rows of squares called cells. Enumerate the rows from 0 to k − 1, top 
to bottom, the number of cells in row i is λi . The partitions uniquely determine the Young diagram 
so we use the same notation λ for the partition and the Young diagram. We call a Young diagram 
associated to a partition of n, a Young diagram of size n. For the partition λ we write λ′ for the 
conjugate partition, which is defined by taking the transpose of its Young diagram.

Example 2.5. Let n = 5 and λ = (2, 2, 1) then the Young diagram is:

and λ′ = (3, 2) with Young diagram

.

Definition 2.6. A Young tableau is a Young diagram of size n, where each cell contains a number from 
1 to n such that each number 1 to n appears only once. A Young tableau with an underlying Young 
diagram λ is said to be of shape λ. A Young tableau is called standard if the sequence of entries in 
the rows and columns are strictly increasing, and the set of standard Young tableaux of shape λ is 
denoted by ST(λ).
5
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For a Young tableau T ∈ ST(λ) we write T ′ for its conjugate tableau, that is, T ′ is obtained by 
transposing T and its entries. Note that T ′ ∈ ST(λ′), where λ′ is the conjugate partition of λ.

Example 2.7. Let n = 5 and consider the Young diagram λ from the previous example. Then the fol-
lowing are Young tableaux:

1 2
3 4
5

1 3
2 4
5

are also both standard tableaux.
The partition λ = (2, 2, 1) has the conjugate λ′ = (3, 1), and the conjugates of the above tableaux 

are

1 3 5
2 4

1 2 5
3 4

.

Definition 2.8. Let λ � n and let T be a standard tableau of shape λ. We define the word w(T ) to 
be the sequence obtained by reading each column from bottom to top starting from the left. We 
write w(T ) j for the j-th term in this sequence, where j = 0, . . . , n − 1. The index i(T ) = i(w(T )) is 
inductively defined as follows: write subscripts on the elements of the sequence w(T ) by first writing 
10 in w(T ), then if you have kp , add a subscript (k + 1)p if k + 1 is to the right of k in w(T ) or 
(k + 1)p+1 if k + 1 is to the left of k in w(T ). We write the subscripts in the cells of a tableau i(T ), 
matching the entries of T . Further we define î(T ) to be i(T ) written in non increasing order and 
|i(T )| to be the sum of the indexes. This notion will be needed in Section 3, in particular Lemma 3.19.

Example 2.9.

T =
1 2
3 4
5

i(T ) =
0 0
1 1
2

w(T ) = (5,3,1,4,2) (52,31,10,41,20)

î(T ) = (2,1,1,0,0) |i(T )| = 4.

It is widely known that Young diagrams of size n, and thus partitions of n, are in bijection with the 
irreducible representations of Sn over a field k, where Char(k) does not divide |Sn| = n!, see (Fulton 
and Harris, 1991, Section 4) for Char(k) = 0 and (James, 1978, Section 10, 11) for Char(k) � n!. We will 
sometimes denote the irreducible representations Vλ of Sn simply by their corresponding partitions 
λ.

2.3. The action of Sn on kn

Sn naturally acts on a finite dimensional vector space V of dimension n over a field k where 
Char(k) does not divide |Sn| = n!. The quotient variety V /Sn is smooth by the theorem of Cheval-
ley (1955). By fixing a basis {x1, . . . , xn} of V , we form the symmetric algebra of V , Symk(V ) ∼=
k[x1, . . . , xn]. The action of Sn on V can be naturally extended to S = k[x1, . . . , xn] via π · f (x) =
f (π(x)) for π ∈ Sn . We denote by R the invariant ring R = S Sn . Note that we have Spec(S) = V and 
Spec(R) = V /Sn . The theorem of Chevalley–Shepard–Todd also shows that R ∼= k[e1, . . . , en], where ei
are the elementary symmetric polynomials in x1, . . . , xn . Note that R is a graded polynomial ring with 
deg ei = i.

Let A(Sn) be the set of reflecting hyperplanes of the action of Sn , the so-called reflection arrange-
ment of Sn . Let H ∈A(Sn) be such a hyperplane, and let αH be a linear form defining H in S . Then
6
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z =
∏

H∈A(Sn)

αH =
∏

1�i< j�n

(xi − x j)

is a polynomial in S defining the reflection arrangement of Sn , that is V (z) =⋃H∈A(Sn) H .

Definition 2.10. The discriminant polynomial of the Sn action on V is defined by:

� = z2 =
∏

H∈A(Sn)

α2
H =

∏
1�i< j�n

(xi − x j)
2 .

This is defined as an element of S but � is also invariant under the group action, see (Orlik and 
Terao, 1992, Lemma 6.44), and so can be expressed as an element of R = k[e1, . . . , en]. We note that 
R/(�) is a hypersurface ring and from Chevalley’s theorem, S is a free R-module of rank |Sn| = n!.

Let (R+) be the ideal generated by e1, . . . , en in S and let S/(R+) the coinvariant algebra. The 
structure of S as a graded free R-module is given by Chevalley’s theorem (Chevalley, 1955), Chevalley 
assumes k is a field of characteristic 0 but the result holds more generally for fields k with character-
istic not dividing |Sn|, see (Bourbaki, 1981, Chapter 5, Section 2, Theorem 2). As a graded R-module 
S can be decomposed as:

S ∼= S/(R+) ⊗k R.

Denote the set of irreducible representations Vλ of Sn by irrep(Sn). The R-module S/(R+) carries 
the regular representation, in particular:

S/(R+) ∼=
⊕

Vλ∈irrep(Sn)

V dim Vλ

λ .

We thus denote the λ-direct summand (the λ-isotypical component) of S by Sλ = V dim Vλ

λ ⊗k R . 
The polynomial z is the relative invariant for the determinantal representation, see (Orlik and Terao, 
1992, Theorem 6.37) (This was proved in Stanley, 1977, Theorem 3.1 for characteristic 0.). That is, z
generates the direct summand of S/(R+) corresponding to V det = Vλ where λ is given by the Young 
diagram

T = ...

Note that if a ∈ Sλ , then za ∈ Sλ⊗det. In the following we always denote λ ⊗ det by λ′ and note 
that λ′ corresponds to the conjugate representation Vλ′ of Vλ .

Recalling Definition 2.1, we have that multiplication by z induces the matrix factorization (z, z)
over R of �:

S S S

Rn! Rn! Rn!

∼=

z

∼=

z

∼=
z z

This matrix factorization of � ∈ R corresponds to the maximal Cohen–Macaulay module Coker(z) =
S/(z). It was shown in Buchweitz et al. (2020) that EndR/(�)(S/(z)) has global dimension n and 
S/(z) is a faithful R/(�)-module and so is a noncommutative resolution of the discriminant and that 
the direct summands of S/(z) correspond to the nontrivial irreducible representations of Sn . More 
precisely, EndR/(�)(S/(z)) ∼= A/Ae A as rings, where A = Sn ∗ S is the skew group ring and e is the 
7
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idempotent for the trivial representation, (Buchweitz et al., 2020, Theorem 4.17). Thus the indecom-
posable projective modules of these two rings are in bijection and hence it follows that the maximal 
Cohen–Macaulay modules over R/(�) corresponding to the direct summands of S/(z) are pairwise 
non-isomorphic.

2.4. Discriminants of reflection groups and discriminants of deformations (over k =C)

Here we briefly comment on the connection between the classical discriminant of a polynomial (as 
discussed in the introduction) and discriminants of reflection groups: let k = C and let G ⊆ GL(n, k)

be a finite complexified Coxeter group. That is, G is of type Ak, Bk, Dk, E6, E7, E8, I2(p), F4, H3, or 
H4, see e.g. Humphreys (1990) for the classification. Then Arnol’d has shown that the discriminant 
of the reflection group G in Cn/G is isomorphic to the discriminant of a semi-universal deformation 
of the singularity of the same type, see Arnol’d (1972) for type ADE, and Arnol’d et al. (1985) for 
more details. Since Sn in its reflection representation corresponds to the Coxeter group An−1, our 
discriminant V (�) is isomorphic to the discriminant of the semi-universal deformation of an An−1-
singularity. A semi-universal deformation of the singularity k[x]/(xn) is given by

F = xn + an−2xn−2 + · · · + a1x + a0 .

The discriminant of F is the classical discriminant of a polynomial of degree n.
For a concrete example, look at the correspondence for n = 3: Consider a cubic monic polynomial 

f (x) = x3 +ax2 +bx + c with a, b, c ∈ k. Using Sylvester’s formula, one calculates that the discriminant 
D( f ) is given as

D( f )(a,b, c) = −4a3c + a2b2 + 18abc − 4b3 − 27c2 .

D( f ) is a quasi-homogeneous polynomial in k[a, b, c] with deg(a) = 1, deg(b) = 2, deg(c) = 3. More-
over, one can always achieve a = 0, and then the discriminant is of the well-known form

D( f )(b, c) = 4b3 + 27c2 .

On the other hand, we calculate the discriminant � of the action of S3 on k3 resp. k[x1, x2, x3] from 
its Saito matrix (see Saito, 1993 for Coxeter groups and Orlik and Terao, 1992 for complex reflection 
groups): the Saito matrix is given as J J T , where J is the Jacobian matrix of the basic invariants. In 
the case of S3, we can take the power sums si =∑3

j=1 xi
j , i = 1, 2, 3 for the basic invariants and then 

J = (
∂si
∂x j

)i, j=1,...,3 (up to multiplication with a constant)

J J T =
⎛
⎝ 1 1 1

x1 x2 x3

x2
1 x2

2 x2
3

⎞
⎠
⎛
⎝1 x1 x2

1
1 x2 x2

2
1 x3 x2

3

⎞
⎠=

⎛
⎝ 3 s1 s2

s1 s2 s3
s2 s3 s4

⎞
⎠ .

One calculates s4 = 1
6 (s4

1 − 6s2s2
1 + 3s2

2 + 8s3s1) and further

� = det( J J T ) = 3s2s4
1 − 7s2

1s2
2 + 12s1s2s3 + s3

2 − 6s2
3 − 1/3s6

1 − 8/3s3s3
1 .

A coordinate change (and restricting to the invariant hyperplane s1 = x1 + x2 + x3 = 0) shows that this 
defines the same curve as D( f ), namely the cusp � = 4s3

2 + 27s2
3 in R = k[x1, x2, x3]S3 ∼= k[s2, s3].

3. Decomposition of (z, z) for Sn

During this section fix n � 3. We consider the decomposition of the coinvariant algebra S/(R+)

and the multiplication of z restricted to each isotypical component Sλ , where each λ corresponds to 
a Young tableau. Basis elements for the isotypical components Sλ are then given by Higher Specht 
polynomials (Ariki et al., 1997), we follow the definitions as in Ariki et al. (1997). However, for our 
purposes we will define a modification of these polynomials, see Definition 3.4.
8
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Definition 3.1. Let λ � n and T1, T2 ∈ ST(λ). We define the Last Letter Ordering (LL) in the following 
way. Let 1 � k � n be the largest integer that is written in a different position for both tableaux T1
and T2. If the row in which k appears in T2 is above the row it appears in T1, then we say T1 < T2.

Example 3.2. Let n = 5. Consider the following two tableaux T1 and T2 on the partition (3, 2).

T1 = 1 2 4
3 5

<
1 3 4
2 5

= T2

The set of elements that are in different positions is {2, 3} thus the maximal element which has 
a different position is 3. Note that in T1 the element 3 is written in the second row, which is below 
the first row where 3 is written in T2.

Definition 3.3. Given a Young tableau T of shape λ, we define two subgroups of Sn , the Row Stabilizer
R(T ) which are all elements of the group ring kSn that permute elements within the same row, and 
similarly the Column Stabilizer C(T ) which permutes elements within the same columns of T . With 
these subgroups we define the following

rT =
∑

π∈R(T )

π cT =
∑

ρ∈C(T )

sgn(ρ)ρ .

Lastly we define the Young Symmetrizers

εT = f λ

n! cT rT and σT = f λ

n! rT cT

where f λ is the number of standard tableaux of shape λ. These are both idempotents of kSn .

In the following we use multi-index notation xi(P )
w(T ) = xi(P )0

w(T )0 · · · xi(P )n−1

w(T )n−1 . In addition, we further 
simplify notation by writing

xP
T = xi(P )

w(T ).

Definition 3.4. Let T , P be two standard Young tableaux of shape λ. The higher Specht polynomials are 
defined as

F P
T = εT .xP

T = εT .xi(P )
w(T ) .

We further define the modified higher Specht polynomials as

H P
T = σT .xP

T .

Definition 3.5. For a tableau P ∈ ST(λ) let M P the R-submodule of S generated by the modified higher 
Specht polynomials {H P

T | T ∈ ST(λ)} and let N P the R-submodule of S generated by normal higher 
Specht polynomials {F P

T | T ∈ ST(λ)}.

Theorem 3.6. (Ariki et al., 1997, Theorem 1, (2)) Let P ∈ ST(λ), then the image of N P in S/(R+) is a Sn-
subrepresentation of S isomorphic to the irreducible representation corresponding to shape of P .

Theorem 3.7. Let P ∈ ST(λ), then N P is a Sn-subrepresentation of S isomorphic to M P .

Proof. Recall that kSnεT and kSnσT are both isomorphic to the irreducible representation Vλ (Fulton 
and Harris, 1991, Exercise 4.4). Therefore if we consider an ordering {T1, . . . , Tk} of the standard 
tableaux of shape λ according to the last letter ordering, we can fix πi ∈ Sn such that πi(T1) = Ti . 
9
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Note that (Ariki et al., 1997, Lemma 5) shows that πiεTi and πiσTi are a basis for Vλ in kSn . Let ϕ
be an isomorphism ϕ : kSnεT → kSnσT . Then any element f ∈ N P = 〈F P

T | T ∈ ST(λ)〉 can be written 
as (c1π1εT1 + · · · + ckπkεTk ).x

P
T . Consider the map between N P and M P defined by

(c1π1εT1 + · · · + ckπkεTk ).x
P
T �−→ (c1ϕ(π1εT1) + · · · + ckϕ(πkεTk )).x

P
T .

The above map is an isomorphism since ϕ is an isomorphism. �
Definition 3.8. For a tableau T ∈ ST(λ) let MT the R-submodule of S generated by {H P

T | P ∈ ST(λ)}
and NT the R-submodule generated by {F P

T | P ∈ ST(λ)}.

Remark 3.9. The modules MT and NT are not irreducible representations of Sn and are free R-
modules.

Theorem 3.10. (Terasoma and Yamada, 1993, Theorem 1) The collection⋃
λ�n

{F P
T | T ∈ ST(λ), P ∈ ST(λ)}

forms a k-basis for S/(R+). And thus they also form a R-basis for the free R-module S.

Example 3.11. Let T be the following standard tableau:

T =

1

2
...

n−1

n

Note that T gives rise to the determinantal representation V det of Sn . The Young Symmetrizer εT is 
given by:

εT = 1

n! cT rT = 1

n!

⎛
⎝ ∑

π∈C(T )

sgn(π)π

⎞
⎠ id = 1

n!
∑
π∈Sn

sgn(π)π.

The index i(T ) = (n −1, n −2, . . . , 1, 0) and so F T
T = εT (x0

1x1
2 · · · xn−1

n ). The higher Specht polynomial 
F T

T is the polynomial 1
n! z. Moreover, in this case we also have

σT = 1

n! rT cT = 1

n! id

⎛
⎝ ∑

π∈C(T )

sgn(π)π

⎞
⎠= 1

n!εT ,

and so H T
T = F T

T = 1
n! z.

Lemma 3.12. If T1 < T2 then εT1εT2 = σT2σT1 = 0.

Proof. The proof for εT1εT2 = 0 is widely known, see (Ariki et al., 1997, Lemma 4) or (Stembridge, 
2011, Proposition 1). The equality σT2σT1 = 0 can be seen by applying the anti-automorphism of kSn

given by w �→ w−1. �

10
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Lemma 3.13. Let T be a Young tableau of shape λ and T ′ its conjugate, then we have

εT (zf ) = zσT ′( f )

for any polynomial f ∈ S.

Proof. We first observe that for a Young tableau T of shape λ, R(T ) = C(T ′), C(T ) = R(T ′) and so

εT =
∑

r∈R(T ),c∈C(T )

sgn(c)rc =
∑

c∈C(T ′),r∈R(T ′)
sgn(r)cr.

For any π ∈ Sn , we have that π(z) = sgn(π)z, and so for any polynomial f ;

εT (zf ) =
∑

r∈R(T ),c∈C(T )

sgn(c)rc(zf ) =
∑

c∈C(T ′),r∈R(T ′)
sgn(r)cr(zf )

= z

⎛
⎝ ∑

c∈C(T ′),r∈R(T ′)
sgn(c)cr( f ))

⎞
⎠= z(σT ′( f )) �

Theorem 3.14. For the discriminant � of Sn, the matrix factorization defined by the reduced hyperplane ar-
rangement, (z, z), can be decomposed in the following way:

(z, z) =
⊕
λ�n

⊕
T ∈ST(λ)

(z|MT , z|NT ′ ).

Where (z|MT , z|NT ′ ) are the matrix factorizations:

MT NT ′ MT
z|MT

z|NT ′

and MT the R-submodule of S generated by {H P
T | P ∈ ST(λ)} and NT ′ the R-submodule generated by 

{F P ′
T ′ | P ′ ∈ ST(λ′)}.

Proof. For an irreducible representation λ of G , recall that the map z takes elements from the iso-
typical component Sλ of S to the isotypical component Sλ′ of S where λ′ = λ ⊗ det. Thus the matrix 
factorization decomposes immediately as:

(z, z) =
⊕
λ�n

(z|Sλ , z|Sλ′ ).

Let T , P ∈ ST(λ), and consider H P
T ∈ Sλ from above. Hence zH P

T ∈ Sλ′ . We can write zH P
T as the 

following;

zH P
T =

∑
U ,W ∈ST(λ′)

g P ,W
U ,T F W

U , (2)

where g P ,W
U ,T are in R , since the F W

U form an R-basis of Sλ′ by Theorem 3.10. Recall that F P
T = εT .xP

T , 
and H P

T = σT .xP
T . If T1 < T2, then by Lemma 3.12 we have that εT1εT2 = σT2σT1 = 0 and hence 

εT1 F P
T2

= εT1εT2 .x
P
T2

= 0 and σT2 H P
T1

= σT2σT1 .x
P
T1

= 0. Order ST(λ′) = (T ′
1, . . . , T

′
k) in such a way that 

if i < j then T ′
i < T ′

j . We want to calculate zH P
T1

. Applying εT ′
1

to both sides of equation (2) yields

εT ′
1

∑
U ,W ∈ST(λ′)

g P ,W
U ,T1

F W
U =

∑
U ,W ∈ST(λ′)

g P ,W
U ,T1

(εT ′
1

F W
U )

=
∑

W ∈ST(λ′)
g P ,W

T ′
1,T1

F W
T ′

1
,

11
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since T ′
1 is the least element in ST(λ′). Further compute

εT ′
1
(zH P

T1
) = z(σT1 H P

T1
)

= zH P
T1

.

Thus we have that

zH P
T1

=
∑

W ∈ST(λ′)
g P ,W

T ′
1,T1

F W
T ′

1
.

With the argument above and the fact that for any Ti ∈ ST(λ) there exists a permutation π that 
permutes Ti and T1 we have the following equation for any Ti ∈ ST(λ).

zH P
Ti

=
∑

W ∈ST(λ)

(sgn(π)g P ,W
T ′

i ,T1
)F W

T ′
i
.

This shows that for any H P
T ∈ Sλ we have that zH P

T ∈ 〈F P
T ′ | P ∈ ST(λ′)〉. Following a similar 

argument above we have that when we restrict z to 〈F P
T ′ | P ∈ ST(λ′)〉 we have an element in 

〈H P
T | P ∈ ST(λ)〉. Hence

zF P
T ′

i
=

∑
W ∈ST(λ′)

(sgn(π)hP ,W
Ti ,T ′

k
)H W

Ti
.

We can see that for a T ∈ ST(λ) and using the notation above we can write the matrices of the maps 
as [

g P ,W
T ,T ′

][
hP ,W

T ′,T

]
P ,W ′∈ST(λ)

= �Id|ST(λ)|×|ST(λ)|. �
Theorem 3.15. If T1, T2 ∈ ST(λ) then there is a matrix factorization equivalence between (z|NT1

, z|MT ′
1
) and 

(z|NT2
, z|MT ′

2
).

Proof. Consider π ∈ Sn such that π(T1) = T2, thus for any P ∈ ST(λ) we have that

zH P
T1

= sgn(π)zH P
T2

and zF P ′
T ′

1
= sgn(π)zF P ′

T ′
2
.

This means that z|NT1
= sgn(π)z|NT2

and z|MT ′
1

= sgn(π)z|MT ′
2

. Therefore the matrices are the same 
up to multiplication by a scalar matrix, and so there is a matrix factorization equivalence between 
them. �
Remark 3.16. Let λ be a Young diagram of size n, then |ST(λ)| = dim Sλ , so we get dim Sλ copies of 
the maximal Cohen–Macaulay-module Coker(z|NT1

, z|MT ′
1
) in the decomposition.

Definition 3.17. Define a R-bilinear form 〈−, −〉 : S × S → R where for any f , g ∈ S we have that 
〈 f , g〉 = 1

z

∑
π∈Sn

sgn(π)π( f g).

Note that this bilinear form is similar to the one used in Ariki et al. (1997), except we do not 
set the variables to 0. Recall from Definition 2.8 that for a tableau T , î(T ) is i(T ) written in non 
increasing order and |i(T )| is the sum of the indexes. Consider the ordering on ST(λ), defined in the 
following way. If |î(P1)| < |î(P2)|, then P1 < P2; if |î(P1)| = |î(P2)| and î(P1) < î(P2) with respect to 
the reverse lexicographical ordering, then P1 < P2; lastly if î(P1) = î(P2) and P1 is smaller than P2
with respect to the last letter order, then we set P1 < P2.

Definition 3.18. We define the co-charge j(T ) of a tableau T by j(T ) = i(T ′).
12
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Lemma 3.19. Let P1 < P2 with respect to the ordering above, then 〈F P1
T , F P ′

2
T ′ 〉 = 0

Proof. The main idea here is that if deg( f g) < deg(z) = n(n−1)
2 then 〈 f , g〉 is either 0 and if deg( f g) =

n(n−1)
2 then it is a constant. In these cases the result (Ariki et al., 1997, Proposition 1) for 〈−, −〉 hold, 

thus it is sufficient to show that if P1 < P2 then deg(F P1
T F

′ P ′
2

T ) < n(n−1)
2 . The Lemma then follows 

from the case distinction:

(1) If |î(P1)| < |î(P2)|, then |î(P1)| + | ĵ(P2)| < n(n−1)
2 by (Ariki et al., 1997, Lemma 1).

(2) If |î(P1)| = |î(P2)| and î(P1) < î(P2) in the reverse lexicographical ordering, then |î(P1)| =
n(n−1)

2 − | ĵ(P2)| and |î(P1)| + | ĵ(P2)| = n(n−1)
2 and thus from the proof of (Ariki et al., 1997, 

Theorem 1) the results hold.
(3) If |î(P1)| = |î(P2)| and î(P1) = î(P2), then if P1 < P2 with respect to the last letter order the 

results hold using the same argument as in (2). �
Theorem 3.20. Let λ be a Young diagram, where m is the dimension of the corresponding irreducible repre-
sentation and T ∈ ST(λ). The matrix factorization (z|NT , z|MT ′ ) can be written explicitly as (A, B), where

A =
⎡
⎢⎣

g1
1 · · · g1

m
...

. . .
...

gm
1 · · · gm

m

⎤
⎥⎦

and B is a m × m matrix obtained by taking the first reduced syzygy of A, so B = syz1
R A and g j

i are defined 
iteratively as:

g j
i = 〈F

T j
T ,zH

Ti
T −g1

i F
T ′

1
T ′ − ···−g j−1

i F
T j−1
T ′ 〉

〈F
T j
T ,F

T ′
j

T ′ 〉

for 0 � i �m and 0 � j � m.

Proof. Note that 〈F P
T , F P ′

T ′ 〉 is a non-zero constant in k, and a formula is given in (Ariki et al., 1997, 

Proposition 1). Order ST(λ) = (P1, . . . , Pm) where if i < j then Pi < P j , so if i < j then 〈F Pi
T , F

P ′
j

T ′ 〉 = 0. 
Consider the matrix describing z|MT : MT → NT ′ to have the entries [g j

i ]i, j where i, j index the rows 
and columns. We calculate

zH Pi
T = g1

i F
P ′

1
T ′ + · · · + gm

i F
P ′

m
T ′ .

Plugging this into the bilinear form with F
P j
T yields

〈F
P j
T , zH Pi

T 〉 = g1
i 〈F

P j
T , F

P ′
1

T ′ 〉 + . . . + gm
i 〈F

P j
T , F

P ′
m

T ′ 〉 . (3)

For 1 < j the term g j
i 〈F P1

T , F
P ′

j

T ′ 〉 = 0, therefore 〈F P1
T , zH Pi

T 〉 = g1
i 〈F P1

T , F P ′
1

T ′ 〉. Thus we can then recur-
sively write a formula for each entry.

g1
i = 〈F P1

T , zH Pi
T 〉

〈F P1
T , F

P ′
1

T ′ 〉
...

g j
i = 〈F

P j
T , zH Pi

T − g1
i F

P ′
1

T ′ − · · · − g j−1
i F

P j−1

T ′ 〉
〈F

P j
, F

P ′
j
′ 〉
T T

13
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These are the entries in row i, and the matrix A can be computed by considering all i. �
Remark 3.21. This gives a quicker computational way to calculate the matrix factorization correspond-
ing to a irreducible representation of Sn , and thus a maximal Cohen–Macaulay module over R , for a 
specific irreducible representation λ of Sn .

Remark 3.22. Recall that if L is an lower triangular k × k matrix, we can write L = D + N where D is 
diagonal and N is strictly lower triangular. If D is invertible, then D−1 N is nilpotent and we have the 
well known formula

L−1 = D−1 − D−1N D−1 + D−1N D−1N D−1 − · · ·

= D−1

(
n∑

i=0

(N D−1)i

)
.

If we define matrices

Uij = 〈F
P j
T , F

P ′
i

T ′ 〉
Gij = g j

i

Xi j = 〈F
P j
T , zH Pi

T 〉
then Equation (3) gives X = GL and Lemma 3.19 shows that L is lower triangular. So we can solve 
the recursive formula in Theorem 3.20 as

G = X L−1

= X(D−1 − D−1N D−1 + D−1N D−1N D−1 − · · · )

= X D−1

(
n∑

i=0

(N D−1)i

)
.

Example 3.23. Let S5 act on C[x1, x2, x3, x4, x5] with the basic invariants ei , i = 1, . . . , 5. If we quo-
tient out by the hyperplane e1 = x1 + · · · + x5 = 0, we get a set of invariants t1, . . . , t4 of the action of 
S5 on k[x2, x3, x4, x5], where

ti = ei+1(−x2 − x3 − x4 − x5, x2, x3, x4, x5).

The discriminant � of this group action is given by:

� = − 1

3 600
t3

1t2
2t2

3 + 1

900
t4

1t3
3 + 1

900
t3

1t3
2t4 − 1

200
t4

1t2t3t4 + 3

400
t5

1t2
4−

3

1 600
t4

2t2
3 + 1

100
t1t2

2t3
3 − 2

225
t2

1t4
3 + 3

400
t5

2t4 − 7

160
t1t3

2t3t4+
7

180
t2

1t2t2
3t4 + 11

192
t2

1t2
2t2

4 − 1

16
t3

1t3t2
4 + 4

225
t5

3 − 1

9
t2t3

3t4 + 5

32
t2

2t3t2
4+

5

36
t1t2

3t2
4 − 25

96
t1t2t3

4 + 125

576
t4

4.

Let λ = be a partition of n corresponding to the standard representation of Sn , then 

the matrix factorization of S/(z) corresponding to λ is (A, B) where
14
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Fig. 1. The matrix A for the partition (3,2) � 5.

A =

⎛
⎜⎜⎝

t4 − 1
50 t1t3 − 1

50 t2t3 + 1
10 t1t4 − 1

25 t2
3 + 1

10 t2t4

− 8
5 t3

2
25 t1t2 − 1

2 t4
2

25 t2
2 − 2

15 t1t3
3

50 t2t3 − 3
10 t1t4

6
5 t2 − 3

25 t2
1 + 2

5 t3 − 4
75 t1t2 + 1

3 t4 − 1
25 t1t3

− 4
5 t1 − 3

10 t2 − 4
15 t3 − 1

2 t4

⎞
⎟⎟⎠

and B is a 4 × 4 matrix with entries in R such that Coker B ∼= syz1
R(A). Note that as the dimension of 

the representation corresponding to λ is 4, we get 4 copies of this matrix.

Example 3.24. Let λ = then the matrix factorization of S/(z) corresponding to λ is (A, B) where 
A is the matrix given in Fig. 1 and B = �A−1 is a 5 × 5 matrix with entries in R .

Both of the matrices from Example 3.23 and 3.24 were obtained using the Macaulay2 package 
“PushForward” (Raicu et al., 2021).

3.1. Macaulay2 package walkthrough

In this section we will demonstrate how to obtain the matrix factorizations of Examples 3.23 and 
3.24 from the Macaulay2 package available at Faber et al. (2022). Note that our package makes heavy 
use of the Macaulay2 packages “PushForward” and “SpechtModule” (Raicu et al., 2021; Spechtmodule, 
2019). We present two methods of computing the matrix factorizations: the first method will be a 
general method involving Gröbner bases, which can be used for computing any of the matrix factor-
izations described in this paper, in particular the matrix factorizations for the product subgroups of 
Section 4. The second method will be a faster method, however, it can only be used for the matrix 
factorizations of the discriminant of Sn . Consider m � 0 and (n1, . . . , nm) to be a list of integers such 
that ni � 0 and 

∑
ni = n. Let λ = (λ1, . . . , λm) be an m-tuple of Young diagrams of type (n1, . . . , nm). 

Such a λ will be called an m-partition. Note here that m-partitions are used extensively in Section 4. 
For both methods we will assume we are given the following data.

• An m-partition λ � n with the hook-length formula h(λ) = d.
• A polynomial ring S = k[x1, . . . , xn].
• T ∈ ST(λ) the standard tableau of shape λ obtained by filling each row with successive numbers.

• Two lists L1 = {F V 1
T , . . . , F Vd

T } and L2 = {H
V ′

1
T ′ , . . . , H

V ′
d

T ′ } of higher Specht polynomials such that 
V ′

i < V ′
j (w.r.t. the last letter ordering Ariki et al., 1997) if i < j.

• A generating set for the subring of symmetric functions {E1, . . . , En}.

Considering the ring S as a module over R = S Sn , let the submodules M1 and M2 be those gener-
ated by the Specht polynomials in L1 and L2 respectively. The goal is to obtain the matrix G ∈ Rd×d

which corresponds to the multiplication by the polynomial z defined in Section 2.3. The entries of the 
matrix G can be denoted as seen below:
15
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⎡
⎢⎣

g1
1 · · · g1

d
...

. . .
...

gd
1 · · · gd

d

⎤
⎥⎦

The entries g j
i ∈ R for all 1 � i, j � d, and from the description of this matrix we know from 

Theorem 3.20 that for a given 1 � i � d we can describe zF V i
T as below:

zF V i
T =

d∑
l=1

gl
i H

V ′
l

T ′ (4)

We have created a Macaulay2 package to give exactly the data required given a m-partition λ and 
a polynomial ring S . First declare a polynomial ring of n variables, and a m-partition can be declared 
using the “makePar” function which accepts a list of lists in descending order. If we take the example 
of ((2, 1), (1)) � 4 as a 2-list then we have the following code:

i1 : loadPackage "SpechtPolynomials"
o1 = SpechtPolynomials
o1 : Package
i2 : n = 4;
i3 : R = QQ[x_1..x_n];
i4 : par = makePar {{2,1},{1}};

Next a generating set for R is needed, this can be any generating set such as the elementary symmet-
ric functions or the power sum functions. Let Ei = xi

1 + · · · + xi
n be the first n power sum functions. 

To make this list in Macaulay2 run the code:

i5 : Sym = apply(1..n, i-> sum apply(gens R, x-> x^i));

In this case “Sym” is the list of polynomials that generate all symmetric functions. A list of higher 
Specht polynomials can be obtained from the partition and the function “HSP”. The function will make 
a constructor for the higher Specht polynomials which takes in 3 arguments, a polynomial ring S , the 
number m of the m-partition, and a type t ∈ {1, 2}. Note here that m-partitions appear for product 
submodules of Sn , see Section 4. Type 1 higher Specht polynomials are the polynomials F P

T and type 
2 are the modified polynomials H P

T in Definition 3.4. To construct the list L1 = {F V 1
T , . . . , F Vd

T } we 
start with:

i6 : F = HSP(R,#par,1);

All that is needed is the tableau T described in our data. This is obtained with the following 
function:

i7 : tab1 = first tabFromPar par;

The constructor F is used to generate the list L1 by using a method to fix F V
T with “tab1” on the 

bottom and letting V run through all standard tableaux of that size. This is done with the following 
code:

L_1 = (F_tab1)_1;

The tableaux T can be conjugated and the same steps repeated as above (with type t = 2) to 
obtain L2 = {H

V ′
1

T ′ , . . . , H
V ′

d
T ′ }.
16
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i17 : tab2 = conjugate tab1;
i18 : H = HSP(R,#par,2);
i19 : L_2 = (H_tab2)_1;

All the data we need for computing the matrices has been initialized.

3.1.1. Gröbner basis method
This method is well known and works in the more general setting where we have an in-

clusion of polynomial rings R ⊆ S where S ∼= Rn as an R-module, and we wish to compute 
multiplication by z ∈ S as a matrix ρz : Rn → Rn . We consider a auxiliary polynomial ring Ŝ =
k[e1, . . . , en, f1, . . . , fn, x1, . . . , xn] ordering the variables as presented. Thus we can consider the ideal 
I generated by the following sets {ei − Ei | 1 � i � n} and { f i − H

V ′
i

T ′ | 1 � i � d}. We can write the 
image of the elements zF V 1

T , . . . , zF Vd
T in the ring R̂ by I . Because of the ordering of these elements, 

the result will be written in terms of e1, . . . , en and f1, . . . , fn . Thus producing the columns of the 
matrix G when we consider that ei represents the element Ei in R .

For our purposes this method is very slow. Essentially if c1, . . . , cl are the size of the columns of 
the diagram of λ then the polynomial with highest degree d in the ideal I described above is given 
by the following

d = max(n,

l∑
i=1

ci − i) . (5)

The sum is obtained by considering the highest charge of the standard Young tableaux of shape λ, 
given by the tableau obtained by filling the columns in successive order. This means however that 
we are computing the Gröbner basis of an ideal with highest degree polynomial being d in 2n + d
variables, which is computationally slow. Thus we seek a better way of computing these ideals.

Remark 3.25. The effectivity of this method depends on the chosen monomial order for the Gröbner 
basis. It would be an interesting problem to find a monomial order tailored to our polynomials so 
that the computations will be faster.

3.1.2. Recursive method
Restricting the problem to the Sn case enables the use of the bilinear form described in Theo-

rem 3.20 to compute these matrices using a recursive method.
This method can be implemented in Macaulay2, assuming we have worked with a partition λ � n

and we obtain all the data described in the beginning of this section. We describe a basic example, 
consider the case that n = 4 and λ = (2, 2). Then we begin with the following set up

n=4
par = makePar {{2,2}}
R = QQ[x_1..x_n]
Sym = apply(1..n, i-> sum apply(gens R, x-> x^i))
F = HSP(R,#par,1)
tab1 = first tabFromPar par
L1 = (F_tab1)_1
tab2 = conjugate tab1
H = HSP(R,#par,2)
L2 = (H_tab1)_1
L3 = reverse (H_tab2)_1
L4 = reverse (F_tab2)_1

This is very similar to the set up at the beginning of this section, except two more lists are needed 
in order to compute both matrices of the matrix factorization. There are four lists of higher Specht 
17
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polynomials, “L1” and “L4” are of F type, likewise “L2” and “L3” are of H type. Now we make a 
function for the bilinear form described above and find our z-value.

z = product flatten apply(toList(1..n-1),
i -> flatten apply(toList(i+1..n), j -> x_i-x_j))

Lz1 = apply(L1,f->z*f)
Lz2 = apply(L3,f->z*f)

bil = (f,g)->(
return antiSymmetrize(f*g)//z;
)

Lists “Lz1” and “Lz2” are the multiplication by z of the lists “L1” and “L3”. Then we can compute 
the matrices by using the recursive method written in Theorem 3.20.

G1 = {}
d = #L1
pol = 0_R;
for i from 0 to d-1 do (

row = {};
for j from 0 to d-1 do (

pol = bil(L2_(j),Lz1_i-sum apply(toList(0..#row-1),l->row_l*L3_l))//bil(L2_j,L3_(j));
print factor pol;
row = append(row,pol);
);

G1 = append(G1,row);
);

G2 = {};
pol = 0_R;
for i from 0 to d-1 do (

row = {};
for j from 0 to d-1 do (

pol = bil(L4_(j),Lz2_i-sum apply(toList(0..#row-1),l->row_l*L1_l))//bil(L4_j,L1_j);
print factor pol;
row = append(row,pol);
);

G2 = append(G2,row);
);

G1 = transpose matrix G1
G2 = transpose matrix G2

Let ei =∑ j xi
j , which generate the subring R of symmetric functions in S . The entries in matrices 

G1 and G2 can be expressed in terms of the generators {e1, . . . , en}.

A = QQ[e_1..e_n]
B = QQ[e_1..e_n,x_1..x_n]
I = ideal apply(1..n, i->e_i-sum(apply(toList(x_1..x_n),f->f^i)))
H = B/I
phi = map(H,R)
rho = map(A,B)
G1 = rho lift(phi G1,B)
G2 = rho lift(phi G2,B)

This produces the following matrices

G1 =
( 4

3 e2
2 − 4 e4 − 1

3 e3
2 − 2

3 e2
3

2
3 e3

2 + 4
3 e2

3
1
3 e2e2

3 + 1
6 e2

2e4 + 1
6 e2

4

)

G2 =
(− 1

2 e2e2
3 − 1

4 e2
2e4 − 1

4 e2
4 − 1

2 e3
2 − e2

3
e3 + 2 e2 −2 e2 + 6 e

)

2 3 2 4

18
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One can check that they do indeed form a matrix factorization,

G1 · G2 =
(

� 0
0 �

)
.

This method offers a faster way to obtain the matrix factorizations. Given the tableau T we used 
to construct the lists of Specht polynomials, to compute each bilinear product to find the entries takes 
|C(T )||R(T )| polynomial permutations and additions, with one polynomial division done. Thus if d is 
the number of standard tableaux of shape λ, each matrix takes d|C(T )||R(T )| permutations, additions 
and divisions, which will be faster than the Gröbner basis method.

4. Decomposition for product submodules of Sn

In this section we generalize Theorem 3.14 to irreducible representations of the Young Subgroups
of Sn . These subgroups are of the form Sn1 × · · · × Snm � Sn for any given m-tuple (n1, . . . , nm) with ∑m

i=1 ni = n. In particular the decomposition of (z, z) will correspond to the irreducible representa-
tions of Sn1 × · · ·× Snm . The irreducible representations of the Young subgroup Sn1 × · · ·× Snm will be 
of the form Vn1 ⊗ . . .⊗ Vnm where each Vni is a irreducible representation of Sni thus we will discuss 
a basis for the coinvariant algebra S/(R+) indexed by these representations. While the decomposi-
tion will be more coarse than the one discussed in Section 3, the motivation for this section is that 
the construction can be used to describe the decomposition for the wreath product groups G(m, 1, n)

from the Shephard–Todd classification.
The definitions from Section 2.2 can be generalized to describe the representations of Young sub-

groups. Consider m � 0 and (n1, . . . , nm) to be a list of integers such that ni � 0 and 
∑

ni = n. Let 
λ = (λ1, . . . , λm) be an m-tuple of Young diagrams of type (n1, . . . , nm). Such a λ will be called an m-
partition. If λi � ni for all 1 � i � m, write P (m, n) as the set of m-tuples of partitions with a total of 
n cells and define an operation called the shift sh1(λ) = (λm−1, λ0 . . . , λm−2). An m-tuple of tableaux 
T = (T1, . . . , Tm) is of shape λ if each Ti is of shape λi , and is called an m-tableau. An m-tableau is 
standard if all of its tableaux are standard, with the set of all standard m-tableaux being ST(λ). We 
define ST(n1, . . . , nm) to be the set of standard m-tableaux of type (n1, . . . , nm). If T = (T 1, . . . , T m) is 
a standard m-tableau of type (n1, . . . , nm) then T ′ = ((T 1)′, . . . , (T m)′).

Example 4.1. Let n = 7, m = 3 then

T =
⎛
⎜⎝ 1 7

5
, − ,

2 3

4 6

⎞
⎟⎠

is a standard m-tableau of type (3, 0, 4). The conjugate tableau T ′ is given by

T ′ =
⎛
⎜⎝ 1 5

7
, − ,

2 4

3 6

⎞
⎟⎠

Remark 4.2. We have defined T ′ differently to Ariki et al. (1997), where they also reverse the order 
of the tableau, this is so that, given a T ∈ ST(λ), the m-tableau T ′ is in ST(λ′) = ST(λ ⊗ det). The 
consequence of our definition is that we will not be able to use the same bilinear form reduction to 
get a similar result to Theorem 3.20 as before.

Similarly as in Section 3 we will define an ordering on ST(n1, . . . , nm) as an extension of the 
Last Letter ordering. First we will consider an ordering on ST(λ). Consider two standard m-tableaux 
T1 = (T 1

1 , . . . , T m
1 ) and T2 = (T 1

2 , . . . , T m
2 ) of the same shape. Let 1 � k � n be the greatest number 

that appears in different cells in both of the tableaux. We say T1 < T2 if either k is written in T i
1 and 

T j
2 with i < j, or it is written in a row in T i

1 below a row in T i
2, for 1 � i � n.
19
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Example 4.3. Let n = 4, m = 2 and λ =
(

,

)
then, with respect to the Last Letter ordering on 

ST(λ) we have⎛
⎜⎝ 1 2

4
,

3

⎞
⎟⎠<

⎛
⎜⎝ 1 2

3
,

4

⎞
⎟⎠ .

Now we consider when the last number that appears in the different cells is on the same tableau 

for both m-tableaux. Let n = 4, m = 2 and λ =
(

,

)
then with respect to the Last Letter order-

ing on ST(λ) we have⎛
⎜⎝ 1 2

3 4
,

5 6

7

⎞
⎟⎠<

⎛
⎜⎝ 1 2

3 4
,

5 7

6

⎞
⎟⎠ .

Theorem 4.4. Let λ be a Young diagram of type (n1, . . . , nm), then the last letter ordering is total in ST(λ).

Proof. Let T1, T2 ∈ ST(λ) then either T1 = T2 or there exists, at least 2 elements which appear in 
different boxes. Let k be the last number that changes, then k must appear in different rows otherwise 
one of T1, T2 would not be standard. Since the last number that changes appears in different rows 
then either T1 < T2 or T2 < T1. �

If we consider the lexicographical ordering of the partitions of type (n1, . . . , nm) we can fully order 
ST(n1, . . . , nm). Let us consider a ordering on partitions of n, if λ1 = (α1, . . . , αk) and λ2 = (β1, . . . , βl)

are two partitions of n, and let 1 � i � min(k, l) be the first integer that αi −βi 	= 0, then if αi −βi > 0
then λ1 < λ2. Using this ordering, it is easy to see that we can use the lexicographical ordering on 
a partition of type (n1, . . . , nm) to have a total ordering. This way we can order tableaux of different 
partitions by comparing their shapes. This way if we have two tableaux T and V , if they are in the 
same partition we may order them using LL-order, and if they are in different partitions, give their 
order with lexicographical order on the partitions.

Example 4.5. Let us consider m = 1 and n = 4 then we can order the partitions the following way;

(4) < (3,1) < (2,2) < (2,1,1) < (1,1,1,1)

If we consider λ1 = (3, 1) and λ2 = (2, 2) and T ∈ ST(λ1) and V ∈ ST(λ2) as below, by our ordering 
we have:

1 2 3

4
<

1 2

3 4

Now consider m = 3 and n = 6, and define λ1 =
(

, ,

)
and λ2 =

(
, ,

)
then since 

< we have the following:

⎛
⎜⎝ 2 3

5
,

1
,

4 6

⎞
⎟⎠<

⎛
⎜⎝ 2 3

5
,

1
,

4

6

⎞
⎟⎠ .
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Definition 4.6. Let λ be an m-partition and consider an m-tableau T = (T1, . . . , Tm) of shape λ. We 
call T natural if the numbers written in tableau Ti are contained in the set {∑i−1

j=1 n j +1, . . . , 
∑i

j=1 n j}. 
We denote the set of natural standard m-tableaux of shape λ by NST(λ) and NST(n1, . . . , nm) is the 
set of all natural standard tableaux on all the partitions of type (n1, . . . , nm).

Example 4.7. Take m = 3 and n = 5, and consider the shape λ =
(

,−,

)
. To make a natural 

standard tableau with this shape we take the first three {1, 2, 3} and assign them to the first tableau, 
we assign no numerals to the second tableau since it is empty, and the remaining numbers go into 
the last tableau. Then we have to sort the numerals in the tableau in order to make them standard. 
Thus ⎛

⎜⎝ 1 3

2
,−,

4 5

⎞
⎟⎠

is an element of NST(λ).

We can define higher Specht polynomials via Young symmetrizers in a similar fashion to Def-
inition 3.4, for a given m-tableau T = (T 1, . . . , T m) we define εT = εT 1 · · ·εT m and similarly σT =
σT 1 · · ·σT m . The following theorem shows how S/(R+) decomposes into irreducible representations 
of a Young subgroup.

Theorem 4.8. (Ariki et al., 1997, Theorem 1) Fix n and let (n1, . . . , nm) be a sequence such that 
∑m

i=1 ni = n. 
Then the collection:⋃

λ�(n1,...,nm)

{F S
T | T ∈ NST(λ), S ∈ ST(λ)}.

Form a k-basis for S/(R+). For λ � (n1, . . . , nm), let S ∈ ST(λ). Then the collection

{F S
T | T ∈ NST(λ)}

forms a basis of the Sn1 × · · · × Snm -submodule of S/(R+) which is isomorphic to irreducible representation 
Vλ .

Example 4.9. Let us consider the Young subgroup S1 × S2 inside S3. There are two 2-tuples of Young 
diagrams that partition (1,2) namely:

λ1 =
(

,
)

λ2 =
⎛
⎜⎝ ,

⎞
⎟⎠

NST(λ1) =
{(

1 , 2 3
)}

NST(λ2) =

⎧⎪⎨
⎪⎩
⎛
⎜⎝ 1

,
2

3

⎞
⎟⎠
⎫⎪⎬
⎪⎭

and

ST(λ1) =
{(

1 , 2 3
)

,
(

2 , 1 3
)

,
(

3 , 1 2
)}

ST(λ2) =

⎧⎪⎨
⎪⎩
⎛
⎜⎝ 1

,
2

3

⎞
⎟⎠ ,

⎛
⎜⎝ 2

,
1

3

⎞
⎟⎠ ,

⎛
⎜⎝ 3

,
1

2

⎞
⎟⎠
⎫⎪⎬
⎪⎭ .
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Thus we get 3 copies of the irreducible representation corresponding to λ1 and 3 copies of the 
irreducible representation corresponding to λ2

Lemma 4.10. Let T1, T2 ∈ NST(n1, . . . , nm). If T1 < T2 , it follows that εT1εT2 = 0.

Proof. Let T1, T2 ∈ NST(n1, . . . , nm), then we can commute terms of the Young symmetrizer such that 
εT1εT2 = εT 1

1
· · ·εT m

1
εT 1

2
· · ·εT m

2
= εT 1

1
εT 1

2
· · ·εT m

1
εT m

2
Let T1 < T2 and suppose that the last number that 

appears in different cells is contained in T i
1. If T1 and T2 are of the same shape then εT i

1
ε

T j
2
= ε

T j
2
εT i

1

for i 	= j. Now T i
1 < T i

2, then the fact that εT1εT2 = 0 follows from Lemma 3.12. If T i
1 and T i

2 are of 
different shapes, εT i

1
εT i

2
= 0 and thus εT1εT2 = 0. �

Lemma 4.11. Let T be a standard m-tuple of tableaux, then zεT ( f ) = σT ′ ( f ) for any f ∈ S.

Proof. Let f ∈ S then zεT ( f ) = zεT 1 . . . εT m ( f ) = εT 1 . . . εT m−1 zσ(T m)′ ( f ) = σ(T 1)′ . . . σ(T m)′ (zf ). �
Definition 4.12. Let λ be an m-tuple of Young diagrams of size (n1, . . . , nm) and let T ∈ NST(λ). Let 
MT = 〈H S

T | S ∈ ST(λ)〉 and NT = 〈F S
T | S ∈ ST(λ′)〉 be R-modules.

Remark 4.13. These are analogous modules to the ones defined in Definition 3.8 and are free R-
submodules of S , but are not irreducible representations of Sn .

Theorem 4.14. For the discriminant � of Sn, the matrix factorization defined by the reduced hyperplane ar-
rangement, (z, z), can be decomposed in the following way:

(z, z) =
⊕

λ�(n1,...,nm)

⊕
T ∈NST(λ)

(z|MT , z|NT ′ ) ,

and (z|MT , z|NT ′ ) are the matrix factorizations:

MT NT ′ MT .
z|MT

z|NT ′

Proof. Recall that we can order all of the standard tableaux with n cells NST(n1, . . . , nm) such that 
if i < j then Ti > T j , thus εT j εTi = σTi σT j = 0. Let d to be the size of NST(n1, . . . , nm), we can write 
S = ⊕1�i�d MTi = ⊕1�i�d NTi . It is clear that since for a m-tableau T εT and σT are idempotent if 
i < j then εTi F T j = 0 and σT j HTi = 0. Therefore consider 1 � k � d, let P be a standard tableau of the 
same shape as Tk . Then we can split zH P

T ′
k

into the different components of S , where each f T ′
i
∈ NT ′

i
. 

Calculate

zH P
Tk

= f T ′
1
+ f T ′

2
+ · · · + f T ′

k
+ · · · + f T ′

d
. (6)

Claim: For each 1 � j < k, each component f T ′
j
= 0.

We prove the claim by induction. Let j = 1, then since 1 < k then Tk < T1 thus σT1 H P
Tk

= 0. Note 
that

εT ′
1
zH P

Tk
= εT ′

1
( f T ′

1
+ · · · + f T ′

d
).

From an analogue of Lemma 4.11 where σ and ε are swapped, we have
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z(σT1 H P
Tk

) = εT ′
1

f T ′
1
+ · · · + εT ′

1
f T ′

d

0 = f T ′
1
.

Assume that the claim is true for j − 1. Since j < k then T j > Tk thus σT j H P
T = 0. Therefore we have 

the following computation, using again Lemma 4.11

εT ′
j
zH P

Tk
= εT ′

j
( f T ′

1
+ · · · + f T ′

j
+ · · · + f T ′

d
)

z(σT j H P
Tk

) = εT ′
j

f T ′
1
+ · · · + εT ′

j
f T ′

j
+ · · · + εT ′

j
f T ′

d

0 = f T ′
j
.

Therefore equation (6) reduces to

zH S
Tk

= f T ′
k
+ f T ′

k+1
+ · · · + f T ′

d
. (7)

After applying εT ′
k

to (7), the left hand side becomes εT ′
k
(zH P

Tk
) = z(σTk H P

Tk
) = zH P

Tk
. If j > k, then 

εT ′
k

f T ′
j
= 0, thus zH K

Tk
= f T ′

k
. In other words z|MT : MT → NT ′ . A similar argument can be made about 

zF P
Ti

thus proving the statement.
The argument above shows that for a T ∈ NST(n1, ..., nm), Im(z|MT ) = NT ′ , similarly one could 

show that Im(z|NT ′ ) = MT . Therefore the matrix factorization splits as

(z, z) =
⊕

T ∈N ST (n1,...,nm)

(z|HT , z|F T ′ ) . �

Example 4.15. Consider the Young subgroup S1 × S2 inside S3 and let σ1, σ2, σ3 be the invariants of 
the S3 action, then the matrix representing the multiplication by z is given by;[

0 B
A 0

]

where A is the 3 × 3 matrix

A =
⎡
⎣−2σ2 −2σ1σ3 −6σ3

4σ1 σ1σ2 + 3σ3 4σ2
−6 −2σ2 −2σ1

⎤
⎦

and B is the 3 × 3 matrix

B =
⎡
⎣− 1

2σ 2
1 σ2 + 2σ 2

2 − 3
2σ1σ3 −σ 2

1 σ3 + 3σ2σ3 − 1
2σ1σ2σ3 + 9

2 σ 2
3

2σ 2
1 − 6σ2 σ1σ2 − 9σ3 2σ 2

2 − 6σ1σ3

− 1
2σ1σ2 + 9

2σ3 −σ 2
2 + 3σ1σ3 − 1

2 σ1σ
2
2 + 2σ 2

1 σ3 − 3
2σ2σ3

⎤
⎦ .

A is the matrix of (z|HT , z|F T ′ ) where

T =
(

1 , 2 3
)

T ′ =
⎛
⎜⎝ 1 ,

2

3

⎞
⎟⎠

of NST(1, 2).

Remark 4.16. The matrix factorizations from Theorem 3.14 and 4.14 are equivalent as matrix factor-
izations, since they are matrices that describe the same map. We get from one to the other by a 
change of basis of S as an R-module.
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4.1. Extended example: Bn

This section discusses the discriminants of the complex reflection groups G(m, 1, n), see the 
Shephard–Todd classification (Shephard and Todd, 1954), and how one would compute them using the 
methods of this paper. Here we present the example of the complex reflection group Bn = G(2, 1, n), 
giving the general definitions were natural. Similar to Sn the group Bn is a true reflection group, that 
is, its reflections are of order 2.

Let Perm(n) 
 Sn be the group of permutation matrices of size n. Furthermore let Dn(m) 
 (μm)n

be the group of diagonal n × n matrices whose entries are m-roots of unity.

Definition 4.17. The generalized permutation group G(m, n) := G(m, 1, n) =Zm � Sn can be described 
as a group of matrices in the following way:

G(m,n) = {M | M = P D, where P ∈ Perm(n) and D ∈ Dn(m) and det(D)n = 1}.

Thus if M ∈ G(m, n) then M is a permutation matrix with roots of unity as entries. As in Section 2.3
with Sn , we obtain an action of G(m, n) on a vector space V by choosing a basis x1, . . . , xn . This 
action extends to the polynomial ring S = k[x1, . . . , xn] ∼= Symk(V). It is well known, cf. Morita and 
Yamada (1998), that the invariants of G(m, n) on this action are given by { f (xm

1 , . . . , xm
n ) | f ∈ S Sn }. 

Furthermore let e(m)
i = ei(xm

1 , . . . , xm
n ) where ei are the elementary symmetric functions. The ring of 

symmetric functions of G(m, n) can be described as SG(m,n) = k[e(m)
1 , . . . , e(m)

n ].
Recall that P (m, n) the set of m-partitions of n. The irreducible representations of G(m, n) are in 

one-to-one correspondence with P (m, n) (Ariki and Koike, 1994). For the case of Bn = G(2, n), the 
representations correspond to 2-partitions with n cells.

In a similar way to Definition 2.10 we can define the polynomials

z =
∏

H∈A(Bn)

αH = x1 · · · xn

∏
1�i< j�n

(x2
i − x2

j )

and

� =
∏

H∈A(Bn)

α2
H = x2

1 · · · x2
n

∏
1�i< j�n

(x2
i − x2

j )
2,

where z, � ∈ A and � ∈ S Bn .

Example 4.18. The 2-partition that corresponds to the representation whose isotypical component is 
generated by z is:

λ1
alt = (−, λalt)

with one standard 2-tableau T :⎛
⎜⎝−,

1
...

n

⎞
⎟⎠ .

As before the higher Specht polynomials, with a modification, give a basis of the coinvariant al-
gebra that respects the G(m, n) action over S . Given a m-partition λ � n of type (n1, . . . , nm) and a 
standard m-tableau T of shape λ we define a monomial

μT =
m∏

i=1

∏
i

xi
a .
a∈T
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Definition 4.19. Let T and P be two standard m-tableaux of shape λ. The higher Specht polynomials for 
G(m, n) are defined as

F̂ P
T = μT F P

T (xm
1 , . . . , xm

n ) and Ĥ P
T = μT H P

T (xm
1 , . . . , xm

n )

Where F P
T and H P

T are the Higher Specht polynomials for the product subgroups of Sn .

Example 4.20. Continuing Example 4.18: then μT = x1 . . . xn and the higher Specht polynomials are

F̂ T
T = x1 . . . xn F T

T (x2
1, . . . , x2

n) = x1 . . . xn

∏
i< j

(x2
i − x2

j )

and

Ĥ T
T = x1 . . . xn H T

T (x2
1, . . . , x2

n) = x1 . . . xn

∏
i< j

(x2
i − x2

j ).

As before, tensoring a representation λ = (λ0, . . . , λm−1) with λ1
alt , gives the target of the map given 

by z and is important in calculating the matrix factorizations for �. Recall that the shift operator 
sh1(λ) = (λm−1, λ0 . . . , λm−2). Then we have

λ ⊗ λ1
alt = sh1(λ′)

Example 4.21. In the case of Bn , we have

λ1
alt ⊗ λ1

alt = λ0
triv

Let T be the standard young tableau of shape λ0
alt . Then

F̂ T
T = Ĥ T

T = F T
T (x2

1, x2
2) =

∏
i< j

(x2
i − x2

j ).

We calculate the map of z = x1 . . . xn
∏

i< j(x2
i − x2

j ) by first multiplying by x1 . . . xn and then ∏
i< j(x2

i − x2
1).

Consider the multiplication by 
∏

i< j(x2
i − x2

j ). The 2-partition that corresponds to the representa-

tion whose isotypical component is generated by (x2
i − x2

j ) is:⎛
⎜⎝ 1

...

n

,−
⎞
⎟⎠ .

Let P , T be standard tableaux of shape λ, then λ ⊗ λ0
alt = λ′ .

The multiplication by 
∏

i< j(x2
i − x2

j ) is given by∏
i< j

(x2
i − x2

j ) F̂ T
P =

∏
i< j

(x2
i − x2

j )μT F T
P (x2

1, . . . , x2
n)

μT

∏
i< j

(x2
i − x2

j )F T
P (x2

1, . . . , x2
n) =

d∑
k=1

μT f T ′
k
(x2

1, . . . , x2
n)H

T ′
k

P ′ (x2
1, . . . , x2

n)

where f T ′
i

are the invariants from the proof of Theorem 4.14. The 2-partition that corresponds to the 
representation whose isotypical component is generated by x1 · · · xn is
25
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(
−, 1 ... n

)
.

The multiplication by x1 · · · xn is given by

x1 · · · xn F̂ T
P = x1 · · · xnμP F T

P (x2
1, . . . , x2

n)

= x2
I μsh1(P ) F T

P (x2
1, . . . , x2

n)

where I is a subset of {1, . . . , n} which are contained in the last position of λ and xI =∏i∈I xi .
Combining these calculations when all the cells are in the last position (when xμI = (x1 · · · xn)2

is an invariant) or none of the cells are in the last position (when xI = 1) is straightforward. When 
this is not the case, the calculation becomes more complicated, see for the easiest case (May, 2023, 
Lemma 6.12).
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