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Enhancing elderly care: Efficient and reliable
real-time fall detection algorithm

Yue Wang1 and Tiantai Deng1

Abstract

Background and Objective: Falls pose a significant risk to public health, especially for the elderly population, and could

potentially result in severe injuries or even death. A reliable fall detection system is urgently needed to recognise and

promptly alert to falls effectively. A vision-based fall detection system has the advantage of being non-invasive and afford-

able compared with another popular approach using wearable sensors. Nevertheless, the present challenge lies in the algo-

rithm’s limited on-device operating speed due to extremely high computational demands, and the high computational

demands are usually essential to improve the performance for the complex scene. Therefore, it is crucial to address the

above challenge in computational power and complex scenes.

Methods: This article presents the implementation of a real-time fall detection algorithm with low computational costs using

a single webcam. The suggested method optimises precision and efficiency by synthesising the strengths of background sub-

traction and the human pose estimation model BlazePose. The biomechanical features, derived from body key points iden-

tified by BlazePose, are utilised in a random forest model for classifying fall events.

Results: The proposed algorithm achieves 89.99% accuracy and 29.7 FPS with a laptop CPU on the UR Fall Detection dataset

and the Le2i Fall Detection dataset. The algorithm shows great generalisation and robustness in different scenarios.

Conclusion: Due to the low computational power of the system, the findings also suggest the potential for implementing the

system in small-scale medical monitoring equipment, which maximises its practical value in digital health.
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Introduction

Falls have become the second leading cause of uninten-

tional injury death worldwide.1 And the related concern is

growing worse among the elderly population.2 Leaving

the fallen elderly unattended could be life-threatening;

therefore, the autonomous fall detection system is highly

significant since it has the ability to provide a timely

response to a fall event.

Currently, there are three popular methods being applied

to detect falls.3 Falls can be determined by measuring the

necessary data using wearable sensors, such as gyroscopes

and accelerometers. However, this approach cannot work

effectively due to the limited battery life of devices and

the discomfort when wearing them.4 Alternatively, some

ambient sensors like radars, RF sensors, and ultrasonic

sensors are applied for fall recognition.3 Although the

method based on ambient sensors provides a decent and

non-intrusive solution, the complexity of system installa-

tion and maintenance brings troublesome issues. As
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another non-intrusive fall detection method, the vision-

based approach is relatively preferred, offering the advan-

tages of dominant precision and simple system

construction.

Most recent studies about the vision-based method have

predominantly focused on deep learning techniques for

optimal accuracy. The researchers managed to employ

deep learning techniques in sub-tasks of fall detection,

such as human detection, pose estimation, and fall recogni-

tion. The emergence of pose estimation neural networks has

significantly boosted the precision of body spatial represen-

tation, which can be considered a milestone for action rec-

ognition. But these advances compromise computational

speed, which leads to the challenges of on-device real-time

detection.

This paper proposes an improved algorithm based on the

RGB input shown in Figure 1 to combine the benefits of

digital image processing based on background subtraction

and the human pose estimation model. A series of funda-

mental digital image processing techniques serves as a

human detector. Furthermore, the human pose estimation

model BlazePose checks for the existence of a moving

person and performs fall recognition if a moving person

exists in the scene. The suggested algorithm optimises the

average computational costs and shows a high level of

accuracy with cascaded random forest classifiers. This

improvement makes the fall detection system more realistic

for real-time performance on embedded systems in compact

monitoring devices with low computing power. The main

contributions of this paper are as follows:

• We introduce a more efficient and faster fall detection

algorithm with high reliability. We obtained a remark-

able accuracy of 89.99%, along with a real-time per-

formance at 29.7 FPS on a laptop CPU.

• The proposed algorithm requires a simple and low-cost

system construction since it only relies on a low-cost

web camera, for example, a basic 480p RGB camera,

and an affordable device with low computational

power for processing, such as a budget laptop with a

Ryzen 7 processor.

• We present an explainable fall detection algorithm,

which is contributed by the physical significance of the

selected features for fall recognition. Furthermore, we

obtain an accuracy of approximately 90% on both the

UR Fall Detection dataset5 and the Le2i Fall Detection

dataset.6 Since both datasets cover various scenarios,

this result also highlights the robustness and

effectiveness.

The rest of this paper is structured as follows: next

section investigates the related research, section

‘Methodology’ goes through the methodology, section

‘Results and evaluation’ demonstrates the experimental

results and compares them with the existing literatures,

and section ‘Conclusions’ summarises the findings of the

research.

Related work

Several works related to real-time fall detection algorithms

have been proposed to enhance the practical value and

reduce the system cost. This section commences with the

overview of the state-of-the-art approaches as appraised in

the recent survey7 and then reviews the work undertaken

to pursue the development of real-time fall detection

systems.

Keskes and Noumeir8 used spatial temporal graph con-

volutional networks (ST-GCNs) based on skeleton-based

features for fall detection. ST-GCN is designed to analyse

spatial–temporal data and capture complex patterns in the

sequence, which shows improved performance in action

recognition.8 The skeletal features with 25 key points

were extracted by using Microsoft’s Kinect v2 sensor.

And transfer training was applied to resolve the insuffi-

ciency of the data. The suggested approach achieved an

accuracy of 100% and 92.91% on the TST v2 dataset and

FallFree dataset.

Sun and Wang9 proposed a vision-based fall detection

algorithm which obtains an accuracy of 94.6%. The features

were extracted using OpenPose, which is a powerful pose

estimation algorithm with 25 body key points provided

based on part affinity fields.10 Moreover, the object
Figure 1. Schematic diagram of the proposed fall detection

algorithm.
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detection model SSD-MobileNet was applied to remove the

interference of non-human objects and raise the confidence

of correct body key points. Support vector data description

(SVDD) algorithm for action classification was selected to

overcome the data imbalance.

Similar to the two aforementioned works, many

state-of-the-art studies involve some computationally

expensive techniques, such as neural networks for pose esti-

mation and action recognition. They are extremely difficult

to operate in real-time without the high-spec computing

platforms, and this limitation is detrimental in the fall detec-

tion system where the intermediate response is essential.

Moreover, the complexity of these systems compromises

their simplicity and cost-effectiveness in practical

applications.

To solve these challenges, some works have been dedi-

cated to developing real-time fall detection systems. They

attempted to optimise the required computation resources

in many ways, including lightweight algorithm,11 different

modalities12 and novel computing architecture.13

Alam et al.11 proposed a real-time fall detection algo-

rithm with low computational power. A lightweight pose

estimation model MoveNet was implemented to calculate

the position difference between the upper and lower body.

A simple threshold-based classification method was used

to complete the final predictions. The speed of this designed

algorithm on the CPU exceeded 30 FPS, but the accuracy

was not high.

Qian et al.12 designed a low-cost, real-time fall detection

system based on the wearable sensor. The used sensor is a

6-axis motion tracking MEMS sensor with a gyroscope and

accelerometer. This study suggested a multi-level thresh-

olding approach on the basis of features derived from

axial acceleration, angular velocity and inclination angle.

The accuracy rate of 94.88% was obtained in the designed

experiment. Due to the algorithm’s simplicity and efficient

communication on the Internet of Things (IoT) platform,

the system efficiency can be very high.

Lin et al.13 applied the concept of AI-based edge com-

puting to the vision-based fall detection system and sug-

gested a lightweight algorithm on the Sipeed MAix Go

AI development board. YOLO-LW was used to find out

the bounding box of the human, and SVM was the final

classifier based on features from the contour. It is reported

that the edge computing platform reached an accuracy of

91.1% and an operating speed of 11.5 FPS.

The insufficiency of robustness might be one of the main

problems among these three studies related to real-time fall

detection. The studies conducted by Alam et al.11 and Qian

et al.12 applied the simple threshold-based classifier for fall

recognition. The threshold-based classifier strongly

depends on the parameter settings, which indicates the algo-

rithm might have lower performance in the different scenes

without testing. Besides, the features used lack the necessary

diversity in the work of Alam et al.11 and Qian et al.,12which

means the accuracy of their system might be threatened in

complex environments. In terms of system configuration, a

large-size embedded sensor was required in the work from

Qian et al.,12 which might lead to discomfort and inconveni-

ence. The core platform in Lin et al.’s13 design was the AI

chip, and they pointed out that the debugging is challenging

and time-consuming on the AI chip.13

Based on the works of literature reviewed above, the

current challenges are summarised as follows:

1. Special equipment is required, like Microsoft’s Kinect

v2 sensor in Keskes and Noumeir8 and MEMS sensor

in Qian et al.,12 which introduce higher design and

maintenance expenses.

2. The computing power requirement is too high because

of heavyweight neural networks, like ST-GCN in

Keskes and Noumeir8 and OpenPose in Sun and

Wang,9 which makes it difficult to achieve real-time

detection in low-cost systems.

3. A limited number of biomechanical features reduces the

robustness of the proposed design, like Alam et al.11 and

Lin et al.13

In order to tackle the mentioned challenges, this research

proposes a low-cost and real-time fall detection system

with great reliability and robustness. The whole system is

implemented on a normal laptop CPU with a basic

webcam, and the system achieves an excellent balance

between operational speed and accuracy.

Methodology

In this section, we are going to introduce our low-cost algo-

rithm for fall detection. All the testing data are from public

available dataset (UR Fall Detection5 and a portion of the

Le2i Fall Detection6) thus there is no need for patient’s

consent in this research.

Algorithm overview

We propose a frame-by-frame and efficient processing

algorithm. All the critical components and interconnections

of the algorithm are covered in Figure 2. Moreover, we

provide two conditional options to end the processing of

the current frame in advance when the algorithm cannot

identify the current frame as a potential fall event. For

example, no moving person exists, or a person keeps stand-

ing in the scene.

Hybrid human detector

Figure 3 depicts the proposed architecture for human detec-

tion. Background subtraction is employed to separate the

moving person in the foreground mask from the back-

ground model. Following a series of image processing

Wang and Deng 3



pipelines, a clear view of the body silhouette can be acquired.

The designed pipeline includes background subtraction,

Otsu’s thresholding, morphological processing, Gaussian fil-

tering and contour acquisition. In the end, if the moving

Figure 2. Comprehensive flowchart of the completed vision-based fall detection algorithm. Blue blocks indicate the input and output

module, green blocks depict the flow of the human detector, red blocks explain the origin of the features, and yellow blocks represent the

classifier component.

Figure 3. Block diagram of the suggested human detector.
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object is presumed to be a human, the human detector from

the pose estimation neural network BlazePose will further

verify the person’s presence.

Background subtraction is a technique to isolate moving

objects, by determining if a pixel belongs to the background

or foreground.14 We use kNN-based background subtrac-

tion proposed by Zivkovic and van der Heijden14 to separ-

ate the moving person from the background. This

non-parametric algorithm leads to reduced processing

time and enhanced segmentation, which aligns perfectly

with our objectives.14

A greyscale image with shadows is obtained after the

background subtraction, so it is necessary to convert the

greyscale result into the binary foreground mask for

further morphological operations. As a non-parametric

method, Otsu’s thresholding is highly compatible with the

specification of the automated system.15 This method

searches for the optimised threshold value that minimises

the intra-class variance without manual intervention.15

The resulting image is transformed into a binary format

after thresholding, which serves as the required input for

the following morphological operations.

Figure 3 also shows that a rough and incomplete body

silhouette has been acquired in the foreground mask after

thresholding, which might be caused by light variation

and movement irregularity. Dilation and erosion from mor-

phological processing can further enhance the overall

representation of the body silhouette.16 Intuitively,

erosion is used to shrink the thickness of the foreground

objects, effectively removing redundant details, while dila-

tion is useful to bridge gaps within the body outline.16

After these manipulations above, the contour of the

moving object can be simply obtained, and there remains

uncertainty regarding whether this object is human. In our

proposed method, the contour area determines the initial

judgment: if the contour area of the moving object

exceeds the threshold value, the detector will indicate that

the moving object is potentially a person. Conversely, if

the moving object fails to qualify as a human-like object,

the system will restart and process a new frame.

In addition, the initial component of BlazePose is a human

detection neural network that focuses on precise face detection

and predicts body posture.17 As the last step of our suggested

hybrid human detector, BlazePose’s human detector would

significantly enhance the confidence of human detection, and

it would not excessively compromise the benefit of computa-

tional speed from the simplicity of background subtraction.

Figure 4 goes through all the working procedures of the

human detection system, which successfully displays an identi-

fiable body silhouette and detects the presence of a real person.

Skeleton key point tracker

The first phase of the BlazePose pipeline has been fully uti-

lised to examine the person’s presence. In the completed

inference pipeline, the following pose tracker is not acti-

vated until the human detector returns positive outcomes.

Google Research17 designed an encoder-decoder architec-

ture to generate a heatmap of the target key points of the

body, which is then regressed on the corresponding coordi-

nates by a decoder network. Specifically, the heatmap com-

ponent is only used in the training phase and can be

removed during the coordinate inference, which is the key

contribution to significantly decreasing the computational

cost. Moreover, BlazePose has sufficiently outstanding per-

formance even if some key points are non-visible or

occluded, which increases the confidence of human

tracking.

In contrast to OpenPose, a well-accepted algorithm

capable of detecting up to 25 body key points, BlazePose

offers a more comprehensive topology of 33 key points,

as shown in Figure 5. BlazePose achieves a percentage of

correct key points (PCK) with 20% tolerance at 84%,

whereas OpenPose shows a slight improvement, increasing

the PCK by 1%.17 In the videos analysed for this study,

BlazePose’s operating speed on a laptop CPU is up to

300 times greater than OpenPose’s outcome. Besides, a

popular pose estimation model MoveNet detects 17 body

key points with low latency, but it fails to obtain outstand-

ing results in Alam et al.’s work.11 As a result, the pose esti-

mation model BlazePose is more robust and feasible for

building up a simple and real-time fall detection system

with outstanding reliability.

Skeleton-based feature engineering

Following the acquisition of accurate human key points, the

proposed system algorithm requires the extraction of more

specific characteristics as a series of inputs for the final fall

recognition algorithm. High-quality features are essential to

Figure 4. Demonstration of the entire steps in the human detection

system: (A) original input frame, (B) background subtraction, (C)

Otsu’s thresholding, (D) morphological processing, (E) contouring,

and (F) BlazePose’s human detection.
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build a reliable and interpretable fall detection system. Five

main features are selected as criteria for fall analysis.

Rectangular contour height, width and aspect ratio. Some

abnormal activities, such as falls, tend to be accompanied

by a substantial change in the human’s aspect ratio.18

With the help of BlazePose, the estimated width-to-height

ratio is able to be expressed as:

wcontour = (max({x0, x1, . . . , x32})

−min({x0, x1, . . . , x32})) ×Wframe (1)

hcontour = (max({y0, y1, . . . , y32})

−min({y0, y1, . . . , y32})) × Hframe (2)

r =
wcontour

hcontour
. (3)

where x and y are coordinates normalised by the frame

width Wframe and height Hframe, their subscripts symbolise

the key point number from Figure 5. All the values experi-

ence the de-normalisation to represent the actual lengths,

making the algorithm suitable for different scaling of

video sequences.

Centroid height and vertical velocity. The vertical velocity of

the body trunk can be one of the most valuable factors in

distinguishing between a fall event and daily living activ-

ities.19 During a fall event, the effect of gravity leads to

the rise of the human’s vertical velocity towards the

ground.19

Here, the centroid height can be simplified to the perpen-

dicular distance between the hip midpoint and the foot mid-

point. The vertical velocity can be approximately derived

from the change rate of the body’s centroid height over a

period of time, which can be written as the following:

hcentroid =
y31 + y32

2
−

y23 + y24

2

( )
∗ Hframe (4)

vy =
hcentroid(f )− hcentroid(f − Δn)

Δn
× Nvideo (5)

where hcentroid(f ) denotes the height of the human’s centroid

at the current frame f, Δn represents the frame step for the

velocity’s measurement, Hframe and Nvideo refer to the

frame height and the video frame rate in frames per

second (FPS).

Cascaded random forests for fall recognition

Random forest is a powerful and effective machine-learning

algorithm for regression and classification. It builds up mul-

tiple decision trees based on various feature combinations

and derives the final prediction based on the results of indi-

vidual trees.20

The algorithm’s prediction, when applied to the classifi-

cation, can be expressed as follows:

ĈB
rf(x) = getMostFrequentElement{Ĉb(x)}

B
1 (6)

where Ĉb(x) indicates the prediction of the b-th decision tree

in the random forest, and we assume there are B decision

trees in total.

In our design, the backbone of the designed fall recognition

algorithm is a dual-stage cascading random forest structure,

depicted in Figure 6. Specifically, both random forests con-

sider all five key features, which include rectangular contour

height, rectangular contour width, rectangular contour aspect

ratio, centroid height and vertical velocity. These features

are selected for their strong correlation with fall-related

events. The first stage aims to identify lying, non-lying or tem-

porary poses, and the following random forest determines

whether the temporary action should be an actual fall. This

multi-layer classifier follows the logic of motion classification

and optimises the accuracy of fall judgments.

The proposed architecture for classification is relatively

robust to noise because the training phase of the second

Figure 5. BlazePose’s proposed body key point structure.
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classifier avoids the interference of data from lying and non-

lying events. Also, the random forests are entirely based on

the biomechanical characteristics, so great interpretability is

one of the design’s advantages.

Results and evaluation

Experimental setup

We selected the completed UR Fall Detection dataset5 and a

portion of the Le2i Fall Detection dataset6 in our experiments,

accompanied by officially annotated labels. By applying our

designed scheme, selected features of every RGB frame with

a resolution of 640×480 are collected to rebuild a new

dataset with only numerical data. Then, the size of non-fall

samples is reduced to resolve the dataset imbalance and con-

struct a low-bias dataset. After data balancing, there are

10,230 individual frame profiles from the selected dataset:

7163 for training and 3067 for testing and evaluation. The

testing set contains a variety of scenes, and the main scenes

among them include office room, bedroom, living room, and

coffee room, as shown in Figure 7. These scenes exhibit differ-

ences in many aspects, including room layout, camera position

and lighting conditions.

The proposed algorithm is implemented using Python

3.10, OpenCV 4.7.0 and MediaPipe 0.8.11 on an ordinary

laptop with an AMD Ryzen Mobile Processor (Ryzen 7

5800H 3.20 GHz), integrated graphics, and 16 GB RAM.

Figure 6. Decision-making flow of the proposed dual-stage cascading random forest classifier.

Figure 7. Main scenarios in the dataset: (a) bedroom, (b) office room, (c) living room and (d) coffee room.
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Evaluation of classifiers

The designed experiment about the classifier concentrates

on the performance for a single frame without consideration

of the video context.

In our analysis, we used true positives (TP), true nega-

tives (TN), false positives (FP), and false negatives (FN)

to evaluate the model. TP and TN denote the correct predic-

tion of falling and non-falling cases, respectively. FP

denotes incorrectly predicted falling, while FN refers to

incorrectly predicted non-falling cases. To assess classifica-

tion performance quantitatively, the accuracy, sensitivity,

precision, specificity, and F1 score are calculated as

follows:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(7)

Sensitivity =
TP

TP+ FN
(8)

Precision =
TP

TP+ FP
(9)

Specificity =
TN

TN+ FP
(10)

F1 = 2 ×
Precision × Sensitivity

Precision+ Sensitivity
. (11)

As listed in Table 1, the classifiers achieve an outstanding

accuracy of 89.99% on the UR Fall Detection dataset and

the Le2i fall detection dataset. And we obtained a sensitiv-

ity score of 90.33%. Sensitivity is an essential metric in

healthcare applications, which indicates the probability

that an actual fall is detected correctly. Low sensitivity

will be significantly harmful to the detection outcome of

the system.

We provide further details regarding the system per-

formance in different scenes in Table 2. The accuracy and

sensitivity in the four main scenes are consistently around

90%, which proves the high-level generalisation and

robustness. Furthermore, the potential versatility improves

the practical value of the system.

Algorithm latency analysis

The algorithm latency is of great importance in examining

the on-device performance of fall detection. In this

section, we will divide the completed algorithm into two

components for a comprehensive analysis of its latency:

the neural network component for pose estimation and the

non-neural network component for human detection and

action recognition. We will evaluate the time complexity

of the non-neural network part, which assesses how the

algorithm’s running time grows with input size.

Furthermore, we are going to look at the computational

cost for the neural network part, usually measured in

FLOPs (floating point operations).

In our proposed human detector, we mainly apply a

series of digital image processing techniques.

Morphological processing and Gaussian filtering generally

require relatively higher complexity due to the convolution

included. Since the 2D convolution operation can be

decomposed into two separated 1D convolutions, the

overall time complexity of the digital image processing

part is reduced from O(nk2) to O(nk), where n is the total

number of pixels and k is the length of the structural ele-

ments or filter kernels. And the computational speed can

be further optimised with the support of OpenCV.

Bazarevsky et al.17 employs the inference pipeline and

compact neural network architecture with only 2.7 million

FLOPs in BlazePose. Therefore, we are supposed to

expect a substantial decrease in algorithm complexity and

computational power requirement.

In our cascaded random forest for action recognition, the

time complexity during the prediction can be approximated

as O(md), where m and d are the number and maximum

depth of trees, respectively. Additionally, parallelisation

helps the actual implementation of random forest more

efficient.

Notably, the proposed algorithm might bypass the

BlazePose processing and action classification stages,

when no moving person is detected in the scene. This opti-

misation significantly enhances the overall efficiency of the

system as well.

Following the theoretical estimation, we will measure

the actual processing time by the human detector and the

pose tracker for feature extraction and the actual inference

time by the classifier. The processing time specifies the

interval between the input of a new frame and the output

of the prediction, while the inference time focuses on the

time taken for the classifier to acquire the prediction.

Table 3 lists the algorithm latency of our suggested algo-

rithm. Our proposed algorithm can achieve low processing

times on the device with limited computational power when

Table 1. Overall performance of the proposed algorithm.

Accuracy Sensitivity Specificity Precision F1 Score

89.99% 90.33% 89.66% 89.73% 90.02%

Table 2. System performance in four different scenes.

Scene

Office

room Bedroom

Living

room

Coffee

room

Accuracy 91.34% 89.19% 90.05% 90.20%

Sensitivity 92.94% 89.95% 88.47% 91.97%

8 DIGITAL HEALTH



the accuracy outcome is maintained at a high level. This

outcome verifies our theoretical analysis and shows the

powerful real-time performance of our suggested algorithm.

Moreover, we also validate the significance of the hybrid

human detector by assessing the improvement in the algo-

rithm’s operating speed. We chose all the video sequences

that have greater than 2.5 seconds without any person in

the scene because these video sequences are more likely to

be realistic scenarios and emphasise the value of the hybrid

human detector. In this part of the experiment, we first devel-

oped a simple algorithm that accomplishes both human

detection and pose estimation on the basis of BlazePose.

Then we implemented our suggested algorithm with the

hybrid human detector. The results related to the operating

speed are shown in Table 4. We obtain a real-time on-device

operating speed of 29.7 FPS with the hybrid human detector,

which results in an improvement of 37.50%.

Discussion

Four recent works11–13,21 are selected for comparative ana-

lysis. Khalili et al.’s work21 provides detailed interference

time of their designed models for a valuable comparison

with our findings. We also compare the works related to

the real-time fall detection system,11–13 which has been

reviewed in ‘Related Work’ section. The comprehensive

comparison results are summarised in Table 5.

Khalili et al.21 proposed the weighted training strategy to

optimise the accuracy of the fall detection algorithm. They

designed Haar feature-based and deep learning algorithms

as evaluation. Firstly, features are selected by the

AdaBoost algorithm from a large set of Haar features, and

then a weighted SVM classifier is then employed for fall

recognition. Haar feature-based approach achieved an

accuracy of 95%, but the inference time is up to 33 ms on

the workstation GPU. Furthermore, they used the 3D

neural network (C3D)22 to extract the temporal and

spatial features and SVM as the final classifier. Although

the accuracy rate of 99% was reported, the operating

speed exceeded one second for a single input on the work-

station GPU, which is unacceptable for a latency-critical

application. In addition, the evaluation was restricted to

frames with occlusions included, so the overall perform-

ance in various scenes was unknown.

Alam et al.’s work11 obtained a decent accuracy of

84.38% and real-time operating speed using MoveNet and

a threshold-based classifier. Their work measured the accur-

acy per video sequence, and the use of only 96 video

samples was not ideal to derive a robust outcome. Lin

et al.13 designed a real-time fall detection system based

on the AI chip, which can obtain the accuracy of 91.1%.

However, the AI chip brings a steep learning curve for

users due to its complexity, and the high cost of the AI

chip might make this system difficult to be a practical

healthcare component. Qian et al.12 developed a real-time

fall detection framework based on wearable sensor using

IoT. The accuracy of 94.88% proves the precision of

extracted characteristics, but the latency of IoT and the

safety of the sensor were not assessed.

Overall, the proposed system provides an ultra-fast and

reliable solution for fall detection. In terms of the operating

speed, our algorithm still maintains a real-time performance

of around 30 FPS, even based on an affordable AMD laptop

processor. In terms of practical value, our system is only

dependent on a basic webcam and a budget laptop to

achieve non-invasive and contactless detection, which

shows more convenience compared to wearable sensor-

based methods. In terms of robustness, our algorithm is

validated in the different scenes from a large dataset, and

we achieve all the accuracies around 90%.

However, there are two limitations to our designed

system. The error tends to concentrate on the scene with

the partial visibility of the person. For example, only the

upper half of a person’s body appears in the camera

range, as illustrated in Figure 8. This situation surpasses

the original capabilities of BlazePose and leads to the

extracted information turning into noise in the dataset. In

Table 3. Analysis of algorithm latency for the proposed system.

Resolution Computing platform Inference time per frame Total processing time per frame Accuracy Sensitivity

640× 480 Ryzen 7 5800H CPU 3.07 ms 26.84 ms (with person) 89.99% 90.33%

13.00 ms (no person)

Table 4. Evaluation of real-time performance for the proposed

algorithm.

Average time without person per

sequence

3.8 s

Total average time per sequence 25.6 s

Operating speed 21.6 FPS (BlazePose only)

29.7 FPS (Hybrid Detector)

Improvement percentage 37.50%

Wang and Deng 9



future work, we plan to design an approach to avoid the

interference of this complicated situation. Furthermore,

the proposed system is unable to achieve multi-person fall

detection, as our method is currently optimised for single-

person scenarios. In the future, we will explore the possibil-

ity of real-time multi-person fall detection algorithms.

Conclusions

This article proposes a novel vision-based algorithm for

reliable and real-time fall detection. In our suggested

system, the background subtraction-based human detector

decreases the computational cost, and the lightweight

Table 5. Comparison of the system performance with recent works.

Evaluated design Our proposed work Khalili et al.21 (2022)

Alam

et al.11

(2023)

Lin et al.13

(2022) Qian et al.12 (2022)

Sensor Camera Camera Camera Camera Gyroscope and

Accelerometer

Resolution 640× 480 320× 240 256× 256 – –

Computing platform Ryzen 7 5800H CPU Tesla K80 GPU (12GB) Ryzen 7

5800H

CPU

Two RISC-V

CPUs and

one KPU

IoT cloud server

Optimisation for the

scene without

person

Conditional bypass the pose

estimation and action

classification stages

No No No –

Multiple individuals’

detection

No No No No –

Inference time Per

frame

3.07 ms – 0.16 ms – –

Total processing time

per frame

26.84 ms (with person),

13.00 ms (no person)

33 ms (Haar

features), 1222 ms

(C3D network)

30.52 ms 87 ms Real-time (via

narrowband IoT)

Accuracy 89.99% 95% (Haar features),

99% (C3D

network)

84.38% 91.1% 94.88%

Sensitivity 90.33% 89% (Haar features),

96% (C3D

network)

92.36% 88.5% 95.25%

Figure 8. Examples of errors caused by the partial bodies in the frame.
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pose estimation model BlazePose refines the tracking con-

fidence and feature quality. The conditional execution

design and cascaded classifier architecture avoid unneces-

sary computations and further improve the algorithm’s effi-

ciency. We achieved an accuracy of 89.99% and an

operating speed of 29.7 FPS on a laptop CPU, similar to

the outcome on a workstation GPU of the commonly

used fall detection scheme. Our experimental results dem-

onstrate the algorithm’s outstanding performance in different

scenarios and optimised operating speed in the scene with or

without a person. This algorithm shows promise for imple-

mentation in portable medical monitoring devices, holding

significant implications for elderly care.
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