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Abstract

Early diagnosis of dementia diseases, such as Alzheimer’s disease, is difficult

because of the time and resources needed to perform neuropsychological and

pathological assessments. Given the increasing use of machine learning

methods to evaluate neuropathology features in the brains of dementia

patients, it is important to investigate how the selection of features may be

impacted and which features are most important for the classification of

dementia. We objectively assessed neuropathology features using machine

learning techniques for filtering features in two independent ageing cohorts,

the Cognitive Function and Aging Studies (CFAS) and Alzheimer’s Disease

Neuroimaging Initiative (ADNI). The reliefF and least loss methods were

most consistent with their rankings between ADNI and CFAS; however,

reliefF was most biassed by feature–feature correlations. Braak stage was con-

sistently the highest ranked feature and its ranking was not correlated with

other features, highlighting its unique importance. Using a smaller set of

highly ranked features, rather than all features, can achieve a similar or better

dementia classification performance in CFAS (60%–70% accuracy with Naïve

Bayes). This study showed that specific neuropathology features can be priori-

tised by feature filtering methods, but they are impacted by feature–feature

correlations and their results can vary between cohort studies. By understand-

ing these biases, we can reduce discrepancies in feature ranking and identify a

minimal set of features needed for accurate classification of dementia.
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1 | INTRODUCTION

Dementia poses a significant global challenge, affecting

the lives of individuals, their families, and caregivers [1].

The economic burden of dementia was estimated to

exceed $818 billion in 2015, and the number of people

living with dementia is expected to surpass 75 million by

2030 [2]. Early diagnosis and intervention are crucial in

mitigating the negative impact of dementia [3]. How-

ever, identifying the determinants of dementia can be

difficult because of its complex spectrum of characteris-

tics, encompassing various disorders with distinct

pathologies. Alzheimer’s disease (AD) is the most com-

mon form of dementia, characterised by the presence of
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amyloid plaques and neurofibrillary tangles in the

brain [4].

Feature selection methods play a vital role in bio-

medical data analysis, helping to identify the most rele-

vant features contributing to a health outcome while

eliminating noise, redundancy, and irrelevant factors

[5–7]. Biomedical datasets collected from human bio-

samples often contain many features, some of which

may be irrelevant to the outcome of interest. Analysing

all features can lead to overfitting, reduced accuracy,

and a less concise understanding of the underlying bio-

logical processes [5, 8, 9]. Filter methods measure the

relevance of features based on their correlation with the

outcome. While commonly used to select features for

downstream analysis or machine learning of biomedical

datasets, there lacks a systematic comparison of filter

methods when used to study complex human disorders,

such as dementia.

Previous studies have employed filter methods to

identify features related to AD [10–12]. G�omez-Ramírez

et al. focused on self-reported data, investigating demo-

graphics and other relevant factors associated with the

development of dementia from mild cognitive impair-

ment (MCI). Permutation-based methods were employed

as a filter to identify important cognitive decline features.

Subsequently, the random forest (RF) algorithm was

applied to identify features strongly correlated with cog-

nitive impairment [13]. Thabtah et al. conducted a com-

prehensive analysis of feature selection methods using

continuous features derived from MRI images to detect

dementia. The study compared popular methods such as

mutual information gain [14], Pearson correlation [15],

and symmetric uncertainty [16]. Univariate feature selec-

tion and recursive feature elimination techniques were

also employed to identify the most informative features

correlating with AD using the functional activities ques-

tionnaire (FAQ), a common neuropsychological assess-

ment [17, 18]. The authors further investigated the

relationships between cognitive and functional features

across different levels of dementia progression.

While the relationship between cognitive function and

neuropathology features has been extensively explored,

less attention has been given to how feature correlation

might impact machine learning of dementia. Given the

diversity of filter methods and features, it is essential to

identify the methods that are less sensitive to similarities

or differences between neuropathological features in

order to minimise discrepancies in feature rankings.

To address these issues, we focused on data from two

large dementia studies in the United Kingdom and

United States, and hypothesised that there would be asso-

ciations between feature–feature correlations and the

ranking scores computed by filter methods. Several ques-

tions arise regarding the ranking of neuropathology fea-

tures: (1) Which filter methods are less sensitive to

feature–feature correlations? (2) Are there differences in

feature–feature correlations and rankings between the

separate dementia cohorts? (3) How do variations in fea-

ture rankings between the cohorts impact dementia

prediction models? To investigate these questions, we

applied seven filter methods to the two cohort

datasets [19–21] to generate feature rankings and

observed how they varied depending on the degree of

similarity between features. We are able to identify the

best performing feature selection techniques for neuropa-

thology data and assess the level of reproducibility in the

associations with dementia found in the two studies.

2 | MATERIALS AND METHODS

2.1 | Overview of feature ranking analysis

We examined the correlation structure of neuropathology

and its relationship with dementia (as depicted in

Figure 1). Following a comprehensive review and subse-

quent ethics approval from the management committees,

we downloaded the pathological assessments from the

Cognitive Function and Ageing Studies (CFAS) [21] and

the Alzheimer’s Disease Neuroimaging Initiative (ADNI;

https://adni.loni.usc.edu/) [22]. After conducting pre-

processing on both datasets, we pinpointed features that

were present in both, ensuring their compatibility in

terms of features and data types whenever possible.

In both datasets, neuropathological features were evalu-

ated and ranked by utilising a range of feature selection

techniques centred around various filter methods. We

then gauged the ranking disparities between the neuro-

pathological features of CFAS and ADNI, in addition to

the consistency between both datasets for each filter

method applied. To discover the relationship between a

given feature and the remaining ones, we delved into

feature–feature correlations using the R2 metric, which is

based on multiple regression analyses. We took into

account both the correlation among the features and their

rankings, which was achieved by implementing classifica-

tion algorithms and noting accuracy, sensitivity, and

specificity values. From these insights, we inferred that

certain feature subsets can be classified as dementia.

2.2 | CFAS cohort

This study considered the donated brains of 186 partici-

pants, and 13 neuropathological features were assessed

(Table S1). These features constituted fundamental neu-

ropathological assessments for each participant, includ-

ing Braak neurofibrillary tangle (NFT) stage, Thal

phase, and cerebral amyloid angiopathy (CAA). Of the

total participants, 107 (equivalent to 58%) had been diag-

nosed with dementia. The participant pool consisted of

72 women and 35 men, with respective median ages

of 89 and 88. Among those participants who passed away

without a dementia diagnosis (with median ages of 85 for
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females and 79 for males), the gender distribution was

evenly balanced with 37 females and 33 males [23].

2.3 | ADNI cohort

The data utilised for the creation of this article were

acquired from the ADNI database (adni.loni.usc.edu),

which was established in 2003 as a collaboration between

public and private entities. The neuropathology data

version utilised in the ADNI database was NEURO-

PATH_07_06_21. The ADNI cohort consisted of 1736

individuals, including 85 clinical features across ADNI-1,

ADNI-GO, and ADNI-2. For this study, we specifically

focused on 80 post-mortem brains, which exhibited

13 neuropathological features, as detailed in Table S1.

These features involved fundamental measures of neuro-

pathology for each subject, such as NFT stage, Thal

phase, and CAA. Within the cohort, 77.5% of partici-

pants (62 out of 80) were diagnosed with dementia,

while 12.5% had MCI, and 10% were cognitively normal

(CN). Among the 62 dementia cases, 16 were women

and 46 were men, with median ages of 79 and 81.5,

respectively. The MCI participants exhibited a gender

ratio of 1 female to 9 males (with a median age of 85 for

both genders), while those who passed away without a

dementia diagnosis had a gender ratio of 5 females to

3 males (with median age of 84 for females and 79 for

males). To ensure consistency with the CFAS dataset

comparisons, we excluded the 10 participants diagnosed

with MCI, leaving us with 70 participants diagnosed with

dementia or CN for this study [24–26].

2.4 | Feature pre-processing

In the ADNI dataset, certain features were represented

as individual columns, whereas in CFAS, multiple col-

umns were employed to capture related attributes such

as ‘infarcts and lacunae’ and ‘diffuse plaques’. Fur-

thermore, CFAS distinguished between infarcts and

lacunae separately, whereas ADNI combined them. To

address this disparity, our study unified infarcts and

lacunae into a single category, treating them as binary

indicators of pathology within CFAS. We encountered

a similar challenge with the diffuse plaques feature in

CFAS, where columns were grouped based on their

presence or absence. We refrained from encoding

F I GURE 1 Methodology for dementia classification using CFAS and ADNI datasets. The dementia classification methodology was developed

and executed in three key stages: design, implementation, and evaluation. After acquiring neuropathology data, we carried out pre-processing and

determined the correlation between different features. Utilising seven filter methods, we ranked all neuropathological features. Subsequently, we

explored the connection between feature–feature correlation and feature ranking across all applied filter methods. Thereafter, classifiers were

evaluated using various feature subsets, depending on their interrelations.

COMPUTATIONAL RANKING OF NEUROPATHOLOGY FEATURES 3 of 16
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feature measures in both datasets to ensure unbiased

feature ranking and analysis. For instance, CFAS uti-

lised a binary representation for cortical atrophy, while

ADNI employed an ordinal scale consisting of four

categories: no atrophy, mild, moderate, or severe.

Upon encoding cortical atrophy as a binary feature, we

discovered a 100% correlation between this attribute

and certain other features. A similar issue was encoun-

tered with ADNI’s diffuse plaques feature. Following

the pre-processing stage, we analysed a total of

177 post-mortems from CFAS and 70 post-mortems

from ADNI, examining 13 neuropathology features for

feature ranking.

2.5 | Ranking neuropathology features

To gain preliminary insight and highlight influential neu-

ropathological features of dementia, we used a variety of

feature selection filter methods to measure each feature’s

relevance. Chi-square (CHI) [27], gain ratio [28], informa-

tion gain (IG) [14], reliefF [29, 30], symmetric uncer-

tainty [16], least loss (L2) [31], and variable analysis Va

[32, 33] were included in the analysis. Scores varied

according to the mathematical criteria and type of filter

method used. Because of the different models, there may

be discrepancies in the ranking of features based on such

scores [33, 34]. Details of the mathematical formulation

of the considered filter methods described in the

Supplementary Materials (specifically Supplementary

Equations 1–10).

The experiment-related filter-based feature selection

was conducted using Waikato Environment for Knowl-

edge Analysis (WEKA version 3.9.1) [35]. The percent-

age contribution of each feature was calculated by

averaging the total weights assigned by all filter

methods to each feature after normalising the weight

scores.

2.6 | Measuring filter methods consistency

Kendall’s tau, a measure of correlation between two

ranking lists, provides insights into the level of agreement

or disagreement between them. Values closer to 1 indicate

a stronger agreement, while values closer to �1 indicate a

stronger disagreement. A value of tau = 0 suggests no

association between the ranking lists. To compare the

feature rankings between CFAS and ADNI datasets for

each filter method, we utilised the kendalltau() function

from the Python3 machine learning package (scipy.stats

version 1.7.3). Specifically, we employed this function,

available in version v1.9.3, to assess the correlation

between the CFAS and ADNI cohorts. The function in

SciPy returns p-values based on a two-tailed test by

default. The comparison involved seven filter methods

and 13 distinct features.

2.7 | Imputing missing values

Because of the limitations of the considered cohorts

(ADNI = 70 samples, CFAS = 177 samples) and the ten-

dency of machine learning models to encounter errors

when encountering NaN values, addressing missing

values became necessary. To handle this, we adopted an

iterative imputer approach utilising the Scikit-learn ver-

sion 0.22.2.post1 [36] library in Python3. This approach

allowed us to impute missing values for both numerical

and categorical features. For numerical and categorical

values, we employed the IterativeImputer from the

sklearn.impute package to perform the imputation trans-

formation. To replace missing numeric values, we utilised

the RandomForestRegressor from the sklearn.ensem-

ble [37] package as an estimator. The missing values

were initially initialised with the mean and underwent a

maximum of five iterations. Similarly, for categorical

values, we constructed a model employing the Random-

ForestClassifier from the sklearn.ensemble package. The

missing values were initialised with the mean, and the

imputation process followed a maximum of five itera-

tions. All the machine learning models and feature selec-

tion libraries utilised in this study were developed using

Python 3.7.3, ensuring consistency across the analysis.

2.8 | Measuring feature–feature correlation

In our analysis of CFAS, a total of 177 subjects were

included. However, nine subjects had to be excluded from

the analysis because of missing values in the class label.

Regarding the ADNI dataset, individuals with MCI were

excluded, leaving us with a cohort of 70 out of 80 partici-

pants who were classified as either CN or diagnosed with

dementia. To investigate the relationship between each

feature, treated as a dependent variable, and the remain-

ing features, considered as independent variables, we uti-

lised multiple linear regression models. These models

were implemented on both the ADNI and CFAS neuro-

pathology cohorts. The coefficients R2 obtained from the

models (specifically Supplementary Equations 11–13)

were used to describe the relationships between the fea-

tures. To ensure consistency in the analysis, we applied

feature normalisation to the numerical features. This was

achieved using the minmaxScaler package from scikit-

learn version 0.22.2.post1 [36]. For the linear regression

models, we employed the ordinary least squares method

with the statsmodels.formula.api package version 0.13.2.

2.9 | Evaluation of feature ranks against
feature–feature correlation

To normalise the scores of the CFAS and ADNI fea-

tures, we utilised the minmaxScaler package from scikit-

learn version 0.22.2.post1 [36]. This scaling process

4 of 16 RAJAB ET AL.
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ensured that the feature scores were within the range of

[0, 1]. Consequently, we performed linear regression ana-

lyses to examine the relationship between the feature

scores and their corresponding R2 values for each filter

method. For data visualisation and fitting linear regres-

sion models, we employed the regplot() function from the

Seaborn package version 0.11.0 [38]. The function creates

a scatterplot with a linear regression model fit. It employs

the Least Squares method to estimate the linear regres-

sion coefficients, minimising the sum of the squares of

the differences between the observed and predicted

values. The function also computes and plots a 95% con-

fidence interval for the regression line, which estimates

the uncertainty around the line of best fit. This interval is

calculated using bootstrapping with 1000 iterations by

default, a resampling method that generates an empirical

representation of the sampling distribution and quantifies

the uncertainty of the estimate. This allowed us to plot

the data and visualise the linear relationship. To calculate

the correlation coefficients and corresponding two-tailed

p-values, we utilised the pearsonr() function from the

SciPy.stats package version 1.7.3 [39]. This statistical

analysis provided valuable insights into the strength and

significance of the correlations between the variables.

2.10 | Dementia classification

In the CFAS dataset, a total of 177 subjects were initially

included. However, nine subjects had to be excluded

because of missing values in the class label. For the ADNI

dataset, individuals with MCI were removed, and the

remaining participants with cognitive impairment or

dementia were retained. Given the imbalance in the class

label of the ADNI dataset, where there were 62 instances

of ‘Dementia’ and only 8 of ‘No Dementia’, we utilised

the Synthetic Minority Oversampling Techniques for

Numerical and Categorical Features (SMOTE-NC)

[40, 41]. This method was applied using the imbalanced-

learn toolbox, version 0.9.1 [42]. This technique involved

generating synthetic data instances for the minority class

label using the k-Nearest Neighbours classification algo-

rithm with k = 5. After balancing the ADNI dataset, we

were left with 124 samples and 13 features. To train and

evaluate the classifiers, we utilised scikit-learn version

0.22.2.post1 in Python3. The evaluation was performed

using the ‘leave-one-out’ cross-validation approach, ensur-

ing robustness in the analysis. We also trained classifiers

on CFAS samples using ranked features from CFAS and

trained classifiers on ADNI samples using ranked features

from ADNI. Then we used the trained classifiers to predict

dementia status in the other dataset that was held out.

For further assessment of the neuropathological fea-

tures, we employed various supervised learning tech-

niques, primarily RF [13] and Gaussian Naive Bayes

(GNB) [43]. The default parameter settings were used for

both RF and GNB. Specifically, RF was configured with

100 estimators (the number of trees in the forest), and the

quality of the split was measured using the Gini impurity

function. The minimum number of samples required to

split a node (min_samples_split) and the minimum num-

ber of samples required to be a leaf node (min_sample-

s_leaf) were both set to 1.

2.11 | Evaluation of classification
performance

In this study, we approached the prediction of dementia

as a binary classification problem, with the two classes

being ‘Dementia’ and ‘No dementia’. To assess the per-

formance of the feature subsets, we employed evaluation

metrics such as accuracy, sensitivity, and specificity.

These metrics provided valuable insights into the effec-

tiveness of the selected features in predicting dementia.

The following evaluation metrics were utilised for perfor-

mance assessment:

i. True positives (TP): Number of dementia cases that

were correctly classified.

ii. False positives (FP): Number of healthy subjects

incorrectly classified as dementia cases.

iii. True negatives (TN): Number of healthy subjects

correctly classified.

iv. False negatives (FN): Number of dementia cases

incorrectly classified as healthy subjects.

v. Accuracy (%): The proportion of correct classifica-

tions among total classifications:

Accuracy¼
TPþTN

n
, ð1Þ

where n is the number of total classifications per test

vi. Sensitivity (%): The proportion of dementia cases

correctly classified

Sensitivity¼
TP

TPþFN
: ð2Þ

vii. Specificity (%): The proportion of healthy subjects

correctly classified

Specificity¼
TN

TNþFP
: ð3Þ

2.12 | Code availability and requirements

Links for Python script codes in GitHub for the process

and producing all results and figures (https://github.com/

mdrajab/CFAS-and-ADNI-Neuropathology.git). The
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machine was used in this study: macOS Monterey version

12.6.2, MacBook Pro (13-inch), and Processor: 2.3 GHz

Dual-Core Intel Core i5. Anaconda Navigator 1.9.12 was

used to launch Jupyter Notebook version 6.1.4.

2.13 | Availability of data and materials

Data from the CFAS study is accessible via application

to the CFAS (http://www.cfas.ac.uk/cfas-i/data/#cfasi-

data-request), under the custodianship of FM and

CB. Data from the ADNI study is accessible via applica-

tion to the ADNI (https://adni.loni.usc.edu/about/), con-

tingent on adherence to the ADNI Data Use Agreement.

3 | RESULTS

3.1 | Distribution of neuropathology feature
scores across dementia cases

Examining the distribution of neuropathology feature

scores among dementia cases was crucial for gaining dee-

per insights into these features. We conducted an analysis

to detect any dissimilarities in the feature distributions

between cohorts and to provide plausible explanations

for these variations. For this purpose, we plotted the dis-

tributions of all neuropathology features for the CFAS

and ADNI cohorts, comprising 186 and 70 individuals,

respectively (Figure 2). An interesting observation was

made regarding the ADNI dataset diffuse plaques fea-

ture, which posed a similar challenge as the infarcts and

lacunae feature in CFAS. In both cases, we had to group

the columns corresponding to diffuse plaques based on

their presence or absence. Our findings revealed notable

relative differences in the distributions of non-dementia

and dementia cases of certain features in the two cohorts.

For instance, cortical atrophy, represented as a binary

feature in CFAS and ordinally in ADNI, exhibited a

higher proportion of no cortical atrophy in non-dementia

cases. Additionally, other features such as atherosclero-

sis, neocortical neuritic plaques, neuronal loss in the sub-

stantia nigra, argyrophilic grains disease, and diffuse

plaques had different shapes of distribution in CFAS and

ADNI. These differences in feature distributions may be

influenced by a combination of factors, including the

varying number of cases in CFAS (n = 186) and ADNI

(n = 70) relative to the small sample size and local differ-

ences in diagnosis. These differences are also reflected by

the contrasting class distributions within the datasets.

Notably, the CFAS dataset displayed a relatively bal-

anced distribution, with 60.5% classified as dementia and

39.5% as non-dementia, as shown in Table S1. On the

other hand, the ADNI dataset exhibited an imbalanced

distribution, with 88.6% classified as dementia and 11.4%

as non-dementia. These findings underscore the impor-

tance of considering the dataset characteristics, including

sample sizes and class distributions when interpreting

and comparing the distributions of neuropathology fea-

tures across cohorts.

3.2 | Ranking of neuropathology features

To examine the utility of filter methods on dementia-

related features, we conducted a feature selection analysis

using two neuropathological datasets, CFAS and ADNI.

We aimed to rank the features consistently across both

datasets and derive valuable insights for improving

dementia diagnosis and treatment. To achieve unbiased

and comprehensive results, we employed multiple filter

methods to assess the sets of neuropathological features

in each dataset. By applying these methods, we calculated

feature scores based on the models generated for each fil-

ter method (Figure 3). The ranking of features in des-

cending order based on their scores provided a

comprehensive and cross-dataset comparison, aiding the

medical profession in better understanding dementia

pathology.

The consistent findings across both datasets revealed

the importance of certain features in contributing to

dementia. The Braak stage emerged as the most influen-

tial pathological feature, demonstrating strong correla-

tions, particularly in the CFAS dataset (Figure 3A). In

the ADNI dataset, other features such as neocortical neu-

ritic plaques, Thal phase, diffuse plaques, and CAA were

also highly correlated with dementia (Figure 3B). Nota-

bly, these results were consistent with those obtained

from the CFAS dataset, which identified the Braak stage,

Thal phase, and CAA as relevant factors associated with

dementia. To further investigate the consistency of fea-

ture ranking across the filter methods in both CFAS and

ADNI datasets, we conducted a detailed analysis. The

overall outcomes of our study provided crucial insights

into the neuropathological features that play a role in

dementia. Furthermore, employing multiple filter

methods ensures generalizability and reduces the risk of

biassed outcomes, emphasising the importance of consid-

ering diverse approaches in feature ranking.

3.3 | Consistency in the ranking of features
between studies

In this study, pathological feature rankings from the

CFAS and ADNI datasets were assessed using various

filter methods to identify quantitative discrepancies

between these rankings. We compared the positional dif-

ferences in feature rankings between the two cohort data-

sets, where the features are arranged based on their

rankings in CFAS by each respective filter method

(Figure 4A).

Both datasets consistently positioned the top two fea-

tures (Braak stage and Thal phase) and the ninth feature
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(atherosclerosis) identically; however, notable differences

were found in the rankings of other features. For

instance, neuronal loss in the substantia nigra and corti-

cal atrophy occupied the third and fifth positions in

CFAS, yet these were ranked four and six positions

higher in ADNI. In contrast, diffuse plaques and arterio-

lar sclerosis, ranked eighth and tenth in CFAS, were

higher in ADNI, sitting at fourth and eighth positions.

Evaluation of the filter methods, including information

gain, reliefF, symmetric uncertainty, and least loss, revealed

considerable variations in feature ranking. Of note, the

most prominent discrepancies were identified using the least

loss filter method, with the top two features in CFAS and

ADNI descending six and nine positions, respectively.

To summarise, there is considerable variability in

pathological feature rankings in CFAS and ADNI

Non-Dementia Dementia

F I GURE 2 Distribution of

neuropathology features in CFAS

and ADNI datasets. The

distribution of individuals with

(orange) and without (blue)

dementia was examined in both

the CFAS and ADNI

neuropathology datasets. The

features presented in the table were

arranged based on their ranking in

the features list, moving from left

to right. It is important to note

that all features, except for

cerebral amyloid angiopathy, were

categorical in nature. In CFAS,

cerebral amyloid angiopathy was

the only feature that had numeric

values.
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datasets across the examined filter methods. However,

certain features, like the Braak stage, demonstrated

consistent patterns irrespective of the filter method

employed. The discrepancy in ranking positions might

result from differing models used by the filter methods

to compute feature-to-class correlations. Despite nor-

malising average scores to a unified scale to mitigate

deviations, some features displayed diverse rankings.

The study used Figure 4B to compare different filter

methods, aiming to showcase the consistency of each

method when applied to two datasets, CFAS and ADNI.

Kendall’s tau measure was used to evaluate the level of

consistent feature ranking within each dataset by each fil-

ter method. Kendall’s tau measures the correlation

between two ranking lists, with values near 1 signalling

agreement, and values near �1 indicating disagreement.

Filter methods were assessed based on their statistical

relationships between the ranked features in both

datasets.

We show in Figure 4B that the reliefF, chi-square,

and least loss filter methods exhibited positive correla-

tions in feature rankings for both ADNI and CFAS data-

sets. These results were in line with the earlier feature

ranking for these filter methods. For instance, the reliefF,

(A)

(B)

F I GURE 3 Ranking of

neuropathology features in order of

association to dementia status as estimated

by filter methods in (A) CFAS and

(B) ADNI. The cumulative contributions

of 13 neuropathology features to dementia

status in the CFAS and ADNI datasets are

estimated by seven filter methods. The

weight scores of each feature were

normalised, and the percentage

contribution of each feature was calculated

by averaging the total weights assigned to

it by the filter methods.
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chi-square, and least loss methods showed similar rank-

ings for features such as Thal phase, Braak stage, neuro-

nal loss in substantia nigra, neocortical neuritic plaque,

and cortical atrophy, with minor variations, indicating

their reproducibility in feature ranking. Three methods

maintained some consistency in feature rankings for the

ADNI dataset, including the Braak stage, Thal phase,

and neocortical neuritic plaque. Conversely, negative

correlations were observed for variable analysis and

information gain filter methods with (r = �0.36,

p-value = 0.10) and (r = �0.18, p-value = 0.44), respec-

tively, when applied to ADNI and CFAS datasets. Addi-

tionally, the gain ratio and symmetric uncertainty filter

methods showed only slight consistency in feature rank-

ing between the ADNI and CFAS datasets, with Kendall

correlation coefficients (r = �0.03, p-value = 0.95) and

(r = �0.053, p-value = 0.86), respectively, close to zero.

Of all methods, reliefF displayed the highest agreement

(A)

(B)

F I GURE 4 Comparison of feature rankings in CFAS and ADNI. (A) Relative difference in the ranking of each neuropathology feature as

estimated by each filter method. (B) Kendall’s tau measure of correlation between CFAS and ADNI feature rankings from each filter method.
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between CFAS and ADNI feature rankings with Kendall

correlation coefficients of r = 0.21 and p-value = 0.37,

while variable analysis exhibited the most significant dis-

agreement with Kendall correlation coefficients of

r = �0.36 and p-value = 0.10. Overall, reliefF, chi-

square, and least loss filter methods showed some degree

of consistency with Kendall correlation coefficients

(r = 0.21, p-value = 0.37), (r = 0.18, p-value = 0.44),

and (r = 0.18, p-value = 0.44), respectively, whereas the

remaining methods resulted in inconsistent feature rank-

ing between the two datasets.

3.4 | High correlation between AD
pathological features

Our study conducted a thorough analysis of the CFAS

and ADNI datasets, which included 13 shared features.

The analysis involved plotting the feature–feature corre-

lation to identify highly correlated features. For instance,

in neocortical neuritic plaques, we observed correlation

coefficients of 0.55, 0.52, 0.63, and 0.73 for diffuse pla-

ques, CAA stage, Braak phase, and Thal phase, respec-

tively. Figure 5A shows a positive correlation of Thal

phase with diffuse plaques, CAA, and Braak stage with

values of 0.49, 0.63, and 0.63, respectively. Additionally,

The CAA was positively correlated with diffuse plaques

with a value of 0.65, as reflected in Figure 5B. Further-

more, atherosclerosis demonstrated positive correlations

with diffuse plaques, CAA, and arteriolar sclerosis of

0.80, 0.64, and 0.61, respectively. CAA also exhibited

positive correlations with neuronal loss at substantia

nigra and Braak stages of 0.53 and 0.47, respectively.

These correlations suggest a possible cluster of features

that include the Thal phase, Braak stage, CAA, neocorti-

cal neuritic plaques, and diffuse plaques.

(A)

(B)

F I GURE 5 Spearman correlations

and R 2 of pathological features from the

ADNI and CFAS datasets. (A) A heat map

of Spearman correlation for the CFAS

neuropathological dataset. (B) Spearman

correlation for the ADNI

neuropathological dataset. A correlation

coefficient close to 1 (red) indicates a very

strong positive correlation between the two

variables, while a correlation coefficient

closer to �1 (blue) indicates a strong

negative correlation. Generally, the lighter

the colour, the closer it is to white (zero),

and the weaker the correlation. On the

right-hand side of panels, A and B, the R 2

values range from 0 to 1.
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Our study aimed to investigate whether the feature–

feature correlations substantially influence the feature

ranking determined by filter methods and which filter

methods were most sensitive to these associations. To

achieve this, we excluded the diagnostic class and consid-

ered each feature as a dependent variable, and the rest of

the features as independent variables. We then utilised

multiple regression models to determine the coefficient

(R2), which measures the similarity of the available fea-

ture to the rest of the dataset by identifying how the

remaining features can explain the feature’s variability.

In both CFAS and ADNI, the Thal phase, neocortical

neuritic plaque, and Braak stage showed the highest R2

scores, indicating their potential significance in these

datasets, with scores of 65%, 63%, and 61% for CFAS

and 87%, 83%, and 82% for ADNI, respectively. There-

fore, to investigate the impact of feature–feature correla-

tions on feature ranking using filter methods, it is

necessary to analyse the association between feature cor-

relations and feature ranking scores.

3.5 | Impact of feature–feature correlations
on feature ranking

This study further investigated discrepancies and incon-

sistencies in feature rankings obtained by filter methods

in the two neuropathology datasets. In particular, we

considered the impact of feature–feature correlations on

feature ranking scores. The aim was to identify filter

methods that were less sensitive to potential collinearity

between the neuropathological features and observe

whether their rankings were more consistent between

CFAS and ADNI.

For each dataset, we regressed each feature against

all other feature and reported the R2 of the fit. We also

ranked the features using the different filter methods and

applied a Min-Max normalisation technique on the rank-

ing scores to ensure that all values were on the same

scale. For the CFAS dataset, the results indicated a weak

positive relationship between feature ranking scores and

R2 for most filter methods (Figure 6), lowest with Least

Loss (r = 0.23, p = 0.0446) and highest with ReliefF

(Pearson r = 0.61, p = 0.0281). Gain ratio was also

demonstrated a weak relationship (CFAS: r = 0.28,

p-value = 3.46e�01). There was a greater positive corre-

lation between feature ranking scores and R2 values in

ADNI across all filter methods, with lowest again being

Least Loss (r = 0.79, p-value = 1.34e�03) and highest

with ReliefF (r = 0.92, p-value = 8.85e�06).

By illustrating a line of best fit between the rank

scores and R2, we highlight several features whose rank-

ing are not explained by their feature–feature correlation.

In particular, Braak stage achieved a higher rank than

expected by its R2 when using six of the filter methods in

CFAS and three of the methods in ADNI (Figure 6).

Cortical atrophy was also higher ranked than expected in

all the methods in CFAS, but interestingly in ADNI it

was lower than expected. These features may contain less

redundant information on dementia status and could be

prioritised for neuropathology assessment.

3.6 | Classification using highly ranked
neuropathology features

The study employed classification models, specifically the

RF and Naive Bayes classifiers [13], to evaluate the effi-

cacy of selected neuropathological features. We assessed

the performance of dementia classification on specific

subsets of data from both ADNI and CFAS datasets.

The features selected for evaluation in the CFAS and

ADNI datasets were presented in Table S2.

Accuracy, sensitivity, and specificity rates of the RF

and Naive Bayes classifiers on distinct subsets of neuro-

pathological features in the CFAS and ADNI datasets

were investigated and compared. Figure 7A shows that

the dementia classifications obtained from the RF algo-

rithm using ADNI in all group subsets were superior to

those derived from CFAS, except for the sensitivity rate

calculated by the RF algorithm on the CFAS dataset.

The same pattern was observed with the Naive Bayes

algorithm based on the same group subsets Figure 7B.

The classification algorithms derived from distinct

sets of neuropathological features demonstrate higher

sensitivity rates. Higher sensitivity rates are desirable to

minimise false negatives and ensure that individuals with

dementia are accurately identified. Notably, CFAS

exhibits remarkable sensitivity rates for features ranking

higher than expected (RHE) based on feature–feature

correlation. These features are denoted as those falling

below the confidence intervals in Figure 6. For instance,

the RF classifiers derived from such features in CFAS

have a sensitivity rate of 81.3%. A similar trend was

observed with Naive Bayes classifiers derived from RHE

subset in CFAS with a sensitivity rate of 81.3%.

However, the specificity rate of the CFAS features

RHE was low 54.3%. This subset’s low specificity implies

that the classifiers cannot distinguish patients without

dementia from those with the condition. Overall, the clas-

sification algorithms and all neuropathological subsets

generated low specificity rates, at least for the CFAS

dataset.

Conversely, the classification algorithms performed

exceptionally well for distinct subsets of the neuropatho-

logical features in ADNI. According to the ADNI

results, a RF algorithm produced the best classifier for

features RHE, with a 94.40% accuracy, 90.0% sensitivity,

and 98.4% specificity, demonstrating high predictive

power. While in CFAS, Naive Bayes performed best for

a subset of ranking higher than expected at 70.6% accu-

racy, 81.3% sensitivity, and 54.3% specificity. When we

trained the classifiers on ADNI, the classification perfor-

mance for RF dipped only slightly to 67.0% accuracy
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and for Naïve Bayes to 67.2% accuracy using the highly

ranked features (Figure 7C).

The feature selection analysis results align with the

classification algorithms’ findings. Based on these results,

clinicians can leverage informative neuropathological

features during the clinical assessment of dementia,

including features RHE by feature–feature correlation

from ADNI. Furthermore, although the sensitivity

results obtained from the distinct feature subsets of

CFAS by the classification algorithm were remarkable,

the ADNI feature subset results were more convincing.

This was because the performance measures results were

balanced, making ADNI more suitable for dementia

analysis, at least when neuropathological features were

considered.

DISCUSSIONS AND CONCLUSIONS

According to the initial analysis presented in the distribu-

tion of neuropathology feature scores across dementia

cases, several findings were observed, some of which have

F I GURE 7 Classification performance

using subsets of ranked features.

(A) Performance results obtained by the

random forest algorithm on the different

subsets of features. (B) Performance results

obtained by the Naive Bayes algorithm on

the different subsets of features. For both

classification algorithms, the accuracy,

sensitivity, and specificity measures were

used for subsets of features for CFAS and

ADNI datasets. The feature names for the

subsets were shown in Table S2.

(C) Performance of the random forest and

Naïve Bayes algorithms for classifying

individuals in CFAS when trained on the

feature rankings and data from ADNI.
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been previously published. Both the CFAS and ADNI

studies showed that the percentage of individuals with

dementia increased as the Braak stage increased, with a

peak at stage IV for CFAS and stage V for ADNI

[20, 44]. Similarly, both studies observed an increase in

the Thal phase [20, 44]. The CFAS data showed higher

CAA across individuals, while ADNI revealed a

higher rate of dementia was associated with a higher

number of brain areas with CAA and its severity. Addi-

tionally, both studies observed brain atrophy in dementia

patients.

The study demonstrated consistent rankings of neuro-

pathological features across different filter methods, with

Kendall’s tau revealing correlated rank orders between

ADNI and CFAS datasets for methods generating the

same rankings. Notably, reliefF, chi-square, and least loss

methods exhibited similar rankings for specific features in

both datasets, suggesting their reproducibility. However,

some methods, such as gain ratios and symmetric uncer-

tainty, resulted in divergent rankings between ADNI and

CFAS. The observed variability in rankings may be attrib-

uted to differing models used by these methods for

feature-to-class correlations. Despite deviations, certain

features, like the Braak stage, maintained consistent pat-

terns across filter methods. Figure 4B highlighted consis-

tency in rankings from reliefF, chi-square, and least loss

methods in both datasets, underscoring their reliability.

ReliefF demonstrated the highest agreement between

CFAS and ADNI feature rankings, but its rankings were

mostly explained by feature–feature correlation. This

method calculates feature weights based on differences in

feature values between instances and their nearest neigh-

bours. When two or more features are highly correlated,

the differences in their values may not provide distinct and

meaningful information. In contrast, using least loss for

feature ranking may be less impacted by feature–feature

correlation because it selects features that contribute the

least to a classifier model’s loss or error, hence, focusing

more on the marginal information gained by the feature.

Recommendations from filter methods seemed context-

dependent, so future analyses should explore sensitivity

analyses, techniques to normalise different feature distribu-

tions, and ensemble approaches to assess the suitability of

combining different methods for specific cohorts in order

to enhance the robustness and generalizability of the

findings.

We further assessed the impact of selecting subsets of

ranked features on the classification of dementia. Classi-

fication algorithms developed from distinct sets of neuro-

pathological features had a high cross-validation

accuracy of up to 94.4%, 90.3% sensitivity, and 98.4%

specificity using the RF classifier in ADNI for ranked

features impacted by feature–feature correlation. While

in CFAS, the Naive Bayes classifier achieved the highest

cross-validation performance in classifying dementia sta-

tus with 70.6% accuracy, 81.3% sensitivity, and 54.3%

specificity for the subset of highly ranked features. The

performance on CFAS classification is similar (67.2%

accuracy) when Naive Bayes was trained on ADNI. This

classification performance is consistent with the previous

classification models using neuropathology features in

CFAS [20], and using imaging features from ADNI

in deep neural networks [45, 46].

The study’s limitation stems from differing dementia

prevalence in the cohorts, posing a potential confounder

for interpreting neuropathological feature correlations. The

observed associations may partly reflect the influence of

varying dementia rates rather than intrinsic feature rela-

tionships. Generalizability is constrained by cohort-specific

characteristics, cautioning against broad extrapolations,

especially to populations with distinct dementia neuropath-

ological feature distributions. To mitigate the impact of

imbalanced class distribution, we employed SMOTE-NC

during the resampling process. Future research should con-

sider stratified analyses based on dementia status, explore

methods to further mitigate confounding, and prioritise

larger, balanced samples for robust conclusions in

dementia-related neuropathological investigations. Addres-

sing missing data became imperative in our study because

of the limitations in cohort sizes (ADNI = 70 samples,

CFAS = 177 samples) and the potential challenges for

machine learning models in handling NaN values. To

tackle this issue, we implemented an iterative imputation

approach using the Scikit-learn library. This method facili-

tated the imputation of missing values for both numerical

and categorical features. Our meticulous imputation strat-

egy was crucial not only caused by the inherent limitations

in our cohorts but also in the context of the preceding dis-

cussion on the impact of missing value imputation on

feature–feature correlations, especially in the domain of

dementia neuropathology data.

In conclusion, this research demonstrated the associ-

ation between feature–feature correlation and the fea-

ture ranking scores obtained by filter methods in

medical applications such as dementia diagnosis. The

study found that the ReliefF filter method is less sensi-

tive to feature–feature correlations and that these corre-

lations substantially impact the ranking of features and

the performance of diagnosis models developed from

the two dementia cohorts. The findings of this study

indicate that filter methods for selecting neuropathology

features associated with dementia are impacted by the

feature–feature correlation and may differ between

cohort studies. It is important to note that these results

are based on the analysis of just two datasets, and fur-

ther study may be required for broader applicability. By

investigating the potential bias in filter methods, it is

possible to minimise discrepancies in feature rankings

and determine a reliable set of important features for

the purpose of classification algorithms.
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