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Abstract: The D′′ region of the lower mantle, which lies just above the core–mantle boundary, is
distinct from the bulk of the lower mantle in that it exhibits complex seismic heterogeneity and seismic
anisotropy. Seismic anisotropy in this region is likely to be largely due to the deformation-induced
texture (crystallographic preferred orientation) development of the constituent mineral phases. Thus,
seismic anisotropy can provide a marker for deformation processes occurring in this dynamic region
of the Earth. Post-perovskite-structured (Mg,Fe)SiO3 is believed to be the dominant mineral phase in
many regions of the D”. As such, understanding deformation mechanisms and texture development
in post-perovskite is important for the interpretation of observed seismic anisotropy. Here, we report
on high-pressure diamond anvil cell deformation experiments on NaMgF3 neighborite (perovskite
structure) and post-perovskite. During deformation, neighborite develops a 100 texture, as has
been previously observed, both in NaMgF3 and MgSiO3 perovskite. Upon transformation to the
post-perovskite phase, an initial texture of {130} at high angles to compression is observed, indicating
that the {100} planes of perovskite become the ~{130} planes of post-perovskite. Further compression
results in the development of a shoulder towards (001) in the inverse pole figure. Plasticity modeling
using the elasto-viscoplastic self-consistent code shows this texture evolution to be most consistent
with deformation on (001)[100] with some contribution of glide on (100)[010] and (001)<110> in
NaMgF3 post-perovskite. The transformation and deformation mechanisms observed in this study in
the NaMgF3 system are consistent with the behavior generally observed in other perovskite–post-
perovskite systems, including the MgSiO3 system. This shows that NaMgF3 is a good analog for the
mantle bridgmanite and MgSiO3 post-perovskite.

Keywords: NaMgF3; post-perovskite; phase transformation; deformation; lattice-preferred orientation;
EVPSC; D” layer; lower mantle; anisotropy

1. Introduction

One of the most complex and enigmatic regions of the Earth’s mantle is the D” region,
which occurs between the core–mantle boundary (CMB) and the D” seismic discontinuity.
Indeed, although the bulk of the lower mantle appears isotropic and seismically homo-
geneous (e.g., [1–4]), the D” region is more complex and exhibits lateral heterogeneity,
anisotropy, and large topographic variations of the D” discontinuity [2,3,5–7]. In particular,
global tomography models of the D” region have revealed large-scale seismic anomalies
characterized by high S-wave velocity regions beneath the circum-Pacific, and two large
low shear velocity provinces (LLSVPs) beneath the central Pacific and southern Africa
(e.g., [1,2,8,9]). The high-velocity regions are generally interpreted to be colder than the
surrounding areas and may be remnants of slabs subducted to the CMB [10]. On the
contrary, LLSVPs may be related to warm regions of upwelling (e.g., [11]) or chemical
variation (e.g., [12]). Anisotropy in the D” is complicated but generally exhibits VSH > VSV
anisotropy in the high-velocity circum-Pacific regions [1,2,8,9,13]. In the LLSVPs beneath
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the central Pacific and southern Africa, anisotropy is more varied with observations of both
VSH > VSV and VSV > VSH as well as regions of isotropy [1,2,5,6,8,9,13].

As the D” is the lower boundary layer of the mantle, it plays an important role in
mantle dynamics [14–16]. Indeed, numerical modeling and laboratory experiments seem to
indicate that deformation is enhanced near boundary layers and large strain deformation is
expected to occur in the D” region [14,17,18]. Also, based on experimental and theoretical
evidence, the D” layer may be mechanically weak, leading to shear localization [19–21]. As
large strains are expected to occur in the D” layer, anisotropy in this region is generally
attributed to the texture (crystallographic preferred orientation (CPO)) of the constituent
mineral phases as a result of ductile deformation during mantle convection [13,14,17,21–24].

Hence, in order to interpret anisotropy in the lower-most mantle, it is critical to under-
stand the processes that lead to texture development in the phases of interest under the
appropriate conditions. MgSiO3 bridgmanite (Bdm), the dominant phase in much of the
lower mantle, undergoes a solid-solid phase transition from a perovskite (Prv) structure to
a post-perovskite (pPrv) structure at conditions similar to the top of D” [25–27]. For Prv
to pPrv phase transitions, computational [28,29] and experimental [30–33] studies have
reported possible coherent transformation mechanisms, i.e., transformation mechanisms
where the daughter phase nucleates with a specific crystallographic relationship to the
parent phase. The phase transition at the D” discontinuity may hence introduce a transfor-
mation texture in the newly nucleated pPrv. This process needs to be understood in order
to correctly interpret seismic anisotropy in the D” region.

While the global presence of post-perovskite (and so the continuity of the D” layer) is
still debated, as higher temperature regions of the lowermost mantle are likely to stabilize
Bdm over pPrv (e.g., [8,34,35]), and some chemical heterogeneities may lead to significant
regions of Bdm and pPrv coexistence (e.g., [36]), it is now widely accepted that magnesium
silicate post-perovskite (Mg-pPrv) is a major mineral phase in much of the D” [37]. In gen-
eral, texture in the lower mantle is largely due to dislocation motion and associated crystal
rotations. Thus, in recent years, significant efforts both computational (e.g., [38–40]) and ex-
perimental (e.g., [41–43]) have been made to constrain slip systems in lower mantle minerals
with the goal of interpreting seismic anisotropy in terms of mantle flow (e.g., [24,44]).

The high pressures and temperatures required to synthetize bridgmanite and MgSiO3
pPrv make experimental measurements difficult and, although many studies have focused
on slip systems and texture development in Prv and pPrv analogs, the dominant slip
systems are still debated. In general, the slip plane tends to be better constrained than the
slip direction; nonetheless, three sets of dominant slip systems have been proposed for
pPrv: (1) slip on (010) planes, (2) slip on (100) planes and/or the {110}<1–10> slip systems,
and (3) slip on the (001) planes.

Early studies proposed that slip should occur on the (010) plane based on the fact
that this coincides with the layering of the SiO6 octahedra in the pPrv structure [25,26,45].
Several theoretical calculations have also supported slip on (010) in pPrv analog materials.
Simulations based on the Peierls–Nabarro model found (010)[001] to be the dominant
slip system in MgSiO3 pPrv [46,47]. Work by Metsue et al. [48] suggested that for CaIrO3
pPrv, (010)[001] slip should be the easiest slip system. More recent atomic scale mod-
eling also finds that (010)[100] slip is favored in MgSiO3 pPrv [38,49,50]. Experimental
evidence for slip on the (010) plane in pPrv, however, is limited to the CaIrO3 analog. Due
to its stability in the pPrv structure at ambient or near ambient conditions [51], CaIrO3
has been the most studied for the deformation mechanisms of the pPrv-structured com-
pounds [52–59]. Indeed, because CaIrO3 pPrv is quenchable to ambient conditions, electron
microscopy studies can be performed to study dislocation microstructures. In particular,
transmission electron microscopy (TEM) studies have observed Burgers vectors of b = [100]
and b = <u0w> [52] or b = [100] and b = [001] [60,61], suggesting that (010) is the most
likely slip plane in CaIrO3 pPrv. Other studies on the deformation of CaIrO3, investigat-
ing different pressure and temperature conditions, all report dominant dislocation slip
on the (010) planes [53–56,58,59,61]. Based on electron back-scatter diffraction (EBSD)
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and/or TEM, some studies have extracted the full dominant slip system, which appears
to be (010)[100] [53,54,58,59]. Using the viscoplastic self-consistent (VPSC) model [62],
Miyagi et al. [56] showed that the experimental deformation texture in CaIrO3 could be
explained by slip on (010)[100] with some slip on (010)<101>, in agreement with electron
microscopy observations. Slip on (010)[001] was rejected as it generates textures incompat-
ible with the experiments [56]. In addition, some TEM observations report the presence
of {110} twin domains [60,61], suggesting twinning may also be a possible deformation
mechanism in CaIrO3.

Walte et al. [58] also report transformation experiments on CaIrO3 Prv to pPrv, observ-
ing that after transformation from Prv, the pPrv phase exhibited a texture of (100) planes
almost normal to the compression directions. That texture, however, is rather related to the
oriented growth of the pPrv, as the relict coexisting Prv grains do not show any texture.

Evidence for (100) and/or {110}<1–10> slip comes from theoretical calculations and
two early diamond anvil cell (DAC) studies. First-principles metadynamics and energetics
of stacking faults predicted slip on {110}<1–10> during the phase transformation from Bdm
to pPrv [29]. Shortly thereafter, room temperature radial diffraction DAC experiments
on MgGeO3 pPrv and MgSiO3 pPrv found textures characterized by (100) planes at high
angles to compression [63,64]. Polycrystal plasticity modeling showed that these textures
could be explained by slip on {110}<1–10> and on the (100) planes [63,64]. It is important to
note that Merkel et al. [63,64] converted to the pPrv phase directly from the enstatite phase
and no change in texture was observed upon further pressure increase, leading several
authors to suggest that these results could be recording transformation textures rather than
deformation textures [54,58,65].

Subsequent studies on MgGeO3 pPrv in the DAC using axial diffraction geometry [30]
and radial diffraction geometry [31] found that after conversion from the enstatite phase to
the pPrv phase, (100) planes were aligned at high angles to compression consistent with
the results of Merkel et al. [63,64]. Upon further compression, however, Okada et al. [30]
observed changes in the axial diffraction patterns that seem to suggest that (001) planes
become aligned normal to compression. This was later confirmed by experiments of
Miyagi et al. [31] which also showed the initial transformation texture of (100) planes at
high angles to compression, shifting to (001) upon deformation. Polycrystal plasticity
modeling, which included the effect of the transformation texture, showed the evolution
of a (100) texture to a (001) texture to be most consistent with dominant slip on (001)[100].
Theoretical calculations by Metsue et al. [48] also support that the easiest slip system for
MgGeO3 pPrv should be (001)[100].

Slip on (001) planes in the pPrv structure is supported by several diamond anvil
cell experiments both at ambient conditions [30,31,42,66] and high temperature [67,68].
Miyagi et al. [42] found, in pPrv synthesized from MgSiO3 glass, that an initial (001) texture
was observed after conversion at 148 GPa. Upon compression to 185 GPa, this texture
doubled in strength consistent with slip on the (001) plane. High-temperature deformation
experiments of MnGeO3 pPrv documented the development of a (001) texture during
compression from 63 GPa to 105 GPa at 2000 K [67]. Deformation textures consistent with
(001) slip have also been documented in MgGeO3 pPrv [30,31]. More recently, Wu et al. [68]
observed a (001) texture in MgSiO3 during laser heating to 2500 K at 150 GPa.

It is now becoming clear that in all experiments on MnGeO3 pPrv, MgGeO3 pPrv, and
MgSiO3 pPrv, slip is on (001) and that there is no clear evidence to support deformation
on (100) or {110}<1–10>. Textures previously attributed to slip on (100) and {110}<1–10>
have been shown to be due to the transformation of enstatite to pPrv. The evidence that
slip on (010)[100] is the dominant system in CaIrO3 is clearly quite robust based on the
large number of independent and consistent experimental results [53–58,60]. It is not
entirely clear why CaIrO3 behaves differently from the other pPrv-structured compounds.
However, CaIrO3 pPrv has very different structural parameters than MgSiO3 pPrv, and
so in terms of bond lengths, bond angles, and octahedral distortions, MgGeO3 pPrv is
much closer to those of MgSiO3 than CaIrO3 pPrv [69]. In addition, Raman spectroscopy
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measurements have indicated that bonding in CaIrO3 pPrv is different from other pPrv-
structured compounds [70]. Also, first-principles computations find CaIrO3 pPrv to have
elastic properties and an electronic structure that are inconsistent with MgSiO3 pPrv [71].
Thus, it appears that CaIrO3 pPrv is a poor analog for the deformation behavior of Mg-pPrv.
This is unfortunate, as CaIrO3 pPrv is the only pPrv to be systematically studied at high
temperature and varying strain rates, and that can be characterized ex-situ by electron
microscopy. Due to the high pressure necessary to synthesize MnGeO3 pPrv, MgGeO3
pPrv, and MgSiO3 pPrv, these compounds are still challenging to study and it is thus of
great interest to search for other potential analogs that can be studied at lower pressures
and temperatures.

NaMgF3 is a promising candidate as an analog for the deformation behavior of MgSiO3
pPrv. At ambient conditions, NaMgF3 neighborite is isotypic with bridgmanite (Pbnm
perovskite) and at higher pressures, displays the same sequence of phase transitions as
MgSiO3 (i.e., Prv to pPrv) but at a reduced pressure of ~30 GPa (e.g., [72]). NaMgF3 pPrv
is structurally more similar to MgSiO3 pPrv than CaIrO3 [69,73], indicating that it has the
potential to be a good analog material to MgSiO3 pPrv. Here, we report on the development
of transformation and deformation textures in the NaMgF3 neighborite to the pPrv system,
and discuss them in order to (i) determine if NaMgF3 is a good analog for MgSiO3 in terms
of deformation mechanisms, and (ii) test if the Prv to pPrv transformation in NaMgF3 can
induce a transformation texture and so participate in seismic anisotropy.

2. Materials and Methods
2.1. Samples and High-Pressure Experiments

Two experiments were performed, one at beamline 12.2.2 of the Advanced Light
Source (ALS) at Lawrence Berkeley National Laboratory, Berkeley, CA, and a second run at
beamline 16 ID-B of the HP-CAT sector of the Advanced Photon Source (APS) at Argonne
National Laboratory, Argonne, IL. In both runs, sample starting material was finely ground
polycrystalline NaMgF3 neighborite. This is the same sample used in [72].

The starting material was mixed with a small amount of Pt powder (Alfa Aesar
99.95% purity Lot # F08P21) to serve as a laser absorber and pressure calibrant. In both
experiments, samples were loaded into two-stage boron kapton gaskets [74]. Pressure was
measured online using a third-order Birch–Murnaghan equation of state for Pt [75]. Data
were collected in radial diffraction geometry, where the x-ray beam is orthogonal to the
compression axis. Samples were compressed using a modified Mao–Bell-type cell with
large openings for the beam in radial diffraction geometry. We choose to not use a pressure
medium, so the diamonds can impose both pressure and axial differential stress on the
sample. The radial diffraction geometry allows in situ measurement of texture and lattice
strain development (e.g., [43]).

For run #1, conducted at the ALS, the X-ray was collimated to a 10 µm × 10 µm beam
size with a wavelength of 0.49594 Å. Sample-to-detector distance, beam center, instrument
broadening, and detector tilt were calibrated using a LaB6 standard. The sample was
compressed using 300 µm flat culet diamonds. The boron gasket insert had a 400 µm outer
diameter with a pre-compressed thickness of ~50 µm with an 80 µm diameter sample
chamber. The sample was remotely compressed to high pressure using a gas membrane.
Diffraction images were recorded at regular pressure intervals using a MAR3450 image
plate (Marresearch GmbH, Norderstedt, Germany) and 120 s exposure times. Pressure
after closing the cell was ~3 GPa. The sample was then compressed to 27 GPa and heated
to ~1400 K using single-sided laser heating to induce the transition to the pPrv phase.
During the 30 min laser heating, the laser was continuously rastered across the sample to
try to obtain homogeneous conversion. Temperature was kept low during laser heating,
as higher temperatures induce excessive grain growth in this system. After laser heating,
a two-phase mixture of neighborite and post-perovskite was observed. This mixture was
then incrementally compressed up to ~44 GPa.
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For run #2, conducted at the APS, beam size was 10 µm × 10 µm and the x-ray wave-
length was 0.619921 Å. A CeO2 standard was used to calibrate sample-to-detector distance,
beam center, instrument broadening, and detector tilt. The sample was compressed using
200 µm flat culet diamonds. The boron gasket insert had a 350 µm outer diameter with a
pre-compressed thickness of ~35 µm with a 50 µm diameter sample chamber. The sample
was compressed manually. Images were collected at regular pressure intervals using a
MarCCD detector (Marresearch GmbH, Norderstedt, Germany) with an 8 s exposure time.
In this run, the sample was initially compressed directly to 32 GPa. The phase transforma-
tion to pPrv was induced using single-sided laser heating with a flat top geometry with a
34 µm flat top and 59 µm full width half maximum. After heating to ~1400 K for ~30 min,
small peaks of the neighborite phase were observed. The sample was then compressed
incrementally to 64 GPa. During compression, the remaining neighborite peaks became
broad and diffuse.

2.2. Data Analysis

Diffraction images were initially processed using the Fit2d software (version 18,
A. Hammersley, ESRF, Grenoble, France) [76]. Images were integrated over 5◦ arcs into
72 discrete spectra (Figure 1). Spectra that contained the beam stop and diamond spots
were removed. The images were then analyzed using the MAUD software (version 2.998,
L. Lutterotti, University of Trento, Italy) that implements the Rietveld method [77]. For
these analyses, we generally followed the procedure for processing radial diffraction data
outlined in Wenk et al. [78], with details as follows. Backgrounds were interpolated using
10 manually selected points on each image between diffraction peaks. A Q-space range
of ~2.2 to 4.2 Å−1 was used for run #1 (ALS) and a Q-space range of 2.25 to 3.87 Å−1 was
used for run #2 (APS). Images were refined for crystal lattice parameters, crystallite size,
lattice strain, and texture. Popa line broadening with an isotropic size–strain model was
used for the refinement of crystallite size [79]. The moment pole stress model was used
to refine lattice strains and calculate stress [80,81]. A bulk path geometric mean, which is
between the Voigt and Reuss models, was used for the micromechanical model [81]. To
extract the Q-values for the lattice strain, the ‘radial diffraction in the DAC’ model available
in MAUD, which fits a Q(hkl) factor to each diffraction peak based on peak displacement,
was employed.
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To calculate stresses via the moment pole stress model, single crystal elastic constants
(Cij) and their variation with pressure are needed for neighborite and NaMgF3 pPrv. Only
a limited set of experimentally determined Cij exists for neighborite at room pressure [82].
Thus, we chose to calculate the elastic tensor as a function of pressure for neighborite and
NaMgF3 pPrv (Figure 2). Density functional theory calculations [83,84] incorporating the
projector-augmented wave method [85,86], were performed using VASP (5.3.5, VASP Soft-
ware GmbH, Vienna, Austria) [87,88]. Elastic constants were computed for a temperature
of 0 K from stress–strain relations [89], using three orthorhombic and one triclinic stress
of magnitude 0.5 and 1.0%. The Perdew–Burke–Ernzerhof (PBE) exchange–correlation
functional [90] was used. The kinetic-energy cut-off was 800 eV and the Brillouin zone was
sampled using k-point grids [91]. This ensured that all elastic constants were converged to
within two percent. For neighborite, there is excellent agreement with the ambient condi-
tions Cij of Zhao and Weidner [82], and calculated bulk modulus of Jakymiw et al. [92].
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Figure 2. Elasticity models for neighborite and NaMgF3 pPrv. Predicted evolution of elastic
constants (Cij), bulk modulus (K), and shear modulus (G) with pressure are given for neigh-
borite (a–d) and NaMgF3 pPrv (e–h). In these plots, hollow circle markers are experimental values
from Zhao and Weidner [82] and square markers are data from Jakymiw et al. [92]. (i,j) show the
computed evolution of the lattice parameters with pressure for neighborite and NaMgF3 pPrv, re-
spectively. Experimental lattice parameters from this study are reported in both of these plots, with
circle markers corresponding to run #1 and square markers to run #2. The large diamond markers are
calculated values from Arar et al. [93].
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Texture analysis was performed using the E-WIMV algorithm to calculate the orienta-
tion distribution function (ODF, [94]). This is similar to the WIMV model of Matthies and
Vinel [95] but allows incomplete and arbitrary pole figure coverage. A 15◦ ODF resolution
was used. Texture was first refined without imposing symmetry to verify approximate axial
symmetry about compression [95]. Cylindrical symmetry was then imposed about the com-
pression axis, consistent with the geometry of axial compression. The ODF from MAUD
was exported to Beartex [96] and smoothed with a 10◦ Gauss filter. Axial compression
textures can be represented using an inverse pole figure (IPF). As neighborite and NaMgF3
pPrv are orthorhombic, only one quadrant of the IPF is needed to represent the orientation
distribution. Pole densities are displayed in multiples of random distribution (m.r.d.),
where an m.r.d. of 1 represents a random distribution. For reference, the J-index [97] and
M-index [98] are also given with the experimental inverse pole figures.

2.3. Texture Simulations

Numerical simulations were used to understand the mechanisms responsible for
the textures observed in our experiments. The goal is to model the expected textures
induced by the phase transformation and/or deformation, and compare them to our
experimental results.

To test the effect of a coherent transformation from neighborite to NaMgF3 pPrv, we em-
ployed the open-source MTEX toolbox for MATLAB (version 2023, MathWorks, Natick, MA,
USA) [99]. For these simulations, we start from the experimental LPO of neighborite prior to
the transformation, and compute the expected LPO of the daughter NaMgF3 pPrv resulting
from a strict coherent transformation. The computation first needs to discretize the initial Prv
pre-transformation LPO by choosing randomly 500,000 orientations in the ODF. The software
then applies a crystal lattice rotation to each of these grains according to the transformation re-
lationship specified. Finally, an ODF is computed based on the new orientations obtained after
the transformation operation. We test for the orientation relationships suggested in the litera-
ture, including either [110]Prv//[010]pPrv and [001]Prv//[001]pPrv [28], [010]Prv//[110]pPrv and
[100]Prv//[1–10]pPrv [29], or [010]Prv//[hh0]pPrv and [001]Prv//[001]pPrv [32]. The simulated
daughter pPrv LPO are plotted as IPF of the compression direction.

To model the effect of plastic deformation by dislocation glide on NaMgF3 pPrv
textures, we used an elasto-viscoplastic self-consistent (EVPSC) model [100]. This model
allows simulation of both lattice strain and texture evolution during deformation by dislo-
cation glide. In short, the model estimates the behavior of the polycrystalline aggregate
from the behavior of individual crystals, and simulates the associated evolution of the
microstructure (LPO, lattice strain, grain shape). Here, we use 3000 grains randomly
picked from the discretized ODF of the experimental NaMgF3 pPrv post-transformation
texture. We assumed an equiaxed shape for these grains and applied deformation in
compression by increments of ε = 0.0025 up to a total axial strain of 25%. The shape of
the grains was free to evolve during the deformation. The stress sensitivity was fixed to
n = 3. Based on previous studies, we considered the (010)<100>, (010)<001>, (010)<101>,
(110)<−110>, (100)<010>, (001)<100>, (001)<010>, (001)<110>, (011)<100>, (100)<001>, and
(110)<001> slip systems, as well as a (110)<−110> twin. Starting from the experimental
post-transformation LPO, we then optimized a combination of CRSS values using trial
and error in order to reproduce experimental textures and lattice parameters observed in
NaMgF3 pPrv during deformation.

3. Results

Table 1 summarizes the evolution of the unit cell, crystallite size, differential stress, and
texture of the different phases of the sample during the experiments. Pressures calculated
for the EoS for Pt [75], neighborite, and NaMgF3 pPrv [70] are generally within a few GPa
of each other (Table 1). Better agreement between the pressures calculated for the various
phases is obtained at lower pressures and it is likely that the larger discrepancy at higher
pressures is due to the effects of high differential stresses in the sample. In run #1, laser
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heating resulted in incomplete conversion with ~80% volume fraction of neighborite and
~20% volume fraction of pPrv. During further compression, the volume fraction of the pPrv
phase increases to ~35%. Incomplete conversion to the pPrv phase may be due to kinetics
or heterogeneous laser heating of the sample. For run #2, a more complete conversion is
obtained with ~30% volume fraction of neighborite and ~70% pPrv phase. Upon further
compression, the neighborite peaks become very broad and weak and could not be reliably
refined, and parameters are thus not reported (Table 1). Crystallite size shows a decrease
in size upon compression and an increase in size during laser heating (Table 1). After
conversion to the pPrv phase, crystallite sizes in the pPrv phase are significantly larger than
in the coexisting neighborite phase and decrease rapidly upon compression. One should
note that crystallite sizes obtained from X-ray diffraction represent coherently diffracting
domains within a grain, and thus are not equivalent to grain size.

3.1. Stress Evolution

During compression before laser heating, stress levels increase in the neighborite
phase, and reach a value of 4.47 GPa at 27 GPa (measured from Pt) in run #1. For run #2,
we have only one measurement before the laser heating, which gives a stress of 3.40 GPa
at 32 GPa. During laser heating to ~1400 K, however, stresses decrease to 0.68 GPa and
1.84 GPa for runs #1 and #2, respectively. After conversion, stresses in the pPrv phase are
slightly higher than in the neighborite phase in both runs #1 and #2 (Table 1, Figure 3. Upon
compression in run #1, differential stress increases at a faster rate in the pPrv phase than
in the neighborite phase, but is larger in the neighborite than in the pPrv phase, except
at the highest pressure of 44 GPa, where differential stresses in pPrv are 7.06 GPa versus
6.01 GPa in the neighborite phase (Table 1). In run #2, the stress levels are quite similar
in between the Prv and pPrv. Differential stresses in pPrv are initially slightly higher for
a given pressure in run #2 than in run #1 (2.01 at 33 GPa in run #2 vs. 1.71 at 33 GPa in
run #1). However, by the highest pressures, stresses are relatively higher in run #1 than in
run #2, with a differential stress of 7.06 GPa at 44 GPa for run #1 and 5.68 GPa at 64 GPa for
run #2 (Table 1).

The green solid line in Figure 3 shows the evolution of the stress in the virtual sample
during the EVPSC simulation of compression of the NaMgF3 pPrv. Note that we make the
simulation start after the phase transformation in pPrv in run #2, which means the sample
is already at 33 GPa (Table 1). Based on stress measurements extracted using MAUD, at
that stage of the experiment, pPrv is already under ~2 GPa of stress. The stress shown in
Figure 3 (green line) is then additional stress induced by plastic deformation.

We can see that in the simulation, with increasing pressure, stress increases rapidly
until reaching a plateau of ~2.1 GPa (~4.1 ‘total stress’) at a pressure of 43 GPa. This
evolution is a bit different to that which is observed in the experiment (red curve in
Figure 3), where stress does not reach a plateau at 43 GPa but keeps increasing to reach a
higher stress value of 5.68 GPa. That difference between the experiment and simulation
may indicate that our model does not perfectly fit slip hardening.
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Table 1. Unit cell parameters and calculated pressures, crystallite size, differential stress (t), and inverse pole figure first and secondary maximum for NaMgF3 Prv
and pPrv, for runs #1 and #2. In the following discussion, we will use the convention where negative stress values correspond to stresses in the extensional direction,
and positive values to stresses in the compressional direction. Numbers in parentheses are uncertainties on the last digit estimated by the MAUD refinement. Note
that these uncertainties are standard deviation from the Rietveld fit. Cell parameters and crystallite size decrease with pressure. Likewise, strain increases with
pressure. The maximum m.r.d (multiples of random distribution) value of the inverse pole figure tends to decrease with increasing pressure. As can be seen in
Figure 4, this maximum occurs with a (110) texture.

R
un

# Pressure Unit Cell Parameters Crystallite Size t IPF Max IPF Secondary Max
(GPa) Pt Prv pPrv Prv pPrv Prv pPrv (m.r.d.) (m.r.d.)

Pt Prv pPrv a(Å) a(Å) b(Å) c(Å) a(Å) b(Å) c(Å) (Å) (Å) (GPa) (GPa) Prv pPrv Prv pPrv

1 3 3 - 3.9121(2) 5.2831(5) 5.4631(5) 7.5713(8) - - - 257(2) - 1.91(1) - 4.6 - 1.0 -
1 25 26 - 3.8261(2) 4.8664(13) 5.2712(12) 7.0784(14) - - - 92(1) - 4.44(4) - 3.4 - 0.8 -
1 27 29 - 3.8216(2) 4.8491(13) 5.2702(12) 7.0527(13) - - - 79(1) - 4.47(4) - 3.5 - 1.0 -
1 28 29 28 3.8166(1) 4.8488(9) 5.1951(9) 7.0719(11) 2.8065(3) 8.9035(13) 6.9403(8) 152(1) 3421(124) 0.68(2) 1.05(4) 2.9 4.6 1.2 none
1 33 32 32 3.8018(1) 4.8108(10) 5.1719(9) 7.0191(12) 2.7847(4) 8.8103(20) 6.9241(11) 140(1) 842(22) 2.47(3) 1.71(5) 3.8 3.9 1.4 2.2
1 40 37 36 3.7838(1) 4.7471(15) 5.1486(15) 6.9673(18) 2.7565(4) 8.8058(14) 6.8576(10) 122(1) 211(2) 3.99(2) 3.57(1) 3.6 2.6 2.2 1.7
1 44 43 48 3.7613(1) 4.6835(17) 5.1292(17) 6.8847(18) 2.7328(4) 8.8322(21) 6.6526(9) 88(1) 168(1) 6.01(4) 7.06(3) 2.3 2.9 1.7 1.3

2 32 32 - 3.8062(2) 4.7441(12) 5.1970(11) 7.0929(9) - - - 135(2) - 3.40(3) - 2.3 - 1.6 -
2 33 33 31 3.8015(2) 4.7642(24) 5.1773(27) 7.0467(27) 2.7926(3) 8.8210(17) 6.9285(5) 288(10) 601(7) 1.84(6) 2.01(1) 1.6 2.5 - none
2 40 35 37 3.7816(2) 4.7153(4) 5.1431(28) 7.0925(26) 2.7550(7) 8.7720(26) 6.8583(9) 190(4) 151(2) 3.26(8) 3.92(5) - 2.9 - none
2 49 41 45 3.7580(2) 4.7253(224) 5.1942(192) 6.8094(141) 2.7445(8) 8.5603(32) 6.8337(13) 106(9) 115(3) 4.75(44) 4.56(8) - 3.0 - none
2 54 - 50 3.7475(1) - - - 2.7408(7) 8.4452(23) 6.8079(8) - 89(1) - 5.44(6) - 3.0 - 1.3
2 64 - 61 3.7232(1) - - - 2.7247(6) 8.2917(19) 6.7400(7) - 78(1) - 5.68(2) - 2.6 - 1.4
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evolution observed during the EVPSC simulation (see Section 4.4 for more details on the simulation)
is reported as the green solid line.

3.2. Texture Development

In run #1, NaMgF3 perovskite initially develops a strong 100 texture during compres-
sion in the DAC (Figure 4). By 3 GPa, the IPF maximum is 4.6 m.r.d. but this weakens to
~3.5 m.r.d. upon compression to 27 GPa. Similarly, in run #2, just prior to conversion, the
texture in the perovskite phase exhibits a 100 maximum, but is weaker, with a 2.3 m.r.d.
At pressures in excess of ~30 GPa, the neighborite develops a secondary maximum at
001 that becomes stronger upon compression (Figure 4c–e). Just after conversion, the pPrv
has a maximum half way between 010 and 100 in the inverse pole figure in both runs
(Figure 4f,j). Due to the large b-axis length of pPrv, this position is close to the {130} pole.
Upon further compression, the 130 maximum becomes weaker and a secondary maximum
near 001 develops (Figure 4g,h,k–m), but overall, the texture is still dominated by the
130 maxima. Texture strength in pPrv just after the transformation is initially stronger in
run #1 (4.6 m.r.d.) than in run #2 (2.5 m.r.d.). Upon compression, however, the inverse pole
figure maximum in pPrv is similar for both runs (Table 1), although closer inspection of
the inverse pole figures shows that the 001 maximum is better developed in run #1 than
in run #2.

3.3. Lattice Strain Evolution

The co-existence of NaMgF3 Prv and pPrv in run #1 leads to significant peak overlap
between the two phases. In the case of the lattice strain, it is difficult to evaluate the
contribution of each phase to the overlapping peaks, and hence we decided not to use that
experiment for lattice strain measurements.

The lattice strain for different crystallographic planes was fit for the NaMgF3 pPrv in
run #2 (Figure 5). Five crystallographic planes are considered: (022), (023), (132), (041), and
(004). At 33 GPa, just after the synthesis of the NaMgF3 pPrv, the lattice strain is already
present, with Q-values of 0.004–0.008. With further compression, lattice strain on (023),
(022), and (132) planes keep an increasing trend. For plane (041), lattice strain seems to
increase until a pressure of 49 GPa, and then decrease down to 0.008 at 64 GPa. Given the
large fluctuations in the fitted Q(004) values, we consider this peak unreliable when trying
to match Q(hkl) values in our EVPSC simulations.
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Figure 4. Texture development in neighborite (a–e,i) and NaMgF3 pPrv (f–h,j–m). Two runs are
presented, one performed at ALS (run #1, a–h) and a second one performed at APS (run #2, i–m). The
plots are IPFs of the compression direction. The scale bar on the right side is in multiple of a random
distribution (m.r.d.) and applies to all the IPFs. The poles of the specific crystallographic sector used
for the IPF are shown in plot (a). The nature of the phase considered and the measured pressure are
reported on top of each IPF, and the M- and J-index of the texture strength are indicated on the side
of each IPF.
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4. Discussion
4.1. Deviatoric Stress

Previous experimental work has indicated that Prv may be mechanically stronger
than the pPrv phase [19,101]. In run #1, stresses in Prv are smaller than in pPrv just after
conversion. One might expect that a newly transformed phase would show lower stress
levels than the parent phase, but it is possible that pPrv preferentially transforms from
grains experiencing higher deviatoric stresses and thus exhibits relatively larger residual
stress levels. During compression, stresses in pPrv increase more rapidly than in Prv, and
at a pressure of 40 GPa, stresses are comparable in the Prv phase and the pPrv phase, with
differential stress values of 3.99 GPa and 3.57 GPa, respectively (Table 1). Based on these
diffraction data alone, it is difficult to tell if Prv is stronger than pPrv. The difference in
the strength of the two phases in the present study is quite small (if any), while a factor
of 4–5 was observed for CaIrO3 and for NaCoF3 [19,101]. This discrepancy may be due
to microstructure, rate sensitivity, differences in strain rate between the two phases, and
the fact that the DAC cannot deform at constant pressure. The presence of two phases in
our samples and the microstructures of these phases can also have a significant impact
on the stress distribution in between Prv and pPrv. Unfortunately, NaMgF3 pPrv is not
quenchable, and thus we cannot access information on microstructures such as the spatial
distribution (interconnected pPrv vs. isolated crystals) of the two phases. Additionally,
the work of Hunt et al. [19] and Dobson et al. [101] were performed at high temperatures,
whereas our experiments are at ambient temperature. Indeed, theoretical calculations
indicate that diffusion in pPrv is faster than in the Prv phase [20], and this could play a
role in this discrepancy. At the highest pressure of 44 GPa in run #1, stress levels in Prv are
smaller than in pPrv (6.01 GPa versus 7.06 GPa) by almost 1 GPa (Table 1). It is possible
that this change of behavior is due to microstructure changes but could also be due to the
fact that Prv is far outside of its stability field, which may impact the mechanical properties.

4.2. Deformation Textures in Perovskite

The initial (100) texture seen in the NaMgF3 Prv phase is similar to that observed in
the D-DIA on single-phase NaMgF3 perovskite deformed at 3.7 GPa and 400 ◦C [102]. The
texture strength in the D-DIA experiment, though, is much stronger, with an IPF maximum
of 11.8 m.r.d. Possible explanations for this difference are multiple: it could be a difference
in total strain, in temperature, and/or in potential overprinting of the (100) texture at higher
pressures. At 3 GPa, total strains in DAC are much lower than in the D-DIA. Indeed, in the
D-DIA experiment of Kaercher et al. [102], the total strain was 37%. In contrast, estimates for
total strain acquired over the entire compression range of a DAC experiment are generally
in the range of 30%–50% (e.g., [42,43,103]). Thus, at a low compression of 3 GPa in the
DAC, the total strain is expected to be low. Additionally, the work of Kaercher et al. [102]
was performed at 400 ◦C and it is possible that this elevated temperature improves the
ductility of NaMgF3. Finally, at higher pressures, we observe the formation of a secondary
maximum near 001, and it is possible that the formation of the 001 texture results in
the weakening of the initial 100 texture. The 100 texture in NaMgF3 Prv was attributed
to (100) slip by Kaercher et al. [102]. Miyagi and Wenk [43] also noted that twinning
on {110} can produce strong 100 textures. In the work of Kaercher et al. [102], elevated
temperature may suppress twinning and thus it is likely that (100) slip is dominant. In our
room-temperature experiments, we cannot rule out initial {110} twinning as a possibility
for the origin of the 100 texture maximum. The 001 texture observed at high pressures
is unlikely to be due to twinning, as twinning is active early in deformation. Thus, we
conclude that the formation of a 001 texture is most likely to be due to slip. The modeling of
perovskite deformation textures by Miyagi and Wenk [43] shows that 001 textures are likely
due to slip on (001) planes, but it is difficult to constrain the slip direction. Interestingly,
both 001 and 100 textures have been observed during the deformation of bridgmanite. In
room-temperature DAC experiments, 001 textures are most commonly observed [43,104],
but at higher pressures (>55 GPa), 100 textures have also been observed in the DAC [43]. At
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high temperatures, 100 textures have been observed in the large-volume press [105] and in
the resistive-heated DAC [106]. In any case, it appears that both bridgmanite and NaMgF3
Prv exhibit activity of slip on (100) planes [43,105,106] and (001) planes [43,57,104,107].

Furthermore, the activity of these slip systems seems to be sensitive to changing
deformation conditions, illustrating the complex deformation behavior of orthorhom-
bic perovskites.

4.3. Transformation Textures

Textures observed just prior to the phase transformation show (100) perovskite planes
at high angles to compression (Figure 4b,i). Just after transformation to pPrv, {130} planes
are at high angles to compression and show a similar texture strength to the 100 Prv texture
(Figure 4f,j). This is consistent with a transformation mechanism where (100)Prv becomes
~{130}pPrv. This orientation relationship closely preserves planes of MgF6 octahedra along
(110)Prv with the (010)pPrv octahedral layers in the pPrv structure.

Up to now, orientation relationships through the Prv to pPrv transformation in the
MgSiO3 system could not be investigated due to the difficulties of reproducing the trans-
formation in the laboratory. For that reason, analogs are used to study the Prv–pPrv
transformation, as well as deformation in the pPrv phase.

Previous work on NaNiF3 Prv and pPrv by Dobson et al. [32] documents orientation
relationships in partially transformed samples. The NaNiF3 pPrv phase is quenchable
and orientation relationships between the Prv and pPrv phases can be analyzed directly
with TEM. In their partially converted NaNiF3 sample, [001] was preserved between
the two structures, and orientation relationships of (010)Prv ~parallel to (110)pPrv were
observed [32]. Transformation of Prv into pPrv following that transformation mechanism
has also been observed in the NaCoF3 system [33]. To test if that transformation mechanism
could explain our experimental observations, we used the package MTEX to simulate a
coherent transformation of our experimental Prv (see Section 2.3 for details) following
the crystallographic relationship given by Dobson et al. [32]. The resulting pPrv texture
(Figure 6c) does not resemble our NaMgF3 pPrv textures: it has a strong maximum at the
010 pole and a secondary maximum in 001. Thus, that transformation mechanism is not
active in our samples.

In the MgGeO3 analog system, when a Prv phase with a preexisting 001 texture is
converted to the pPrv phase, the pPrv phase inherits a strong 001 texture [30,31]. This
indicates that (001)Prv becomes (001)pPrv in the MgGeO3 system. This orientation rela-
tionship is consistent with those documented in this work (on NaMgF3), in the work of
Dobson et al. [32] on NaNiF3, and in the work of Gay et al. [33] on NaCoF3. In the CaIrO3
system, a post-transformation texture with (100) planes at high angles to the compression
direction has been observed in the pPrv phase [58]. However, as the CaIrO3 Prv did not
exhibit a significant texture prior to transformation, a transformation relationship between
CaIrO3 Prv and pPrv was ruled out [58].

Two computational studies have proposed mechanisms for the Prv–pPrv phase trans-
formation in the MgSiO3 system. Tsuchiya et al. [28] propose a mechanism where the
phase transformation is accomplished by a rapid decrease in the γ angle of the bridgmanite
unit cell. This results in the following orientation relationships between the two struc-
tures [1–10]Prv→[100]pPrv, [110]Prv→[010]pPrv, and [001]Prv→[001]pPrv [28]. Alternately,
Oganov et al. [29] predicted that the Prv to pPrv transformation occurs by sliding along
the Prv (010)[100] system, which becomes {110}<1–10> in pPrv. These crystallographic
relationships were also tested with simulations. Figure 6c,d shows that although the two
transformation mechanisms preserve the [001] direction between the two structures, i.e., the
neighborite c-axis transforms to the NaMgF3 pPrv c-axis, they result in different post-
transformation textures. The transformation mechanism proposed by Tsuchiya et al. [28]
produces a post-transformation texture with a maximum with {130} planes at high angles
to compression and a secondary maximum in 001, matching our experimental pPrv post-
transformation (Figure 6d). The intensity of the simulated LPO, though, is much lower
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than in the experiment. That intensity difference may come from a lack of variant selec-
tion in our simulation, and/or from the calculation in MTEX, which smooths the discrete
orientations when reconstructing the ODF. Another discrepancy between the simulated
and experimental textures is that the 001 secondary maximum expected by the coherent
transformation simulation is absent in the experimental pPrv LPO. If NaMgF3 effectively
transforms following this mechanism, this feature may indicate that the transformation
of Prv grains with (100) planes at a high angle of the compression direction is favored,
compared to grains with (001) planes at a high angle of the compression. The mechanism
proposed by Oganov et al. [29] gives a different post-transformation texture, similar to the
one resulting from the mechanism of Dobson et al. [32] (Figure 6e). This mechanism too
does not fit our experimental observations.
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Figure 6. Simulation of coherent Prv to pPrv transformation and comparison to the experimental
texture. Starting from the experimental NaMgF3 Prv texture observed just before the transforma-
tion (a), (also shown in Figure 4i), we compute the orientations that would have the daughter pPrv
grains if they transform following the crystallographic relationships proposed in Dobson et al. [32] (c),
Tsuchiya et al. [28] (d), or Oganov et al. [29] (e). (b) is the experimental pPrv post-transformation
texture, for comparison. Plots are IPFs of the compression direction, and the scale bar in the top right
corner applies to all IPFs.

Transformation in our sample seems to follow the mechanism proposed by Tsuchiya
et al. [28]. It is surprising that Tsuchiya et al. [28]’s mechanism is observed here while
Dobson et al. [32]’s mechanism is reported in NaNiF3 and NaCoF3 [32,33]. The major
difference between our work and that of Dobson et al. [32] and Gay et al. [33] is that
during their experiments they heated their samples throughout the whole experiment to
temperatures of ~800–1000 K, while we only used laser heating to trigger the conversion,
once the Prv was already at high pressure. We are unable to determine if differences in
heating path may have an impact on the transformation strongly enough to change the
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transformation mechanisms, and further studies on this subject may be needed to explain
these discrepancies.

Although the detailed transformation mechanisms may not be the same for NaMgF3,
NaNiF3, NaCoF3, and MgGeO3 pPrv analogs, in all these compounds the Prv–pPrv trans-
formation seems to preserve the [001]Prv//[001]pPrv relationship. Thus, we expect that the
bridgmanite in the mantle may also transform to pPrv following a coherent mechanism.
However, to date, orientation relationships for silicate bridgmanite to Mg-pPrv have not
yet been established experimentally.

4.4. Deformation Textures in Post-Perovskite

To interpret deformation textures in terms of the activities of deformation modes, we
employ the EVPSC code. Texture evolution depends on the initial texture, the deformation
geometry, the slip and twin activity, and the total strain. Since the pPrv phase has a strong
initial transformation texture of {130} at high angles to compression, we adopt the approach
of Miyagi et al. [31] to include the effects of transformation. We hence used the texture
illustrated in Figure 4j as the starting point for the simulation. We choose to simulate the
texture evolution in run #2 (APS) as we are able to obtain Q(hkl) values in this run, as there
are minimal peak overlaps from the Prv phase (see Section 3.3). First, we performed a
simulation using the {110} twin and the (010)[100] and (010)[001] slip systems as the easiest
deformation mechanisms, as suggested by numerical computations [38,49,50]. Surprisingly,
the simulation could not reproduce the experimental deformation texture and lattice strain
with these parameters. Then, by using trial and error, we found a combination of CRSS
for slip and twin systems modes that can fit our experimental observations. The list of slip
systems considered and the associated parameters are given in Table 2.

Table 2. List of slip systems considered in our EVPSC model, the CRSS parameters used in the
simulation, and the resulting activities of each slip system. The simulation applies a deformation in
compression with deformation steps of 0.0025, up to a 25% total axial strain. The homogenization
chosen in that simulation is the tangent model, and the stress exponent for all the slip systems is set
to n = 3.

Slip System CRSS Activity (%)

(010)<100> 10 0
(010)<001> 10 0
(010)<101> 10 0
(110)<-110> 10 0
(100)<010> 0.042 35
(001)<100> 0.001 50
(001)<010> 10 0
(001)<110> 0.12 15
(011)<100> 10 0
(100)<001> 10 0
(110)<001> 10 0

(110)<−110> TWIN 10 0

Our best EVPSC fit of the experimental deformation texture is shown in Figure 7.
The texture at the end of the simulation (25% axial strain, Figure 7c) reproduces the
experimental texture (Figure 4m), with a strong maximum slightly shifted from 130 toward
the 001 pole of the IPF, and a secondary maximum near 001. The simulated Q(hkl)s also
resemble the experimental ones, showing values ranging from 0.004 to 0.016 (Figure 7b),
i.e., similar to the Q-values in Figure 5, except for Q(041). This also provides a similar
order of the Q(hkl)s, although the detailed evolution of Q(041) and Q(004) could not be
reproduced well. The slip and twin systems activity recorded during the simulation is
reported in Figure 7d, and indicates that only three slip systems are active: (001)<100>,
(100)<010>, and (001)<110>. The (001)<100> is generally the most active of the slip systems,
although (100)<010> contributes almost equally to the deformation at low axial strains.
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The (001)<110> is weakly active at first, but its activity increases at high strain. As the
activity of these three slip systems is enough to reproduce the features of our experimental
observations, we can propose that these slip systems are indeed the dominant deformation
mechanism in our experiments.
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Given the strong 130 transformation texture, it is not surprising that slip on (001) pro-
duces only weak texture development. The Schmid factor, which describes the stress
resolved onto a given slip system, is defined as m = cosφcosλ, where m is the Schmid
factor, φ is the angle between the slip plane normal and the applied stress, and λ is the
angle between the slip direction and the applied stress. Grains with {130} at high angles to
compression will have (001) planes nearly parallel to the compression direction, implying
that φ will approach 90◦. Thus, for these grains, the Schmid factor is close to zero and
no stress is resolved onto the slip systems involving (001). Grain rotation and texture
development are then restricted to those grains that are not oriented with {130} at a high
angle to compression and, since the 130 transformation texture is relatively strong, most
grains cannot deform efficiently by (001) slip and so texture evolution is weak. This effect
will also require the activation of additional slip systems to accommodate deformation.

Dominant slip on (001) in pPrv is consistent with previous observations from the literature,
where several studies report 001 textures in experimentally deformed pPrv [30,31,42,66–68].
For slip on (100) in pPrv, there is no convincing evidence in the literature. The activation of
the secondary (100) slip, however, can be specific to our case, where grains are pre-oriented
by the transformation in a non-favorable orientation, as discussed previously. Hence, we
can propose that when pPrv transforms from a 100 textured Prv and the transformation
mechanism is the same as the one observed in our experiments, (100) slip in pPrv may be
needed, at least to initiate the deformation.

The consistency in observed dominant slip in NaMgF3 pPrv and MgSiO3 pPrv (or
other structurally close pPrv) hence indicates that the NaMgF3 system is a good analog for
the mantle MgSiO3 Prv and pPrv.
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4.5. Application to the Lowermost Mantle

Textures compatible with multiple slip systems have been observed at high pressures
for Bdm and its orthorhombic analogs (e.g., [108]). Two general texture types have been
observed, compatible with slip on (001) planes [43,63,64] or on (100) planes [43,102,105].
Several studies have investigated the effect of slip on (001) planes with relation to anisotropy
development in the lower mantle. Slip on (001) in Bdm generates shear wave splitting
characterized by VSV > VSH for waves propagating along the core–mantle boundary [23,24].
In the lowermost mantle, this is generally inconsistent with the shear wave splitting
observed in the circum-Pacific region but could be compatible with regions below the
central Pacific and South Africa (e.g., [1,9]). VPSC-modeled textures for slip on (100) in
Bdm [106], as well as shear fabrics from experiments [105], would generate VSH > VSV
splitting for a wave propagating along the CMB, assuming a horizontal shear plane. This
could be compatible with anisotropy in the circum-Pacific region, though one might expect
this region to be dominated by pPrv.

Texture inheritance is likely to play an important role in anisotropy development in
slabs subducted to the D” (e.g., [32]). Currently, texture inheritance during Prv to pPrv
transformation has been observed in all explored pPrv analogs except for CaIrO3. As a slab
is subducted, it will first deform in the Bdm stability field and, with continued subduction,
transform to the pPrv phase. If Bdm in the slab is textured when it transforms to Mg-pPrv,
we can then expect pPrv to inherit texture from the Bdm phase. Accordingly, complex
anisotropy is observed near regions of slab subduction [109] and this may be due to the
phase transformation from Bdm to Mg-pPrv [110]. Currently, most models of seismic
anisotropy in the D” ignore texture inheritance and assume a random starting texture for
Mg-pPrv. In addition, texture inheritance can also be important when material upwells from
the D” and retrogrades from Mg-pPrv to Bdm. Furthermore, the most active slip system in
Bdm, (001) versus (100) slip, will have a significant impact on anisotropy evolution related
to the phase transformation. Two studies have been performed using transformation mech-
anisms proposed by Dobson et al. [32]. Walker et al. [111] assume slip on (100)[010] and
then apply the orientation relationships of Dobson et al. [32]. Chandler et al. [112] assume
dominant slip in Bdm on (001) planes and in multiple directions in a three-phase aggregate
of Bdm, Ferropericlase, and CaSiO3 Prv. Likewise, the transformation relationship of
Dobson et al. [32] is used to simulate anisotropy related to the phase transformation to pPrv.
Interestingly, both of these studies provide reasonable matches to anisotropy observed in
global tomography models [111,112].

One complication that bears further study is the role of variant selection for anisotropy
related to the Bdm to pPrv phase transformation. In high-symmetry materials, if variant
selection (the preference of a transformation variant over other possible variants) is not
active, textures will randomize through a martensitic phase transformation. However,
frequently texture is preserved during a phase transformation, and variant selection in
high-pressure experiments can be attributed to deviatoric stresses (e.g., [113]). For the
Bdm to pPrv transformation, there are no symmetric variants for the (001)Prv to (001)pPrv
relationship. However, there are two symmetric variants for (100)Prv to {130}pPrv, as well
as for the (010)Prv to {110}pPrv. If deviatoric stress drives variant selection for this system,
in the deep earth threshold, stresses are likely too low to drive variant selection. In this
case, we would expect the (001)Prv to (001)pPrv relationship to be preserved, resulting in
a strong anisotropy inheritance. However, for the (100)Prv to {130}pPrv and the (010)Prv
to {110}pPrv relationships, we would expect texture strength to be approximately halved.
As a result, some orientations would experience weakened texture and anisotropy. Thus,
anisotropy inheritance is likely more complex than a simple transformation according to
the proposed relationships, as some rotational randomization about [001] may occur. The
exact nature of variant selection and threshold stresses to drive variant selection are not
well understood, and it is not clear if the same transformation mechanism will apply for
forward and reverse transformations.
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Slip on (001) pPrv, as observed in this study, is consistent with most other pPrv-
structured compounds, and generally appears to provide a good match to shear wave
splitting in the circum-Pacific region [23,24,42,111,114]. Other studies, though, show a
better fit using other slip systems such as (010) or (100) planes for anisotropy under the
Pacific and southern Africa [115] or under subduction zones [116].

Another interesting topic that we could not investigate here is the stress dependency of
the active slip systems in pPrv. Indeed, the lower stresses expected in the mantle compared
to experiments may change the dominant slip system accommodating the deformation
in minerals (e.g., [117]). In the current study, we do not have the method and the data
to test such a possibility: stress in the DAC is high and difficult to control, and data on
pressure/stress dependency of slip systems in NaMgF3 pPrv are lacking. Hence, we focus
here on showing that NaMgF3 pPrv has similar active slip systems as MgSiO3, at the lower
pressure, where the pPrv phase is stable. This implies that NaMgF3 is a good analog for
MgSiO3 pPrv, and could be used in a lower-pressure apparatus better adapted to controlled
strain rate deformation than the DAC.

5. Conclusions

To study transformation and deformation mechanisms in the NaMgF3 Prv–pPrv
system, we performed compression experiments in the radial laser-heated DAC. NaMgF3
Prv was first compressed to ~30 GPa and then converted to the pPrv phase by laser
heating at ~1400 K. The obtained pPrv or Prv + pPrv polycrystals were then further
compressed up to ~64 GPa. Texture, lattice strain, and differential stress in the samples
were characterized in situ by X-ray diffraction. We observe a 100 texture in the deformed
Prv (with an additional 001 maximum at higher pressures), a 130 transformation texture
in the synthetized pPrv, and the appearance of a 001 secondary maximum in pPrv with
increasing deformation. During compression, we measure high stresses in both the Prv and
pPrv phases, except after laser heating, which strongly decreases stress in the remnant Prv.
Overall, Prv seems stronger than pPrv. Lattice strains are also quite large in the pPrv, with
Q-values of up to ~0.018.

The 100 texture observed in our deformed Prv can be related either to dislocation slip
on the (100) planes or to {110} twinning. The secondary maximum in 001 appearing at
higher pressures can be explained by slip on (001) planes.

Transformation simulations based on topotactic relationships show that the Prv–pPrv
transformation in our samples seems to follow the crystallographic relationship given by
Tsuchiya et al. [28]: [1–10]Prv//[100]pPrv, [110]Prv//[010]pPrv, and [001]Prv//[001]pPrv. This
induces a texture inheritance from the Prv to the pPrv, where the 100 texture of the parent
Prv becomes a 130 texture in the daughter pPrv.

Later deformation of the pPrv leads to slight changes in the position of the 130 maxi-
mum and the appearance of a secondary 001 maximum. EVPSC models show that this tex-
ture evolution with deformation results from dislocation slip on (001)<100> and (100)<010>
with some contribution of (001)<110>.

Overall, deformation in neighborite and NaMgF3 pPrv is consistent with deformation
mechanisms observed in other Prv and pPrv analogs (except CaIrO3). Transformation mech-
anisms may be different from those of the NaNiF3, NaCoF3, or MgGeO3 systems; neverthe-
less, they remain coherent and preserve the c-axis between the Prv and pPrv structures.
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