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Submodular functions and perfect graphs

Tara Abrishami* Maria Chudnovsky! Cemil Dibek!  Kristina Vugkovié?

January 13, 2024

Abstract

We give a combinatorial polynomial-time algorithm to find a maximum weight independent
set in perfect graphs of bounded degree that do not contain a prism or a hole of length four as
an induced subgraph. An even pair in a graph is a pair of vertices all induced paths between
which are even. An even set is a set of vertices every two of which are an even pair. We show
that every perfect graph that does not contain a prism or a hole of length four as an induced
subgraph has a balanced separator which is the union of a bounded number of even sets, where
the bound depends only on the maximum degree of the graph. This allows us to solve the max-
imum weight independent set problem using the well-known submodular function minimization
algorithm.

Keywords: Perfect graphs, submodular functions, maximum weight independent set, even sets.

1 Introduction

All graphs in this paper are finite and simple. For two graphs G and H, we say that G contains H
if some induced subgraph of G is isomorphic to H. A graph G is H-free if it does not contain H,
and when H is a set of graphs, we say G is H-free if it is H-free for all H in H.

A clique in a graph is a set of pairwise adjacent vertices, and an independent set is a set of
pairwise non-adjacent vertices. The chromatic number of a graph G is the smallest number of
independent sets of G with union V(G). A graph G is perfect if every induced subgraph H of
G satisfies x(H) = w(H), where x(H) is the chromatic number of H and w(H) is the size of a
maximum clique in H. For an integer k > 4, a hole of length k in a graph is an induced subgraph
isomorphic to the k-vertex cycle Cx. An antihole is the complement of a hole. A hole or antihole
is odd if its length is odd, and even if its length is even. A graph is Berge if it does not contain an
odd hole or an odd antihole. Claude Berge introduced the class of perfect graphs and conjectured
that a graph is perfect if and only if it is Berge. This conjecture (now the Strong Perfect Graph
Theorem) was proved by Chudnovsky, Robertson, Seymour and Thomas [4].

Given a graph with non-negative weights on its vertices, MAXIMUM WEIGHT INDEPENDENT
SET (MWIS) is the problem of finding an independent set of maximum total weight. It is known

*Department of Mathematics, University of Hamburg, Germany, tara.abrishami@uni-hamburg.de. This work was
performed while the author was at Princeton University. Supported by NSF Grant DMS-1763817 and NSF-EPSRC
Grant DMS-2120644.

TDepartment of Mathematics, Princeton University, USA, mchudnov@math.princeton.edu. Supported by NSF
Grant DMS-1763817 and NSF-EPSRC Grant DMS-2120644.

fDepartment of Operations Research and Financial Engineering, Princeton University, USA,
cdibek@alumni.princeton.edu. Supported by NSF Grant DMS-1763817.

$School of Computing, University of Leeds, UK, k.vuskovic@leeds.ac.uk. Supported by DMS-EPSRC grant
EP/V002813/1.



that MWIS can be solved in polynomial time in perfect graphs due to the algorithm of Grotschel,
Lovasz and Schrijver [7]. This algorithm, however, uses the ellipsoid method to solve semidefinite
programs. Although there is no standard definition of combinatorial algorithm, most graph theorists
agree that algorithms that rely on graph searches and decompositions and that can be described
as a sequence of operations applied directly to the vertices and edges of the graph can be called
combinatorial. Under this “definition” the algorithm of [7] is not considered to be combinatorial.
Currently, no combinatorial polynomial-time algorithm is known to solve MWIS in perfect graphs,
and consequently there has been interest in studying MWIS in restricted subclasses of perfect
graphs. Although in some restricted subclasses of perfect graphs, MWIS can be formulated as a
linear program of polynomial size and different approaches can then be used to solve it, translating
these methods into a “combinatorial algorithm” is still out of reach, so even finding a combinatorial
polynomial-time algorithm for MWIS in subclasses of perfect graphs is an open and interesting
problem. In this paper, we prove one such result. A prism is a graph consisting of two vertex-
disjoint triangles {a1,ag,as}, {b1,b2,bs}, and three vertex-disjoint paths Py, Ps, P3, where each P,
has endpoints a;, b;, and for 1 <14 < j < 3 the only edges between V' (F;) and V(P;) are a;a; and b;b;.
In this paper, we obtain a combinatorial polynomial-time algorithm solving MWIS in perfect graphs
of bounded degree that do not contain a prism or a hole of length four. Our approach uses two
general tools, even set separators and iterated decompositions, which can be applied to different
graph classes and which therefore add to the available methods to solve MWIS. Developing the
theory of even set separators and of iterated decompositions are major contributions of this paper,
aside from the application to MWIS in a subclass of perfect graphs. Next, we describe how these
two tools work and why they are useful.

Even set separators are related to a well-known graph structure called balanced separators. A
balanced separator in a graph is a set of vertices that, when deleted, breaks the graph into small
components. When a balanced separator is of constant size, algorithmic problems can be solved in
the graph in polynomial time using recursion. For instance, in the case of MWIS, one can guess the
intersection of a maximum independent set with the balanced separator in constant time when the
size of the balanced separator is constant, and then compute MWIS in the components recursively
since the components are small. Even set separators similarly have the property that, when deleted,
the remaining components of the graph are small. However, instead of relying on constant size
to make MWIS solvable in polynomial time, even set separators allow us to reduce an instance of
MWIS to several instances of submodular function minimization, a problem known to be solvable
in polynomial time [9,12,14,16].

More formally, let G be a graph and let w : V(G) — [0, 1] be a weight function defined on the
vertices of G. For X C V(G), let w(X) = > -5 w(z), and denote w(V(G)) by w(G). We let
w™® be the maximum weight of a vertex, i.e. W™ = max,cy (g w(v). A weight function w on
V(G) is called a uniform weight function if there exists X C V(G) such that w(v) = ﬁ ifveX
and w(v) = 0if v & X. Let ¢ € [3,1). A set X C V(G) is a (w,c)-balanced separator if every
connected component D of G\ X satisfies w(D) < ¢. Balanced separators of “small” size are useful
because they allow many algorithmic problems to be solved in polynomial time using recursion. For
example, in graphs that have a small balanced separator for every uniform weight function, MWIS
is solvable in polynomial time.

Lemma 1.1 ([8]). There is a function f : N xR — N with the following property. Let G be a graph
with |V(G)| = n. Let c € [3,1), let k be a nonnegative integer, and suppose G has a (w, c)-balanced
separator of size at most k for every uniform weight function w. Then, MWIS can be solved in G
in time at most nd (k)

A path in G is an induced subgraph isomorphic to a graph P with vertices pg, p1, - - - , pr and with



E(P) = {pipi+1 : i € {0,...,k —1}}. We write P = po-p1-...-pr to denote a path with vertices
Do, P1, - - -, Pg in order. We say that P is a path from pg to pi. The length of a path P is the number
of edges in P. A path is odd if its length is odd, and even otherwise. For a path P with ends a, b,
the interior of P, denoted P*, is the set V(P) \ {a,b}.

The distance between two vertices x,y € V(G) is the length of the shortest path from z to y
in G. The distance between a vertex v € V(G) and a set X C V(G) is the length of the shortest
path with one end v and the other end in X. We denote by N%[v] the set of all vertices of distance
at most d from v in G. Similarly, we denote by N¢[X] the set of all vertices of distance at most d
from X in G.

Since we will be focusing on graphs with bounded maximum degree, we use an alternative
definition of bounded. We say that a set X C V(G) is d-bounded if X C N%[v] for some v € V(G).
A set X C V(G) is a d-bounded (w,c)-balanced separator of G if X is d-bounded and X is a
(w, ¢)-balanced separator of G. Note that if G has maximum degree ¢ and if X is d-bounded, then
IX|<1+04...+6%

In this paper, we define a new type of separator called even set separators. An even pair in G
is a pair of vertices {x, y} such that every induced path in G from z to y is even, and in particular,
x and y are non-adjacent. A set X C V(G) is an even set if every pair of its vertices is even. Note
that all even sets are independent sets. Let Xi,..., X, be pairwise disjoint vertex subsets of G.
We say that (Xi,...,X) is an £-iterated even set in G if X; is an even set in G \ (U;,; X;) for all
1<i <.

Let k and d be positive integers and let ¢ € [3,1). We say that X = (X1,...,X}) is a (w, k, ¢,d)-
even set separator of G if X is a k-iterated even set in G and every connected component D of
G\ X satisfies |[IN(D)| < d and w(D) < ¢ (here, we use G \ X to mean G\ (Uf:1 Xi)). Note
that a (w, c)-balanced separator X = {z1,...,zx} of size at most k < d is a (w, k, ¢, d)-even set
separator, since ({z1},...,{zx}) is an iterated even set. A graph G is called (k,c,d, m)-tame if G
has a (w, k, ¢, d)-even set separator for every uniform weight function w, and such a separator can
be constructed in O(|V(G)|™) time.

In Section 2, we prove the following theorem.

Theorem 1.2. Let k,d, m be integers, and let ¢ € (%, 1). Let z be the minimum integer such that

c% < % Then, there is a combinatorial algorithm that, given a (k,c,d, m)-tame graph G, solves
MWIS in G in O(|V(G)|Y)-time, where y = max(m, z,5k + 1).

The proof of Theorem 1.2 relies on the well-known submodular function minimization algorithm.
In this paper, we use Theorem 1.2 to solve MWIS in (Cjy, prism)-free perfect graphs of bounded
degree. In fact, we work with a slightly larger class of “paw-friendly graphs”, that we define in
Section 6. We remark that this class contains graphs with arbitrarily large treewidth (e.g., bipartite
subdivisions of a large wall), and therefore the standard techniques such as applying dynamic
programming over the decomposition tree to solve MWIS do not work for graphs that we consider
in this paper.

In Section 8, we prove the following theorem.

Theorem 1.3. Let ¢ € [%, 1) and let 6 be a positive integer. Let G be a paw-friendly graph with
mazimum degree 5. Then, G is (L +0+ ...+ 83, ¢, 146+ ...+ 6°F3, 3)-tame.

Together, Theorems 1.2 and 1.3 imply that there is a combinatorial ploynomial-time algorithm
to solve MWIS in paw-friendly graphs with bounded degree.

Theorem 1.4. There is a function f : N — N with the following property. There is a combinatorial
algorithm that, given a paw-friendly graph G on n vertices with mazimum degree &, solves MWIS in
G in time at most nf(®)



Since by Theorem 5.7 every (Cjy, prism)-free perfect graph is paw-friendly, we deduce:

Theorem 1.5. Let ¢ € [%, 1) and let 6 be a positive integer. Let G be a (Cy, prism)-free perfect
graph with mazimum degree 6. Then, G is (1 +0 4+ ...+ 63 ¢, 1+6 + ... 4 6°F3,3)-tame.

Theorem 1.6. There is a function f : N — N with the following property. There is a combinatorial
algorithm that, given a (Cy, prism)-free perfect graph G on n vertices with mazimum degree §, solves
MWIS in G in time at most n/(®).

Theorems 1.5 and 1.6 are two distinct contributions related to (Cjy, prism)-free perfect graphs
with bounded degree. The first is a structure theorem proving the presence of even set separators.
The second is an application of submodularity to solve MWIS. The remainder of the paper is
structured as follows. In Section 2, we define submodular functions and prove Theorem 1.2. In
Sections 3 and 4, we define iterated decompositions and star separations, and describe their key
properties. In Section 5, we prove that the presence of certain induced subgraphs in (Cjy, prism)-free
perfect graphs forces a decomposition. In Section 6, we describe iterated decompositions in (Cy,
prism)-free perfect graphs. In Section 7, we construct iterated even sets in (Cy, prism)-free perfect
graphs. Finally, in Section 8, we prove Theorem 1.3.

Definitions and notation. Let G = (V,E) be a graph. For X C V(G), G[X] denotes the
induced subgraph of G with vertex set X and G\ X denotes the induced subgraph of G with vertex
set V(G) \ X. We use induced subgraphs and their vertex sets interchangeably throughout the
paper. For a graph H, we say that a set X C V(G) is an H-copy in G if G[X] is isomorphic to H.

Let X C V(G). The neighborhood of X in G, denoted by N(X), is the set of all vertices in
V(G) \ X with a neighbor in X. The closed neighborhood of X in G, denoted N[X], is given by
N[X] = N(X)UX. For u € V(G), N(u) = N({u}) and N[u] = N[{u}]. For v € V(G) \ X,
Nx(u) = N(u) N X. Let Y C V(G) be disjoint from X. We say X is complete to Y if every
vertex in X is adjacent to every vertex in Y, and X is anticomplete to Y if every vertex in X is
non-adjacent to every vertex in Y. Note that the empty set is complete and anticomplete to every
X C V(G). We say that a vertex v is complete (anticomplete) to X C V(G) if {v} is complete
(anticomplete) to X. A cutset of G is a subset K C V(G) such that G\ K is not connected. A set
S C V(GQ) is a star cutset of G if S is a cutset and there exists v € S such that S C NJv].

2 Submodular functions and even set separators

In this section, we describe a combinatorial algorithm to solve MWIS in (k, ¢, d, m)-tame graphs
that runs in time polynomial in the number of vertices (with k, ¢, d, m fixed). To do so, we make use
of submodular functions. Given a finite set S, a set function f : 25 — R is said to be submodular if

f(A)+ f(B) = f(AUB) + f(AN B),

for all subsets A, B of S. The above inequality is known as the submodular inequality. There are
several examples of submodular functions that appear in graph theory, see [10] for an exposition of
these examples.

Minimizing a submodular function f : 2° — R is the problem of finding a subset of S that
minimizes f. Assuming the availability of an evaluation oracle, that is, a black box whose input is
some set U C S, and whose output is f(U), there exist fully combinatorial strongly polynomial time
algorithms for submodular function minimization, see [12| for a survey of these algorithms. These
are algorithms which use only additions, subtractions, and comparisons, and whose running time is



a polynomial function of |S| only. (In contrast, submodular function maximization is known to be

NP-hard.)

Lemma 2.1 ([14]). Let f : 25 — R be a submodular function defined on the subsets of a set S with
n elements. Then, there is a combinatorial algorithm to minimize f in time O(n°EO + n"), where
EO is the running time of evaluating f(A) for a given A C S.

Let G be a graph with vertex weight function w. Let o(G) denote the maximum weight of an
independent set of G. Let S be an independent set in a graph G and let A C S. We let 14 s(G)
denote a maximum weight independent set I in G such that NS = A. In words, 145(G) is a
maximum weight independent set in G that “extends” the set A C S to V(G) \ S. We denote
the weight of 14 5(G) by aa,s(G) (ie. ans(G) = w(las(G))). The following lemma is the key
connection between the two main ingredients of our algorithm: submodular functions and even sets.
The proof is similar in spirit to the proof of the statement 6.5 of [5].

Lemma 2.2. Let S be an even set in a graph G. Let f : 25 — R be a set function defined on the
subsets of S and given by f(A) = —aa,s(G) for A C S. Then, the function f is submodular.

Proof. Let A, B be two subsets of S. Our goal is to show that the following inequality holds:

aas(G)+ aps(G) < aau,s(G) + aang,s(G).

For ease of notation, let 14 = I4 5(G) and Ip = Ip s(G). In the bipartite graph G[I4 U Ig], we
denote by Y4 (resp. Yp) the set of those vertices of 14UIp for which there exists a path in G[/4UIg]
joining them to a vertex of A\ B (resp. B\ A). Note that by the definition of the sets Y4 and
Yp, we have (A\ B) C Y4, (B\ A) C Yp, and Y4 U Yp is anticomplete to (I4 UIp)\ (YaUYR).
We claim that Y4 NYp = 0 and Y, is anticomplete to Y. Suppose not, then there is a path P in
G[Ia U Ig| from a vertex of A\ B to a vertex of B\ A. We may assume that P is minimal with
respect to this property, and so the interior of P is in V(G) \ S. Hence, P is of odd length because
G[I4 U Ig] is bipartite. This contradicts the assumption that S is an even set in G. Now, we define
the following sets:

S1=IaNYx)UIpNYp)U 4\ (YaUYR)),
Sy = (IAﬂYB)U(IBQYA)U(IB\(YAUYB)).

Since Y4 NYp = 0 and Y, is anticomplete to Yp, observe that S; and Sy are independent sets, and
that NS = AUB and SoNS = AN B. Moreover, since [4UIg = S51USy and I4NIg = 51 NS,
we have w(l4) + w(Ip) = w(S1) + w(S2). Hence, we obtain

OzA’S(G) + OéBys(G) = w(IA) + w(IB) = w(Sl) + w(Sg) < OZAUB,S(G) + OéAmBﬁ(G).
This completes the proof. O

Now, we describe how to solve MWIS in polynomial time in graphs with even set separators.
The idea of the proof is as follows. Let G be a (k,c,d, m)-tame graph. First, we find a k-iterated
even set separator L = (L, ..., L) of G, which exists since G is tame. Next, we define a sequence of
graphs G, ..., Gy, where G; = (G\ L) UU;-_:B L. We iteratively solve MWIS in G; by computing
functions that allow us to find the maximum weight independent set of GG; given a set of vertices that
must be included in the independent set. These functions are computed via submodular function
minimization, and solutions for G;_; serve as oracles for the submodular function minimization
for G;. The fact that each of the components of G \ L contains at most ¢|V(G)| vertices and has
at most d attachments in L allows us to use convexity to keep the complexity of the algorithm
polynomial-time.



Theorem 1.2. Let k,d, m be integers, and let ¢ € (%, 1). Let z be the minimum integer such that

z—1
cit1t < % Then, there is a combinatorial algorithm that, given a (k,c,d,m)-tame graph G, solves

MWIS in G in O(|V(G)|Y)-time, where y = max(m, z, 5k + 1).

Proof. Let G be a (k,c,d, m)-tame graph. Note that it follows that every induced subgraph of G
is (k,c,d, m)-tame. We prove the result by induction on n = |V (G)|. Assume inductively that for
every proper induced subgraph H of G, MWIS can be solved on H in O(|V (H)|Y)-time. Let w be
a weight function on V(G) that is part of the input to MWIS problem on G. We now compute the
maximum weight (w.r.t. w) of an independent set in G (i.e. a(G)) in O(nY)-time.

There exists a k-iterated even set L = (Li,...,Lg) such that for every connected
(1.2.1) component D of G\ L, IN(D)| < d and |D| < en. Furthermore, such a set can be
constructed in O(n™)-time.

Proof of (1.2.1): Let w* : V(G) — [0,1] be such that w*(v) = 1, for every v € V(G). Let
L= (Ly,...,Lg) be a (w*, k,c,d)-even set separator that can be constructed in O(n™)-time, which
exists since G is (k,c,d, m)-tame. Let D be a connected component of G \ L. Then |[N(D)| < d
and w*(D) < ¢. Since w*(D) = |D|- L < ¢, it follows that [D| < en. This proves (1.2.1).

Let L = (Lq,..., L) be the k-iterated even set from (1.2.1), and let D1, ..., D; be the connected
components of G \ L. Then for every i = 1,...,[, the following hold: |N(D;)| < d, |D;| < en and
for every i =1,...,k, L; is an even set in G \ (Uj<;L;).

Fori=1,...,1, let gp, : 2N(Di) _5 R be a function such that for every A C N(D;), it holds that
9p,(A) = a(D; \ N(4)).

(1.2.2) We can compute the functions gp,,...,gp, in O(nY)-time and store the values in a
" table T.

Proof of (1.2.2): Since |D;| < en and ¢ < 1, it follows from the inductive hypothesis that gp,(A)
can be computed in O(|D;|¥)-time, for every A C N(D;). Since |N(D;)| < d, there are at most
24 possible sets in the domain of gp,, for all i = 1,...,l. Therefore, functions gp,,...,gp, can
be computed in O(24 Zi’:l |D;|¥)-time. We now show that 2¢ Zi’:l |D;|¥ < n¥Y. Consider the
function Ele z¥ (where y is constant) with the constraints Zle z; <nand 0 < z; < cn for all
i =1,...,¢. Since the function Zle z¥ is convex when z; > 0 for ¢ = 1,...,¢, and thus over the
above feasible set, it follows that it is maximized at an extreme point of the feasible set (see, e.g.,
[2, Theorem 7.42|). The extreme points of the feasible set defined by 0 < |D;| <ecn fori=1,...,¢
and Zizl |D;| < n can easily be enumerated. Indeed, up to a permutation, the extreme points are
one of the following types (depending on the relationship between ¢ and /):

e (|ID1],...,|Dyg|) = (0,...,0),

e (|D1],...,|De|) = (en, ..., cn),

e (|D1l,-..,|Dyly|Dysils- -y |Del) = (en,...,en,0,...,0) for some r € {1,...,0—1},

o (|Dil,...,|Dv|,|Drs1ls | Drs2l .-, |Del) = (en,...,en,n—ren,0,...,0) forsomer € {1,...,¢—1}.

It is then not difficult to verify that

e if £ <1 then the sum 22:1 |D;|¥ is maximized when |D;| = cn for i =1,...,¢, and



e if £ > 1 then the sum Zé:l |D;|¥ is maximized when [1] of |D;|’s are equal to cn, one of |D;|’s
is equal to n — (cn)| 1], and the rest (if any) are equal to 0.

In the first case Z§=1 |D;|¥ < L(cn)¥, and in the second case
: 1 1 1
SoIDIY < en? + a1 = el L)' < (§41) e
i=1

It follows that Zé:l |D;|¥ < (L 41) (cn)?. Since y > z, we have that 2¢V~! < 2%. But now since
c <1, we have 24 Zi’:l |D;|¥ < nY as required. This proves (1.2.2).

Fori=0,...,k—1,let G; = Lj_;U...UL,UDU...D;, and let f; : 2lk—i x 201U-Ulr—izi 4 R
be a function such that for every B C Ly U...U Li_;_1 and for every A C Ly_; \ N(B), fi(A, B)
is the maximum weight of an independent set I of G; \ N(B) such that I N Ly_; = A.

Given a table T, and sets B C L1 U...ULk_;—1 and A C Ly_; \ N(B), fi(A,B) can
be computed in O(n>*1)-time.

(1.2.3)

Proof of (1.2.3): We proceed by induction on i. For ¢ = 0, Go = Ly U Dy U...U Dy, and for
BCLiU...ULi_4 andAQLk\N(B),

l
fO(A7 B) = w(A) + ZgDi(<A U B) a N(Dl))
=1
So fo(A, B) can be computed by [ < n lookups to the table T'.

Suppose that given B C Ly U...ULg_;—1 and A C Li_; \ N(B), fi(A, B) can be computed in
O(n®*1)-time using lookups to the table T. We now consider fi11. Let B C L1 U...U Lp_;_o,
Gi 1 =Git1 \N(B) and A C Ly_;—1 NG}, ;. We need to show that we can compute f;;1(A, B) in
O(n+HD+1)time.

Note that f;y1(A, B) is the maximum weight of an independent set I of G}, such that I N
kaifl = A. So

fiv1(A, B) = w(A) + a(GY), where G, = G; \ (N(A)U N(B)).

By Lemma 2.2 (applied to the even set Ly_,—1 and graph G; \ N(Y)), the function —f;(-,Y)
is submodular for every Y C Ly U...U Lg_;—1. So MWIS can be solved in G by minimising
—fi(-, AU B), which by Lemma 2.1 can be computed in O(n?EO + nb)-time, where EO is the
running time of evaluating f;(C, AU B) for a given C' C Lj_;. Since by the inductive hypothesis
fi(C, AU B) can be computed in O(n®*1)-time for any C' C Lj,_;, it follows that fi1(A, B) can be
computed in O(n®+D+1) time. This proves (1.2.3).

Let T be the table constructed in (1.2.2). Consider the function f : 251 — R such that for every
AC Ly,

f(A) = fr-1(A,0) = maximum weight of an independent set I of G such that I N L; = A.

By Lemma 2.2 (applied to the even set L; and the graph G), —f is submodular, and so by Lemma
2.1, —f can be minimized in O(n®EO 4+ n®)-time, where EO is the running time of evaluating f(A).
By (1.2.3), f(A) can be evaluated in O(n>* =D+ time. It follows that —f can be minimized in
O(n®**1)-time. Therefore, by (1.2.1) and (1.2.2), MWIS can be computed in G in O(n¥)-time. [



3 Iterated decompositions and their central bags

Let G be a graph. In what follows, unless otherwise specified, w : V(G) — [0, 1] is a weight function
on V(G) with w(G) = 1. A separation of G is a triple (A, C, B) such that the (possibly empty)
sets A, B, C are pairwise vertex-disjoint, AU C U B = V(G), and A is anticomplete to B. When
S = (A,C, B) is a separation of G, we use the following notation: A(S) = A, C(S) = C, and
B(S) = B. A separation (A,C, B) is d-bounded if C is d-bounded. For € € [0,1], a separation
(A,C,B) is e-skewed if w(A) < ¢ or w(B) < e.

Lemma 3.1. Let G be a graph. Let w: V(G) — [0, 1] be a weight function on V(G) with w(G) = 1.
Let c € [%, 1) and d be a nonnegative integer. Suppose G has no d-bounded (w, ¢)-balanced separator.
Let (A,C, B) be a d-bounded separation of G. Then, (A,C,B) is (1 — c)-skewed.

Proof. Since G has no d-bounded (w, ¢)-balanced separator, not both w(A) < ¢ and w(B) < c¢. We
may assume that w(B) > ¢, and so w(A) < 1 — ¢. It follows that (A,C, B) is (1 — ¢)-skewed. O

For the remainder of the paper, if (A, C, B) is e-skewed, we assume by convention that w(A) < e.
Next, we discuss important relationships between two separations of a graph. Two separations .St
and Sy of a graph G are loosely non-crossing if A(S1) N C(S2) = 0 and A(S2) N C(S1) = 0. The
loosely non-crossing property is similar to the non-crossing property ([15]). Two separations S; and
Sy are non-crossing if they are loosely non-crossing and A(S7) N A(S2) = (0. Figure 1 illustrates the
properties of non-crossing and loosely non-crossing separations. Note that if two separations are
non-crossing, then they are also loosely non-crossing. We say that S is loosely laminar if S7 and S
are loosely non-crossing for all Sq,.5, € S.

A1 Cl Bl Al Cl Bl
Ay | O %) As %)
02 %) 02 %]
B2 B2
(a) Non-crossing (b) Loosely non-crossing

Figure 1: Illustrations of two separations S1 = (A1, C4, B1) and Sy = (A2, Ca, Bs) being (a) non-
crossing and (b) loosely non-crossing.

Observe that if S = (A;,Cy, By) and S = (A, Co, By) are loosely non-crossing, then every
connected component of A7 U As is a connected component of A; or a connected component of
Ag. If S and Sy are e-skewed, then every connected component of G[A; U Asg] is “small”, because
w(A1),w(A2) < e. We use this intuition to define a structure called a central bag. From now on, for
the remainder of the paper, wherever we refer to a collection of separations S, we will assume that
there is a fixed ordering of the separations in S. We then refer to S as a sequence of separations. We
will explain later how this ordering is obtained. Let S be a loosely laminar sequence of separations
of a graph GG. The central bag for S, denoted by fgs, is defined as follows:

Bs = [)(B(S)UC(S)).
Ses
Note that V(G) \ Bs = Uges A(S). The weight function ws : s — [0,1] is defined as follows.
Let S = (Sy,...,Sk) be a loosely laminar sequence of separations, let S; = (A;, C;, B;) for every
1 < i <k, and for every S;, we assign a vertex v; € C; to be the anchor of S;. Any vertex of
C; can be the anchor for S;, but our choice of anchor is important and depends on what type of



separation S; is. When we discuss separations in (Cy, prism)-free perfect graphs, we will describe
how to choose the anchors wisely. In the next lemma, we show that no matter how we choose
anchors, {v1,...,vx} C Bs. We will only consider situations in which every vertex of G is the
anchor of at most one separation in S. For v € s, ws(v) = w(v) + w(4; \ U< 45) if v = v
for some ¢ € {1,...,k}, and wg(v) = w(v) otherwise. (We note that this is well-defined by the
assumption that every vertex of G is the anchor of at most one separation in §). Thus, the anchor
of a separation S is a way to record the weight of A(S) in Bs. The following lemma gives important
properties of central bags.

Lemma 3.2. Let € > 0 and let G be a graph. Let w: V(G) — [0, 1] be a weight function on V(G)
with w(G) = 1. Let S be a loosely laminar sequence of separations of G such that S is e-skewed for
all S € S, and every vertex v € V(G) is the anchor of at most one separation in S. Let Bs be the
central bag for S. Then,

(i) C(S) C Bs for every S € S,
(i) if G is connected and C(S) is connected for every S € S, then Bs is connected,
(111) ws(fs) =1 and wF> < W™ 4¢.

Proof. Let S; = (4;,C;, B;) for all 1 <i < k. Since S is a loosely laminar sequence of separations,
we have C;NA; = Qforalld,j € {1,...,k}. Since G\fBs C Uy <;< Ai, it follows that C;N(G\Bs) =0
for all 1 <i < k. Therefore, C; C Bs for all 1 <4 < k. This proves (i).

To prove (ii), suppose that G is connected and C(S) is connected for every S € S. Let D be a
connected component of Bs. Let I = {i: C;ND # 0}. Since C; C s and C; is connected, it follows
that C; C D for all i € I. Since N(A;) C C;, we deduce that DU(J,;c; A; is a connected component
of G. Since G is connected, it follows that D U J,c; A; = V(G), and so D = f3s. This proves (ii).

For 1 <i <k, let v; be the anchor for S;. Note that

ws(Bs) = >, ws)+ D wsv)

veﬁg\{v1,...,vk} ’Ue{vl,...,vk}
:Zw(v)—i—Zw Ai\UAj

vELs 1<i<k 1<5<e
= > w),

veV(Q)

where the last equality holds since V(G) \ 8s = Ugeg A(S). Since w(G) = 1, it follows that
ws(Bs) = 1. For every v € fs, ws(v) < w(v) + maxj<;<; w(A;). Since S; is e-skewed, it follows
that w(A;) < e for all 1 < i < k. Therefore, wd* < w™* 4 ¢. This proves (iii). O

Let S be a loosely laminar sequence of separations of G and let Ss be the central bag for S.
Let S1 = (A1,C1, By) and Se = (Ag, Oy, B2) be two separations in S. Suppose C7 U By € Cy U By.
Since s = [Nges(B(S) U C(S)), it follows that Bg\g, = Bs. Therefore, Sz is in some sense
an “unnecessary” member of S. We formalize this notion by defining shields. If S; and Sy are
separations, and C(S1) U B(S1) C C(S2) U B(S2), then S is called a shield for So. (Equivalently,
Sy is a shield for Sy if A(S2) C A(S1)).) Later, we will use shields to define a notion of a “minimal”
sequence of separations.



4 Star separations

Let G be a graph and let w : V(G) — [0,1] be a weight function on V(G) with w(G) = 1. A
separation S = (A4, C, B) is a star separation if there exists v € C' such that C C N{v].

Let v € V(G). A canonical star separation for v, denoted S, = (Ay, Cy, By), is defined as
follows: B, is a largest weight connected component of G \ N[v], C, is the union of v and every
vertex in N (v) with a neighbor in B,,, and A4, = V(G)\ (B, UC,). Observe that if A, is non-empty,
then C, is a star cutset of G. We call v the center of S,,. When we decompose using canonical star
separations Sy, the anchor of S, is its center v.

Every result in this section has the following common assumptions:

Common assumptions for Section 4: Let ¢ € [%, 1) and let d,§ be positive integers with d > 0.
Let G be a graph and w : V(G) — [0,1] a weight function on V(G) with w(G) = 1. Assume that G
has mazimum degree § and no d-bounded (w, ¢)-balanced separator.

The following lemma shows that in graphs with no bounded balanced separator, canonical star
separations are unique.

Lemma 4.1. For every v € V(G), the canonical star separation for v is unique.

Proof. Let v € V(G). Since Nv] is d-bounded and G has no d-bounded (w, ¢)-balanced separator,
it follows that there exists a connected component B of G\ N[v] such that w(B) > c. Since ¢ > 1,
B is the unique largest weight connected component of G\ N[v]. Therefore, B = B,,. Now, since a
canonical star separation for v is uniquely defined by B,, the result follows. O

We say that two vertices u,v € V(G) are star twins if B, = B,, Cy, \ {u} = C, \ {v}, and
Ay \ {v} = Ay \ {u} (see Figure 2). Note that for star twins u,v, we have u € A, and v € A4,. If
u and v are star twins, we also say that their canonical star separations S, and S, are star twins.
Recall that S, is a shield for S, if B, U C, C B, UC(,, and so if u and v are star twins, then S, is
not a shield for S, and S, is not a shield for S,,. The following lemma characterizes shields of star
separations.

Cy \ {v} = Cu \ {u}
Figure 2: Star twins u and v, where u and v may or may not be adjacent

Lemma 4.2. Let u,v € V(G), and suppose u € A,. Then, either Sy, and S, are star twins, or S,
s a shield for S,.

Proof. Since u is anticomplete to B,, we have B, C G\ Nu|. Since N[v] is d-bounded and G has
no d-bounded (w, ¢)-balanced separator, it follows that w(B,) > ¢, so B, C B,,. Let x € C,, \ {v},
so z has a neighbor in B, and thus in B,. If z € N[u], then x € C,. If & N[u], then x € B,,. It
follows that Cy, \ {v} C C, U B,.
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Suppose there exists y € C, \ {v} such that y € B,. Then, since v is adjacent to y, we have
v € B, UCy, and so S, is a shield for S,. Therefore, we may assume (C, \ {v}) N B, = 0, so
Cy \ {v} C Cy. Since C, \ {v} C C, and by definition N(B,) = C,, \ {v}, it follows that B, = B,
and Cy, \ {v} = Cy \ {u}. Then, A4, \ {u} = A, \ {v}. Therefore, u and v are star twins. O

Lemma 4.2 allows us to define a useful relation on V' (G). For the remainder of the paper we fix
an ordering 0 of V(G). Let <4 be a relation on V(G) defined as follows:

x =y, or
x<pqy if x and y are star twins and o(z) < o(y), or

x and y are not star twins and y € A,.

Lemma 4.3. The ordering <4 is a partial order on V(G).

Proof. We show that <, is reflexive, antisymmetric, and transitive. By definition, <4 is reflexive.
Suppose * <4 y and y <4 x for some z,y € V(G) with  # y. Since z <4 y, it follows that
y € Az, and since y <4 z, it follows that x € A,. Hence, A, € A, and A, € A,, and so S,
and S, are not shields for each other. Thus, by Lemma 4.2,  and y are star twins. But z <4 y
implies that o(z) < 0(y), and y <4 x implies that o(y) < o(z), a contradiction. Therefore, <4 is
antisymmetric.

Suppose x <4 y and y <4 z for z,y,z € V(G) distinct. Since y <4 z and y # z, it follows that
z € Ay (note that z € A, if y and z are star twins). Similarly, since z <4 y and = # y, it follows
that y € A, so by Lemma 4.2, A, \ {z} C A,. Therefore, z € A,. If x and z are not star twins,
then x <4 z, so assume z and z are star twins.

Since x and z are star twins, A, \ {z} = A, \ {z}. Since y € A, it follows that y € A,. Since
Ay € A, by Lemma 4.2, y and z are star twins and o(y) < o(z). Since y and z are star twins,
Ay \{z} = A.\{y}. Since x € A, it follows that x € Ay, so x and y are star twins and o(z) < o(y).
Therefore, 0(z) < 0(2), and = <4 z, so <4 is transitive. O

Let X C V(G) be the set of minimal vertices with respect to <4, and let S = {S, : z € X} be
the set of canonical star separations with centers in X. We call X the 0-star covering of GG, and
the ordering of & by the order of the centers of the separations in § with respect to © the o-star
covering sequence of G. In fact, we will assume that every collection of canonical star separations
is ordered by the order of its centers with respect to ©. The dimension of S, denoted dim(S), is
the minimum k such that S can be partitioned into k loosely laminar sequences. The following two
lemmas show that dim(S) is bounded above by the chromatic number of X.

Lemma 4.4. Let z,y € V(QG) be such that x and y are non-adjacent and incomparable with respect
to <a. Then, S and Sy are loosely non-crossing.

Proof. Since x and y are incomparable with respect to <4, it follows that x ¢ A, and y ¢ A,. Since
x and y are non-adjacent, it follows that x € B, and y € B,. Since A, is anticomplete to B,, it
follows that C, C B, U Cy, so C; N Ay = (. By symmetry, C, N A, = . Therefore, S, and S, are
loosely non-crossing. O

Lemma 4.5. Let X be the o-star covering of G, and let S be the O-star covering sequence of G.
Then, dim(S) < x(X).

Proof. Let x(X) =k, let X1,..., X) be a partition of X into independent sets, and for all 1 <i < k,
let S; be the set of separations of S with centers in X;. Let u,v € X;. Since X is an antichain of
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<4, it follows that u and v are incomparable with respect to <4. By Lemma 4.4, S, and S, are
loosely non-crossing. It follows that S; is loosely laminar. Therefore, Sy, ..., S is a partition of &
into k loosely laminar sequences, so dim(S) < k. O

Lemma 4.5 shows that the dimension of the star covering sequence of a graph is bounded by its
chromatic number. Therefore, the following is an immediate corollary of Lemma 4.5.

Lemma 4.6. Let S be the o-star covering sequence of G. Then, dim(S) < 6 + 1.

Now, we extend the idea of central bag from a single loosely laminar sequence of separations to
the star covering sequence S. Let X be the o-star covering of G and let S be the O-star covering
sequence for G. The star-free bag of GG, denoted S, is defined as follows:

8= BESUCS)).

SeS

We will later show that = X under some conditions. Note that if S is loosely laminar, then
B = Bs. The following lemma states an essential result about central bags of sequences of loosely
non-crossing star separations: they have no bounded balanced separator.

Lemma 4.7. Let § = (51,...,Ss) be a loosely laminar sequence of star separations such that every
v € V(G) is the center of at most one separation in S, and let Bs be the central bag for S. Then
Bs has no (d — 1)-bounded (ws, c)-balanced separator.

Proof. Let S = (S1,...,Ss). Suppose (s has a (d—1)-bounded (ws, ¢)-balanced separator Y. Since
G has no d-bounded (w, c)-balanced separator, it follows that N[Y] N s is not a d-bounded (w, ¢)-
balanced separator of G. Since N[Y] N Bs is d-bounded, it follows that there exists a connected
component X of G\ (N[Y]NSs) such that w(X) > c. Let Q1, ..., Q: be the connected components
of Bs\ 'Y and let Dy,..., Dy, be the connected components of G \ Bs. Define Z = {i | Q; N X # 0}
and J = {j | D; N X # 0}. Recall (from Section 3) that V(G) \ s = Uges A(S) and that for
S, 5" € S, every connected component of A(S)U A(S’) is either a connected component of A(S) or
a connected component of A(S’). It follows that for every 1 < j < m, there exists 1 < k < s such
that D; C A(Sk). For j € J let f(j) be minimum such that D; C A(Sy(;)). Let S(j) = Sy(;) and
let v(j) be the center of S(j).

(4.7.1) For every j € J we have that D; C X, C(S(j)) € N[Y|N Bs, and v(j) € Y.

Proof of (4.7.1): Since D; N X # (), and X is a connected component of G\ N[Y] N Bs and D; is
a connected component of G \ fs, it follows that D; C X. Suppose that C'(S(j)) € N[Y]N Bs.
Since N(D;) € C(S(j)) € N[Y] N Bs, and since X is connected, it follows that X = D;. Now,
w(X) = w(D;) <1~ c (by Lemma 3.1 and since D; C A(Sy(;))), a contradiction since w(X) > ¢
and ¢ > 1. This proves the second claim of (4.7.1). Next, we observe that if v(j) € Y, then
C(S(j)) € N[Y] N Bs, and thus the third claim of (4.7.1) follows from the second. This proves
(4.7.1).

N

Suppose first that Z = 0. Then J # (. Let j € J. Since (N[Y]NBs)UQ1U...UQ: = fs, it
follows that X = D; and so C(S(j)) € N[Y] N Bs, contrary to (4.7.1).

Next suppose that |Z| > 2. Then there exist i,j € Z and k € J such that N(Dg) N Q; # 0
and N(Dy) N Qj # 0. Then, C(S(k)) N Q; # 0 and C(S(k)) N Q; # 0. Since v(k) is complete to
C(S(k)) \{v(k)} and Q4 and Q) are anticomplete to each other for all 1 < a,b < ¢, it follows that
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v(k) & Q for any 1 < ¢ <t. By (i) of Lemma 3.2, v(k) € Bs, so it follows that v(k) € Y, contrary
to (4.7.1).

We have shown that |Z| =1, say Z = {i}. Now let j € J. Since XN D; # () and X is connected,
it follows that C(S(j)) N Q; # 0. Therefore, v(j) € Q; or v(j) € Y. By (4.7.1) we may assume that
v(j) € Qi.

Note that by definition of S(j), D;j N A(Sk) = 0 for every k < f(j). So ws(v(j)) = w(v(j)) +
w(A(S()) \ Ur<ies() ASk)) =2 w(v(j)) + w(Dj). Then,

ws(Qi) = w(@Qi) + Ljes st. v(j)eqw(Dj) = w(X)

and we have w(X) < ws(Q;) < ¢, again a contradiction (where the second inequality holds since Y
is a (ws, ¢)-balanced separator of fs). O

Together, Lemmas 3.2 and 4.7 give four key properties for central bags of sequences of loosely
laminar star separations. In the next lemma, we extend the results of Lemmas 3.2 and 4.7 to
sequences of separations of bounded dimension.

Lemma 4.8. Let X be the 0-star covering of G, let S be the O-star covering sequence of G, and
suppose dim(S) = k. Let [ be star-free bag of G. Suppose G is connected and d > k. Then, the
following hold:

(i) X C B,
(ii) [ is connected,
(1ii) there exists a weight function wg : B — [0, 1] with wg(B) =1 and W < w4+ (1—-¢),
() B has no (d — k)-bounded (wg, c)-balanced separator.
Proof. Let u € X. Since X is an antichain of <4, it follows that u & A, for all v € X. Therefore,

u € B, UC, for every v € X, so u € B(S)UC(S) for every S € S. It follows that v € 5. This
proves (i).

Let S1,...,Sk be a partition of S into loosely laminar sequences (whose orderings are inher-
ited from S), and let Xi,..., X be the partition of X into the centers of Si,...,Sk. To prove
(ii), (iii), and (iv), we will prove inductively that there exists a sequence [(i,..., B, with §; =

Nses,u...us,(B(S)UC(S)), such that f; is connected, there exists a weight function w; : 8; — [0,1]
such that w;(3;) = 1, w;(v) = wv) if v &€ X7U...UX;, and w;(v) < w™ +(1—c¢) ifv € X7U...UX;,
and f; has no (d — i)-bounded (w;, ¢)-balanced separator.

Let S be a separation of G and let H be an induced subgraph of G. Then, S N H is the
separation given by (A(S) N H,C(S)N H,B(S) N H). Let 51 be the central bag for S1, so 1 =
Nses, (B(S) UC(S)). Let w1 = ws, be the weight function on 8;. By Lemma 4.1, every vertex
of G is the anchor of at most one separation in &1, and by Lemma 3.1, every separation of Sy
is (1 — ¢)-skewed. Then, by Lemma 3.2, 3; is connected and wi(51) = 1, and by Lemma 4.7,
B1 has no (d — 1)-bounded (w;, c)-balanced separator. Further, wi(v) = w(v) if v ¢ X;, and
wi(v) <w™™ + (1 —c¢)ifve X;.

Now, for i < k, suppose i = [\ges,u..us, (B(S) UC(S)), Bi is connected, w; : B; — [0,1] is a
weight function on f; with w;(8;) = 1, and ; has no (d — i)-bounded (wj, ¢)-balanced separator.
Further, suppose w;(v) = w(v) if v ¢ X; U...UX;, and w;(v) < w4 (1—¢)ifv e X1 U...UX;,.
Let Siy1 | Bi = {SNPBi | S € Sit1}. Note that by (i), all separations in S;41 | §; are star separations
and we keep the same anchors for them as for the separations in S;;1. By Lemma 4.1, every vertex
of G is the anchor of at most one separation in S;11, and hence every vertex of 3; is the anchor of
at most one separation in S;y1 | 5;. It follows that S;11 | §; is a loosely laminar sequence of star
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separations of ;. Let B;+1 be the central bag for S;1+1 | 5;, and let w;+1 be the weight function for
Bi+1- Then,

Bimi= [ (BES)UC(S))
SESiy11Bi
= [ BEUCE)NB)
SESit1
= ) (BEUCE)

S€S1U...USZ'+1

Since d — i > 1 and (; has no (d — i)-bounded (wj, c)-balanced separator, by Lemma 3.1, every
separation in S;11 | 3; is (1—c)-skewed, and so by Lemma 3.2, ;11 is connected and w;41(Bi+1) = 1.
Further, w;y1(v) = w;i(v) if v € X;41, and wip1(v) < w;i(v) + (1 —¢) if v € X;14. It follows that
wit1(v) = w) if v € X3 U ... U X411, and wip1(v) < w™ + (1 —¢)if v e X3 U...UX;11. By
Lemma 4.7, since ; does not have a (d —i)-bounded (w;, ¢)-balanced separator, it follows that ;41
does not have a (d — (i + 1))-bounded (w;+1, ¢)-balanced separator.

Let wg = wy. Then, § is connected, wg(B) = 1 and W™ < Wt 4 (1 —¢), and S has no
(d — k)-bounded (wg, c)-balanced separator. This proves (ii), (iii), and (iv). O

Next, we show that the star-free bag and the star covering set are equivalent.

Lemma 4.9. Let X be the 0-star covering of G, let Sx be the 0-star covering sequence of G, and
suppose d > dim(Sx). Let [ be the star-free bag of G. Assume G is connected. Then, f = X.

Proof. By Lemma 4.8, X C 3. Let v € 8 and suppose v € X. Then, there exists x € X such that
r<gqv,s0v € A;. But g C B, UC,, a contradiction. Therefore, g C X. O

The star-free bag 5 of G has a crucial relationship to the star separations of G. This relationship
is formalized through the idea of forcers. Let G be a graph, X C V(G) and v € V(G) \ X. We say
that v breaks X if for every connected component D of G \ N[v], we have X ¢ N[D]. We recall
that if G’ and G are graphs, we say H is a G'-copy in G if H C V(G) and H is isomorphic to G'.
A graph F is a forcer for G if for every Y C V(G) such that Y is an F-copy in G, there exists a
vertex v € Y such that v breaks Y \ {v}. Such a vertex v is called an F-center for Y. If F is a
forcer for every graph in a hereditary class C, we say that F' is a forcer for C. The following lemma
shows how forcers relate to the star-free bag.

Lemma 4.10. Let (8 be the star-free bag of G. Let F be a forcer for G. Then B is F-free.

Proof. Let X be the 0-star covering of G and let S be the 0-star covering sequence of G. Let Y be
an F-copy in G. We will prove that Y & 5. Let v be an F-center for Y. Suppose v € X. Then,
B C B, UC,. Since v is an F-center for Y, it follows that v breaks Y \ {v}, and so A, NY # 0,
and thus Y & B. Therefore, we may assume that v € X. Since X is the set of minimal vertices
with respect to the relation <4, it follows that there exists u € X such that u <4 v. Then, v € A,.
Since § C B, UC\, and v € Y, it follows that Y Z . O

Because of Lemma 4.10, forcers for G restrict the structure of the star-free bag 3. We see the
power of forcers in the next section, where we discuss forcers for (Cy, prism)-free perfect graphs.
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V2

V3 V4
Figure 3: The paw graph

5 Forcers for (Cy, prism)-free perfect graphs

A paw is a graph with vertex set {v1, va, v3,v4} and edge set {viva, vovs, v3v4, vov4} (see Figure 3).
In this section, we prove that paws are forcers for the class of (Cy, prism)-free perfect graphs.

We start with the following lemma (see Lemma 18 in [3] for a variation of this lemma). This
proof of Lemma 5.1 originally appeared in [1], but we include it here for completeness.

Lemma 5.1. Let x1,x2,x3 be three distinct vertices of a graph G. Assume that H is a connected
induced subgraph of G\ {x1,x2,x3} such that V(H) contains at least one neighbor of each of w1,
x2, x3, and that V(H) is minimal subject to inclusion. Then, one of the following holds:

(1) For some distinct i,j,k € {1,2,3}, there exist P that is either a path from x; to x; or a hole
containing the edge x;x; such that

o V(H)=V(P)\{z,z;}, and
o cither xi has at least two non-adjacent neighbors in H or xp has exactly two neighbors
in H and its neighbors in H are adjacent.

(i) There ezists a vertex a € V(H) and three paths Py, Py, P3, where P; is from a to x;, such that

o V(H)=(V(P)UV(P) UV (Ps))\ {x1, 22,23}, and

o the sets V(Py) \{a}, V(P2)\ {a} and V(P3) \ {a} are pairwise disjoint, and

e for distincti,j € {1,2,3}, there are no edges between V (P;)\ {a} and V(P;)\{a}, except
possibly x;x;.

(iii) There exists a triangle ajasas in H and three paths Py, Py, P3, where P; is from a; to x;, such
that

° V(H) = (V(Pl) U V(Pg) U V(Pg)) \ {acl, xg,xg}, and
o the sets V(Py), V(Ps) and V(Ps3) are pairwise disjoint, and

e for distinct i,j € {1,2,3}, there are no edges between V (P;) and V (P}), except a;a; and
possibly x;x;.

Proof. For some distinct ¢, j, k € {1, 2,3}, let P be a path from z; to 2; with V(P*) C V(H) (in the
graph where the edge x;z; is deleted if it exists). Such a path exists since z; and x; have neighbors
in H and H is connected. Assume that x has neighbors in P*. Then, by the minimality of V(H),
we have V(H) = V(P*). If x has two non-adjacent neighbors in P*  or z; has two neighbors in
P* and its neighbors in P* are adjacent, then outcome (i) holds. If x; has a unique neighbor in P*,
then outcome (ii) holds. Thus, we may assume that xj is anticomplete to P*.
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Let @ be a path with @ \ {zx} C V(H) from zj to a vertex w € V(H) \ V(P) (so z) # w) with
a neighbor in P*. Such a path exists since z; has a neighbor in H, xj is anticomplete to P*, and
H is connected. By the minimality of V/(H), we have V(H) = (V(P)UV(Q)) \ {z1, z2,z3} and no
vertex of @ \ w has a neighbor in P*. Moreover, by the argument of the previous paragraph, we
may assume that z; and x; are anticomplete to @ \ {zx}.

Now, if w has a unique neighbor in P*, then outcome (ii) holds. If w has two neighbors in P*
and its neighbors in P* are adjacent, then outcome (iii) holds. Therefore, we may assume that w
has two non-adjacent neighbors in P*. Let y; and y; be the neighbors of w in P* that are closest in
P* to x; and xj, respectively. Let R be the subpath of P* from y; to y;. Now, the graph H' induced
by (V(P)UuV(Q))\ V(R*))\ {x1,z2, 23} is a connected induced subgraph of G \ {z1,x2, 23} and
it contains at least one neighbor of z1, 2, and x3. Moreover, V(H') C V(H) since V(R*) # 0.
This contradicts the minimality of V(H). O

We say that we can link a vertex v onto a triangle ajasas if there exist three paths Py, Ps, Ps
such that for ¢ = 1,2,3, P; is a path from v to a;, any pair of paths has only v in common, for
1 <1< j <3, a;a; is the unique edge of G between V(F;) and V(F;), and at least two of Py, P, P3
are of length at least two. Observe that in a perfect graph, no vertex can be linked onto a triangle.

Recall that for a path P we denote the interior of P by P*. A wheel (H,v) is a graph that
consists of a hole H and a vertex v which has at least three neighbors in H. A sector of (H,v) is
a subpath P of H of length at least one such that v is anticomplete to P* and v is complete to
P\ P*. A sector is short if it is of length 1, and long otherwise. A wheel is odd if it contains an odd
number of short sectors. Observe that perfect graphs do not contain odd wheels.

A wheel (H,v) is a universal wheel if v is complete to H. A line wheel is a wheel that has exactly
four sectors, exactly two of which are short and the two short sectors do not have common vertices.
A twin wheel is a wheel with exactly three sectors, exactly two of which are short. A triangle-free
wheel is a wheel containing no triangles. A proper wheel is a wheel that is not a universal, twin, or
triangle-free wheel. We need the following corollary of Lemma 5.1.

Lemma 5.2. Let z1xox3 be a triangle in a prism-free perfect graph G. Assume that H is a connected
induced subgraph of G\ {x1,x2,x3} such that H contains at least one neighbor of each of x1,xa, T3,
that no vertex of H is complete to {x1,x2,x3}, and that V (H) is minimal subject to inclusion. Then,
for some {i,j,k} ={1,2,3}, HU{x;,x;} is a hole H and (H',xy) is a proper, or a universal, or a
twin wheel. Moreover, if each of x1,x2,x3 has a unique neighbor in H, then there exists £ € {i,j}
such that xy and xp have a common neighbor in H.

Proof. We apply Lemma 5.1 and follow the notation in its statement. If the first outcome of
Lemma 5.1 holds, then H U {z;,z;} is a hole, call it H', and (H’,z}) is a proper or a universal
wheel. (Note that in this case xp has at least two neighbors in H, and so the second part of
Lemma 5.2 does not apply.) If the third outcome of Lemma 5.1 holds, then V(H) U {x1,x9, 23}
is a prism in G, a contradiction since G is prism-free. Suppose the second outcome of Lemma 5.1
holds. If at least two of the paths Py, P>, P3 have length at least two, then we can link a onto the
triangle x1xoxs via the paths Py, P», Ps, contradicting that G is perfect. Thus, we may assume that
|[V(P1)| = |V (P2)| = 2. Since no vertex of H is complete to {z1,z2,x3}, we deduce that a is not
complete to {x1, 2,23}, and therefore Ps has length at least two. Then, V(H) = V(Ps) \ {z3},
a-P3-r3-x9-a is a hole, call it H', and (H',z1) is a twin wheel. (Note that in this case x; and x9
have a common neighbor in H, namely a.) O

Let (H,v) be a wheel that contains at least one triangle. A segment of (H,v) is a maximal
subpath @ of H such that @ U {v} is a triangle-free graph. Note that a segment may have length
zero. Two segments @ and Q' are adjacent if Q U Q" U {v} contains at least one triangle.
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Let (H,v) be a proper wheel that is not odd. A bicoloring of (H,v) is a partition of vertices of
H into non-empty sets R and B (the red and blue vertices) so that the vertices in the same segment
have the same color, while vertices in adjacent segments have distinct colors. The following result
follows from Theorem 4.5 in [6].

Theorem 5.3 ([6]). Let G be a (Ca, prism)-free perfect graph. Let (H,v) be a proper wheel in G
that is not a line wheel. Let R, B be a bicoloring of the vertices of H and assume that B\ N(v) # 0.
Then, for everyr € R and b € B\ N(v), v breaks {r,b}.

Next, we prove similar results for twin wheels and line wheels in (Cy, prism)-free perfect graphs.
Let G be a graph and let A and B be two vertex-disjoint subsets of V' (G) such that A is anticomplete
to B. A path from A to B is a path P = x1-...-z, in G \ (AU B) such that x; has a neighbor in
A and x, has a neighbor in B, and P is inclusion-wise minimal with this property.

Theorem 5.4. Let G be a (Cy, prism)-free perfect graph and let (H,v) be a line wheel in G with
H=a-b-...-c-d-...-a and N(v) N H = {a,b,c,d}. Let P be the path in H \ b from a to d, and let
Q be the path in H\ a from b to c. Then, v has a neighbor in every path from P\ a to Q\ ¢ and in
every path from P\ d to Q\b. In particular, v breaks each of the sets {a} U Q*, {d} UQ*, {b}U P*
and {c} U P*.

Proof. Let R be a minimal path violating the outcome of the lemma, that is, R is a path from P\ a
to @\ c or from P\ d to Q\ b, v is anticomplete to R, and R is a minimal path satisfying these
properties. Since G is Cy-free perfect, the paths P and @) are even and of length at least four, and
no vertex in R is complete to {a,c}, or to {a,d}, or to {b,c}, or to {b,d}.

We recall that in a perfect graph, no vertex can be linked onto a triangle. Assume first that the
path R consists of a single vertex, say R = {r}. Let g be the neighbor of r in @ that is closest to b.

We claim that r is anticomplete to {a, b, ¢,d}. Suppose r is adjacent to d. Then, r is anticomplete
to {a, b}, and so ¢ # b. If d is the unique neighbor of r in P, then we can link d onto the triangle
abv: d-v, d-P-a, and d-r-g-Q-b. (Note that ¢ # ¢ since in this case R is a path from P\ a to Q \ c.)
It follows that d is not the unique neighbor of r in P. By symmetry, we deduce that ¢ # ¢. Assume
r has two non-adjacent neighbors in P. Then we can link r onto the triangle abv: r-d-v, r-p-P-a,
and r-¢g-Q-b. Therefore, r has two adjacent neighbors in P, namely d and the neighbor d’ of d in P.
Then, we obtain a prism between the triangles dd’'r and abv, a contradiction. This proves that r is
not adjacent to d. By symmetry, it follows that r is anticomplete to {a,b, ¢, d}.

Now, if r has a unique neighbor p in P, we can link p onto the triangle abv: p-P-a, p-P-d-v,
and p-r-¢-@Q-b. If r has two non-adjacent neighbors pi,ps in P, we can link r onto abv: r-p;-P-a,
r-po-P-d-v, and r-¢-Q-b. Hence, r has two adjacent neighbors pi,ps in P and we obtain a prism
between the triangles rp1p2 and abv, a contradiction. This proves that R is of length at least one.

Let R =r1-...-r, with k > 2. We claim that {a, b, ¢, d} is anticomplete to R*. Suppose a has a
neighbor in R*. Then, since R is a minimal violating path, b is the unique neighbor of r; in Q. By
the minimality of R, ¢ is anticomplete to R and d is anticomplete to R\ r1. Since R is a violating
path, r; has a neighbor in P \ a. Then, by the minimality of R, b is anticomplete to R\ ;. Now,
we can link b onto the triangle cdv: b-v, b-Q-c, and b-ri-R-r1-p-P-d, where p is the neighbor of rq
in P\ a closest to d (possibly p = d). This proves that {a,b, c,d} is anticomplete to R*.

Next, we claim that r; is not adjacent to b. Suppose otherwise. Then, by the minimality of
R, @ is the unique neighbor of 71 in P, N(r1) N H = {a,b}, and R is a path from P\ d to Q \ b.
In particular, r; has a neighbor in @ \ b. Then, again by the minimality of R, ry is not adjacent
to a. Let g be the neighbor of r; in @ that is closest to ¢. If r; is not adjacent to d, then by
the minimality of R, ri is anticomplete to P and hence we can link a onto the triangle cdv: a-v,
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a-P-d, and a-ri-R-ri-g-c. So, ry is adjacent to d. This restores the symmetry between r; and 7y,
and so N(rp) N H = {c¢,d} and PUQ U R is a prism in G, a contradiction. This proves that r; is
not adjacent to b. By symmetry, 71 is not adjacent to ¢, and 7 is not adjacent to a,d. So by the
minimality of R, R\ r is anticomplete to @ and R\ ry is anticomplete to P.

Now, assume that r; has a unique neighbor p in P. We may assume that p € P\ a, and so we
can link p onto the triangle abv: p-P-a, p-P-d-v, and p-ri- R-ri-q-Q-b, where ¢ is the neighbor of 7y,
in @ closest to b, unless ¢ = c. If ¢ = ¢, then p # d, and hence we can link ¢ onto the triangle abv.
This proves that r1 has at least two neighbors in P, and by symmetry, 75 has at least two neighbors
in Q. Suppose r1 has two non-adjacent neighbors p1, ps in P. Then, we can link r; onto the triangle
abv: r1-p1-P-a, r1-ps-P-d-v, and ri-R-ri-g-Q-b, where ¢ is the neighbor of r; in @ closest to b
(possibly ¢ = b but certainly ¢ # ¢ since r; has at least two neighbors in @)). This proves that 7
has two adjacent neighbors pi1,p2 in P, and by symmetry, r; has two adjacent neighbors g1, g2 in
Q. Then, H U R is a prism between the triangles rip1p2 and rrqiqo, a contradiction. O

Theorem 5.5. Let G a (Cy, prism)-free perfect graph and let (H,v) be a twin wheel in G. Let
a,u,b be the neighbors of v in H appearing in this order when traversing H. Let S, = N|u] \ {v}
and S, = N[v]\ {u}. Then, one of the following holds:

(1) Sy is a cutset of G that separates v from a vertex of H \ {a,u,b},
(ii) Sy is a cutset of G that separates w from a vertex of H \ {a,u, b}.

In particular, either u breaks H \ {a,b} or v breaks H \ {a,b}.

Proof. Suppose not. Let P = pi-...-pi be a path from v to H\ {a,u,b} in G\ Sy, and Q = q1-...-q
be a path from u to H \ {a,u,b} in G\ S,. In particular, p; is the unique neighbor of v in
PUQU(H\{a,u,b}), and ¢ is the unique neighbor of v in PUQU(H \{a,u,b}), and p; # ¢i. Since
G is Cy-free, p1q1 is not an edge, and a and b do not have a common neighbor in PUQU(H \{a, u,b}).
Note that PUQ U (H \ {a,u,b}) is connected. Let T be a path in PUQ U (H \ {a,u,b}) from p;
to g1, and let H' be the hole induced by T'U {u, v}.

(5.5.1 Both a and b have a neighbor in T'. In particular, both (H',a) and (H',b) are proper
7 or twin wheels.

Proof of (5.5.1): Assume that a has no neighbor in 7. Let S be a path from a to T with S C
(HUPUQ)\{u,v}. Then, (TUS)\{u,v,a} is a connected graph, containing exactly one neighbor
of each of u, v, a, and no vertex of (T'US)\ {u,v,a} is adjacent to two of u, v, a, contrary to Lemma
5.2. This proves (5.5.1).

(5.5.2) Both (H',a) and (H',b) are twin wheels.

Proof of (5.5.2): Suppose (H’,a) is a proper wheel. Consider a bicoloring R, B of (H' a). We
may assume that v € R, v € B and B\ N(a) # (. By Theorem 5.3 and Theorem 5.4, for every
x € B\ N(a), a breaks {u,z}. Since b is adjacent to u, it follows that all the neighbors of b in
H'\ {v} belong to R. In particular, by (5.5.1), R\ N(a) # 0. So, by Theorem 5.3 and Theorem
5.4, for every y € R\ N(a), a breaks {v,y}. This contradicts the fact that b is adjacent to v € B
and has a neighbor in R\ N(a). This proves (5.5.2).

By (5.5.2), and since a and b do not have a common neighbor in H" \ {u,v}, we may assume
that N(a) N H = {p1,u,v} and N(b) N H = {u,v,q1}. If no vertex of H \ {a,u,b} has a neighbor
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in T (and in particular 7N H = ), then we can link b onto the triangle pjua in (H \ {u}) UT.
Thus, some vertex of H \ {a,u,b} has a neighbor in 7', and so we may assume that py € T, i.e.
P CT. It follows that N(a) NP = {p1}. Let a’ be the neighbor of a in H \ u. Suppose first that py
has a neighbor in H \ a’. Then, there is a path S from p; to b with S* C (H U P) \ {a,d’,b,u,v},
But a-p1-S-b-v-a is a hole and a is an odd wheel center for this hole, a contradiction. This proves
that o’ is the unique neighbor of py in H \ {a}. If £ > 1, then we can link a’ onto the triangle avp;
in the graph (H \ {u}) UPUQ, so k = 1. Since (H',a) is a twin wheel, it follows that o’ ¢ H’,
and so p; has a neighbor in (). Let ¢ be minimum such that p; is adjacent to ¢;. If ¢ < [, then

HU{p1,q,--..,q} induces a prism with triangles aa’p; and ubq, a contradiction. This proves that
1 = [, and consequently ¢; € T and Q C T. This restores the symmetry between P and @, and
therefore [ = 1, and p1q; is an edge, a contradiction. O

We now prove that paws are forcers for (Cy, prism)-free perfect graphs. (It is easy to verify that
paws may not be forcers for graphs that are not Cy-free, prism-free, or perfect.)

Theorem 5.6. Let G be a (Cy, prism)-free perfect graph. Let P be a paw in G with vertex set
{a,c,b1,b2} and edge set {aby,aba,biba,ac}. Then, either a breaks {c,b1,ba}, or by breaks {c, by},
or by breaks {c,b;}.

Proof. Suppose a does not break {c, by, ba}. Then, there exists a connected component D of G\ N|a]
such that {c,b1,be} C N[D]. Since a is adjacent to ¢, by, be, it follows that ¢,by,be & D. Then,
D’ = DU {c} is a connected graph containing neighbors of each of a,by,bs, and ¢ is the unique
neighbor of a in D’. Let H be a connected induced subgraph of D’ such that H contains at least
one neighbor of each of a, by, be, and that V(H) is minimal subject to inclusion. Note that ¢ € H
and that no vertex of H is complete to {a,b1,b2}. Then, by Lemma 5.2, either

e HU{by,bo} is a hole H and (H’,a) is a proper, or a universal, or a twin wheel; or

e (possibly switching the roles of by and be), H U {a, b1} is a hole H' and (H',bs) is a proper,
or a universal, or a twin wheel.

The first outcome does not hold since in that case N(a) N H = {c, by, b} leading to an odd wheel,
which contradicts G being perfect. Therefore, the second outcome holds. Now, since by is not
adjacent to ¢, (H',by) is a proper or a twin wheel. If (H’ ,b2) is a proper wheel that is not a
line wheel or if (H’,by) is a line wheel, then by breaks {c,b1} by Theorem 5.3 and Theorem 5.4,
respectively. If (H',bs) is a twin wheel, then by Theorem 5.5, either by breaks {c, b1} or by breaks
{e, b2} O

A graph G is paw-friendly if G is perfect and for every induced subgraph H of G, if P is a paw
in H with vertex set {c, a,by,bs} and edge set {aby, abs, b1by, ac}, then with respect to H either a
breaks {c, b1, ba}, or by breaks {c,ba}, or by breaks {c, b1 }. It follows from this definition that paws
are forcers for paw-friendly graphs. The following is immediate from Theorem 5.6.

Theorem 5.7. Every (Cy, prism)-free perfect graph is paw-friendly.

6 The star-free bag of paw-friendly graphs

In this section, we prove several properties of the star-free bag of paw-friendly graphs. All of the
definitions and lemmas in this section share the following assumptions:

19



Common assumptions for Section 6: Letc € [%, 1) and let d,§ be positive integers with d > 6+3.
Let G be a connected paw-friendly graph with mazimum degree 6, and w : V(G) — [0, 1] a weight
function on V(G) with w(G) = 1. Assume that G has no d-bounded (w, c¢)-balanced separator. Let
X be an 0-star cover of G, S an O-star covering sequence of G, and 8 the star-free bag of G.

Lemma 6.1. The following hold:
(i) 8 =X and B is bipartite.
(i1) Let (X1, X5) be a bipartition of 5. Then fori=1,2, S; ={S; | x € X;} is loosely laminar.

Proof. By Lemma 4.6, k = dim(S) < § + 1, and so d > k + 2. By Lemma 4.8, § is connected,
and by Lemma 4.10, 3 is paw-free since paws are forcers for G by definition. Every connected paw-
free graph is either triangle-free or complete multipartite [13]. Suppose [ is complete multipartite.
Then, there exists v € 8 such that 83 C N?[v], so 3 is a 2-bounded (wpg, c)-balanced separator for
B, where wg is defined in Lemma 4.8. However, by Lemma 4.8, 5 does not have a (d — k)-bounded
(wg, ¢)-balanced separator, a contradiction since d > k + 2. Therefore, 5 is triangle-free. Since f is
perfect, it follows that (3 is bipartite. By Lemma 4.9, 8 = X. This proves (i).

Let 81,82 be as in (ii). By Lemma 4.4, S; and Sy are loosely laminar. This proves (ii). O

For the remainder of the paper, if G is a connected paw-friendly graph with no d-bounded (w, ¢)-
balanced separator and £ is the star-free bag of G, we let (X1, X2) be a bipartition of 5, and we let
(81, S2) be the corresponding partition of S into loosely laminar sequences; i.e. S; = {S; : x € X;}.
(Note that this implies that dim(S) < 2.) Let v denote the central bag for Sy, i.e.,

v=[) (B(S)uC(s)).

SES2

Since 8 = Nges,us, (B(S) UC(S)), we have 8 C v C G. Therefore, v is called the intermediate
bag of G. In the following lemma, we summarize several important properties of v and .

Lemma 6.2. Let v be the intermediate bag of G. Then,

(i) v and 3 are connected,
(it) v has no (d — 1)-bounded (ws,,c)-balanced separator and B has no (d — 2)-bounded (wg, c)-
balanced separator,

(iti) G\~v C Umexg Ay, and v\ B C leexl Agy .

Proof. Since 7 is the central bag for Ss, it follows from Lemma 3.2 that « is connected. By
Lemma 4.8, § is connected. Moreover, by Lemma 4.7, v has no (d — 1)-bounded (ws,, ¢)-balanced
separator, and by Lemma 4.8, 8 has no (d — 2)-bounded (wg, c)-balanced separator. Finally, since
«y is the central bag for Sy and [ is the central bag in v for S; | v = {SN~: S € 81}, property (iii)
holds. O

In the next section, v and § are integral to proving structural results about G. We also define
the core bag of G, denoted R, as follows:

R=pu| |J Cu

r2€Xo

The following lemma contains two useful facts about the composition of R.
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Figure 4: A drawing showing the central, core, and intermediate bags. Recall that G\ = |, X, Az,
’Y\,B - UxeXl Ax, R = ﬂU U$€X2 C,, and ﬁ = X7 UXs.

Lemma 6.3. Let v be the intermediate bag of G and let R be the core bag of G. Then,
(i) R C, and

(ii) every connected component of G\ R is a subset of A, for some x € 3.

Proof. Recall that (X, X2) is the partition of § into independent sets. By definition, 5 C 7.
Further, by Lemma 3.2, Cy, C « for all 29 € Xo. Therefore, R C . This proves (i).

Now, we prove (ii). Let D be a connected component of G\ R. Suppose that for some z9 € Xy,
DN A, # 0, and let D' be a connected component of A,, such that D'ND # (. If D € D', then
there exists v € D\ D’ that has a neighbor in D’. Then, v € C,,, but C,, C R, a contradiction.
So D C D', and (ii) holds.

Thus, we may assume that DNA,, = @ for all 23 € X3. Since by Lemma 6.2 G\ C U,,cx, Azs>
it follows that D C v\ 3. Since v\ 8 C |J,cx, Az and since by Lemma 6.1 Sy is loosely laminar, it
follows that D C A,, for some z; € X. O

Note that (ii) of Lemma 6.3 shows that every connected component D of G\ 'R satisfies | N (D)| <
d and |D| < en. Therefore, if R is the union of iterated even sets, R is an even set separator of G.
In the next section, we prove that R is the union of iterated even sets.

7 The core bag R is a (6% + 2)-iterated even set

In this section, we prove that if G is a paw-friendly graph with bounded degree, then the core bag

R of G is a (6% + 2)-iterated even set in G. Let (X1, X52) be the bipartition of 3. Recall that

R=p8U (ngexg sz). By Lemma 6.1, § is bipartite. In Section 7.1, we show that X; and X5 are

even sets in G. In Section 7.2, we show that R\ 8 =J Cy, is a d%-iterated even set in G\ 3.
We begin with three important lemmas.

T2€X2

Lemma 7.1. Let c € [%, 1) and let d be a positive integer. Let G be an odd-hole-free graph with no
d-bounded (w, c)-balanced separator. Let v € V(G) and let S, = (Ay, Cy, By) be the canonical star
separation for v. Let c1,co € C, be such that ¢y is not adjacent to co, and let P be a path from cy
to co with P* C B, or P* C A,. Then, P is even.

Proof. Since ¢ is not adjacent to co, {¢1,c2} C C, \ {v}. Suppose P* C B,. Since v is anticomplete
to By, it follows that v-c¢1-P-cs-v is a hole of GG. Since G is perfect, every hole in G is even. Therefore,
P is even.
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Now, suppose P* C A,. Let @ be a path from ¢; to ¢ through B,. The path ) exists since ¢y
and co have neighbors in B, and B, is connected. Note that @ is even. Then, since ¢1-P-co-Q-cq is
an even hole of G, it follows that P is even. O

Let v € V(G) and let P = p;1-...-p; be a path in G \ {v} such that p1,pr € B, UC,. Let i be

minimum and j be maximum such that v is adjacent to p; and p;. Note that since p1,py, € B, UC,,
we have p;, p; € C,. The span of v in P is the subpath p;-P-p;. If the span of v in P has odd length
greater than one, we say that v has wide odd span in P; otherwise, if the span is greater than one,
we say that v has even span in P.
Lemma 7.2. Let c € [%,1) and let 0,d be positive integers with d > 2. Let G be a connected
paw-friendly graph with mazximum degree § and no d-bounded (w, c)-balanced separator. Let S be a
loosely laminar sequence of canonical star separations, let Bs be the central bag for S, and let H be
an induced subgraph of G. Let vi,vy € BsNV (H) be an even pair in fsNH, and let P = pi-...-pg
be an odd path from vy to vy in H, with p1 = vi and px = ve. Suppose u € V(G) is such that S, € S
and u has a wide odd span in P. Then, there exist py,pr,ps € PN Cy with ¢ < s —2 and either
r=q+1 orr=s—1, such that {u,py,pr,ps} is a paw of G with edge set {upy, upr, ups, pgpr} or
{qu, UPr, UPs, prps}-

Proof. Let p;-P-p; be the span of u in P. Since u has odd span in P, it follows that j —¢ is odd. By
Lemma 7.1, every path between two vertices of C, through A, or through B, is even. Therefore,
either there exist ¢ € {i,...,j —3} and r € {¢+3,...,j} such that py,pg+1,pr € C, N H, and
Pg+2,---sDr—1 & Cy N H, or there exist ¢ € {i+2,...,j —1} and r € {3,...,¢ — 2} such that
Pgs Pg+1,pr € Cy N H and pria, ..., pg—1 € Cy N H. O

Lemma 7.3. Let c € [%, 1) and let d be a positive integer. Let G be a paw-friendly graph with no
d-bounded (w, c)-balanced separator. Let x,y € V(G) be such that x € By UCy and y € By U C,.
Let P = pi-...-py be a path from x toy (so p1 = = and py = y), and suppose pq,pr,ps € P and
u € V(G)\ P are such that pg,pr,ps € Cy, ¢ < s —2, and either r =q+1 orr =s—1. Then,
either pr <ax or pr <a Y.

Proof. Note that {u, pq,pr,ps} is a paw with edge set {upq, up,, ups, pgpr} or {upq, upr, ups, prps}.
Since pq, pr,ps € Cy, u does not break {pq,pr,ps}. Suppose r = ¢ + 1. Then, p,-P-p, is a path
from p, to ps such that p,;1-P-ps is anticomplete to py, so p, does not break {p,,ps}. Therefore,
pr is a center of the paw and p, breaks {pq, ps}. Now, suppose r = s — 1. Then, ps-P-p, is a path
from p, to p, anticomplete to ps, so ps does not break {py, p,}. Therefore, p, is a center of the paw
and p, breaks {py,ps}. We may assume by symmetry that p, € A,,.. Then, 2-P-p, is a path from
x to py not going through neighbors of p,, so z € A, . By Lemma 4.2, either p, is a shield for = or
x and p, are star twins, so we may assume x and p, are star twins, for otherwise Lemma 7.3 holds.
Consequently, p, € A,. Now, p,.-P-y is a path from p, to y not going through neighbors of x, so
y € Az, a contradiction. O

The lemmas in the remainder of Section 7 share the same common assumptions as the lemmas
in Section 6.

Common assumptions for Sections 7.1 and 7.2: Let c € [%, 1) and let d, 0 be positive integers
with d > 0 + 3. Let G be a connected paw-friendly graph with maximum degree 0, and w : V(G) —
[0,1] a weight function on V(G) with w(G) = 1. Assume that G has no d-bounded (w, c)-balanced
separator. Let X be an O-star cover of G, S an 0-star covering sequence of G, and 8 the star-free

bag of G.
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7.1 Even sets in

Let (X1, X2) be the bipartition of 5. In this section, we prove that X; and X5 are even sets in G.
First, we show that X; and X5, are even sets in ~.

Lemma 7.4. Let (X1, X2) be the bipartition of 5. Then, X1 and Xo are even sets in 7.

Proof. First, let t1,t]| € X1, and suppose that P = p;-...-py is an odd path from ¢; to ¢} in v with
p1 = t1 and py = t}. We assume P is chosen with |V (P)N(\ £)| minimum. Note that 8 = s, N~,
where (s, is the central bag for Sj.

We claim that Cy, Ny C 3 for every 21 € X;. By (iii) of Lemma 6.2, we have 7\ 8 C g, A(S).
Since S is loosely laminar, it follows that C,, N A(S) = 0 for all 21 € X; and S € &;. Therefore,
Coy, N(y\ B) =0, and Cy, Ny C S for all 21 € X;. This proves the claim.

Next, we show that the span of x1 in P is wide odd for some x1 € X;. Since [ is bipartite,
Pn(y\pB) #0, and therefore PN A,, # () for some x; € X;. Note that it follows that the span of
x1 in P is of length greater than one. Since t1,t] € 3, it follows that ¢1,t] € Cy, U B;,. Suppose 1
has an even span p;-P-p; in P. Then, P’ = pi-P-p;-z1-pj-P-py, is an odd path from ¢; to ¢}, and
[V(PYN(y\B)| < |V(P)N(v\B)|, a contradiction. It follows that the span of z; in P is wide odd
for some x1 € X.

By Lemma 7.2, P contains an edge pypg+1 such that py, pg41 € Cpy Ny, But since Cpy Ny C 3
and 3 is bipartite, it follows that (Cy, \ {z1}) N~ is independent, a contradiction. Therefore, X; is
an even set in v, and by an analogous argument, X5 is an even set in 7. O

Now, we prove that X; and Xo are even sets in G.
Lemma 7.5. Let (X1, X3) be the bipartition of 5. Then, X1 and Xo are even sets in G.

Proof. Let t1,t] € Xi, and let P = pi-...-pg be an odd path in G with p; = ¢; and p, = t].
Assume P is chosen with [V (P) N (V(G) \ 7v)| minimum.

We claim that the span of x2 is wide odd for some 23 € X5. By Lemma 7.4, t; and t| are an even
pair in v, so PN(V(G)\ ) # 0. Since V(G)\ v € U,,ex, Az, it follows that PN A,, # 0 for some
x9 € Xo. Note that it follows that the span of 9 in P is of length greater than one. Since t1,t] €
(as B = X1 UX>), it follows that ¢,¢] € By, UCy,. Suppose x2 has even span p;-P-p; in P. Then,
P’ = pi-P-p;-x9-pj-P-py, is an odd path from ¢; to ¢} and [V (P)N(V(G)\v)| < [V(P)N(V(G)\7)I,
a contradiction. This proves the claim.

By Lemma 7.2, there exists a paw {u, py, pr,ps}, such that v € Xo, py,pr,ps € P, ¢ < s — 2,
either r = ¢+ 1 or r = s — 1. Since ¢1,t] € B, it follows that ¢; € By U Cy and th € By, UCY.
Therefore, by Lemma 7.3, either p, <4 t; or p, <4 t}. But by Lemma 4.9, /5 is exactly the set of
minimal vertices under the <4 order, a contradiction. O

7.2 Even sets in R\

In this section, we construct a d%-iterated even set (L1,. .., Ls2) of G\ B such that Ly U...U Ly =
R\ 3. Similarly to the approach in Section 7.1, we first show that (L1,..., L) is a §%-iterated
even set in v\ S. We start with a lemma.

Lemma 7.6. Let (X1, X3) be the bipartition of B and let R be the core bag of G. Let x1 € Xy and
let Dy, = Ay, NR. Then, |Dy, | < 62

Proof. Let v € D,,. Since v € R\ B, it follows that v € Cy, for some x2 € Xs. Since x3 has a
neighbor in A,, and z2 € Cy, U B,,, we have 9 € C;,, and so x; is adjacent to 3. Therefore,
D,, € N?[z1]. Since G has maximum degree 6, it follows that |D,, | < §2. O
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In Lemma 7.5, the key contradiction comes from the fact that when P is an odd path from x to
1y, there exists a vertex p; € P such that p; € A;. To reach that contradiction in this case, we make
use of the relation <4. Recall the relation <4 defined on V(G),

T =1y, or
r<py if x and y are star twins and o(x) < o(y), or

x and y are not star twins and y € A,

where 0 : V(G) — {1,...,|V(G)|} is a fixed ordering of V(G). The relation <4 is integral to
constructing even sets in R\ 8. Let X; = {z1,..., 2}, and let D; = A,, "R for 1 <i < m. By
Lemma 4.3, <4 is a partial order. Let ¢ : V(G) — {1,...,|V(G)|} be an ordering of V(G) that
corresponds to a linear extension of <4 (which exists due to the order-extension principle [11]). So
¢ is a total order and for every u,v € V(G) with u # v, if u <4 v then ¢(u) < {(v). For each Dj,
let £y, : V(D;) — {1,...,|D;|} be an ordering of V(D;) such that for all u,v € D;, £y, (u) < £y, (v)
if and only if £(u) < £(v). Now, we define 6% sets Li,..., Ls2, as follows:

L= {J &',

Ij€X1

and
L, = L; \ (Li+1 U... UL52).

It follows from the definition of the sets Ly, ..., Ls2 that for every v € R\ 8, v € L; if and only
if i = maxy,ex,wea,, (lz;(v)). Note also that Li,..., L are disjoint and R\ = L1 U... U Ls2.
We call (Li,...,Ls2) the even set representation of R \ B. The prefiz of L;, denoted Pre(L;), is
Pre(L;) = Ly U...UL;_4 for i > 1, and Pre(L;) = (). By the construction of Ly, ..., Ls2, we have
that for all v € V(G) \ Pre(L;) and all x € L;, v € A, if and only if v and z are star twins. This
reproduces the conditions for the contradiction from Lemma 7.5, and will play a key role in getting
a contradiction in this case.

In the remainder of this section, we prove that (Ly,..., Ls2) is a §%-iterated even set of G. We
need the following lemmas.

Lemma 7.7. Let (L1,...,Ls2) be the even set representation of R\ B. Let u,v € R\ B be distinct
vertices such that w <4 v, and let i be such that w € L;. Then, v & L; U Pre(L;).

Proof. Since u <4 v and u # v, it follows that v € A,. Suppose x; € X; such that u € A,,. By
Lemma 4.2, A, \ {z;} C A, so v € Ay,. Then, £y, (v) > £y, (u) for all z; € X; such that u € Ay,
SO MaXy,e Xy weA,, (fz; (V) > maXy,ex,wea,, (br; (u)). 1t follows that v & L; U Pre(L;). O

Lemma 7.8. Let (Li,...,Ls) be the even set representation of R\ f and let D be a connected
component of v\ 8. Then, for all 1 <i <62, |L; N D| < 1.

Proof. Suppose z,y € L; N D. Since D is a connected component of v\ 3, it follows by Lemma 6.3
that for all x; € X3, z € A;, if and only if y € A;,. Assume by symmetry that ¢(z) < ¢(y). Then,
for all z; € X such that x,y € A;,, we have £, () < £y, (y). Therefore, MaXy; € X we Ay, (lz; () <

MaXy, € X, e Aq, (€z;(y)). But MaXy; € X e Aq, (lz;(x)) = MaXy; € X, e A, (z;(y)) = i, a contradic-
tion. O

Lemma 7.9. Suppose x € X and u € V(G) such that x € A,. Then, w and x are star twins.

Proof. Since z € X, it follows that x is minimal with respect to <4. Therefore, x and u are star
twins and o(z) < o(u). O
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Lemma 7.10. Let (X1, X2) be the bipartition of 8. Suppose x,y € Xo and u € V(G) such that
u € Cy. Then, y & A,y.

Proof. Suppose y € A,. By Lemma 7.9, it follows that y and u are star twins, so u € A,. But now
u € Ay N Cy, contradicting Lemma 4.4. O

Now, we prove the main result of this section: (L1, ..., Ls2) is a 6-iterated even set in G\ B.

Lemma 7.11. Let (L1, ..., L) be the even set representation of R\B. Let1 <i < 62, let x,y € L;,
and let P be a path from x to y with P* C G\ (U Pre(L;)). Then, P is even.

Proof. We may assume that P* N L; = (. Fix 1 < i < 2. Let P = pq-...-pg, with p; = = and
pr =y, and suppose P is odd. By Lemma 7.8, |L; N D’| < 1 for every connected component D’ of
v\ B, so z and y are in different connected components of v\ 8. It follows that x and y are an even

pair in v \ 8, and PN (G \ v) # 0.

There exist u € Xo and pg,pr,ps € PN Cy with ¢ < s —2 and either r = q+1 or
(7.11.1) r = s — 1, such that {u,pq,pr, s} s a paw of G with edge set {upq, up,, ups, pgpr}
or {UPQv UPr, Up37prps}-

Proof of (7.11.1): Since PN (G \v) # 0 and G\ v = U,,cx, Azs, We have PN Ay, # () for some
x9 € Xy with at least two non-adjacent neighbors in P (in particular, the span of z9 in P is of
length greater than one). By Lemma 7.2, if there exists x9 € X5 such that the span of xg in P is
wide odd, then the claim holds. Therefore, we may assume that for every such x9, the span of x5 is
even. Let z9 € Xy be such that P N A, # (), and let p; and p; be the neighbors of x5 in P closest
to x and y, respectively. As the span of xs is even, it follows that p;-P-p; is an even subpath of P.

Since p;-P-pj is an even subpath of P, and P is odd, it follows that either z-P-p; is odd, or
y-P-p; is odd. Up to symmetry, assume z-P-p; is odd, so in particular, p; # z. Let u, € X3 be
such that = € C,,, (which exists by definition of R and since z € R\ /). If z is the unique neighbor
of uy in x-P-p;, then ug,-x-P-p;-z2 is an odd path, contradictiong Lemma 7.5, so u, has a neighbor
in {p2,...,pi}. Let z be the neighbor of u, closest to p;. Then, u;-2z-P-p;-x2 is an even path from
Uy to xo. It follows that x-P-z is odd. If u, has wide odd span in z-P-p;-x2, then, by Lemma 7.2,
there exists pg, pg+1,pr € -P-z with r < ¢—1 or r > ¢+ 2, such that py, pg+1,pr € Cy,. Therefore,
we may assume z is adjacent to x.

We note the following relations:

(i) =z € Cy,. (By choice of uy).
(ii) w2 € By, Uy € Bg,. (Since x2,u; € X3).
(i) z,z € Cy,. (Since z-P-p;-x2 is a path with z,z9 € B, UC,,, and z-z is the span of u, in
x-P-pi-x2, it follows that x,z € C,,).
(iv) zo € A, o &€ A,. (By Lemma 7.10, since z, z € C,, it follows that zo ¢ A, and zo & A,).
(V) uz & Ay, uy € A,. (Suppose u, € A,. By Lemma 7.9, it follows that u, and x are star twins.
But x € C,,, a contradiction. So u; ¢ A, and similarly, u, € A,.).

Now, zu,zt is a paw of GG, where t = x5 if 2 = p;, and t = p3 otherwise. Suppose t € A,. By
(iv), xo & Ay, so it follows that t = p3 and ps € A,. But then p3-P-p;-z2 is a path from ps to xo
anticomplete to x, so g € A, a contradiction. Therefore, t € A,. Similarly, t ¢ A, and t & A, .

By Theorem 5.6, either = breaks {u,,t}, or u, breaks {z,t}, or z breaks {z,u,,t}. Suppose x
breaks {u,,t}, so Ay N{ugz, t} # 0. But t € A,, and by (v), u, & A,, a contradiction. Now, suppose
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uy breaks {z,t}, so A,, N{z,t} # 0. But ¢t € A,,, and by (i), z € A,,, a contradiction. So z
breaks {z, us,t}. Suppose z breaks {us,t}, so A, N{uy,t} #0. But t € A,, and by (v), uy € A,, a
contradiction. Therefore, z breaks {x,t}. Since t ¢ A, it follows that z € A,.

Since z € Cy, N(G\ (BUPre(L;))), it follows that z € R\ 8. Since = and z are adjacent, they are
in the same connected component of v\ 3. Since z € L; and z ¢ Pre(L;), it follows that ¢(z) > £(z).
If x and z are not star twins, then since x € A;, it follows that z <4 z, and hence ¢(z) < {(z), a con-
tradiction. So x and z are star twins. Now, ¢ is adjacent to z and t € A,,sot € C,. Since z and x are
star twins, it follows that ¢t € C,. But t and x are not adjacent, a contradiction. This proves (7.11.1).

Suppose z € A,. Then, either z <4 y or y <4 z, so by Lemma 7.7, either x & L; or y &€ L;,
a contradiction. Therefore, x € B, U Cy, and by symmetry, y € B, U C,. Let u and p> be as in
(7.11.1). Since p, € C,\ B and u € Xo, it follows that p, € R\ . Let j be such that p, € L;. Since
P*C G\ (BUPre(L;)) and P*NL; =0, it follows that j > . Let x1 € X1 be such that p, € A,,.
By Lemma 7.3, either p, <4 x or p, <4 y. We may assume by symmetry that p, <4 z. But by
Lemma 7.7, it follows that « ¢ Pre(L;), a contradiction. O

8 Even set separators and (k,c,d, m)-tame graphs

In this section, we prove Theorem 1.3. First, we use the results of Section 2 to prove that paw-
friendly graphs with no bounded balanced separator have even set separators.

Lemma 8.1. Let c € [%, 1) and let d,d be positive integers with d > 6 + 3. Let G be a connected
paw-friendly graph on n vertices with mazimum degree 6, let w : V(G) — [0, 1] be a weight function
on V(G) with w(G) = 1, and suppose G has no d-bounded (w, c)-balanced separator. Then, G has
a (w,0%+2,¢,8 + 1)-even set separator L and one can find an even set representation of L in time
O(n3). In particular, G is (62 +2,¢,6 + 1,3)-tame.

Proof. For every vertex v € V(G), one can compute the canonical star separation S, = (A,, Cy, By)
in linear time, so the canonical star separations for every vertex v € V(G) can be computed in
time O(n? 4+ nm). The partial order <4 can be computed on V(G) in time O(n?). Let X C V(G)
be the star covering of G, i.e., the set of minimal vertices of G with respect to <4. Let S be
the o-star covering sequence of G and let 5 be the star-free bag of G. By Lemma 6.1, X is
bipartite. The bipartition (X7, X2) of X can be obtained in linear time. Recall that § = X, and
let R = BU(U,,ex, Cr,). Observe that given S, R can be computed in linear time.

A linear extension ¢ of <4 can be computed in linear time by running a depth-first search
algorithm on a representation of the partial order as a directed acyclic graph. The functions £,
(as defined in Section 7.2) for all z; € X; can be obtained from the linear extension in linear
time. Then, the sets Ly, ..., Lsz can be computed in linear time, and R\ f = L1 U...U Ls2. Let
L= (Xy,Xo2,L1,...,Ls2). By Lemma 6.3, it follows that for every connected component D of G\ L,
D C A, for some v € 8 and N(D) C NJv], and hence |[N(D)| < § + 1. Furthermore, by Lemma
3.1, w(A,) < 1— c and so, since ¢ > %, w(D) < ¢. By Lemma 7.5, it follows that X; and X5 are
even sets in G, and by Lemma 7.11, (L1,..., Ls2) is a 6%-iterated even set in G \ 3. Therefore,
(X1,X2,L1,...,Ls2) is a (0% + 2)-iterated even set in G, and hence L is a (w, 6% + 2,¢,0 + 1)-even
set separator of G which can be computed in time O(n?). O

Now we prove Theorem 1.3 that we restate.

Theorem 1.3. Let ¢ € [%, 1) and let 6 be a positive integer. Let G be a paw-friendly graph with

mazimum degree 5. Then, G is (1 +0+ ...+ 83, ¢, 146+ ...+ 6°F3, 3)-tame.
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Proof. Let w be a uniform weight function on V(G), so w(G) = 1. For every v € V(G), we check
whether every component D of G'\ N%*3[v] has w(D) < ¢, which can be done in O(n? +nm) time.
Suppose there exists v € V(G) such that w(D) < ¢ for every component D of G\ N°*3[v] (so G
has a (6§ + 3)-bounded (w, c¢)-balanced separator). Let X = No*3[v], so [X| < 14+ ... + 8773
Let X = {x1,...,2¢}. Then, {{z1},...,{x¢}} is a (w, ¥, ¢, £)-even set separator of G, found in time
O(n3).

Now, suppose G does not have a (§ + 3)-bounded (w, ¢)-balanced separator. By Lemma 8.1, G
has a (w, 6% + 2,¢,5 + 1)-even set separator found in time O(n3). Therefore, G is (1 +6 + ... +
603 e, 146 +... 4 6°F3 3)-tame. O
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