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Abstract: Optical flow is the apparent motion of the brightness patterns in an image. The pyramidal

form of the Lucas-Kanade (LK) method is frequently used for its computation but experiments have

shown that the method has deficiencies. Problems arise because of numerical issues in the least

squares (LS) problem min∥Ax − b∥2
2, A ∈ R

m×2 and m ≫ 2, which must be solved many times.

Numerical properties of the solution x0 = A†b = (AT A)−1 ATb of the LS problem are considered and

it is shown that the property m ≫ 2 has implications for the error and stability of x0. In particular, it

can be assumed that b has components that lie in the column space (range) R(A) of A, and the space

that is orthogonal to R(A), from which it follows that the upper bound of the condition number

of x0 is inversely proportional to cos θ, where θ is the angle between b and its component that lies

in R(A). It is shown that the maximum values of this condition number, other condition numbers

and the errors in the solutions of the LS problems increase as the pyramid is descended from the top

level (coarsest image) to the base (finest image), such that the optical flow computed at the base of

the pyramid may be computationally unreliable. The extension of these results to the problem of

total least squares is addressed by considering the stability of the optical flow vectors when there

are errors in A and b. Examples of the computation of the optical flow demonstrate the theoretical

results, and the implications of these results for extended forms of the LK method are discussed.

Keywords: optical flow; Lucas-Kanade; condition estimation; Gaussian pyramid

1. Introduction

Optical flow is the apparent motion of the brightness patterns in an image. This is
different from the motion field, which is the projection onto two dimensions of motion
in a three dimensional environment. Both these motions are usually termed optical flow
even though they are not necessarily the same ([§2] [1]). There are several methods for the
computation of optical flow and it is assumed in all the methods that it is locally smooth.
The methods can be classified as global, for example, the Horn-Schunck method [2], or local,
for example, the Lucas-Kanade (LK) method [3], and a review of these methods, and other
methods, is in [4–8]. Local methods are more robust to noise but they do not yield a dense
optical flow field, and global methods are more sensitive to noise but they yield a dense
optical flow field. The computation of the optical flow has been the focus of much research,
particularly in images that are corrupted by significant noise, or images in which two or
more objects move, or images in which there are temporal changes in illumination [9].

Comparisons of the different methods for the computation of optical flow are in [1,10].
The conclusions from these comparisons are empirical and based on quantitative measures
of the errors in the computed results, but numerical and linear algebraic considerations
of the methods are not included in these comparisons. These issues are addressed in this
paper by error analysis and condition estimation of the pyramidal form of the LK method.
This method requires that many least squares (LS) problems be solved at each level of the
pyramid and it is shown that, even in the absence of occlusions, motion discontinuities and
other problematic phenomena, the maximum values of the errors and condition numbers
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of the solutions of the LS problems (the optical flow) increase as the pyramid is descended
from the top level to the bottom level.

Kearney, Thompson and Boley [11] consider condition estimation and error analysis
for the computation of the optical flow from two points with pixel coordinates pi = (xi, yi)
and pj = (xj, yj) at time t, where pi is near pj such that a first order Taylor approximation
is appropriate. This approximation yields

Gω = −b, (1)

where

G =

[

I
(i)
x I

(i)
y

I
(j)
x I

(j)
y

]

, ω =

[

u
v

]

, b =

[

I
(i)
t

I
(j)
t

]

,

I
(i)
x =

∂I(i)

∂x
, I

(i)
y =

∂I(i)

∂y
, I

(i)
t =

∂I(i)

∂t
,

ω is the optical flow and I(i) = I(i)(x, y, t) is the intensity of the ith pixel. The work in this
paper follows the analysis in [11] because issues of computational linear algebra, specifically
condition estimation and error analysis, are addressed. There are, however, differences
because an arbitrary number of points, rather than two points, is considered in this paper
since the LK method yields an overdetermined set of equations, rather than the problem (1),
for which the coefficient matrix is square and of order two. It is therefore necessary to
compute x0, the optical flow,

x0 = arg min
x

∥Ax − b∥2, A ∈ R
m×n, (2)

where ∥·∥ = ∥·∥2, m > n and rank A = n, for each window at each level of the pyramid.
The optical flow problem requires that n = 2 but it is assumed in the theoretical analysis
that n ≤ m is arbitrary.

The first and second columns of A contain, respectively, the intensity gradients with
respect to x and y, and b contains the negative of the temporal intensity gradients, and
errors are therefore present in A and b, such that it is necessary to solve the total least
squares (TLS) problem ([§6.3] [12]),

{xtls, δAtls, δbtls} = arg minx,δA,δb

∥

∥

[

δA δb
]∥

∥

F

subjectto (A + δA)x = b + δb,

(3)

where ∥·∥F denotes the Frobenius norm. The method of TLS has been used for the com-
putation of optical flow [13], but an estimate of its numerical stability, which is a measure
of its sensitivity to noise, has not been established. This measure is called the condition
number and this paper addresses this issue by considering the condition number of the
computed optical flow. This condition number must be derived for the solution xtls of the
TLS problem (3), but it is shown that it is first necessary to consider the condition number
of the solution x0 of the LS problem (2).

The results of this paper are summarised:

1. It is shown that the maximum value of the error in the solution x0 of (2) increases as
the pyramid is descended from the top level to the lowest level.

2. The condition number κ(A) = ∥A∥
∥

∥A†
∥

∥ of A, where A† =
(

AT A
)−1

AT , is a function
of A only but the solution x0 of the LS problem is a function of A and b. A refined
condition number, called the effective condition number η(A, b) that is a function of
A and b, is therefore developed.
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3. An upper bound of η(A, b) is κ(A)/cos θ, where θ is the angle between b and its compo-
nent that lies in the column space (range) R(A) of A. It follows that even if A is well
conditioned, the solution x0 may be ill conditioned if θ is large.

4. The dimensions of the coefficient matrix A satisfy m ≫ n and it can therefore be
assumed that a significant component of b lies in the space that is orthogonal to R(A).
It is shown that the error in x0 is therefore large and that there is a simple relationship
between this error and cos θ. It is concluded that the angle θ arises in the error and
condition numbers of x0, and it is therefore an important measure to consider when
assessing the computational reliability of the optical flow.

5. It is shown that the maximum values of the condition numbers and errors in the
solutions of the LS problems (one LS problem for each window at each level of the
pyramid) increase as the pyramid is descended from the coarsest image to the finest
image. This shows that the advantage of the pyramidal implementation of the LK
method - the ability to cope with large displacements between successive images -
must be balanced against the numerical measures that quantify the robustness and
reliability of the solutions of the many LS problems that are solved in the LK method.

6. The condition number κ(A)/cos θ of x0 is limited because it quantifies the effect on x0

of errors in b, but errors in A are not considered. A condition number ρ(A, b) of x0

that includes errors in A and b is developed because it is more appropriate for the
LK method. This is a non-linear condition number, in contrast to the linear condition
number κ(A)/cos θ, and it is shown that the dominant term in the expression for ρ(A, b)
is κ(A)η(A, b).

The method of least median of squares (LMedS) is used in [14] to solve simultaneously
the problems of temporal variation of illumination and motion discontinuities induced
by the relative motion of two or more objects. The LMedS method requires the solution
of the LS problem (2), and the pyramidal form of the LK method is also used in feature
tracking [15]. More generally, the theory and results in this paper are applicable to all
problems in which the LK method is used. There are several forms of the LK method and
they differ in the expressions used for the calculation of the derivatives of the intensity.
For example, one form of the LK method requires that A and b in (2) are premultiplied
by a diagonal matrix, such that a larger weight is assigned to pixels in the centre of each
window, and a smaller weight is assigned to pixels at its borders ([§4.3.2] [16]).

The LK method is described in Section 2 and the error in the solution x0 of the LS
problem is considered in Section 3. It is shown that there is a simple relationship between
cos θ and the error, and an expression for cos θ is developed in Section 4. Linear and non-
linear condition numbers that consider errors in b, and errors in A and b, respectively, of
the optical flow are considered in Section 5. Examples that show the errors and condition
numbers of the optical flow at each level of the pyramid are in Section 6. The paper is
summarised in Section 7 and it is shown that the numerical problems with the solution of
the LS problem that are addressed in this paper provide the mathematical motivation for
the generalised form of the LK method that includes warping functions [17].

2. The Lucas-Kanade Method

The LK method is derived from the assumption of constant intensity I(x, y, t) as a
pixel at position (x, y) at time t moves to position (x + δx, y + δy) at time t + δt, such that

I(x, y, t) = I(x + δx, y + δy, t + δt),

to first order. It therefore follows that

∂I

∂x
δx +

∂I

∂y
δy +

∂I

∂t
δt = 0, (4)
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and thus if

u =
∂x

∂t
and v =

∂y

∂t
,

then

Ixu + Iyv + It = 0, (5)

where

Ix =
∂I

∂x
, Iy =

∂I

∂y
and It =

∂I

∂t
.

Equation (5) is one equation in two unknowns (the components u and v of the optical
flow), and it therefore possesses an infinite number of solutions. This problem of a non-
unique solution is addressed by considering a square window in each image at times t and
t + δt, and if each window contains p points, then the application of (5) to each of these
points yields,

I
(i)
x u + I

(i)
y v + I

(i)
t = 0, i = 1, . . . , p,

which can be combined into one equation,

Ax = b, A ∈ R
p×2, x ∈ R

2 and b ∈ R
p. (6)

Equation (6) is solved in the LS sense (2), which yields the solution,

x0 = A†b, A† =
(

AT A
)−1

AT , (7)

where x0 = [u v]T is the optical flow. It follows from (6) that the motion in each window is
a translation only, where u and v represent its horizontal and vertical components, respec-
tively.

The solution x0 assumes there are errors in b only, and that A does not contain errors.
The qualifications that follow from this assumption must be addressed because A and b
contain, respectively, the spatial and temporal derivatives of the intensity I(x, y, t). The
inclusion of errors in A and b requires that the TLS problem be considered ([§6.3] [12]),
and the effect of perturbations in A and b on the optical flow x0 is considered by the
development of a non-linear condition number of x0 in Section 5.2.

The computation of the translation x0 between two images of a dynamic scene occurs
in several applications, including remote sensing and medical imaging, and it has been
shown that noise and the first order approximation (4) introduce bias in the estimate
of x0 [11,18–20]. Robinson and Milanfar [20] use prior knowledge of the image and the
translation to design gradient-estimation filters but the bias due to noise is not considered,
and thus the LK method yields poor results for images whose signal-to-noise ratio is less
than about 25 dB. Pham et al. [19] reduce the bias by iteratively computing the translation
and upsampling the matrices that store the components u and v of the optical flow, which
is the pyramid procedure proposed by Lucas and Kanade [3], and refined by Baker and
Matthews [17]. Pham et al. [19] report that a pyramid with three levels yields an optical
flow field with a very small bias.

The first order approximation (4) requires that

|δx|, |δy|, |δt| ≪ 1, (8)
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and if this condition is not satisfied, a pyramid is formed in which the images at the ith
level are formed by passing the images at the (i − 1)th level through a low pass filter and
then downsampling the filtered images. The coefficients of the low pass filter are [21,22],

(

1

16

)













1
4
6
4
1













(

1

16

)

[

1 4 6 4 1
]

, (9)

which is approximately equal to a Gaussian filter with standard deviation σ = 1.
The pyramidal implementation is shown in Figure 1 for two images F and G that

are taken at times t and t + δt respectively. The optical flow is computed at the top of
the pyramid, level 4 (the coarsest image) in Figure 1, which is the initial condition for the
computation of the optical flow at level 3 of the pyramid. It follows from (8) that (5) yields
good estimates of u and v if the translation between the images at times t and t + δt is small.
Only the increments between successive levels of the pyramid are therefore calculated,
after warping the two images based on the flow field estimate from the coarse level. This
operation yields two matrices, one for each component of the optical flow, and each matrix
is upsampled to yield matrices of twice the number of rows and columns, and then passed
through a modified form of the filter (9),

(

1

8

)













1
4
6
4
1













(

1

8

)

[

1 4 6 4 1
]

. (10)

This process is continued to the base of the pyramid, level 1, and the optical flow at
this level is the desired optical flow.

Gaussian pyramid of F Gaussian pyramid of G

run LK

run LK

upsample

upsample

run LK

upsample

run LKlevel 1

level 2

level 3

level 4

Figure 1. The pyramid implementation of the Lucas-Kanade method.

The difference in the scale factors for the filters for downsampling the images and
upsampling the optical flow field arises because all the pixels in the images that are
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downsampled are included in the computation, but rows and columns of zeros are added
to the matrices that store the components u and v before they are upsampled, such that a
matrix of order M × N is increased to a matrix of order 2M × 2N. The computation of all
the pixel values in these larger matrices cannot include the added rows and columns of
zeros and thus only one quarter of the pixels in the matrices of order 2M × 2N are included
in the computation.

The matrices of the components of the optical flow must be upsampled by the filter (10)
and then multiplied by two in order to preserve the values of its components between
successive levels of the pyramid. In particular, two adjacent pixels have unit separation
before upsampling, but their separation increases to two after upsampling. The preservation
of the values of the components of the optical flow in the upsampled images therefore
requires that they be multiplied by two.

The discussion above shows that the pyramidal form of the LK method requires that
the LS problem be solved many times at each level of the pyramid, and thus the error in its
solution must be considered. This issue is addressed in Section 3 and it is shown in Section 4
that this error is closely related to the value of the angle θ between b and its component that
lies in the column space R(A) of A. The computed optical flow must be numerically stable
and it is therefore necessary to consider its numerical condition. This issue is addressed in
Section 5, and linear and non-linear condition numbers are considered.

3. The Error in the Solution of the LS Problem

This section considers the error e in the solution of the LS problem (7),

e =
∥b − Ax0∥

∥b∥ =

∥

∥(I − AA†)b
∥

∥

∥b∥ =

∥

∥(I − ΣΣ†)c
∥

∥

∥c∥ , (11)

where the singular value decomposition of A is UΣVT , U and V are orthogonal matrices of
orders m and n respectively,

Σ =

[

Σ1

0

]

∈ R
m×n, Σ1 = diag

[

σ1 σ2 · · · σn

]

,

the singular values σi satisfy σi ≥ σi+1, i = 1, . . . , n − 1, and

c = UTb. (12)

The matrix U is partitioned into two matrices U1 and U2,

U =
[

U1 U2

]

, U1 ∈ R
m×n, U2 ∈ R

m×(m−n),

and it follows from the orthogonal property of U that

UT
1 U1 = In, UT

2 U2 = Im−n,

UT
1 U2 = 0n,m−n, UT

2 U1 = 0m−n,n,
(13)

and

U1UT
1 + U2UT

2 = Im. (14)

It follows from (12) that c can be written as

c =

[

c̄1

c̄2

]

=

[

UT
1

UT
2

]

b, c̄1 ∈ R
n, c̄2 ∈ R

m−n,
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where c̄1 and c̄2 are the components of b that lie in, respectively, the spaces spanned by the
columns of U1 and U2. It follows from (11) that

e2 =
∑

m
i=n+1 c2

i

∑
m
i=1 c2

i

=
∥c̄2∥2

∥c∥2
=

∥c̄2∥2

∥c̄1∥2 + ∥c̄2∥2
= 1 − cos2 θ, (15)

where

cos θ =
∥c̄1∥
∥c∥ , (16)

and thus the error in x0 is a measure of the proportion of b that lies in the space that is
orthogonal to R(A), and a large value of θ leads to a large error in x0. The significance of θ
is considered in Section 4 and it is shown that it allows a geometric interpretation of the
conditions that define the minimum and maximum values of e.

4. The Angle between b and R(A)

It is shown in this section that θ, where cos θ is defined in (16), is the angle between
b and its component that lies in the column space R(A) of A. This interpretation follows
from the decomposition of b into a component r1 ∈ R(A) and a component r2 ∈ R(A)⊥,

b = r1 + r2.

Since r1 ∈ R(A) and r2 ∈ R(A)⊥, there exist vectors t1 and t2 such that

r1 = U1t1 and r2 = U2t2,

because the columns of U1 and U2 form orthonormal bases for R(A) and R(A)⊥, respec-
tively, and thus

b = U1t1 + U2t2.

It follows from (13) that premultiplication of this equation by UT
1 and then UT

2 yields

b = U1UT
1 b + U2UT

2 b,

where the first and second terms on the right are, respectively, the orthogonal projections
of b onto R(A) and R(A)⊥. It follows from (13) that the second term is orthogonal to the
first term, which confirms that r1 is orthogonal to r2. Also, it follows from (14) that

∥

∥

∥U1UT
1 b
∥

∥

∥

2
+
∥

∥

∥U2UT
2 b
∥

∥

∥

2
= ∥b∥2,

where
∥

∥

∥U1UT
1 b
∥

∥

∥ =
∥

∥

∥UT
1 b
∥

∥

∥ = ∥c̄1∥,

and thus cos θ is equal to the ratio of the magnitude of the orthogonal projection of b
onto R(A) to the magnitude of b. Equation (15) shows that there is a simple relationship
between the error in x0, and the angle between b and its component that lies in R(A). The
limiting cases are:

1. b ∈ R(A): It follows that cos θ = 1 and U2 = 0, and thus e = 0.

2. b ∈ R(A)⊥: It follows that cos θ = 0 and U1 = 0, and thus e = 1.

The ratio cos θ provides a geometric interpretation of the error in the solution of the
LS problem, and it is shown in Section 5 that cos θ also arises in the expressions for the
condition numbers of x0.
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5. The Numerical Condition of the Optical Flow

This section considers the numerical condition of the optical flow x0, the solution of
the LS problem. The condition number of A, κ(A) = σ1/σ2, where σ1 > σ2, is frequently
used as a measure of the stability of x0, but it requires qualification:

1. The condition number κ(A) is a function of A and it is independent of b, but x0 = A†b
is a function of A and b. This independence of b follows because κ(A) is the upper
bound of the ratio of the relative error in x0 = A†b to the relative error in b with
respect to all vectors b ∈ R(A) and perturbations δb ∈ R

m. The vector b is specified
in a given problem and thus a better measure of the stability of x0 is an upper bound
of the ratio ∆ of the relative error in x0 to the relative error in b with respect to all
perturbations δb, for the given vector b. The condition number κ(A) may therefore
overestimate the true value of ∆ by many orders of magnitude if b ∈ R(A).

2. The property b ∈ R(A) is not, in general, satisfied in the LK method and thus a
measure of the stability of x0 with respect to perturbations in b that is appropriate
when b ̸∈ R(A) must be developed.

Although these points show that κ(A) as a measure of the stability of x0 has dis-
advantages, it has been used to assess the computational reliability of x0 ([§II.A] [14]),
([§4.3.2] [16]), ([§2] [10]). These disadvantages of κ(A) are overcome by the effective condi-
tion number of x0, which is a function of A and b, and therefore a more accurate measure
of the stability of x0. This condition number is considered in Section 5.1.

The effective condition number is a linear condition number because it is assumed
that the entries of A (the spatial derivatives of the intensity) are not subject to error, and
only errors in b (the temporal derivatives of the intensity) are subject to error. A more
realistic condition number of the optical flow requires that errors in the spatial and temporal
derivatives of the intensity be considered. This inclusion leads to a non-linear extension of
the effective condition number, and it is considered in Section 5.2.

5.1. The Effective Condition Number

This section considers the effective condition number of the solution x0 of the LS
problem, which must be solved many times in the LK method. It is assumed for generality
that the coefficient matrix A is of order m × n where m ≥ n, rather than m × 2.

The relative errors of x0 and b are, respectively,

∆x0 =
∥δx0∥
∥x0∥

and ∆b =
∥δb∥
∥b∥ , (17)

and the effective condition number of x0 is defined as the maximum value of the ratio of
∆x0 to ∆b for the given vector b, with respect to all perturbations δb in b,

η(A, b) = max
δb∈Rm

∆x0

∆b
.

Theorem 1. The effective condition number η(A, b) of x0 is

η(A, b) =

∥

∥A†
∥

∥∥b∥
∥x0∥

=

∥

∥A†
∥

∥∥b∥
∥A†b∥ , (18)

and it follows from (12) that

η(A, b) =
∥c∥

σn∥Σ†c∥ . (19)
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Proof. It follows from (7) and (17) that

∥δx0∥ =
∥

∥

∥A†δb
∥

∥

∥ ≤
∥

∥

∥A†
∥

∥

∥∥δb∥ =
∥

∥

∥A†
∥

∥

∥∥b∥∆b. (20)

The division of this inequality by ∥x0∥ =
∥

∥A†b
∥

∥ yields (18), from which (19) follows.

The condition that must be satisfied for κ(A) to be a measure of the stability of x0

follows from (20) because ∥b − Ax0∥ = 0 if and only if b ∈ R(A). This condition is
necessarily satisfied by all vectors b if A is square, but by some vectors b, not all vectors b,
if m > n. If b ∈ R(A), then b = Ax0 and thus ∥b∥ ≤ ∥A∥∥x0∥, and (20) yields

∥δx0∥ ≤
∥

∥

∥A†
∥

∥

∥∥b∥∆b ≤
∥

∥

∥A†
∥

∥

∥∥A∥∥x0∥∆b.

This leads to the definition of the condition number κ(A) of A ∈ R
m×n, m ≥ n, as the

upper bound of the ratio of the relative error of x0 to the relative error of b if and only if
b ∈ R(A),

κ(A) = max
δb∈Rm ,b∈R(A)

∆x0

∆b
=
∥

∥

∥A†
∥

∥

∥∥A∥ =
σ1

σn
.

Furthermore, it follows from (12) and (19) that

max
b∈R(A)

η(A, b) = max
c∈R(A)

∥c∥
σn∥Σ†c∥ =

σ1

σn
,

and thus κ(A) is the maximum value of η(A, b) with respect to all vectors b ∈ R(A).
The superiority of the effective condition number η(A, b) with respect to the condition

number κ(A) as a measure of the stability of x0 follows because η(A, b) is a function of
A and b, but κ(A) is a function of A only. The example of regression in ([§3] [23]) shows
the difference between these condition numbers. The dependence of η(A, b) on A and b is
clearly advantageous, but η(A, b) must be used with care because it follows from (18) that
the denominator contains the term ∥x0∥. It therefore follows that η(A, b) is ill conditioned
if x0 is ill conditioned, and it is well conditioned if x0 is well conditioned. It is shown in
([§4] [24]) that η(A, b), and therefore x0, are ill conditioned if the discrete Picard condition
is satisfied ([§4.5] [25]). This condition states that if the constants |ci| decay to zero faster
than the singular values σi decay to zero, that is,

|ci|
σi

→ 0 as i → n, (21)

then x0 is ill conditioned. This condition can be derived from x0,

x0 = A†b =
n

∑
i=1

(

ci

σi

)

vi, (22)

where vi is the ith column of V. If b is perturbed to b + δb, then x0 is perturbed to

x0 + δx0 =
n

∑
i=1

(

ci + δci

σi

)

vi, (23)

and there exists a constant s such that the perturbations |δci| ≈ ϵ, i = 1, . . . , n, satisfy

|ci| > ϵ, i = 1, . . . , s,

|ci| < ϵ, i = s + 1, . . . , n.
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These inequalities follow because the perturbations |δci| are approximately constant but
the coefficients |ci| decay to zero because the discrete Picard condition (21) is satisfied, and
thus from (23),

x0 + δx0 =
n

∑
i=1

(

ci + δci

σi

)

vi ≈
s

∑
i=1

(

ci

σi

)

vi +
n

∑
i=s+1

(

δci

σi

)

vi.

Since the discrete Picard condition is satisfied, x0 can be approximated with a small
error by only considering the first s singular values in (22),

x0 = A†b ≈
s

∑
i=1

(

ci

σi

)

vi,

and thus

δx0 ≈
n

∑
i=s+1

(

δci

σi

)

vi.

It follows that

∥δx0∥ ≈ ϵ

(

n

∑
i=s+1

1

σ2
i

) 1
2

≈ ϵ

σn
,

and thus the norm of the perturbation δx0 is approximately proportional to the magnitude
of the noise and inversely proportional to the smallest singular value of A, from which it
follows that x0 is ill conditioned if the discrete Picard condition (21) is satisfied. It is seen
that x0 is ill conditioned if it is dominated by the large singular values of A, in which case
δx0 is dominated by the small singular values of A.

The satisfaction of the discrete Picard condition is necessary for the application of
Tikhonov regularisation because it guarantees that the regularisation error is small and
the regularised form of x0 is numerically stable ([§5] [23]). Tikhonov regularisation is
used for the removal of blur from images because experiments have shown that many
images satisfy the discrete Picard condition [26]. This condition forms the prior information
that guarantees that Tikhonov regularisation is effective for image deblurring, and more
generally, the ill conditioned property of η(A, b) limits its practical use if prior information
is not available. The condition number η(A, b) is, however, an important condition measure
because, as shown above, it defines the conditions between A and b for which x0 is well
conditioned, and the conditions for which x0 is ill conditioned.

It has been shown that η(A, b) is ill conditioned if x0 is ill conditioned, but its upper
bound is numerically stable, and an expression for this bound is developed in Theorem 2.
This bound includes the term cos θ that is defined in (16), and thus the error in the solution
x0 of the LS problem is related to the numerical condition of x0.

Theorem 2. If A ∈ R
m×n, m ≥ n, then the effective condition number (19) of the solution x0 of

the LS problem is

η(A, b) =
1

σn







∑
m
i=1 c2

i

∑
n
i=1

(

ci
σi

)2







1
2

=

(

σ1

σn

)







∑
m
i=1 c2

i

∑
n
i=1

(

σ1
σi

)2
c2

i







1
2

,

where c = {ci}m
i=1 is defined in (12), and thus η(A, b) satisfies

η(A, b) ≤
{

κ(A) i f m = n,
κ(A)
cos θ i f m > n.

(24)
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Proof. If m = n, (19) yields

η(A, b) =

(

σ1

σn

)







∑
n
i=1 c2

i

∑
n
i=1

(

σ1
σi

)2
c2

i







1
2

≤ σ1

σn
= κ(A),

and the result (24) for m = n follows.
Consider now the situation m > n,

η(A, b) =

(

σ1

σn

)







∑
m
i=1 c2

i

∑
n
i=1

(

σ1
σi

)2
c2

i







1
2

≤
(

σ1

σn

)

(

∑
m
i=1 c2

i

∑
n
i=1 c2

i

) 1
2

= κ(A)
∥c∥
∥c̄1∥

,

and the result (24) for m > n follows from (16).

Equation (24) shows that the condition number of x0 increases rapidly as cos θ → 0.
For example, if a window of order 7 × 7 is used, then A ∈ R

49×2 and the error in x0 is
equal to zero if and only if b lies in the two dimensional subspace R

2
colA spanned by the

columns of A, in the space R
49, and the error in x0 is due to the component of b that lies

in the space that is orthogonal to R
2
colA. The condition number of x0 is large if 1/cos θ ≫ 1,

even if σ1/σ2 = O(1).

Example 1. Consider the matrix A and vector b,

A =





1 0
0 1
1 −1



 and b =





−1
1
1



.

The singular values of A are σ1 = 1 and σ2 =
√

3, and thus κ(A) =
√

3. It may therefore be
thought that the solution x0 of the LS problem is well conditioned but this is incorrect because b is
orthogonal to R(A),

bT A =
[

0 0 0
]

.

It follows that cos θ = 0 and x0 =
[

0 0
]T

.

The left singular matrix U of A = UΣVT , and the matrices U1 and U2 are

U =









1√
6

1√
2

−1√
3

−1√
6

1√
2

1√
3

2√
6

0 1√
3









, U1 =







1√
6

1√
2

−1√
6

1√
2

2√
6

0






and U2 =









−1√
3

1√
3

1√
3









,

and thus

UT
1 b =

[

0
0

]

and U1UT
1 b =





0
0
0



,

which confirm that b is orthogonal to R(A).
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5.2. A Non-Linear Condition Number

This section extends the linear effective condition number considered in Section 5.1 by
including perturbations in the coefficient matrix A, such that the perturbed solution of the
LS problem is

x0 + δx0 = (A + δA)†(b + δb). (25)

An expression for the condition number of x0 when A and b are perturbed is developed in
Theorem 3.

Theorem 3. The condition number of x0 when A and b are perturbed by, respectively, δA and δb
such that

∥δb∥ ≤ ϵ∥b∥ and ∥δA∥ ≤ ϵ∥A∥, (26)

is

ρ(A, b) = max
∥δb∥≤ϵ∥b∥,∥δA∥≤ϵ∥A∥

1

ϵ

∥δx0∥
∥x0∥

=

∥

∥A†
∥

∥∥b∥+ ∥A∥
∥

∥

∥

(

AT A
)−1
∥

∥

∥

∥

∥

(

I − AA†
)

b
∥

∥

∥x0∥
+ ∥A∥

∥

∥

∥A†
∥

∥

∥

= η(A, b) + κ(A) +
κ(A)

∥

∥

(

I − AA†
)

b
∥

∥

σn∥x0∥
. (27)

Proof. The pseudo-inverse of A + δA is

(A + δA)† =
(

(A + δA)T(A + δA)
)−1

(A + δA)T ,

where, to first order,

(

(A + δA)T(A + δA)
)−1

=

(

I + A†δA +
(

AT A
)−1

δAT A

)−1(

AT A
)−1

=

(

I − A†δA −
(

AT A
)−1

δAT A

)

(

AT A
)−1

,

and thus

(A + δA)† =
(

(A + δA)T(A + δA)
)−1

(A + δA)T

=

(

I − A†δA −
(

AT A
)−1

δAT A

)

(

AT A
)−1

(A + δA)T

= A† +
(

AT A
)−1

δAT − A†δAA† −
(

AT A
)−1

δAT AA†,

to first order. It therefore follows from (25) that

x0 + δx0 =

(

A† +
(

AT A
)−1

δAT − A†δAA† −
(

AT A
)−1

δAT AA†

)

(b + δb),

and thus

δx0 = A†δb − A†δAx0 +
(

AT A
)−1

δAT
(

I − AA†
)

b.
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Hence,

∥δx0∥ ≤
∥

∥

∥A†
∥

∥

∥∥δb∥+
∥

∥

∥A†
∥

∥

∥∥δA∥∥x0∥+
∥

∥

∥

∥

(

AT A
)−1

∥

∥

∥

∥

∥δA∥
∥

∥

∥

(

I − AA†
)

b
∥

∥

∥,

and the substitution of (18) and (26) into this expression yields (27).

An upper bound for the last term in (27) allows ρ(A, b) to be expressed in terms of
η(A, b) and κ(A). In particular,

∥

∥

∥

(

I − AA†
)

b
∥

∥

∥
=

∥

∥

∥

∥

[

0 0
0 Im−n

]

UTb

∥

∥

∥

∥

≤ ∥b∥,

and thus (27) becomes

ρ(A, b) = η(A, b) + κ(A) +
κ(A)

∥

∥

(

I − AA†
)

b
∥

∥

σn∥x0∥

≤ η(A, b) + κ(A) +
κ(A)∥b∥
σn∥A†b∥

= η(A, b) + κ(A) + κ(A)η(A, b), (28)

and thus the inclusion of errors in the spatial derivatives of the intensity is significant
because of the term κ(A)η(A, b).

It was stated in Section 5.1 that the effective condition number η(A, b) is ill conditioned
if the discrete Picard condition is satisfied, in which case (27) and its upper bound (28)
cannot be computed reliably. This problem is addressed by using the upper bound (24)
for the value of η(A, b) in (28). The condition number (27) is, however, useful because it
shows that the inclusion of perturbations in the spatial derivatives of the intensity causes a
significant increase in the condition number of the optical flow.

6. Examples

This section contains two examples that show the errors and condition numbers of
the optical flow at each level of the pyramid. The Middlebury data set [1] is used in
Examples 2 and 3, and the following numerical measures are considered:

1. The condition number κ(A), the upper bound of the effective condition number,
κ(A)/cos θ, and the non-linear condition number ρ(A, b).

2. The angle θ between b and its component that lies in R(A).
3. The error e in the solution x0 of the LS problem.

The examples use the images shown in Figure 2 [1].

Figure 2. The images used in Examples 2 and 3.
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Example 2. The five measures listed above (the three condition numbers, the angle θ and the error
e in x0) were computed in each window for windows of side lengths 2s + 1, s = 2, 3, . . . , 8, 9, at
each level of a pyramid that has four levels, for the images in Figure 2. The mean and standard
deviation of log10 κ(A), the upper bound log10

κ(A)/cos θ of the effective condition number, and the
non-linear condition number log10 ρ(A, b), at each level of the pyramid and for each window size,
are shown in Figure 3. The figures in the left column show that, as expected, the mean of ρ(A, b) at
each of the 32 points in the grid is larger than the corresponding values of κ(A) and κ(A)/cos θ. Also,
the means of ρ(A, b) and κ(A)/cos θ increase, but not monotonically, as the pyramid is descended
from the coarsest image (level 4) to the finest image (level 1), and they decrease as the window size
increases, at each level of the pyramid. The variation of the mean of each condition number, Figure 3
(left), is similar to the variation of its standard deviation, Figure 3 (right).

The mean and standard deviation of the angle θ, where cos θ is defined in (16), and the
error log10 e, where e is defined in (11), are shown in Figure 4. It is seen that the mean of θ is
approximately constant for windows of side length 7 pixels or more at levels 2, 3 and 4 of the
pyramid. Figure 4 (left) shows that the variation of the means of θ and log10 e are very similar, but
Figure 4 (right) show that, for each measure, the standard deviation is significant, which implies
that there is considerable variation of each measure.

Figure 3. The variation of the mean (left) and standard deviation (right) of the condition number

log10 κ(A), upper bound log10
κ(A)/cos θ of the effective condition number, and the non-linear con-

dition number log10 ρ(A, b) with the size of the window and number of levels in the pyramid, for

Example 2.
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Figure 4. The variation of the mean (left) and standard deviation (right) of the angle θ and the error

log10 e, with the size of the window and number of levels in the pyramid, for Example 2.

Example 3. The LK method with a pyramid of three levels was applied to the images in Figure 2,
with a window of size 15 × 15. The condition number log10 κ(A), upper bound log10

κ(A)/cos θ of
the effective condition number, the non-linear condition number log10 ρ(A, b), angle θ and error
log10 e were computed for every LS problem in the windows for each level of the pyramid. Figure 5
shows the axes and size of the image at each level of the pyramid for Figures 6–10. These figures show
that the quantities above increase, and the standard deviation of each of these quantities increases, as
the pyramid is descended. The figures are therefore consistent with Figures 3 and 4, and it follows
that the computational reliability of the optical flow decreases as the pyramid is descended.

Figure 9 shows that the values of the local maxima of the angle θ increase significantly as the
pyramid is descended. In particular there are many LS problems for which θ is about 80 degrees,
from which it follows that the errors in the solutions of these problems are large. This result is
consistent with the plots of the condition numbers in Figures 7 and 8. Furthermore, it follows from
(15) that large values of θ are associated with large errors e, which is confirmed in Figure 10.

Figure 5. The sizes of the images at level 1 (384 × 576), level 2 (192 × 288) and level 3 (96 × 144) in

Figures 6–10, for Example 3.
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Figure 6. The condition number log10 κ(A) at level three (top), level two (middle) and level one

(base) of the pyramid, for Example 3.

Figure 7. The upper bound log10
κ(A)/cos θ of the effective condition number at level three (top), level

two (middle) and level one (base) of the pyramid, for Example 3.
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Figure 8. The non-linear condition number log10 ρ(A, b) at level three (top), level two (middle) and

level one (base) of the pyramid, for Example 3.

Figure 9. The angle θ at level three (top), level two (middle) and level one (base) of the pyramid, for

Example 3.
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Figure 10. The error log10 e at level three (top), level two (middle) and level one (base) of the pyramid,

for Example 3.

7. Summary and Conclusions

The work in this paper considers the numerical properties of the solution of the LS
problem because of their consequences on the computed optical flow. These consequences
are compounded by the large number of LS problems that must be solved in the LK
method, where the solutions of the LS problems at level l of the pyramid form the data,
after upsampling, for the LS problems at level l − 1 of the pyramid. It has been shown that
the large values of the condition numbers η(A, b) and ρ(A, b), and error e, of the solution
x0 of the LS problem arise because a significant component of b lies in the space that is
orthogonal to R(A), and thus the terms 1/cos θ and cos θ in, respectively, the expressions
for the condition numbers and error are significant. It has been shown that the error
and condition numbers of the LS problem increase as the pyramid is descended from the
top level (coarsest image) to the bottom level (finest image) and thus the fidelity of the
computed optical flow decreases as the pyramid is descended. There have been several
studies that consider the errors associated with the LK method, but the new aspect of
the work described in this paper is the extensive use of computational linear algebra,
specifically, condition estimation and error analysis of the solution of the LS problem.

The large values of the condition numbers and errors follow from the assumption that
the optical flow in each window at each level of the pyramid is constant, that is, the motion
in each window can be represented by a translation. It follows that an improved form of
the LK method requires that a richer class of motions be allowed in each window, and this
is achieved by the introduction of warping functions in the LK method [17]. These warping
functions are defined by parametric models, for example, affine and projective models, and
the values of the parameters of these models are computed in the optimisation procedure
in an extended form of the LK method.
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