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Abstract
The restricted polynomially-tilted pairwise interaction (RPPI) distribution gives a flexible model for compositional data. It
is particularly well-suited to situations where some of the marginal distributions of the components of a composition are
concentrated near zero, possibly with right skewness. This article develops a method of tractable robust estimation for the
model by combining two ideas. The first idea is to use score matching estimation after an additive log-ratio transformation.
The resulting estimator is automatically insensitive to zeros in the data compositions. The second idea is to incorporate
suitable weights in the estimating equations. The resulting estimator is additionally resistant to outliers. These properties are
confirmed in simulation studies where we further also demonstrate that our new outlier-robust estimator is efficient in high
concentration settings, even in the case when there is no model contamination. An example is given using microbiome data.
A user-friendly R package accompanies the article.

Keywords Zeros · Log-ratios · PPI model · Outliers

1 Introduction

The polynomially-tilted pairwise interaction (PPI) model for
compositional data was introduced by Scealy and Wood
(2023). It is a flexible model for compositional data because
it can model high levels of right skewness in the marginal
distributions of the components of a composition, and it
can capture a wide range of correlation patterns. Empirical
investigations in Scealy and Wood (2023) showed that this
distribution can successfully describe the behaviour of real
data in many settings. They illustrated its effectiveness on
a set of microbiome data. Some other recent related articles
are Yu et al. (2021) and Weistuch et al. (2022).

Many articles in the literature analysing microbiome data,
including for example Cao et al. (2019), He et al. (2021),
Mishra and Muller (2022) and Liang et al. (2022), assume
that zeros are effectively outliers since they replace all zero
counts by 0.5 (or they use some other arbitrary constant to
impute the zeros), then take a log-ratio transformation of
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the proportions and apply Euclidean data analysis methods.
This is a formofWinsorisation and depending on the target of
inference, this zero replacementmethod can often lead to bias
in parameter estimators. There are typically huge numbers of
zeros in microbiome data and we argue that they should not
be automatically treated as outliers, but rather they should
be treated as legitimate datapoints that occur with relatively
high probability.

The purpose of this article is to develop a novel method
of estimation for the PPI model with several attractive fea-
tures: (a) it is tractable, (b) it is insensitive to zero values
in any of the components of a data composition, and (c) it
is resistant to outliers. Outliers can occur when the major-
ity of the dataset is highly concentrated in a relatively small
region of the simplex. An observation not close to the major-
ity would be deemed an outlier. Themethod is based on score
matching estimation (SME) after an additive log-ratio trans-
formation, plus the inclusion of additional weights in the
estimating equations for resistance to outliers. Our approach
uses the additive log-ratio transformation as a device to obtain
parameter estimators for the PPI model and we are not trans-
forming the data itself prior to the analysis as in theAitchison
(1986) approach. Although the method is mathematically
well-defined for the full PPI model, it is helpful in prac-
tice to focus on a restricted version of the PPI model (the
RPPI model) both for identifiability reasons and because the
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restricted model was shown by Scealy and Wood (2023) to
provide a good fit to microbiome data.

The article is organized as follows. The PPI model is pre-
sented in Sect. 2. The important distinction between zero
components andoutliers is explored inSect. 3. Section4gives
the score matching algorithm and Sect. 5 gives the modifi-
cations needed for resistance to outliers. An application to
microbiome data analysis is given in Sect. 6, with simulation
studies in Sect. 7. Further technical details and simulation
results are given in the Supplementary Material which also
includes a document that reproduces the numerical results in
this article.

A package designed for the Comprehensive R Archive
Network (CRAN 2022) is under development and available
at github.com/kasselhingee/scorecompdir. The package con-
tains our new additive log-ratio scorematching estimator and
its robustified version, other score matching estimators, and
a general capacity for implementing score matching estima-
tors.

2 The PPI distribution

The (p − 1)-dimensional simplex in Rp is defined by

�p−1 =
{
u = (u1, u2, . . . , u p)

� ∈ R
p : u j ≥ 0,

p∑
j=1

u j = 1

}
,

(1)

where a composition u contains p nonnegative components
adding to 1. The boundary of the simplex consists of com-
positions for which one or more components equal zero.
The open simplex �

p−1
0 excludes the boundary so that

u j > 0, j = 1, . . . , p.
The polynomially-tilted pairwise interaction (PPI)model

of Scealy andWood (2023) on�
p−1
0 is defined by the density

f (u; D,β)

= 1

c1(D,β)

⎛
⎝ p∏

j=1

u
β j
j

⎞
⎠ exp

(
u�Du

)
, u ∈ �

p−1
0 , (2)

with respect to du, where du denotes Lebesgue measure in
R

p on the hyperplane
∑

u j = 1. The density is the product
of aDirichlet factor and an exp-quadratic (i.e. the exponential
of a quadratic) factor. To ensure integrability, the Dirichlet
parameters must satisfy β j > −1, j = 1, . . . , p. Note that
if −1 < β j < 0, the Dirichlet factor blows up as u j → 0.
The matrix D in the quadratic form is a symmetric matrix.
Due to the constraint

∑
u j = 1 it may be assumed without

loss of generality that 1�D1 = 0.
If the last component is written in terms of the earlier

components, u p = 1 − ∑p−1
1 u j , then (2) can be written in

the alternative form

f (u; AL ,β, bL)

= 1

c2(AL , bL ,β)

⎛
⎝ p∏

j=1

u
β j
j

⎞
⎠ exp

(
u�
L ALuL + u�

L bL
)
,

u ∈ �
p−1
0 , (3)

with respect to the same Lebesgue measure du, where uL =
(u1, u2, . . . , u p−1)

�, AL is a (p−1)× (p−1)-dimensional
symmetric matrix and bL is a (p − 1)-dimensional vector.

The full PPI model contains (p2 + 3p− 2)/2 parameters.
Although the parameters are mathematically identifiable, in
practice it can be difficult to estimate all of them accurately.
Hence it is useful to consider a restricted PPI (RPPI) with a
smaller number of free parameters. The RPPImodel contains
q = (p + 2)(p − 1)/2 free parameters (the same as for the
(p−1)-dimensional multivariate normal distribution) and is
defined as follows. First, order the components so that the
most abundant component u p is listed last. Then set

bL = 0, βp = 0. (4)

The above restriction on the parameters leads to a model
which is similar to a generalised gamma distribution in p−1
dimensions. This model was shown by Scealy and Wood
(2023) to provide a reasonably good fit to microbiome data.

3 Zeros and outliers

Two types of extreme behaviour in compositional data are
zeros and outliers, and it is helpful to distinguish between
these two concepts.

An outlier is defined to be an observation which has low
probability density under the PPI model fitted to the bulk of
the data on the simplex. Outliers can occur when themajority
of the dataset is highly concentrated in a relatively small
region of the simplex. In particular, if most of the data are
highly concentrated in the middle of the simplex with small
variance, then an observation close to or on the boundary
would be deemed to be an outlier.

On the other hand if the marginal distribution for the
j th component has a nonvanishing probability density as u j

tends to 0 (e.g. in the PPI model with β j ≤ 0), then a com-
position u with u j = 0 would not be considered to be an
outlier.

Although the PPI model has no support on the boundary
of the simplex, we may still want to fit the model to data
sets for which some of the compositions have components
which are exact zeros. There are twomainways to think about
the presence of zeros in the data. First, they may be due to
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measurement error; a measurement of zero corresponds to
a “true” composition lying in the interior of the simplex.
Second the data may arise as counts from a multinomial dis-
tribution where the probability vector is viewed as a latent
composition coming from the PPI model. See Sects. 4.3, 6
and Scealy and Wood (2023) for further details on the multi-
nomial latent variable model. Then zero counts can occur
even though the probability vector lies in �

p−1
0 .

The presence of zero components in data poses a major
problem for maximum likelihood estimation for the PPI
model. In particular, the derivative of the log-likelihood func-
tion with respect to β j for a single composition u,

∂ log f (u; D,β)/∂β j = log u j − ∂ log c1/∂β j

is unbounded as u j → 0, which leads to singularities in the
maximum likelihood estimates.

Hence we look for alternatives to maximum likelihood
estimation. One promising general approach is score match-
ing estimation (SME), due to Hyvarinen (2005). A version
of SME was used by Scealy and Wood (2023) that involved
downweighting observations near the boundary of the sim-
plex. However, theirmethodwas somewhat cumbersome due
to the requirement to specify a weight function and their
estimator is inefficient when many of the parameters β j ,
j = 1, 2, . . . , p − 1 are close to −1. This parameter set-
ting is relevant to microbiome data applications.

This article uses another version of SME thatwe callALR-
SME because it involves an additive log-ratio transformation
when constructing the estimators. ALR-SME is tractable and
is insensitive to zeros, in the sense that the influence function
is bounded as u j → 0 for any j .

Further, following the method of Windham (1995) it is
possible to robustify ALR-SME to outliers by incorporat-
ing suitable weights in the estimating equations. Details are
given in Sect. 5. In this article we make a distinction between
robustness to zeros and robustness to outliers, and for clarity
we often describe these forms of robustness as insensitive to
zeros and resistant to outliers, respectively.

4 Additive log-ratio score matching
estimation

In this section we recall the general construction of the score
matching estimator due to Hyvarinen (2005), and then apply
it to data from the RPPI distribution after first making an
additive log-ratio transformation.

4.1 The score matching estimator

The construction of the score matching estimator starts with
the Hyvarinen divergence, defined by

�(g, g0) = 1

2

∫
y∈Rp−1

{∇ log g( y) − ∇ log g0( y)}2g0( y)d y (5)

where g and g0 are probability densities on R
p−1 subject

to mild regularity conditions (Hyvarinen 2005). Note that
�(g, g0) = 0 if and only if g = g0.

Let

g( y) = g( y;π) ∝ exp{π� t( y)} (6)

define an exponential family model, where π is a q-
dimensional parameter vector and t( y) is a q-dimensional
vector of sufficient statistics. Then for a given density g0, the
“best-fitting”model g( y;π) to g0 can be defined byminimiz-
ing (5) over π . Since∇ log g( y) is linear in π ,� is quadratic
in π . Differentiating � with respect to π , and setting the
derivative to 0 yields the estimating equations

Wπ − d = 0,

where W and d have elements

wk1,k2 =
∫ p−1∑

j=1

(∂tk1( y)/∂ y j )(∂tk2( y)/∂ y j )g0( y)d y,

k1, k2 = 1, . . . , q, (7)

dk = �tk( y) =
∫ p−1∑

j=1

(∂2tk( y)/∂ y2j )g0( y)d y,

k = 1, . . . , q. (8)

The Laplacian in (8) arises after integration by parts in
(5). Hence the the best-fitting value of π is

π = W−1d.

Given data yi , i = 1, . . . , n, with elements yi j , j =
1, . . . , p−1, the integrals can be replaced by empirical aver-
ages to yield the estimating equations

Ŵπ − d̂ = 0, (9)
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where Ŵ and d̂ have elements

ŵk1,k2 =
n∑

i=1

p−1∑
j=1

(∂tk1( yi )/∂ y j )(∂tk2( yi )/∂ y j ),

k1, k2 = 1, . . . , q, (10)

d̂k =
n∑

i=1

p−1∑
j=1

(∂2tk( yi )/∂ y
2
j ), k = 1, . . . , q. (11)

Solving the estimating equations (9) yields the score
matching estimator (SME)

π̂ = Ŵ
−1

d̂. (12)

4.2 Additive log-ratio transformed compositions

To make use of this result for distributions on the simplex, it
is helpful tomake an additive log-ratio (ALR) transformation
from u ∈ �

p−1
0 to y = (y1, y2, . . . , yp−1)

� ∈ R
p−1 where

y j = log(u j/u p), j = 1, . . . , p − 1.

This transformation was popularized by Aitchison (1986).
The logistic-normal distribution for u, or equivalently the
normal distribution for y has often been suggested as a
model for compositional data (e.g., Aitchison 1986). How-
ever, it should be noted that the RPPI distribution has very
different properties. In particular, we do not advocate the
use of logistic-normal models in situations where zero or
very-near-zero compositional components occur frequently.
See Scealy and Welsh (2014) for relevant discussion and see
Appendix A.3 (Supplementary Material) for further details
on the choice ofmetric and transformation in scorematching.

The transformed RPPI distribution has density propor-
tional to

exp

(
exp ( y)�AL exp ( y)

(1 + ∑p−1
k=1 exp (yk))2

)
×

(
1

1 + ∑p−1
k=1 exp (yk)

)

p−1∏
j=1

(
exp(y j )

1 + ∑p−1
k=1 exp (yk)

)β j+1

(13)

with respect to Lebesgue measure d y = dy1 · · · dyp−1 on
Rp−1, where

exp ( y) = (exp(y1), exp(y2), . . . , exp(yp−1))
�

and we have used the constraints (4). The density (13) forms
a full exponential family with canonical parameter vector

π = (a11, a22, . . . , a(p−1)(p−1), a12, a13, . . . , a(p−2)(p−1),

1 + β1, 1 + β2 . . . , 1 + βp−1)
�

with q = p(p − 1)/2 + (p − 1) parameters, where ai j
refers to the i , j th element of AL . The corresponding suffi-
cient statistic, t( y) = (t1( y)�, t2( y)�, t3( y)�)� will now
be specified: t1( y) is a (p − 1)-vector with j th element

t1 j ( y) = exp(2y j )

/ ⎧⎨
⎩1 +

p−1∑
k=1

exp(yk)

⎫⎬
⎭

2

,

j = 1, . . . , p − 1;

t2( y) is a (p − 1)(p − 2)/2-vector with typical element

t2 jk( y) = 2 exp(y j ) exp(yk)

/ ⎧⎨
⎩1 +

p−1∑
�=1

exp(y�)

⎫⎬
⎭

2

,

1 ≤ j < k ≤ p − 1;

and t3( y) is a (p − 1)-vector with typical element

t3 j = y j − log

⎧⎨
⎩1 +

p−1∑
k=1

exp(yk)

⎫⎬
⎭ , j = 1, . . . , p − 1.

The elements of Ŵ and d̂ in (9) can be expressed in terms
of linear combinations of powers and products of the ui j
which are the elements of the data vectors ui , i = 1, 2, . . . , n;
see the equations (20) and (21) in Appendix A.1 (Supple-
mentary Material). We refer to the resulting score matching
estimator as the ALR-SME. Note that there are no log (ui j )
or ratios involving ui j terms in (20) and (21). The ALR-SME
estimator is very different to the standard maximum likeli-
hood estimator for Aitchsion’s logistic normal distribution.
We use log-ratios as merely a device in the derivations to
obtain our new scorematching estimators (we are not actually
transforming the data in the analysis since the PPI distribu-
tion is defined directly on the simplex).

4.3 Consistency

Next we state a consistency result for the ALR-SME when
applied to the multinomial latent variable model. Let xi , i =
1, . . . , n, be independent multinomial count vectors from
different multinomial distributions, where the probability
vectors ui are taken independently from the RPPI model.
Let mi = xi1 + · · · + xip denote the total count from
the i th multinomial vector. That is, we assume the condi-
tional probability mass function of xi = (xi1, xi2, . . . , xip)�
given ui is f (xi |ui ) = mi ! ∏p

j=1{u
xi j
i j /xi j !}, where the

ui = (ui1, ui2, . . . , uip)� are unobserved latent variables.
This model is relevant for analysing microbiome data;
see Sect. 6. Consider estimating the parameters AL and
β1, β2, . . . , βp−1 using theALR-SMEwhere the known pro-
portions ûi = xi/mi are used as substitutes for the unknown
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true compositions ui for i = 1, 2, . . . , n. Note that we do not
need the extra restrictive conditions in part (III) Theorem 3
of Scealy and Wood (2023) for estimating β. The proof of
Theorem 1 below is given in Appendix A.2 (Supplementary
Material).

Theorem 1 Let π̂ denote the ALR-SME of π (12) based on
the (unobserved) compositional vectors u1, . . . , un and let
π̂
† denote the ALR-SME of π based on the observed vectors

of proportions û1, . . . , ûn. Assume that for some constants
C1 > 0 and α > 1, inf i=1,...,n mi ≥ C1nα .

Then as n → ∞

||n1/2
(
π̂
† − π̂

)
|| = op(1). (14)

Theorem 1 above shows that π̂† is asymptotically equivalent
to π̂ to leading order. Note that Theorem 1 does not assume
that the population latent variable distribution is aRPPI distri-
bution, but if theRPPImodel is correct then π̂

† and π̂ are both
consistent estimators ofπ under the conditions of Theorem1.
Asymptotic normality of π̂ also follows directly from similar
arguments to Scealy and Wood (2023). Theorem 1 applies
even when the observed data has a large proportion of zeros.
This has important implications for analysing microbiome
count data with many zeros. Scealy and Wood (2023) were
unable to use score matching based on the square root trans-
formation to estimateβ when analysing realmicrobiomedata
because the extra conditions needed for consistency did not
look credible for the real data (there was an extra assumption
needed on the marginal distributions of the components of
the ui ). Here, using the ALR-SME we are now able to esti-
mate β directly using score matching. See Sects. 6 and 7 for
further details.

It is also insightful to compare the ALR-SME to standard
maximum likelihood estimation. The maximum likelihood
estimator for AL and β based on an iid sample from model
(3) solves the estimating equation

n∑
i=1

(
t∗(ui ) − ∂

∂π
log {c2(AL , 0,β)}

)
= 0, (15)

where t∗(u) is defined at (19) in Appendix A.1 (Supplemen-
tary Material). Denote the maximum likelihood estimator of
π by π̂ML . The estimator π̂ML is difficult to calculate due to
the intractable normalising constant c2. Theorem 1 also does
not hold for π̂ML due to the presence of the log (u j ) terms
in t∗(u) which are unbounded at zero. That is, we cannot
simply replace ui by ûi within (15) to obtain a consistent
estimator for the multinomial latent variable model. This is a
major advantage of the ALR-SME because it leads to com-
putationally simple and consistent estimators, whereas π̂ML

with the latent variables ui , i = 1, 2, . . . , n each replaced
with ûi is inconsistent and computationally not tractable.

4.4 Comments on SME

Score matching estimation has been defined here for proba-
bility densities whose support is all of Rd . This construction
can be extended in various ways, and we mention two pos-
sibilities here that are relevant for compositional data.

First, the unbounded regionRp−1 in (5) can be replaced by
a bounded region such as �

p−1
0 . However, there is a price to

pay. The integration by parts which underlies the Laplacian
term in (8) now includes boundary terms. Scealy and Wood
(2023) introduced a weighting function which vanishes on
the boundary of the simplex. The effect of this weighting
function is to eliminate the boundary terms. However, the
weighting function also lessens the contribution of data near
the boundary to the estimating equations.

Second, the Hyvarinen divergence in (5) implicitly uses
a Riemannian metric in R

p−1, namely Euclidean distance.
Other choices of Riemannian metric lead to different esti-
mators. Some comments on these choices in the context of
compositional data are discussed in Appendix A.3 (Supple-
mentary Material).

5 An ALR-SME that is resistant to outliers

Although the simplex is a bounded space, outliers/influential
points can still occur when the majority of the data is highly
concentrated, or equivalently has low dispersion, in certain
regions of the simplex. In the case of microbiome data (see
Sect. 6), there are a small number of abundant components
which have low concentration (e.g. Actinobacteria and Pro-
teobacteria) and these components should be fairly resistant
to outliers. However, the components Spirochaetes, Verru-
comicrobia, Cyanobacteria/Chloroplast and TM7 are highly
concentrated at or near zero and any large values away from
zero can be influential. For the highly concentrated micro-
biome components distributed close to zero, thesemarginally
look to be approximately gamma or generalised gamma dis-
tributed; see Figs. 1 and 2 in Sect. 6. Hence there is a need
for the Dirichlet component of the density in the RPPI model
(3).

We now develop score matching estimators for the RPPI
model (3) that are resistant to outliers.Assume that the first k∗
components of u are highly concentrated near zero where it
is expected that possibly β1 < 0, β2 < 0, . . . , βk∗ < 0. The
remaining components uk∗+1, uk∗+2, . . . , u p are assumed to
have relatively low concentration. By low concentration we
mean moderate to high variance and by high concentration
wemean small variance. The robustificationwhich follows is
only relevant for highly concentrated components near zero
which is why we are distinguishing between the different
cases. See Scealy andWood (2021) for further discussion on
standardised bias robustness under high concentration which
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is relevant to all compact sample spaces including the sim-
plex. When k∗ < p − 1 partition

AL =
(
AKK AK R

ARK ARR

)
,

where AKK is a k∗ × k∗ matrix, AK R is a k∗ × (p− 1− k∗)
matrix, ARK is a (p − 1 − k∗) × k∗ matrix and ARR is a
(p − 1− k∗) × (p − 1− k∗) matrix. When k∗ = p − 1 then
AL = AKK . The (unweighted) estimating equations for the
ALR-SME are given by (9) and can be written slightly more
concisely as

0 = 1

n

n∑
i=1

(W1(ui )π − d1(ui )) , (16)

where the elements ofW1(ui ) and d1(ui ) are functions of ui
and are defined at equations (20) and (21) in Appendix A.1
(Supplementary Material) for the RPPI model and are given
in a more general form though Eqs. (9)–(11).

Windham (1995) approach to creating robustified estima-
tors is to use weights which are proportional to a positive
power of the probability density function. The intuition
behind this approach is that outliers under a given distribution
will typically have small likelihood and hence a smallweight,
whereas observations in the central region of the distribu-
tion will tend to have larger weights. The Windham (1995)
method is an example of a density-based minimum diver-
gence estimator, but with the advantage that the normalising
constant in the density does not need to be evaluated in order
to apply it. See Windham (1995), Basu et al. (1998), Jones,
et al. (2001), Choi et al. (2000), Ribeiro and Ferrari (2020),
Kato and Eguchi (2016) and Saraceno et al. (2020) for further
discussion and insights. In the setting of the RPPI model for
compositional data, there is a choice to be made between the
probability densities to use in the weights, that is to use (3)
or (13), or in other words should we choose the measure du
or d y. We prefer du because d y places zero probability den-
sity at the simplex boundary and thus always treats zeros as
outliers which is not a good property with data concentrated
near the simplex boundary.

For the RPPI distribution, taking a power of the density
(3) is a bad idea because for those β j which are negative
the weights will diverge to infinity as u j tends to 0. To
circumvent this issue we only use the exp-quadratic fac-
tor in (3) to define the weights. This choice of weighting
function is a compromise between wanting the weight of
an observation to be smaller if the probability density is
smaller and needing to avoid infinite weights on the bound-
ary of the simplex. In fact, typically u�

K AKK uK , where
uK = (u1, u2, . . . , uk∗)�, is highly negative whenever u has
a large value in any of the components that are highly concen-
trated near zero in distribution. It is thus sufficient to use just

the exp(u�
K AKK uK ) factor of (3) in the weights (the influ-

ence function in Theorem 2 below confirms this behaviour).
Including all elements of AL in the weights leads to a large
loss in efficiency, so theweights in our robustifiedALR-SME
estimator are exp(cu�

i,K AKK ui,K ), i = 1, . . . , n, where

ui,K = (ui1, ui2, . . . , uik∗)�. The weighted form of esti-
mating Eq. (16) is then

n∑
i=1

exp
(
cu�

i,K AKK ui,K
)

(W1(ui )Hπ − d1(ui )) = 0,

(17)

where H is a q × q diagonal matrix with diagonal elements
either equal to c + 1 or 1 (the elements corresponding to the
parameters AKK are c+1 and the rest are 1). The estimating
Eq. (17) has a very simple form here (i.e. given the weights,
the estimating equations are linear in π ), whereas the ver-
sion based on the maximum likelihood estimator does not
have such a nice linear form leading to a much more com-
plicated influence function calculation and its interpretation
(e.g. Jones, et al. 2001).

An algorithm similar to that in Windham (1995) can be
used to solve (17) and involves iteratively solving weighted
versions of the score matching estimators. In summary this
algorithm is

1. Set r = 1 and initialise the parameters: β̂
(0)

and Â
(0)
L

(i.e. choose starting values such as the unweighted ALR-
SME). Then repeat steps 2–5 until convergence.

2. Calculate the weights w̃i = exp
(
cu�

i,K Â
(r−1)
KK ui,K

)
for

i = 1, 2, . . . , n and normalise the weights so that the
weights sum to 1 across the sample. Also calculate the

additional tuning constants dβ = −cβ̂
(r−1)

, dA1 =
−c Â

(r−1)
RR , dA2 = −c Â

(r−1)
RK and dA3 = −c Â

(r−1)
K R .

3. Calculate weighted score matching estimates. That is,
replace all sample averageswithweighted averages using
the normalised weights w̃i calculated in step 2. Denote

the resulting estimates as β̃
(r)

and Ã
(r)
L .

4. The estimates in step 3 are biased and we need to do the
following bias correction:

β̂
(r) = β̃

(r) − dβ

c + 1
, and Â

(r)
KK = Ã

(r)
KK

c + 1

and

Â
(r)
RR = Ã

(r)
RR − dA1

c + 1
, Â

(r)
RK = Ã

(r)
RK − dA2

c + 1
,

and Â
(r)
K R = Ã

(r)
K R − dA3

c + 1
.
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This correction is simple because the model is an expo-
nential family; see Windham (1995) for further details.

5. r → r + 1

Step 4 in this new robust score matching algorithm above
is similar to applying the inverse of τc in Windham (1995).
The tuning constants dβ , d A1 , dA2 and dA3 are required due
to our use of a factor of the density in the weights.

This modified version of Windham (1995) method is par-
ticularly useful when any β j ’s are negative in order to avoid
infinite weights at zero. When the data is concentrated in the
simplex interior (i.e. we expect β j > 0, j = 1, 2, . . . , p)
then the model density is bounded and we can apply the
Windham (1995) method without modification, although
efficiency gains may be possible from using well-chosen fac-
tors of the model density.

In order to complete the description of the robustified
ALR-SME, we need to choose the robustness tuning con-
stant c. In related settings (Kato and Eguchi 2016) use cross
validation and Saraceno et al. (2020) calculate theoretical
optimal values for a Gaussian linear mixed model. Basak
et al. (2021) report that choosing the optimal tuning constant
is challenging in general when choosing density power diver-
gence tuning parameters. We agree with the view of (Muller
and Welsh 2005, page 1298) that choice of model selection
criteria or estimator selector criterion should be indepen-
dent of the estimationmethod, otherwise wemay excessively
favour particular estimators. This is an issue with the Kato
and Eguchi (2016) method which is based on an arbitrary
choice of divergence which could favor the optimal estima-
tor under that divergence. Instead we use a simulation based
method to choose c; see Sect. 6. We also need to decide on
the value of k∗; see Sect. 6 for a guide.

We next examine the theoretical properties of our new
robustified estimator. The proof of Theorem 2 below is given
inAppendixA.4 (SupplementaryMaterial). LetF denote the
set of probability distributions on the unit simplex �p−1 ⊂
R

p, where p ≥ 3. Let F0 denote the population probability
measure for a single observation from �p−1 and write δz
for the degenerate distribution on �p−1 which places unit
probability on z ∈ �p−1. Consider theALR-SME functional
θ : F → 
 ⊆ R

q . It is assumed that θ is well defined for
all z at (1 − λ)F0 + λδz provided λ ∈ (0, 1) is sufficiently
small. Then the influence function for θ and F0 ∈ F at z is
defined by

IFθ;F0(z) = lim
λ→0

1

λ
(θ {(1 − λ)F0 + λδz} − θ (F0)) .

Theorem 2 Suppose that the population distribution F0 on
�p−1 is absolutely continuouswith respect to Lebesguemea-
sure on �p−1. Also assume that k∗ = p − 1 for exposition
simplicity which implies that all of the first p − 1 compo-

nents are concentrated at/near zero. (The proof for the case
of k∗ < p − 1 is similar and is not presented here.) Then

IFπ;F0(z) = − (G(π0))
−1 exp

(
ct(a)(z)�π0

)
{W1(z)Hπ0 − d1(z)} ,

where π0 is the solution to the population estimating equa-
tion corresponding to (17) (see equation (27) in Appendix
A.4 (Supplementary Material)) and the functions G(π0) and
t(a)(z) are defined in Appendix A.4 (Supplementary Mate-
rial).

The functions t(a)(z),W1(z) and d1(z) contain linear combi-
nations of low order polynomial products, for example terms
like zr11 zr22 zr33 , where r1 ≥ 0, r2 ≥ 0, r3 ≥ 0 and r1 + r2 + r3
is small. Therefore the above influence function is always
bounded for all z ∈ �p−1 including for any points on the
simplex boundary, even when c = 0. The t(a)(z)�π0 in The-
orem2 is equal to z�K AKK zK , where zK = (z1, z2, ..., zk∗)�.
For many PPI models, z�K AKK zK = t(a)(z)�π0 < 0, which
means that for the components of u that are highly concen-
trated near zero in distribution, any large value away from
zero in these components will be down-weighted and have
less influence on the estimator. This leads to large efficiency
gains in both the contaminated and uncontaminated cases.
See Sect. 7 for further details.

It is useful to compare Theorem 2 with the influence
function for π̂ML . The maximum likelihood estimator is a
standard M-estimator with influence function of the form

− B−1
(
t∗(z) − ∂

∂π0
log c2

)
, (18)

where B is a matrix function of the model parameters (e.g.
Maronna et al. 2006, page 71) and t∗(z) is defined at (19) in
Appendix A.1 (Supplementary Material). The vector t∗(z)
contains the functions log(z1), log(z2), . . . , log(z p−1) and
the influence function (18) is unbounded if any z j approaches
0, j = 1, 2, . . . , p − 1. Therefore maximum likelihood
estimation for the PPI model is highly sensitive to zeros.
Maximum likelihood estimation is also highly sensitive to
zeros for the gamma, Beta, Dirichlet and logistic normal dis-
tributions for similar reasons.

6 Microbiome data analysis

Microbiome data is challenging to analyse due to the pres-
ence of high right skewness, outliers and zeros in themarginal
distributions of the bacterial species (e.g. Li 2015; He et al.
2021). Typically microbiome count data is either modelled
using amultinomialmodelwith latent variables (e.g. Li 2015;
Martin et al. 2018; Zhang and Lin 2019) or the sample counts
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are normalised and treated as approximately continuous data
since the total counts are large (e.g. Cao et al. 2019; He
et al. 2021). Here we analyse real microbiome count data
by fitting a RPPI multinomial latent variable model using
the normalised microbiome counts as estimates of the latent
variables; see Sect. 4.3.

In this section we analyse a subset of the longitudinal
microbiome dataset obtained from a study carried out in a
helminth-endemic area in Indonesia (Martin et al. 2018). In
summary, stool samples were collected from 150 subjects in
the years 2008 (pre-treatment) and in 2010 (post-treatment).
The 16s rRNA gene from the stool samples was processed
and resulted in counts of 18 bacterial phyla. Whether or not
an individual was infected by helminth was also determined
at both time points. We restricted the analysis to the year
2008 for individuals infected by helminths which resulted in
a sample size of n = 94, and we treated these individuals as
being independent.

Martin et al. (2018) analysed the five most prevalent
phyla and pooled the remaining categories. Scealy andWood
(2023) analysed a different set of four phyla including two
with a high number of zeros and pooled the remaining cate-
gories. Here for demonstrative purposes we will first analyse
the same data components as in Scealy and Wood (2023)
with the p = 5 components representing TM7, Cyanobacte-
ria/Chloroplast, Actinobacteria, Proteobacteria and pooled.
The percentage of zeros in each category are 38%, 41%, 0%,
0% and 0% respectively. Call thisDataset1. Then for demon-
strative purposes we will also analyse a second dataset with
p = 5 denoted as Dataset2 which contains the components
Spirochaetes,Verrucomicrobia,Cyanobacteria/Chloroplast,
TM7 and pooled. The percentage of zeros in each category
for Dataset2 are 77%, 75%, 41%, 38% and 0% respectively.
Let xi j , i = 1, 2, . . . , 94 and j = 1, 2, 3, 4, 5 represent the
sample counts for a given datasetwith total countmi = 2000.
The estimated sample proportionswere calculated as follows:
ûi j = xi j/mi , where i = 1, 2, . . . , 94 and j = 1, 2, 3, 4, 5.

Figure1 is similar to (Scealy and Wood 2023, Figure 3),
the only difference being that we have now included the two
large proportions in ûi1 and ûi2 whichwere deleted by Scealy
and Wood (2023) prior to their analysis because they identi-
fied them as outliers. The estimates of β1 and β2 in Scealy
andWood (2023) were negative and close to−1 and the com-
ponents ûi1 and ûi2 are highly concentratedmostly near zero.
The components ûi3 and ûi4 for this dataset have low con-
centration. Therefore it makes sense here to choose k∗ = 2.

Figure2 contains histograms of the sample proportions in
Dataset2. The first four components are highly concentrated
near zero and we would expect that β1, β2, β3 and β4 are
negative. Therefore it makes sense to choose k∗ = 4 for this
dataset.

6.1 Choice of tuning constant c

For each dataset we let c range over a grid from 0 up to 1.5
and we fitted the model for each value of c. We simulated
a single large sample of size R = 10,000 under the fitted
model (3) for each value of c and rounded the simulated
data as follows: ûri j = round(ûi jmi )/mi , where ûi j denotes
the simulated proportion under the fitted RPPI model for
i = 1, 2, . . . , R. This mimics the discreteness in the data;
see Scealy and Wood (2023) Section 7. Then we compared
the simulated proportions with the true sample proportions.
Similar to the view of Muller and Welsh (2005) (page 1298)
we are interested in fitting the core of the data and we are
not specifically interested in fitting in the upper tails which
is where outliers can occur in this setting. This means we
need to choose a criterion that is not sensitive to the upper
tail.When comparing the simulated proportions with the true
sample proportions we deleted all observations above the
95% quantile cutoff in the marginal distribution proportions.

For each dataset, c was chosen to give a compromise
between fitting all components to give a small value of the
Kolmogorov–Smirnov test statistic and keeping variation in
the weights as small as possible to preserve efficiency. See
Table 1 for the chosen values of c for each dataset. Note that
the p value for Proteobacteria is quite small. This is not sur-
prising as this was also the worst fitting component in Table
5 in Scealy and Wood (2023) in their analysis.

Table 2 contains the parameter estimates for Dataset1.
The standard errors (SE) were calculated using a paramet-
ric bootstrap by simulating under the fitted multinomial
latent variable model. Use of robust non-parametric boot-
strap methods such as those in Muller and Welsh (2005) and
Salibian-Barrera et al. (2008) is challenging here due to the
large numbers of zeros in the data and for that reason we pre-
fer the parametric bootstrap. The parametric bootstrap SE
estimates are expected to be a little larger than the ones in
Scealy and Wood (2023) since they used asymptotic stan-
dard errors which tended to be a slight underestimation as
shown in their simulation study. The new robustified ALR-
SME of β are reasonably close to the simulation/grid search
estimates in Scealy andWood (2023). Interestingly, β3 is not
significantly different from zero; Scealy and Wood (2023)
set this parameter to zero based on visual inspection of plots.
As expected the estimates of β1 and β2 are negative and are
highly significant. We no longer need to treat β as a tuning
constant and we can now estimate its standard errors which
is an advantage of the new robustified ALR-SME method.

Table 3 contains the parameter estimates for Dataset2.
Note that we cannot apply the score matching estimators of
Scealy andWood (2023) to this dataset as every datapoint has
a component equal to zero,whichmeans themanifold bound-
ary weight functions in Scealy and Wood (2023) evaluate to
zero. However, our new robustified ALR-SME method can
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Fig. 1 Dataset1 histograms of sample proportions ûi j , j = 1, 2, 3, 4, 5

handle this dataset withmassive numbers of zeros. Again, we
used the parametric bootstrap to calculate the standard error
estimates. As expected all of β1, β2, β3 and β4 are negative
and highly significantly different from zero. The AL param-
eter estimates are all insignificant. So for this dataset perhaps
a Dirichlet model might be appropriate. Note that this is not
surprising due to the massive numbers of zeros and relatively
small sample size; there is not much information available to
estimate AL .

7 Simulation

In this sectionwe explore the properties of the new robustified
ALR-SME and we compare them with the score matching

estimator of Scealy and Wood (2023) based on the manifold
boundary weight function min(u1, u2, . . . u p, a2c ), with var-
ious choices of their tuning constant ac ∈ [0, 1]. We consider
eight different simulation settings and in each case we simu-
lated R = 1000 samples and for each sample we calculated
multiple different score matching estimates and calculated
estimated root mean squared errors (RMSE). The eight dif-
ferent simulation settings are now described. We focus on
dimension p = 5 only.

Simulation 1: The model is the continuous RPPI model
(3) with bL = 0 and β5 = 0 fixed (not estimated). We set
β1 = −0.80, β2 = −0.85, β3 = 0, β4 = −0.2 and AL is
equal to the parameter estimates given in Table 3 of Scealy
and Wood (2023). This model was the best fitting model for
Dataset1 in Scealy and Wood (2023) after they deleted two
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Fig. 2 Dataset2 histograms of sample proportions ûi j , j = 1, 2, 3, 4, 5

outliers.We set the sample size to n = 92 which is consistent
with Scealy and Wood (2023). For this model we calculated
the newALR-SME, which is denoted as c = 0 in Table 4.We
also calculated the new robustified ALR-SME with tuning
constants set to c = 0.01 and c = 0.7. Then we calculated
the score matching estimators of Scealy and Wood (2023)
with tuning constants set to ac = 0.01, ac = 0.000796 and
ac = 1; see columns 5, 6 and 8 in Table 4. Note that β is
not estimated in columns 5, 6 and 8 and is treated as known
and set equal to the true β (Scealy and Wood 2023 treated β

as a tuning constant in their real data application). The 7th
column in Table 4 denoted by ac given β̂ is a hybrid two
step estimator. That is, first we calculated the estimate of AL

and β using the robustified ALR-SME with c = 0.7, then
in the second step we updated the AL estimate conditional

on the robust β estimate using the Scealy and Wood (2023)
estimator with ac = 0.000796.

Simulation 2:Themodel is themultinomial latent variable
model with mi = 2000 for i = 1, 2, . . . , n with n = 92.
The latent variable distribution is set equal to the same RPPI
model used in Simulation 1. We calculated the same score
matching estimators as in Simulation 1 but instead of using
ui in estimation we plugged in the discrete simulated pro-
portions ûi = xi/mi .

Simulation 3: The same setting as Simulation 1 except
we replace 5.4% of the observations with the outlier ui =
(0.4, 0.4, 0, 0, 0.2)�.

Simulation 4: The same setting as Simulation 2 except
we replace 5.4% of the observations with the outlier ûi =
xi/mi = (0.4, 0.4, 0, 0, 0.2)�.
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Table 1 Kolmogorov–Smirnov test results (upper 5% quantile removed)

Dataset1 c = 0.7 Dataset2 c = 1.25

TM7 0.14 (p value = 0.07) Spirochaetes 0.088 (p value = 0.50)

Cyanobacteria/chloroplast 0.13 (p value = 0.11) Verrucomicrobia 0.053 (p value = 0.96)

Actinobacteria 0.11 (p value = 0.24) Cyanobacteria/chloroplast 0.058 (p value = 0.93)

Proteobacteria 0.16 (p value = 0.021) TM7 0.058 (p value = 0.93)

Table 2 Parameter estimates
and standard errors for Dataset1

Parameter Estimate Estimate/SE Parameter Estimate Estimate/SE

a11 − 60529.900 − 0.382 a23 73.34150 0.254

a12 12432.5000 0.255 a24 84.06690 0.356

a13 430.21700 0.546 a33 − 22.03470 − 2.62

a14 − 411.20500 − 0.466 a34 − 9.08582 − 0.861

a22 − 4934.7000 − 0.303 a44 − 22.16840 − 2.33

β1 − 0.770598 − 10.8 β3 − 0.079014 − 0.408

β2 − 0.870535 − 15.0 β4 − 0.149064 − 0.878

Table 3 Parameter estimates
and standard errors for Dataset2

Parameter Estimate Estimate/SE Parameter Estimate Estimate/SE

a11 −141.924 − 0.033 a23 − 38106.8 − 0.668

a12 −16586 − 0.170 a24 11709.2 0.062

a13 −5877.63 − 0.265 a33 − 5184.47 − 0.071

a14 −11524.5 − 0.081 a34 8260.35 0.025

a22 −9856.69 − 0.107 a44 − 216660.00 − 0.137

β1 −0.904976 − 27.7 β3 − 0.740065 − 10.4

β2 −0.909160 − 28.4 β4 − 0.464586 − 4.60

Simulation 5:Themodel is the continuousRPPImodel (3)
with bL = 0 and β5 = 0 fixed (not estimated), and remaining
parameters set equal to the values given in Table 3. For this
model we calculated the new ALR-SME which is denoted
as c = 0 in Table 6. We also calculated the new robustified
ALR-SME with tuning constants set to c = 0.01, c = 0.25,
c = 0.5, c = 0.75, c = 1 and c = 1.25. The sample size is
the same as Dataset2 which is n = 94.

Simulation 6:Themodel is themultinomial latent variable
model with mi = 2000 for i = 1, 2, . . . , n with n = 94.
The latent variable distribution is set equal to the same RPPI
model used in Simulation 5. We calculated the same score
matching estimators as in Simulation 5 but instead of using
ui in estimation we plugged in the discrete simulated pro-
portions ûi = xi/mi .

Simulation 7: The same setting as Simulation 5 except
we replace 5.3% of the observations with the outlier ui =
(0.4, 0.3, 0.2, 0.1, 0)�.

Simulation 8: The same setting as Simulation 6 except
we replace 5.3% of the observations with the outlier ûi =
xi/mi = (0.4, 0.3, 0.2, 0.1, 0)�.

We now discuss the simulation results in Tables 4 and 5.
Thesemodels aremotivated fromDataset1.Dataset1 has two
components that are highly right skewed concentrated near
zero and three componentswith lowconcentration; see Fig. 1.
The RMSE’s are of a similar order when comparing the first
half of Table 4with the corresponding cells in the second half
of Table 4 and similarly this also occurs within Table 5. This
is not surprising becausemi is large compared with n and the
approximation ûi for ui is reasonable. Hence the estimates
are insensitive to the large numbers of zeros in ûi1 and ûi2.
When comparing Table 4 with 5 most of the corresponding
cells are fairly similar apart from c = 0 which has huge
RMSE’s in Table 5. The robustified ALR-SME with c > 0
are clearly resistant to the outliers, whereas the unweighted
estimator with c = 0 does not exhibit good resistance to
outliers. Interestingly, themost efficient estimate ofβ is given
by c = 0.7 even when there are no outliers. The efficiency
gains forβ1 andβ2 are substantial when comparing c = 0 (no
weights) to c = 0.7. So the message here is that the weighted
version of theALR-SME is valuable for improving efficiency
for estimating the components ofβ that are negative and close
to −1. In the continuous case arguably the Scealy and Wood
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Table 4 Simulation results
Dataset1 RMSE’s Parameter c = 0 c = 0.01 c = 0.7 ac = 0.01 ac = 0.000796 ac given β̂ ac = 1

Simulation 1: RPPI model (continuous)

a11 95,000 88,600 99,000 95,200 81,300 81,900 293,000

a22 6920 6440 7720 6700 5430 5460 18,100

a33 21.9 20.5 18 27.8 20.8 21.5 104

a44 18.7 17.7 16.6 22.6 16.2 16.6 75.6

a12 14,800 14,200 22,500 14,800 12,400 12,500 42,900

a13 1240 1150 974 1390 1170 1190 4600

a14 1010 963 879 953 807 833 2690

a23 276 262 272 285 242 250 706

a24 294 271 238 306 248 251 855

a34 15.3 14.7 14.7 16.4 12.4 13 53

β1 0.185 0.173 0.0685 – – 0.0685 –

β2 0.142 0.133 0.0581 – - - 0.0581 –

β3 0.264 0.255 0.245 – – 0.245 –

β4 0.22 0.214 0.202 – – 0.202 –

Simulation 2: multinomial latent variable model (discrete)

a11 57,700 55,600 85,700 97,800 97,800 98,200 253,000

a22 5540 5200 6240 8890 8890 8910 18,900

a33 16.5 15.7 15.1 36.7 36.7 37.1 100

a44 16.7 15.9 15.3 36.6 36.6 36.8 84.7

a12 12,200 11,800 14,300 17,600 17,600 17,700 43,400

a13 846 807 844 1480 1480 1490 4060

a14 876 842 803 1200 1200 1210 2530

a23 273 260 241 389 389 392 804

a24 248 231 214 417 417 418 882

a34 14.2 13.7 13.9 22.4 22.4 22.6 51.3

β1 0.162 0.153 0.0631 – – 0.0631 –

β2 0.137 0.129 0.0543 – – 0.0543 –

β3 0.25 0.243 0.235 – – 0.235 –

β4 0.214 0.209 0.197 – – 0.197 –

(2023) estimator with ac = 0.000796 is the most efficient
for estimating AL , whereas in the discrete multinomial case
the c = 0.7 estimator is arguably the most efficient for AL .

We now consider the simulation results in Tables 6 and
7. These models are motivated from Dataset2. Dataset2
has four components that are highly right skewed concen-
trated near zero and one component highly concentrated near
one; see Fig. 2. The Scealy and Wood (2023) estimators are
omitted because their manifold boundary weight functions
evaluate to zero, or very close to zero, for most datapoints in
most simulated samples. The RMSE’s are roughly of a sim-
ilar order when comparing the first half of Table 6 with the
corresponding cells in the second half of Table 6 and simi-
larly this also occurs within Table 7. This is not surprising
because mi is large compared with n and the approximation
ûi for ui is reasonable. Hence the estimates were insensitive
to the large numbers of zeros in ûi1, ûi2, ûi3 and ûi4. When

comparing Table 6 with 7 most of the corresponding cells are
fairly similar apart from c = 0 which has huge RMSE’s in
Table 7. The unweighted ALR-SME is not resistant to out-
liers, whereas the estimators with c > 0 are clearly resistant
to the outliers. Interestingly, the most efficient estimate of β

is arguably given by c = 1 or c = 1.25 even when there are
no outliers. Again the message here is that the weighted ver-
sion of the ALR-SME is valuable for improving efficiency
for estimating the components of β that are negative and
close to −1. The most efficient estimator for AL is arguably
c = 0.5 or c = 0.75.

Appendix A.5 (Supplementary Material) contains addi-
tional simulation results for dimension p = 10 and with
a broader range of outlier contaminations (4%, 12% and
45%). This simulation also confirms that the robustified
ALR-SME with c > 0 are resistant to the outliers, whereas
the unweighted estimator with c = 0 does not exhibit good
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Table 5 Simulation results
Dataset1 RMSE’s Parameter c = 0 c = 0.01 c = 0.7 ac = 0.01 ac = 0.000796 ac given β̂ ac = 1

Simulation 3: RPPI model (continuous) with outliers

a11 3,530,000 93,200 109,000 100,000 85,600 86,500 315,000

a22 3,630,000 6810 7680 7000 5710 5750 19,600

a33 1090 21.4 18.8 29.2 21.7 22.4 114

a44 2770 18.9 17.3 23.9 17.2 17.6 83.7

a12 3,620,000 15,200 23,300 15,800 13,200 13,400 46,600

a13 47,700 1200 1020 1460 1240 1250 4960

a14 120,000 1000 920 1010 850 880 2920

a23 96,400 277 278 297 255 263 771

a24 135,000 289 241 321 263 267 927

a34 1370 15.5 15.4 17.1 13 13.5 57.3

β1 19.3 0.181 0.0701 – – 0.0701 –

β2 28.9 0.137 0.06 – – 0.06 –

β3 17.6 0.264 0.256 – – 0.256 –

β4 19.2 0.224 0.211 – – 0.211 –

Simulation 4: multinomial latent variable model (discrete) with outliers

a11 3,050,000 57,200 90,800 105,000 105,000 105,000 281,000

a22 3,140,000 5500 6680 10,100 10,100 10,100 22,400

a33 1020 16.3 15.7 41.8 41.8 42.2 114

a44 2360 17 16.1 41.8 41.8 42.1 95.7

a12 3,130,000 12,300 15,600 18,900 18,900 18,900 49,400

a13 42,900 825 868 1630 1630 1650 4590

a14 93,500 880 857 1270 1270 1280 2840

a23 85,200 270 251 410 410 413 878

a24 116,000 247 225 494 494 495 1060

a34 1210 14.5 14.4 25 25 25.2 58.2

β1 16.5 0.157 0.0649 – – 0.0649 –

β2 27.2 0.132 0.0555 – – 0.0555 –

β3 16.8 0.251 0.246 – – 0.246 –

β4 16 0.22 0.206 – – 0.206 –

resistance to outliers. When there are no outliers, the ALR-
SME with c > 0 is also often more efficient than the c = 0
estimator.

8 Conclusion

We proposed a log-ratio score matching estimator that pro-
duces consistent estimates for AL and the first p−1 elements
of β for the RPPI model and the multinomial model with
RPPI latent probability vectors. This estimator

was insensitive to the huge number of zeroes often encoun-
tered in microbiome data, and even performed well when
every datapoint had a component that was zero. Our new
estimator and modelling approach does not require treating
zeros as outliers,which is an improvement on the treatment of
zeros in the standard Aitchison log-ratio approach based on
the logistic normal distribution.The robustifiedversionof our
estimator remained insensitive to zeros, improved resistance
to outliers and also improved efficiency over unweighted
ALR-SME for well-specified data. We recommend using
our estimators when there are many components, many
of which have concentrations at/near zero (i.e. many β j ,
j = 1, 2, . . . , p − 1 are close to −1).
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Table 6 Simulation results
Dataset2 RMSE’s

Parameter c = 0 c = 0.01 c = 0.25 c = 0.5 c = 0.75 c = 1 c = 1.25

Simulation 5: RPPI model (continuous)

a11 1950 1940 1670 1490 1400 1330 1840

a22 39,900 39,600 34,000 30,300 29,900 34,700 48,100

a33 4790 4750 3970 3740 4160 5110 6080

a44 122,000 120,000 97,800 92,700 101,000 128,000 252,000

a12 128,000 126,000 107,000 94,600 88,500 104,000 220,000

a13 15,300 15,200 13,000 12,000 12,500 14,900 16,000

a14 29,200 29,000 24,200 21,500 22,900 26,500 29,600

a23 84,900 84,200 70,600 63,200 60,100 61,800 68,400

a24 86,200 85,500 74,300 69,400 70,800 77,200 120,000

a34 23,300 23,100 20,400 20,300 22,700 28,100 34,900

β1 0.0807 0.0796 0.0607 0.0508 0.047 0.0462 0.0467

β2 0.0869 0.0857 0.0659 0.055 0.0496 0.0476 0.048

β3 0.125 0.123 0.0931 0.0805 0.0771 0.0786 0.0816

β4 0.197 0.193 0.145 0.126 0.123 0.123 0.129

Simulation 6: multinomial latent variable model (discrete)

a11 1840 1830 1580 1410 1300 1310 1330

a22 38,300 38,000 32,900 30,800 43,500 49,700 52,300

a33 3950 3910 3290 3360 3800 4500 5430

a44 93,400 93,500 96,000 97,300 102,000 115,000 143,000

a12 176,000 174,000 140,000 116,000 99,900 88,500 87,700

a13 12,100 12,000 10,100 9090 8660 9600 11,000

a14 24,700 24,500 20,200 18,500 17,100 18,100 19,500

a23 72,600 71,800 58,700 50,600 46,100 45,800 46,800

a24 80,700 80,000 67,200 59,800 63,700 64,700 69,200

a34 18,300 18,100 15,800 16,100 17,400 20,400 24,900

β1 0.0634 0.0625 0.0474 0.0395 0.036 0.0345 0.0345

β2 0.0642 0.0633 0.0476 0.0395 0.0357 0.0349 0.0348

β3 0.104 0.103 0.0789 0.0701 0.0681 0.0675 0.0687

β4 0.145 0.145 0.153 0.152 0.148 0.144 0.142
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Table 7 Simulation results
Dataset2 RMSE’s

Parameter c = 0 c = 0.01 c = 0.25 c = 0.5 c = 0.75 c = 1 c = 1.25

Simulation 7: RPPI model (continuous) with outliers

a11 4,500,000 2260 1950 1740 1630 1650 2490

a22 8.61e+08 75,200 65,900 60,100 58,400 62,600 82,200

a33 3,510,000 4850 4050 3890 4600 5250 6420

a44 1.24e+08 124,000 101,000 96,300 109,000 132,000 176,000

a12 6.49e+08 142,000 121,000 107,000 99,700 109,000 256,000

a13 58,600,000 16,800 14,200 13,100 13,300 15,300 17,500

a14 74,300,000 30,700 25,600 22,900 29,100 32,700 34,800

a23 6.48e+08 89,400 74,700 66,500 62,100 63,900 70,100

a24 6.53e+08 94,100 81,400 75,400 76,600 80,200 101,000

a34 35,100,000 24,000 21,100 20,900 24,600 28,500 35,800

β1 222 0.0826 0.0632 0.0529 0.0487 0.048 0.0484

β2 222 0.0888 0.0684 0.0573 0.0516 0.0496 0.0498

β3 254 0.128 0.097 0.0841 0.0805 0.0818 0.0833

β4 131 0.202 0.151 0.131 0.126 0.126 0.13

Simulation 8: multinomial latent variable model (discrete) with outliers

a11 2,930,000 2340 2030 1820 1500 1600 1800

a22 3.46e+08 62,600 52,800 46,900 56,100 59,600 61,200

a33 2,520,000 4050 3370 3340 3680 4500 5300

a44 69,800,000 95,000 97,200 98,900 104,000 116,000 143,000

a12 2.72e+08 182,000 146,000 121,000 104,000 92,300 91,100

a13 54,100,000 13,900 11,600 10,200 10,400 10,700 12,300

a14 66,200,000 25,400 20,900 18,500 17,700 19,500 20,200

a23 2.66e+08 79,700 65,200 56,200 51,600 51,200 51,700

a24 2.76e+08 84,400 70,300 62,300 68,000 70,300 72,700

a34 2.6e+07 18,600 16,100 16,000 17,200 20,700 25,100

β1 175 0.0659 0.0499 0.0415 0.0378 0.0366 0.0363

β2 131 0.0663 0.05 0.0413 0.0376 0.0367 0.0363

β3 186 0.108 0.0831 0.0731 0.0701 0.0703 0.0701

β4 107 0.148 0.155 0.153 0.148 0.145 0.142
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