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Abstract

The brain structural network derived from diffusion magnetic resonance imaging

(dMRI) reflects the white matter connections between brain regions, which can quan-

titatively describe the anatomical connection pattern of the entire brain. The devel-

opment of structural brain connectome leads to the emergence of a large number of

dMRI processing packages and network analysis toolboxes. However, the fully auto-

mated network analysis based on dMRI data remains challenging. In this study, we

developed a cross-platform MATLAB toolbox named “Diffusion Connectome Pipe-

line” (DCP) for automatically constructing brain structural networks and calculating

topological attributes of the networks. The toolbox integrates a few developed pack-

ages, including FSL, Diffusion Toolkit, SPM, Camino, MRtrix3, and MRIcron. It can

process raw dMRI data collected from any number of participants, and it is also com-

patible with preprocessed files from public datasets such as HCP and UK Biobank.

Moreover, a friendly graphical user interface allows users to configure their proces-

sing pipeline without any programming. To prove the capacity and validity of the

DCP, two tests were conducted with using DCP. The results showed that DCP can

reproduce the findings in our previous studies. However, there are some limitations

of DCP, such as relying on MATLAB and being unable to fixel-based metrics

weighted network. Despite these limitations, overall, the DCP software provides a

standardized, fully automated computational workflow for white matter network

construction and analysis, which is beneficial for advancing future human brain con-

nectomics application research.

K E YWORD S

DCP, diffusion connectome, diffusion tensor imaging, dMRI, graph theory, structural

connectivity, structure network, white matter

1 | INTRODUCTION

Diffusion-weighted magnetic resonance imaging (dMRI) is an impor-

tant technique for noninvasively studying white matter connectivity

(Behrens & Sporns, 2012; Sporns, 2011). Using dMRI tractography,

white matter architecture can be reconstructed and visualized

(Descoteaux et al., 2009; Girard et al., 2014). Combined with graph

theory, white matter networks enable researchers to not only identify

regions of interest but also investigate how these regions interact.

Compared with metrics like fractional anisotropy and mean diffusivity,Weijie Huang and Xinyi Dong contributed equally to this work.
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they can capture the rich and dynamic interconnectivity of brain

regions, provide a new and more comprehensive perspective to

deeply understand how the human brain performs complex cognitive

tasks (Passingham et al., 2002) and reveal the pathogenesis of neuro-

psychiatric diseases (Fornito et al., 2015; van den Heuvel & Sporns,

2019). For instance, studies using network analysis based on white

matter networks found altered rich club organization in schizophrenia,

as well as impaired inter-hemispheric connection and decreased con-

nectivity within emotion-regulating hub regions in bipolar disorder

(Fornito et al., 2015; van den Heuvel & Sporns, 2019). However, the

process of constructing white matter networks using raw dMRI data

and T1-weighted data involves several intricate steps, and complex

graph theory needs to be mastered to perform network analyses.

Therefore, the great technical difficulty for clinicians, nonexperts, and

nontechnical users limits the exploration of human brain white matter

and replication of previous dMRI studies.

To the best of our knowledge, there is no available tool that has

both the function of constructing white matter networks and per-

forming network analyses. Even though some software and packages

have been developed to facilitate dMRI processing, they all have more

or less shortcomings. These tools can be divided into categories

according to whether they have a graphic user interface (GUI) and

whether they provide a pipeline of batch processing. The first set of

tools, such as Camino (Cook et al., 2006), MRtrix3 (Tournier

et al., 2019), Dipy (Garyfallidis et al., 2014), and QSIPrep (Cieslak

et al., 2021), do not have GUI and require users to customize their

pipelines by programming, which is challenging for scientific

researchers without programming skills. The second set of tools, such

as FMRIB Software Library (Smith et al., 2004) (FSL), DiffusionKit (Xie

et al., 2016), and Diffusion Toolkit (http://trackvis.org/dtk/), do have

the GUI but no batch processing pipeline. Users can only process

dMRI data step by step or write programs to configure their pipelines.

Third, tools such as PANDA (Cui et al., 2013), and Connectome Map-

per (Daducci et al., 2012; Tourbier et al., 2022) do have the function

of batch processing and GUI, but they do not have the capability to

perform network analysis, and PANDA only works on Linux Operating

System (OS). Therefore, a ready-for-use pipeline tool without restric-

tions of specific OS for the construction and analysis of white matter

networks is highly desired, especially for users without programming

experience.

Moreover, large-scale public datasets, such as UK Biobank

(Littlejohns et al., 2020) and HCP (Van Essen et al., 2013), emerge and

constantly expand to promote scientific research. Of note, these pub-

lic datasets have preprocessed neuroimages, especially the fitting of

the probabilistic diffusion model for dMRI data, which can be used to

reconstruct white matter fibers and then construct networks. There-

fore, developing a pipeline using preprocessed dMRI data to construct

white matter networks will significantly expedite the research using

these datasets.

To simplify the process of human brain network analysis based on

dMRI and T1 weighted images, our study aims to develop a reliable,

fully automated, cross-platform batch processing toolbox, Diffusion

Connectome Pipeline (DCP). DCP provides a friendly GUI that allows

users to choose necessary processing steps and set the processing

parameters. DCP can automatically process data of all participants in

parallel. It is designed to handle data acquired from MRI scanners with

field strengths of 1.5 T or higher and is compatible with both single-

shell and multi-shell dMRI data with inclusion of b0 images and more

than six diffusion weighted images, in addition to the necessity of

T1-weighted images. Its outcomes include different types of weighted

matrices and global network metrics such as small world parameters

and shortest path length, as well as local network metrics like nodal

efficiency and nodal degree centrality. In addition to raw data, the

preprocessed probabilistic diffusion model released by these public

datasets can be delivered into DCP directly, which saves considerable

time by skipping the steps that have been done, especially some time-

consuming steps such as eddy current correction and diffusion model

estimation. Finally, two validation analyses were carried out on the

Beijing Aging Brain Rejuvenation Initiative (BABRI) (Yang et al., 2021)

and the HCP (Van Essen et al., 2012) datasets, respectively, to assess

the effectiveness of DCP.

2 | MATERIALS AND METHODS

DCP was developed based on MATLAB and Docker (https://www.

docker.com/). MATLAB was used for designing GUI and Docker was

used for packaging and running software. The use of Docker makes

DCP a cross-platform toolbox. It called toolkits including FSL, Diffu-

sion Toolkit, SPM (https://www.fil.ion.ucl.ac.uk/spm/), Camino,

MRtrix3, and MRIcron (https://people.cas.sc.edu/rorden/mricron/

index.html). The processing steps in DCP followed by an introduction

to the function realization are illustrated in this chapter.

2.1 | Overview of the functionality of DCP

The pipeline of DCP includes five steps: (1) preprocessing; (2) tracto-

graphy; (3) parcellation generation; (4) matrix construction; and (5) net-

work analysis (Figure 1).

2.1.1 | Preprocessing

In this section, to prepare for constructing white matter networks,

DCP allows researchers to perform three preprocessing steps that are

commonly used in the community: (1) converting DICOM to NIfTI;

(2) eddy current, head movement, and susceptibility distortion correc-

tion; and (3) diffusion metrics calculation.

Converting DICOM to NIfTI. DCP can process both DICOM and

NIfTI format as input files. The input files should be organized such

that each subject has an individual folder. Within this folder, there

should be distinct sub-folders for DTI and T1 files accommodating

DICOM or NIfTI formats. The format converting step is skipped when

NIfTI images are used as input files. Otherwise, DCP will convert

DICOM files to NIfTI files by using the dcm2niix tool in MRIcron.
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Eddy current, head movement, and susceptibility distortion correc-

tion. Firstly, DCP will decide whether to estimate the field map with

topup command in FSL according to whether the input data has at

least two images with opposite phase encoding directions. Then, DCP

combines the correction for susceptibility, eddy currents, and move-

ments by calling eddy command in FSL. If the input dMRI data lacks

images with opposite phase-encoding directions, only head motion

correction, and eddy current correction will be performed. After that,

the gradient directions are reoriented based on the transformations of

affine alignment (Leemans & Jones, 2009).

Diffusion metrics calculation. DCP estimates the diffusion tensor

at each voxel in the brain. Based on the diffusion tensor, various mea-

sures include fractional anisotropy (FA), mean diffusivity (MD), axial

diffusivity, and radial diffusivity are calculated. The dti_recon com-

mand in Diffusion Toolkit was called to achieve this function.

2.1.2 | Tractography

DCP provides three methods to perform tractography: single-tensor

tractography, multi-tensor tractography, and probabilistic tractogra-

phy based on the constrained spherical deconvolution model.

Single-tensor tractography. The diffusion tensor is estimated at

each voxel in the brain. The dti_recon command in Diffusion Toolkit

was called to achieve this function. Then the fiber assignment by con-

tinuous tracking algorithm is used to perform tractography. Every

procedure of the algorithm can be described as follows: (1) select an

interested seed zone, and determine the number of seed points per

voxel in the seed zone; (2) from a seed point, find the next voxel along

with the fiber direction; (3) repeat step (2) until meet a certain stop

condition (reaching the gray matter or outside the brain, FA below a

threshold value, or mutation of the fiber direction); (4) from the seed

point, repeat step (3) along with the opposite direction of the previous

track to construct the other half fiber; (5) for each seed point in the

seed zone, repeat steps (2)–(4). DCP achieves this by applying the

dti_tracker command in Diffusion Toolkit.

Multi-tensor tractography. DCP also provides a multi-tensor deter-

ministic tractography method. First, DCP estimates the ball-stick

model with the command bedpostx from FSL. Then, a multi-tensor

fiber tracking algorithm is called to perform tractography. The proce-

dure is almost the same as the above single-tensor fiber tracking algo-

rithm except for step (2), where the fibers enter several different

voxels along with different fiber directions because bedpostx (Behrens

et al., 2003) estimates three fiber directions for each voxel. DCP per-

forms this by using the track command in Camino by Docker.

Probabilistic tractography. To fully utilize multi-shell data, DCP can

perform probabilistic tractography by integrating MRtrix3 into the

toolbox. Specifically, DCP estimates the response functions of differ-

ent tissues using dwi2response. Then, fiber orientation distributions

are estimated in each voxel based on constrained spherical deconvolution

(CSD) model by calling dwi2fod. Lastly, tckgen is called to perform probabi-

listic tractography and tcksift is called to filter the fiber-tracking data set

(d)

(e)

(a)

Single-shell
Tensor

Multi-shell
Bedpostx

Multi-shell

CSD

(b)

Raw T1

DICOM -> NIfTI

Standard space
MNI152

Standard 
template

Individual space 
template

T T-1

(c)

Tractography 

Raw DTI
DICOM -> NIfTI

Susceptibility 
distortion correction

Eddy current
Head movement 

correction

Diffusion metrics

calculation

F IGURE 1 Main procedure for pipeline processing of dMRI datasets in DCP. The procedure includes five parts: (a) preprocessing;

(b) performing tractography with single-shell or multi-shell data; (c) parcellating the entire brain into multiple regions where each region

represents a network node; (d) constructing networks; and (e) analyzing networks.
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such that the streamline densities match the fiber orientation distributions

lobe integrals.

2.1.3 | Parcellation generation

To define the network nodes, DCP uses prior atlas to divide the entire

brain into regions, which are regarded as nodes (Bullmore &

Sporns, 2009). Nevertheless, prior atlases defined in the standard space

require conversion to the native dMRI space. To complete space conver-

sion, DCP uses the coregister, normalize, and deformation toolbox in SPM.

Specifically, the individual structural image (i.e., T1-weighted) is linearly

coregistered to its corresponding individual b0 image using the coregister

toolbox in SPM, and the b0 image is used to estimate the brain mask

with the SynthStrip (Hoopes et al., 2022) tool. Then, the mask is used to

remove the skull from the individual structure image coregistered to the

b0 image space. The individual structure image that is coregistered to

the b0 image space is mapped into the ICBM152 template with the nor-

malize toolbox in SPM, generating a nonlinear transformation matrix T.

An inverse transformation of T from the standard space to the native

dMRI space is applied to warp prior atlases in the standard space to

individual native dMRI space. At present, DCP provides two well-

defined atlases: the Automated Anatomical Labeling (AAL) (Tzourio-

Mazoyer et al., 2002) atlas and the Brainnetome (BNA) (Fan

et al., 2016) atlas. The tractography algorithm can prematurely stop

the streamlines in the white matter regions or at the interface

between gray matter and white matter. So, the gray matter areas in

the two atlases provided by DCP are dilated into white matter. But

DCP can also generate fine atlases by multiplying atlases with gray

matter mask. Other customized atlases can also be imported into DCP

to define the network nodes.

2.1.4 | Matrix construction

Two brain regions are considered structurally connected if the weight

of connection between them is greater than the given threshold.

Based on the attributes of linking fibers, DCP can generate four types

of weighted matrices: fiber number (FN)-weighted matrix, FA-

weighted matrix, MD-weighted matrix, and length-weighted matrix.

Each row or column in the matrix represents a brain region. The value

of each element in FN-weighted matrix (i, j), FA-weighted matrix (i, j),

MD-weighted matrix (i, j), and length-weighted matrix (i, j) represent

the fiber number, averaged FA, averaged MD, and averaged length of

linking fibers between node i and node j, respectively. The resultant

matrices are saved as MATLAB data files, which can be directly used

for topological analysis, and the text files can be used for checking.

2.1.5 | Network analysis

In this section, DCP performs network analyses to calculate various

topological properties of a network, including global and nodal

characteristics. Global metrics include small world parameters, cluster-

ing coefficient and shortest path length, local efficiency and global

efficiency. Local metrics include the nodal clustering coefficient, nodal

shortest path length, nodal efficiency, nodal betweenness centrality,

nodal degree centrality, and nodal local efficiency. The code for com-

putation of topological properties is from GRETNA (Wang

et al., 2015) (https://github.com/sandywang/GRETNA), which calcu-

lates shortest path length matrix by calling functions from the

MatlabBGL toolbox (https://www.cs.purdue.edu/homes/dgleich/

packages/matlab_bgl/).

2.2 | Testing the relationship between structure

network metrics and age with DCP

2.2.1 | Subjects

A total of 633 cognitively healthy elderly participants which are Han Chi-

nese and right-handed were recruited from the BABRI project (Yang

et al., 2021) (age range 45–86 years, mean age 65.5 ± 6.9 years,

393 females). The following inclusion criteria of healthy controls were

used: (1) no complaints of memory loss or related disorders causing cog-

nitive impairment; (2) a Clinical Dementia Rating score of 0; (3) Mini-

Mental Status Examination (Zhang et al., 1990) score ≥ 24; and (4) no

severe visual or auditory impairment. This study followed the principles

of the Declaration of Helsinki and was approved by the Institutional

Review Board of the Beijing Normal University Imaging Center for Brain

Research. Written informed consent was obtained from each participant.

2.2.2 | Image acquisition

The MRI data were acquired with a SIEMENS Trio 3T scanner with a

16-channel phased-array coil at the Imaging Center for Brain

Research, Beijing Normal University. All participants underwent high-

quality MRI scanning, which included a high-resolution sagittal

T1-weighted structural image with a 1 mm3 isotropic voxel size: repe-

tition time = 1900 ms, echo time = 87 ms, 176 axial slices, and an

axial dMRI image with a 2 mm3 isotropic voxel size and 30 diffusion

directions: b = 1000 s/mm2, 1 non-diffusion b = 0 images, repetition

time = 9500 ms, echo time = 92 ms, and 70 axial slices.

2.2.3 | Image processing

All the dMRI and T1-weighted data were processed with the whole

pipeline of DCP to construct FN-weighted structural networks and

perform topographic analyses. We set the seed number to 1, turning

angle threshold to 45, lower FA threshold to 0.2 when conducting

tractography and used the BNA atlas (Fan et al., 2016) to define

nodes. Finally, the global efficiency, local efficiency, shortest path

length, clustering coefficient, and small-world parameters (lambda,

gamma, and sigma) were calculated based on graph theory.
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2.2.4 | Statistical analysis

The relationships between age and brain network metrics were inves-

tigated with partial correlation analyses while controlling the effects

of gender and years of education. A Bonferroni correction was used

for multiple comparisons. The analyses above were performed on

MATLAB.

2.3 | Testing the test–retest reliability on structure

network metrics with DCP

2.3.1 | Subjects

The data for this experiment was selected from HCP (Van Essen

et al., 2012) including 43 healthy subjects (30 females) aged from

22 to 35 (mean age 30.3 ± 3.30 years). Each subject was scanned

twice for dMRI data on two separate days. The intervals between two

scanning are from 0.6 to 11.4 months.

2.3.2 | Image acquisition

MRI data were collected with a customized 3T Connectome Scanner

adapted from Siemens Skyra. T1-weighted scans used 3D magnetization

prepared rapid gradient echo (MPRAGE) (slices = 256, TR = 2400 ms,

TE = 2.14 ms, flip angle = 8�, and voxel size = 0.7 mm isotropic). A multi-

shell diffusion-weighted echo-planar imaging sequence was used for dMRI

data (90 diffusion-weighted directions for b = 1000, 2000, and 3000 s/

mm2 and 18 images with b = 0 s/mm2, slices = 111, TR = 5500 ms,

TE = 89.50 ms, slice thickness = 1.25 mm, FOV = 210 � 180 mm2, and

acquisition matrix = 168 � 144).

2.3.3 | Image processing

The HCP dataset provides resultant files after being processed by

bedpost (Behrens et al., 2003). Those files were directly put into DCP

to execute tractography. We used the BNA atlas (Fan et al., 2016) to

define nodes and constructed FN-weighted networks. Finally, global

efficiency, local efficiency, shortest path length, clustering coefficient,

and small-world parameters (lambda, gamma, and sigma) were calcu-

lated for each network.

2.3.4 | Statistical analysis

The intraclass coefficient (ICC) (Shrout & Fleiss, 1979) and Pearson cor-

relation were used to evaluate the test–retest reliability of the network

metrics between two sessions. The ICC was calculated as follows:

ICC¼
σ
2
bs�σ

2
ws

σ
2
bsþ m�1ð Þσ2ws

ð1Þ

where σbs is the between-subject variance, σws is the within-subject

variance, and m represents the number of repeated measurements.

ICC is a normalized measure and ranges from 0 to 1. Normally,

ICC values can be separated into five common intervals (Landis &

Koch, 1977): 0 < ICC ≤ 0.2 (slight), 0.2 < ICC ≤ 0.4 (fair),

0.4 < ICC ≤ 0.6 (moderate), 0.6 < ICC ≤ 0.8 (substantial), and

0.8 < ICC ≤ 1.0 (almost perfect).

3 | RESULTS

3.1 | An integrative MATLAB toolbox: DCP

We developed DCP, an integrative MATLAB toolbox for processing

dMRI data, constructing structural network, and performing net-

work analysis. It not only provides batch processing but can also be

executed separately for a single step (e.g., preprocessing, tractogra-

phy, parcellation generation, matrix construction, and network

analysis). In addition, DCP has a friendly GUI (Figure 2), providing

options for necessary steps and detail setting, allowing users to

perform processing tasks according to personalized requirement,

for example, setting the processing parameters and path of the out-

put file. Besides, users can get the real-time status of the program

running from the GUI of DCP. Once the program finishes, the par-

cellation in native space will be saved as a PNG picture for users to

check whether there is any error in the process of generating

parcellation.

3.2 | Resultant files of DCP

First, DCP generates three folders for each subject (Table 1). Specifi-

cally, the DTI_DATA folder consists of resultant files of preprocess and

tractography. The PARCELLATION folder includes the resultant files of

parcellation. The MATRIX folder contains the matrix files of con-

structed network. Then, output folder will be generated in the parent

directory of the input folder if users do not specify one. It contains a

folder named QC, which consists of quality control files (Figure 3) of

all the subjects and a MATLAB file that contains networks of all sub-

jects. Finally, output folder of network analysis will be generated in

the specified path, which contains each folder for each network

matrix constructed with specific parameters. Within the folders, each

network property has a MATLAB file containing metrics of all

subjects.

3.3 | Performance of DCP

Use of the Parallel Computing Toolbox in MATLAB enables DCP to

process data in parallel. To investigate the efficiency of DCP in pro-

cessing image data, we conducted a few baseline running-time tests

based on the BABRI and HCP datasets. The time cost of constructing

structural networks for different numbers of subjects (1, 2, 10, 30)
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was recorded. In the BABRI dataset, a single-tensor fiber tracking

algorithm based on the original data was used. In the HCP dataset,

the structural network was constructed using a multi-tensor fiber

tracking algorithm with the data processed by bedpost (Behrens

et al., 2003). As shown in Table 2, the time consumption of the whole

pipeline using single-tensor fiber tracking and multi-tensor fiber track-

ing algorithms was reported.

F IGURE 2 A snapshot of the GUI of

DCP. The GUI allows for inputting raw

dMRI datasets or the datasets processed

by bedpostx and configuring the

processing parameters and monitoring the

progress of data processing in real-time.

TABLE 1 Folders produced by DCP.

Folder name Files

DTI_DATA Resultant files of preprocess and tractography

PARCELLATION Resultant files of generating parcellation

MATRIX Resultant files of constructing network

QC Resultant files of quality control

TABLE 2 Baseline time cost of pipeline processing on raw dataset

with DCP.

Time cost (min)

1 subject 10 subjects 30 subjects

Single tensor 41 61 119

Multiple tensor 73 95 188

Probabilistic tractography 69 89 176

F IGURE 3 Quality control for the preprocessing. (a) The b0 mask

(red) was overlaid on the T1 image (gray) that was coregistered to the

native dMRI space, and (b) the b0 mask (red) was overlaid on the

native parcellation atlas (gray). These pictures can be quickly viewed

to check the quality of registration and normalization.
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3.4 | The correlation between age and network

metrics with DCP

As shown in Figure 4, with increasing age, the participants showed

significant decreases in local efficiency (r¼�0:25,p¼1:45�10�10)

and global efficiency (r¼�0:36,p¼2:24�10�20) and significant

increases in the clustering coefficient (r¼0:24,p¼2:02�10�9),

shortest path length (r¼0:35,p¼1:46�10�19), sigma (r¼

0:11,p¼8:2�10�3), lambda (r¼0:23,p¼9:73�10�9), and

gamma (r¼0:19,p¼2:88�10�6).

3.5 | The test–retest reliability on structure

network metrics with DCP

Figure 5 showed the test–retest reliability on graph metrics of dMRI

data processed with DCP. Global efficiency (ICC = 0.86, r¼0:79),

local efficiency (ICC=0.91, r¼0:86), shortest path length (ICC=0.84,

r¼0:81), sigma (ICC=0.79, r¼0:67), lambda (ICC=0.87, r¼0:79),

and gamma (ICC=0.72, r¼0:58) showed high reliability. Only the

clustering coefficient (ICC=0.51, r¼0:35) showed moderate

reliability.

F IGURE 4 Age effects on network

topological properties. The fitted values

indicate the residuals of the original

values of the network metrics after

removing the effects of gender and years

of education. All these global topological

properties showed significant alterations

with age. Cp, clustering coefficient; Lp,

shortest path length.
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4 | DISCUSSION

In this study, we developed a MATLAB toolbox named DCP to con-

struct brain structural networks and calculated the topological proper-

ties of networks using raw dMRI data automatically. The toolbox can

be used on Windows, Linux, and Mac OS, with a friendly GUI, which

allows users to configure a processing pipeline without programming.

DCP offers users a range of diffusion tensor estimation and fiber

tracking methods, allowing them to choose based on the specific char-

acteristics of their data. And DCP is very flexible, not only processing

raw dMRI data to the last step but also being executed separately for

specific processing steps. Particularly, DCP can use the processed data

from most well-known datasets as direct input, which saves consider-

able time by skipping the steps that have already been performed. Fur-

thermore, parallel computation is supported to significantly reduce the

time cost of the pipeline.

To evaluate the validity of DCP, we applied it to explore the age

effects on topological metrics of structural networks generated by

DCP. We found significant decreases in global efficiency and local

efficiency as well as increase in shortest path length, clustering coeffi-

cient and small-world parameters (lambda, gamma, and sigma) with

increasing age. These findings reproduced the conclusions that were

found in our previous studies (Li et al., 2020; Zhao et al., 2015). In

addition, we applied DCP to the HCP dataset to assess the test–retest

reliability of white matter networks. All topological metrics except the

cluster coefficient showed high reliability. The ICC values obtained

are comparable with the findings of previous studies (Bassett

et al., 2011; Buchanan et al., 2014; Cheng et al., 2012; Vaessen

et al., 2010; Zhao et al., 2015). These two experiments demonstrate

that DCP is effective.

In particular, typical dMRI processing involves more than 10 steps,

each with specific parameters and potentially relying on different neu-

roimaging toolboxes. The processing procedures from different exist-

ing software packages differ slightly. DCP tries to use rational

procedures as much as possible. For instance, DCP provides CSD

method for intravoxel reconstruction with multi-shell data. CSD excels

at resolving complex fiber configurations and is particularly effective

in regions with fiber crossings. It is an advanced technique providing

more accurate estimates of multiple fiber orientations within a voxel.

In addition, DCP incorporates an innovative tool, SynthStrip, known

for its robust and accurate skull stripping capabilities. This tool

employs a deep learning strategy to synthesize arbitrary training

images from segmentation maps, resulting in a robust model that is

agnostic to acquisition specifics. In the future, DCP will continue to be

updated to include the most advanced procedures.

There are several limitations of DCP need to be addressed in the

future. First, DCP can only construct and analyze white matter net-

works weighted based on tensor-derived metrics but not the

advanced metrics such as fixel-based metrics, which provide a more

detailed and nuanced view of white matter microstructure. Second,

relying on MATLAB, which is restricted access and expensive, is not

friendly to users.

In summary, we developed a user-friendly toolbox, DCP, to pro-

vide researchers with measures for white matter connections and net-

work analysis based on dMRI and T1 weighted images. We hope it

will contribute to facilitating and standardizing human connectome

studies in the near future.
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