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Abstract— Reservoir computing using delay systems took 

off when it was demonstrated that a single volatile memristor 

can be effectively utilized to reduce the burden of training 

recurrent neural networks, without the need for any 

interconnected reservoir nodes.  Here we demonstrate that the 

maximum impact on the learning efficiency of a ZnO/Ta2O5 

SEFET based reservoir is derived from (i) training the output 

after every pulse, (ii) device variability, and (iii) scanning the 

input image data horizontally and vertically. 

I. INTRODUCTION 

Edge computing is becoming increasingly significant 
because of its potential to reduce the amount of data 
transferred to a “cloud” from any sensor platform. The main 
challenge facing edge computation is autonomy of operation 
in terms of decision-making as well as energy consumption. 
A well-known problem of memristor-based architectures for 
embedded intelligence lies in the accuracy of computation 
even in off-chip learning. For example, it is practically 
impossible for a memristor to match the 16-64bit accuracy 
of conventional Von Neumann processors. On-chip training 
incurs high overheads in terms of hardware, sub-optimal 
fidelity, long training times and chip specific training 
processes, whereas off-chip training, when it is undertaken 
in the cloud, causes inaccuracy, when translated on a sensor 
platform with different underlying technology. The issues 
affecting memristor based platforms may be attributed to 
variability, non-linearity of devices, as well as higher 
voltages during programming. Despite this, hybrid CMOS-
memristor architectures are popular because two-terminal 
memristors can be co-integrated with ease on top of CMOS 
transistors (largely due to compatible materials/processes), 
as well as advances in 3D integration that suit the fabrication 
of 3D memristor arrays. 

In applications such as voice or gesture recognition, the 
neural networks require the same time constants and 
dynamics as their input signals, ranging from the order of 
milliseconds-seconds.  Such time scales are too slow for 
digital implementations, both in terms of hardware as well 
as AI algorithms. To address these, delay circuits have been 
demonstrated with external components in order to emulate 
a wide range of plasticity1,2. 

In this work we highlight a delay-system reservoir based 
on a three-terminal non-filamentary ZnO/Ta2O5 thin film 
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transistor 3.  The memory of the device arises via a gate 
voltage dependent diffusion of vacancies in the gate 
insulator, resulting in long delay times (milliseconds-hours). 
The memory decay can further be adjusted via the applied 
gate and drain voltages, during read and reset 4.  Operating 
the device in the off-state, minimizes the power 
consumption5. In comparison to other reported works on 
memristor based reservoirs, we have demonstrated an 
improved learning efficiency of 3%, by training the readout 
network after every applied pulse, rather than training the 
weights at the end of the measured input sequence 6.  

II. METHODOLOGY 

A. Experimental fabrication and mechanism of the 

SEFET 

Our methodology consists of using experimental data 

measured from a bottom gated TFT with an ITO gate, Ta2O5 

gate insulator (120nm-350 nm) and 40 nm ZnO as channel 

deposited via Radio Frequency sputtering. The devices are 

subjected to thermal annealing at 800 C for 24 hrs. The 

measurements from either a single or up to 3 unconnected 

devices make up the delay system reservoir and are used to 

train the readout network6.  
We refer to the TFT as a Solid Electrolyte FET (SEFET), 

because of its inherent mechanism of memory which 
involves motion of ionized oxygen vacancies within the gate 
insulator. The device ID-VG characteristics show a counter-
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Fig. 1. ID-VG characteristics of the SEFET as a 

function of scan rate (Inset shows fabricated 

device). 
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clockwise hysteresis with applied gate voltage and steep 
switching <60 mV/dec in the reverse sweep (Fig.1).  

In the forward direction, vacancies in the insulator are 
driven towards the channel, resulting in an internal electric 
field that is opposite in direction to that of the applied gate 
voltage. This build-up of positive charge constitutes an 
additional electrolytic capacitance, whose value becomes 
negative7, leading to steep switching without the 
involvement of any filamentary process unlike that in [8] or 
in ferroelectric FETs 9. Inducing an electric field opposite in 
direction to that applied is a necessary condition for the body 
factor m<1. 

A key characteristic of the device mechanism lies in a 

distinctive redox reaction in the insulator (Fig 2). Although 
we have established that the charge storage mechanism is 
more battery-controlled, rather than pseudo-capacitive 10, 
we have not yet established the origin nor the physical 
reaction. The unique negative differential resistance, can 
potentially be used to harness the device as a neuron11. 

Compared to a conventional model of a gate insulator, 
the equivalent circuit of an SEFET is represented by Figure 
2b). It consists of  an additional conductance g(dQOX/dt) in 
series with a battery, and an additional oxide capacitance 
arising from the change of surface potential, dΨs/dt related 
to the migration of the ions in the insulator 12. Both off-state 

logic in memory as well as asynchronous learning of logic 
operations of the SEFET were demonstrated. 

B. Principles of reservoir computing and delay systems. 

In view of the unique volatility of the device, on similar 

timescales as biological applications, we have explored its 
application in reservoir computing. A classical reservoir 
consists of a recurrent network of non-linear nodes with 
feedback loops, connected by fixed weights, implying that 
the burden of training is shifted to the readout function. The 
transient dynamical response of the reservoir is linearly 
combined at the readout. Due to the projection of the low 
dimensional input data onto a high dimensional space, any 
non-linear output can be linearly decoded at the readout. 
The readout weights are trained by linear or logistic 

regression, thus learning is simpler whilst avoiding 
vanishing and exploding gradients in recurrent neural 
networks.  

Three properties of the reservoir crucially influence the 
learning efficiency. (i) Separability: ie the non-linearity of 
the nodes results in a mapping of the inputs into uniquely 
separable outputs. (ii) Approximation: ie states which are 
slightly different map on to same targets (ie minimize noise) 
and (iii) Fading memory. This decides the length of time 
over which the reservoir can remember its previous state. 
Those that are in the far past can be forgotten whereas those 
nearer to the present, will affect the signal more strongly. 

 
Fig. 3. A conventional reservoir consists of a 

number of connected nodes with fixed weights. 

Only the output weights are trained in the readout, 

easing the burden of training compared to a deep 

learning network. 

 

 
Fig. 2. (a) The gate current characteristics of the SEFET 

show a unique negative differential resistance. (b)The 

equivalent model of the gate current characteristics. 

 
Fig.4. Framework of a dynamic SE-FET-based reservoir system. The input is transformed into a temporal signal 

with duration time τ via a mask and fed to the reservoir, consisting of one SE-FET device. The SE-FET response 

over time τ is selected as the reservoir output node (N) with a fixed time step . In the illustration, τ = 2 s is sampled 

every 200 ms thus 10 reservoir output nodes to be trained by the readout network with weights (Wout) using logistic 

regression. 



  

Our framework of a delay system reservoir follows 
concepts from Appeltant et al 13, who first demonstrated that 
a single nonlinear node with a fading memory of timescale 
τ, could function as an efficient reservoir. In their 
conception, multiple connected spatial nodes are replaced by 
time multiplexing a single nonlinear node that processes the 
computing states sequentially. Hence, τ is divided into N 
sequential virtual nodes of time intervals θ that are delayed 
from the output hardware node. In their representation, a 
masking function for each virtual node is randomly varied 
and represents the weights of the classical reservoir.  

Practical implementations of their approach and 
subsequent delay systems have been demonstrated with both 
CMOS based neurons14, as well as memristors 15-17, when it 
was realized that the dynamic decay of volatile memristors 
is inherently an Appeltant et al delay system reservoir. In the 
case of a digitized input, the number of sampled bits before 
which the output is fed to a reservoir represents the mask 
length. When the time step is much larger than the decay 
time, the device rapidly saturates to a state that is 
independent of previous inputs 18. As a result, the virtual 
nodes are only coupled to themselves and independent of 
other nodes. On the other hand, when the time interval θ is 
smaller than the decay time τ, the device does not have 
enough time to reach a saturated state. As a result, the virtual 
nodes can be coupled with their neighbours efficiently, 
leading to a functional “delay” RC system as shown by our 
example in (Fig 4).  

In our implementation of the SEFET based reservoir, the 
entire input data is digitized and divided into sequences (of 
length 3 or 4 bits at a time). The length of the sequence 
represents the mask length.  After each sequence, the device 
is reset by the application of a negative voltage of -5V on the 
gate to prevent saturation of the memory. The 
distinctiveness of our implementation is that a small read 
voltage is applied after each pulse at the drain terminal, 
when the gate is off, to read the drain conductance. Unlike 
previous works, we have shown that training the readout 
after every input pulse has the maximum impact to improve 
the learning efficiency which increases for a 4 bit sequence 
from 88% to 91% 6. Off-state operation makes this approach 
possible when the input is digitized. However, even in the 
case of an analogue input, the three terminal device still 
offers the potential to operate continuously with its analogue 
output and adjustable magnitude of read voltage.  

We use the measured and recorded read current values 
for training and testing the readout network offline. Only the 
weight matrix 𝑊𝑜𝑢𝑡 connecting the reservoir states to the 
output were trained using logistic regression with the 
liblinear Solver (Library for Large Linear Classification) 
from Python’s scikit-learn library (scikit-learn), which uses 
a gradient descent algorithm. 

III. RESULTS 

A. Experimental characteristics of our reservoir 

There are multiple ways in which to enhance the richness 
of our reservoir, due to the availability of the third terminal 
in the SEFET: (i) pulse frequency (ii) Read voltage 
(including negative bias values, not possible in a 
conventional two terminal memristor) (iii) Gate voltage (iv) 
Reset voltages and last but not least reading out from 

multiple devices with device variability in parallel, all of 
which affect the learning accuracy. 

Here we report the impacts of the write (Fig 5) and read 

voltages (Fig 6) on the read current.  Fig 5 shows that higher 
gate voltages have the effect of increased separation that can 
be used as quaternary states to capture more information in 

 
Fig. 6. Absolute drain current as a function of 

read voltage (VDS) and gate voltage (VGS). 

Fig. 5 (a-c). Impact of write voltage (VG) on 

the read current. 

Fig. 7. (a) Pre-processed MNIST dataset 

image of digit 6 as an example; with image 

dimension of 24 × 24 pixels, showing two 

different masks M1 and M2 digitized in 4-bits 

and 3-bits respectively. (b-c) The complete 

recorded reservoir output response of digit 6 

using masks M1 and M2.  



  

the image, a subset of which is shown in the figure.  Fig 6 
shows that both positive and negative read currents are able 
to distinguish the outputs, with a better performance at a 
negative read voltage. This could be because of the nature of 
the built-up interfacial charge that constitutes the memory of 
the device. We show that read voltages as low as 10 mV are 
still capable of memory, though 100 mV shows a much 
better separability of states.  Fig 6 also shows the output 
current of the device as a result of an arbitrary input 
analogue waveform.  

B. Performance of the Reservoir. 

We have explored both image and voice recognition19 as 
examples of applications of the SEFET reservoir. Here we 

highlight the results with image processing. The SEFET 
response of the digitized image “6”, over τ =10 and 7.5 

seconds was sampled after each  = 2.5 seconds, resulting in 
N= 4 and 3 reservoir output nodes respectively per mask. 
The overall mean recognition of 90. 63% using mask M1 and 
91.54 % using mask M2 is achieved across 7-fold cross-
validation of the test set. This result shows that with shorter 
time duration of τ =7.5s the SEFET can capture the temporal 
information better resulting into higher accuracy. 

Further improvement in accuracy is achieved by combining 
the complete recorded output response at three read voltages 
scanned both horizontally (row-wise) and vertically 
(column-wise). The increase of accuracy is due to local 
spatial correlations of the 2D image which we exploit by 
feeding sequentially in two orthogonal directions. With this 
representation of sample data, a maximum mean accuracy of 
94.64% is demonstrated as shown in Fig8. The impact of the 
various input parameters in the optimisation of the learning 
accuracy is seen in Table 1. It is seen that varying the gate 
and drain voltages has less of an impact than the inherent 
device variability.  An overall improvement of 3.5% is 
delivered by the reservoir leading to an overall efficiency of 
94.64%, the highest reported to date, for a comparable task 
of image recognition using memristors as the memory 
element.  We expect some of the limitations arise from 
digitisation of the signal. 

C. Benchmark performance Tables 

In comparing the performance of the SEFET with others 

reported in the literature in Table 2, it is observed that the 

accuracy of the voice recognition task is limited by the input 

dataset that only consists of 500 audio samples20, in 

comparison to the MNIST database consisting of 60000 

images samples. This means that learning accuracy can be 

properly tested as a function of the input variables, whereas 

in audio applications, learning efficiencies reported are > 

99% 19,22,24,25. We demonstrate the highest learning 

efficiency with our SEFET-based reservoir, and attribute it 

to a range of factors both at the device as well as system 

level implementation. 

 

IV. CONCLUSION 

A careful study of the impact of various factors affecting 

the learning accuracy of a delay-system reservoir is 

presented. The richness of the reservoir can be further 

enhanced by using analogue input rather than digitization, 

  
Fig 8. Accuracy for each fold in a 7-fold cross-

validation test. 

 

Ref. Device MNIST 

Accuracy 

NIST 

TI46 

Accuracy 

[21-

22] 

Memristor 

(WOx) 

88.1% 99.2% 

[23] Memristor 

(SiO2:Ag) 

83% - 

[24] Memristor 

(TiOx/TaOy) 

- 99.6% 

[25] Spintronic - 99.6% 

[26] Photonic ~97% - 

[6, 

19] 

SE-FET 

(ZnO/Ta2O5) 

94.44% 99.4% 

 

 
Approach Mean 

Accuracy 

 

Standard 

Deviation 

Sequenc

e Length 

Benchmark without 

any reservoir (Input 

trained by logistic 

regression) 

90.82% 

 

0.61% 

 

4-bit 

 

1 SE-FET with input 

horizontally scanned 

91.19% 0.54% 

 

3-bit 

 

3 SE-FETs with 3 gate 

voltages, input 

horizontally scanned 

92.44% 

 

0.57% 3-bit 

 

3 SEFETs with same 

gate voltage, input 

horizontally scanned 

92.97% 

 

0.52% 

 

3-bit 

 

3 SE-FETs with 3 gate 

voltages, input 

horizontally + 

vertically scanned. 

94.26% 0.46% 3-bit 

3 SE-FETs with the 

same gate voltage; 

input horizontally + 

vertically scanned 

94.44% 

 

0.42% 

 

3-bit 

 

3 SE-FETs with the 

same gate voltage but 

3 read voltages; input 

horizontally + 

vertically scanned 

(this work) 

94.64% 

 

0.39% 3-bit 

 



  

which results in loss of information. 
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