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Abstract—Implementation of accurate neural network models 

in edge applications such as wearables is limited by the hardware 

platform due to constraints of power/area. We highlight novel 

concepts in reservoir computing that rely on a volatile three 

terminal solid electrolyte thin film synaptic transistor, whose 

conductance can be controlled by the gate and drain voltages to 

enhance the richness of the reservoir and operate in the off-state. 

The proposed approach achieves an accuracy of 94% in image 

processing, significantly higher than equivalent applications of 

reservoir computing based on two-terminal memristors, primarily 

because we avoid down-sampling by training the readout after 

every pulse.   

Keywords—reservoir computing, Solid electrolyte FET, 

ZnO/Ta2O5) 

I. INTRODUCTION  

Fully integrated skin-inspired sensor systems based on 
sensor arrays, signal processing, and wireless transmission are 
of significant interest in healthcare diagnostics, prosthetics, 
motion tracking, soft robotics and AR/VR based human-
machine interfaces. To realize such all-in-one integrated flexible 
sensor systems, signal collection, processing, and wireless 
transmission modules should ideally be incorporated with the 
sensing components on the same platform [1]. Nevertheless, 
present day capability favours hybrid flexible electronics, where 
soft and flexible sensor components are integrated with ultra-
low power silicon-based CMOS chips on flexible PCBs [2], 
mainly because oxide electronics remains hampered by the lack 
of a high performing p-type transistor counterpart. Such systems 
can benefit from machine learning algorithms not just to 
minimise the amount of data stored on the sensor or transmitted 
to the cloud but also to potentially minimise the number of 
sensors required at the system level [3].  

In comparison to non-volatile memory candidates such as 
RERAM, STT-MRAM or PCM, we highlight our progress with 
a synaptic three terminal ZnO thin film transistor with a Ta2O3 
gate insulator, the Solid Electrolyte FET (SEFET) [4]. The 
device volatility makes it eminently suitable for Reservoir 
computing (RC), a branch of AI that offers a highly efficient 
framework for processing temporal inputs at a low training cost 
compared to conventional Recurrent Neural Networks (RNNs). 

II. METHODOLOGY 

A. Experimental Fabrication and Device Mechanism 

Bottom gated TFTs were fabricated on glass using 
conducting Indium Tin Oxide as the gate, 275 nm Ta2O5 as gate 
insulator and 40 nm ZnO as channel via Radio Frequency 
sputtering. The devices were subjected to thermal annealing at 
800 C for 24 hrs. Patterning of the source/drain regions and 
deposition of Al metal S/D contacts were achieved using 
standard photolithography, thermal evaporation and finally lift 
off in organic solvents. The electrical characteristics were 

measured using a Keysight B2902A SMU unit with a Desert 
Cryogenic probe station.  

The conventional ReRAM is a non-volatile and promising 
two terminal technology that is attractive because it is (i) simple 
to integrate on top of CMOS, and (ii) capable of high switching 
speed (~1ns). It relies on a filamentary process that typically 
requires a high forming voltage. The read and write operations 
occur at the same terminal resulting in typically high power 
consumption in 𝜇𝑊 −𝑚𝑊, although exceptions are reported in 
[5]. It is challenging to reliably scale a RERAM at < 0.3V, 
resulting in a trade-off between speed and operating voltage 
(common to all memory devices). The STT MRAM is also 
ideally not suited for edge computation due to high power for 
write, as well as high write disturb. A three-terminal non-volatile 
Ferroelectric RAM (FERAM) on the other hand offers 
advantages of low power by operating the device in the off state.  
However, its non-volatility implies that external RC elements 
need to be incorporated alongside the device in order to control 
the volatility in applications of reservoir computing [6].  

The SEFET is a thin film transistor, based on a non-
filamentary process. Application of a gate voltage induces 
motion of oxygen vacancies in a relatively thick Ta2O5 insulator, 
that leads to an internal electric field in the insulator, opposite in 
direction to the applied field. This is a necessary condition for 
negative capacitance, with a subthreshold slope of upto 26 
mV/decade achieved practically in our transistor during the 
reverse sweep of the gate voltage [7]. The gate current 
characteristics show a distinctive negative differential resistance 
in its characteristics [8], making it an example of an active 
memristor. The change in drain conductance, upon application 
of a gate voltage can be directly measured between the source 
and drain (S/D) terminals, but with the added benefit of 
operation when the device is off [9]). The use of  a separate 
control terminal makes the implementation of a reservoir 
efficient and straightforward compared to a two-terminal-based 
artificial neural network.  

The unique ionic migration-based switching mechanism of 
the SEFET also presents new opportunities for multiple device 
conductance states and retention time that leads to enhanced 
richness of the reservoir. The maximum conductance after 
potentiation shown in Fig.1 and the subsequent retention time 
exhibit strong linearity with the write voltage, which is crucial 
in neuromorphic applications. Since ions migrate by drift 
diffusion, the conductance and retention are determined by the  
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relative potential difference between the drain/source and the 
gate. Consequently, adjusting the read voltage can also modify 
these parameters. Applying a positive potential results in a 
higher potential on the drain/source compared to the gate, 
promoting faster decay. Conversely, using a negative read 
voltage leads to a relatively higher potential at the gate than the 
drain/source, thus enhancing the conductance and retention 
time. Fig 1 (c) shows a quaternary assignment of positive gate 
voltages to pixel values, but this can be significantly enhanced 
by further optimisation of the reading scheme. 

B. Reservoir Computing 

Our framework of the SE-FET based reservoir system is 
described in Fig. 2. In the first instance, we repeatedly use 
characteristics from a single SEFET fed by a temporal input 
pulse stream 𝑢𝑛(𝑡)  rather than multiple FETs, because of 
excellent reproducibility as highlighted in Fig 3. An actual 
hardware implementation of a reservoir with multiple SE-FETs 
(for enhanced speed), would not require interconnection, as in 
conventional software-based RC systems  because of the 
inherent short-term memory of our device [10] . A small read 
voltage of -1V after each pulse applied to the drain terminal, 
when the gate is off, is used to read the drain conductance. This 
process is repeated for all input sequences, and after each input 
sequence, a reset pulse is applied to set the device back to the 
initial state. We have shown that reading the conductance after 
every pulse, rather than down-sampling, increases the richness 
of the reservoir, leading to much higher learning efficiency than 

has been reported in reservoir computing by any comparable 
memristors to date [11]. The output response of 3 different SE-
FETs, when subjected to a subset of all 64 unique sequences, 
corresponding to quaternary rather than binary digitsis shown, 
resulting in a pool of 192 (3× 64) reservoir states in Fig. 3, where 
each sequence has 3 different recorded reservoir states due to 
device-to-device variation, which adds to the richness of the 
reservoir. Although variation can be seen in terms of current 
magnitude from device to device, all devices show the same 
trend. The reservoir states are spread non-linearly throughout the 
range of readout current ~ (0- 60 µA). This shows the ability of 
nonlinear transformation of the input signal when subjected to 
all possible input scenarios.  

We use the measured and recorded read current values for 
training and testing the readout network offline. Only the weight 
matrix 𝑊𝑜𝑢𝑡 connecting the reservoir states to the output were 
trained using logistic regression with the liblinear Solver 
(Library for Large Linear Classification) from Python’s scikit-
learn library (scikit-learn), which uses a gradient descent 
algorithm.  

We have explored image and voice recognition as examples 
of applications. For image processing, we trained our readout 
network using 60000 images from the MNIST database. For 
testing, a separate 10000 image sample set was fed into the 
reservoir.  For voice recognition the NIST TI46 database 
consisting of 500 samples of spoken digits (0-9) by 5 different 
female speakers was used. Lyon’s passive ear model was used 

 

Fig. 2. Framework and process flow of a dynamic SE-FET-based reservoir system. The pre-processed binary MNIST 
handwritten digit is fed as a sequence of 4-bit binary numbers into the SE-FET device acting as a reservoir. The role of the 
reservoir here is to map simple binary features into much richer feature sets. The output of the reservoir shows different 
magnitudes of the read current adding more level of information than just 0 and 1. The subsequent read current is measured and 
recorded after each pulse and used to train the readout network using logistic regression. This simple approach in reservoir 
computing can be used to convert any input into richer features sets before feeding into the read out network for high accuracy.  

Fig. 1. The conductance and voltage scheme of the SE-FET as the function of the device (a) write and (b) read voltage, and (c) 
Action table mapping the gate voltage to multiple pixel values.  
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to pre-process the speech before feeding into the reservoir. The 
model includes filters to divide the input into frequency 
channels, half wave rectifiers to identify the actual information 
from the filtered signal, and automated gain control to compress 
it. 

III. RESULTS 

A. Performance of the Reservoir 

Each row of the image was divided into 6 sub-sections, each 
containing 4 pixels, to allow better separation of the inputs. After 
each input sequence, a small reset pulse of -3V was applied.  The 
image was fed into the reservoir in 4-pixel sub-sections as input 
voltage pulse streams, and the output response recorded after 
each input pulse. The output corresponding to MNIST digits 5 
and 2 is shown in Fig. 4.  The difference in read current at each 
sequence number results in better classification of the digits. 

In the case of audio applications, the pre-processed spoken 
digit 0 using Lyon’s passive ear model is shown in Fig. 5 (a), 
where the lower channel number captures the higher frequency 
components and vice-versa. This allows the capture of 

frequency and amplitude of audio as essential features for speech 
classification. The complete response of the SE-FET reservoir 
corresponding to pre-process spoken digit is shown in Fig.5 (b). 
This is then used for training and testing of the readout network. 

A comparison of our work with others reported in the 
literature is indicated in Table I. Audio leads to higher accuracy 
mainly because of a limited dataset for training and testing. 
Other than photonic neural networks, our approach highlights 
higher learning accuracy for image processing.  

IV. CONCLUSIONS 

This work highlights new approaches to harness the 
variability and volatility of a TFT to generate high 
dimensionality reservoirs by read and write operations that vary 
with voltage, as well as by increasing the sampling frequency. 
The transistors are readily integrable at the BEOL and amenable 
to Compute in Memory for the implementation of data 
processing.   
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Fig. 3. Example response of 3 different SE-FET device (S1, 
S2, and S3) subjected to 64 temporal input combinations 
showing similar trends as well as device to device variability. 
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Fig. 4. Reservoir output corresponding to the MNIST image 
of digit “5” and “2” in the inset, showing the difference in 
read current value at each sequence number. Each row of the 
image is fed into the reservoir by converting it into a pulse 
stream (of 0’s and 1’s) divided into a sequence of 4 pixels 
each which are numbered from 1-140.  
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Fig. 5. (a) The pre-processed digitized spoken digit 0 by 
Lyon’s passive ear model. (b)  The complete response of the 
reservoir to spoken digit 0 adding more levels of information 
than just 0 and 1. 

TABLE I. Comparison of the SE-FET based RC systems 
with  reported literature. 


