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Abstract—Indoor location-based services rely on the avail-
ability of sufficiently accurate positioning in indoor spaces. A
popular approach to positioning relies on so-called radio maps
that contain pairs of a vector of Wi-Fi signal strength indicator
values (RSSIs), called a fingerprint, and a location label, called
a reference point (RP), in which the fingerprint was observed.
The positioning accuracy depends on the quality of the radio
maps and their fingerprints. Radio maps are often sparse, with
many pairs containing vectors missing many RSSIs as well
as RPs. Aiming to improve positioning accuracy, we present
a complete set of techniques to impute such missing values
in radio maps. We differentiate two types of missing RSSIs:
missing not at random (MNAR) and missing at random (MAR).
Specifically, we design a framework encompassing a missing RSSI
differentiator followed by a data imputer for missing values. The
differentiator identifies MARs and MNARs via clustering-based
fingerprint analysis. Missing RSSIs and RPs are then imputed
jointly by means of a novel encoder-decoder architecture that
leverages temporal dependencies in data collection as well as
correlations among fingerprints and RPs. A time-lag mechanism
is used to consider the aging of data, and a sparsity-friendly
attention mechanism is used to focus attention score calculation
on observed data. Extensive experiments with real data from two
buildings show that our proposal outperforms the alternatives
with significant advantages in terms of imputation accuracy and
indoor positioning accuracy.

I. INTRODUCTION

Indoor applications involving navigation, augmented reality,

and moving robots require sufficiently accurate indoor posi-

tioning. According to Research and Markets, the global indoor

positioning and navigation market will exceed $54 billion by

2026 [1]. While a variety of indoor positioning technolo-

gies exist, positioning based on Wi-Fi fingerprinting [26] is

popular: the ubiquity of Wi-Fi enables positioning without

the deployment of additional expensive infrastructure, and the

technology is non-intrusive to users. However, the accuracy of

Wi-Fi fingerprinting based positioning depends heavily on the

quality of the radio map data used [38], [46], [52], [55].

Wi-Fi fingerprinting entails two phases, as shown in Fig. 1.

The offline phase creates a so-called radio map that contains

pairs of a vector of Wi-Fi received signal strength indicator

values (RSSIs), called a fingerprint, and a location label, called

a reference point (RP), in which the fingerprint was observed.

An RSSI measures the signal strength of a Wi-Fi access point

(AP) [31], and is an integer value in the range of [−99, 0]
dBm. An example radio map is shown in the top-left part

of Fig. 1. The online phase localizes the users by utilizing a

location estimation algorithm (e.g., KNN [57]) that compares

the user device’s fingerprint with the radio map.

Fingerprint RP

(null,  -68,  null, …,  -76) (124, 53)

(-60, null, null, …,  null) null

⋮ ⋮

(null, -56,  null, …,  null) null

(null, null,  null, …,  -78) (144, 69)

Location 

Estimation

online fingerprint

estimated location
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Fig. 1: Fingerprinting procedure and radio maps.

To build radio maps efficiently and economically for an

indoor space, surveys are often performed by surveyors mov-

ing in the indoor space [12], [24], [31], [37], [54]. Surveyors

collect RSSIs continuously while moving along predefined

paths, as illustrated in Fig. 2. Due to fluctuation in the wireless

environment and asynchrony between the collection and RPs

(to be detailed in Section II-B), the results of walking surveys

(x1, y1)
(x5, y5)

(x8, y8)

t1 t2 t3 t4
t5

t6

t7

t8
reference point (RP)

collection point 
without an RP

survey path

room 

hallway

Fig. 2: Walking survey based data collection.

suffer from low data quality, having high rates of missing (i.e.,

percentages of nulls) RSSIs and RPs in a radio map. For

example, in the radio maps obtained from walking surveys in

two real buildings called Kaide and Wanda (to be detailed in
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Section V-A), the rates of missing RSSIs and RPs are between

85.6% and 93.7%. In other words, the radio maps are highly

sparse, having many nulls. Such nulls must be replaced

by real numbers in order for the radio map to be used by

location estimation algorithms [32], [49]. Intuitively, imputing

accurate real numbers for nulls in a radio map improves

its usability in indoor positioning. However, existing studies

employ straightforward strategies to fill-in RP nulls [18],

[21], [23] and RSSI nulls [32], [37], [49], yielding subpar

results (cf. Section V-C). Therefore, this study focuses on

improving the quality and usability of sparse radio maps by

accurately imputing missing RSSI and RP data. In doing so,

the study contends with difficult challenges.

First, two types of missing RSSIs exist. Missing Not At

Random (MNAR) RSSIs are caused by the unobservability

of the signals of APs. This typically occurs when an AP

is too far away and cannot be seen by a user’s device. In

contrast, Missing At Random (MAR) RSSIs1 result from

random events, e.g., the temporary presence of obstacles in

transmission paths or occasional loss of contact with APs [18],

[21].

An example of MAR RSSI and MNAR RSSI is shown in

Fig. 3. An AP (access point) is selected in each venue and

its deployment location is roughly within the dashed circle.

For an RP (reference point), if all fingerprints collected at that

RP have observed the selected AP, the RP is marked in red;

otherwise, some of its fingerprints have missed the selected

AP, and that RP is marked in blue. Clearly, most RPs far away

from the selected AP are blue, indicating that the selected AP

is unobservable at these RPs and the corresponding missing

events are classified as Missing Not At Random (MNAR). On

the other hand, most of the RPs near the dashed circle are red

but there are several blue RPs that sometimes miss the selected

AP’s signals. The missing events in these RPs are incidental

and should be treated as Missing At Random (MAR).

room
hallway

RP with missing RSSI
RP with observed RSSI

room
hallway
RP with missing RSSI
RP with observed RSSI

Fig. 3: Observability of a selected AP’s signals at different

reference points (RPs).

As the two types of missing RSSIs have different causes

and meanings, they should be differentiated before imputa-

tion [47]. However, neither traditional radio map completion

methods [23], [37], [45] nor general data imputers [6], [10],

[11], [13], [17], [25], [44], [56] differentiate the missing RSSI

types. The former simply assume that all missing RSSIs are

1The terms MNAR and MAR stem from literature [39], [47]. They are
applied to missing RSSI values in this work.

MNARs, while the latter treat them as MARs. We will offer

empirical evidence of the benefits of differentiation.

To differentiate MNARs and MARs, we design a clustering

based differentiator that clusters a radio map’s fingerprints,

and determines MARs and MNARs via intra-cluster analyses.

To obtain appropriate clusters, we design two clustering al-

gorithms that utilize a specialized accuracy metric and indoor

topology, respectively.

The subsequent imputation of missing values is also chal-

lenging. Following existing radio map completion studies [23],

[37], [45], we replace identified MNAR values by the value

−100 dBm, the lowest RSSI value that thus reflects the

unobservability of MNARs. However, imputing MARs and

missing RPs is not straightforward. A MAR should be im-

puted with a value in [−99, 0] dBm,2 since its value would

have been observed had the random event that caused it not

occurred. Traditional radio map completion methods impute

missing RPs using linear interpolation [37] or semi-supervised

learning [49]. General data imputation methods employ matrix

factorization [25] or chained equations [6]. However, all these

methods fall short when data sparsity is high, and they do not

consider the correlations and temporal dependencies between

RSSIs and RPs collected along a path in walking-survey based

radio map data collection. Next, time-series imputation meth-

ods [10], [11], [13], [17], [44], [56] target missing values in

feature or source sequences (e.g., multivariate time series) with

known labels. In contrast, we must contend with heterogeneous

missing values—MARs in source (or fingerprint) sequences

and missing RPs in target (or RP) sequences.

To impute missing MARs and RPs effectively for sparse

radio maps, we design an encoder-decoder based data imputer

that exploits both temporal dependencies in time series and

correlations between source and target sequences to impute

MARs in source sequences and missing RPs in target se-

quences jointly. A standard encoder-decoder is unsuitable in

this setting, due to the many missing values in both source

(fingerprint) and target (RP) sequences. The irregularity in

the absence of RSSIs results in different durations between

consecutive encoder units (see Table IV in Section IV-B),

which a standard encoder-decoder cannot handle. Further,

missing values in the input also degrades the ability of the

model’s attention mechanism at capturing the importance of

each unit. To tackle these issues, we introduce a time-lag

mechanism that considers the aging of the last observed

value when modeling the relationships between consecutive

encoder units, and we design an adapted attention mechanism

to contend with the high sparsity of input features.

We make the following major contributions.

• We differentiate missing RSSIs as MARs and MNARs.

To the best of our knowledge, we are the first to do

so. Specifically, we provide a clustering-based approach to

differentiate missing RSSIs (Section III).

• We devise a novel encoder-decoder that is capable of imput-

ing missing RSSIs and RPs jointly by exploiting temporal

2−99 dBm ≫ −100 dBm in terms of power as dBm is log-based [2].
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dependencies in fingerprint and RP sequences as well as

correlations among fingerprints and RPs. The data imputer

considers both the aging of missing values and the sparsity

of input sequences (Section IV).

• We report on extensive experiments on real data, finding

that our proposals outperform the alternatives substantially

in terms of data imputation accuracy and indoor positioning

accuracy (Section V).

Section II presents preliminaries and problem settings, Sec-

tion VI reviews related work, and Section VII concludes and

discusses future work.

II. PRELIMINARIES AND PROBLEM SETTINGS

Table I lists notations used in the paper.

TABLE I: Notation

Symbol Description

rd RSSI of the dth AP
f = (r1, r2, . . . , rD) a fingerprint of RSSIs from D APs

l = (x, y) a location or a reference point (RP)

{(fi, li) : i = 1 to N} a radio map ∈ R
N×(D+2)

M ∈ {−1, 0, 1}N×D a radio map mask matrix
bi a binary RSSI profile vector of fi

xi = bi ⊕ li a concatenated radio map sample

A. Fingerprinting based Indoor Positioning

Given D Access Points (APs), a Wi-Fi fingerprint f =
(r1, r2, . . . , rD) is a vector of one received signal strength

indicator value (RSSI) per AP as measured at a reference

point (RP), so that rd is the RSSI of the dth AP. The location

l = (x, y) of an RP is usually preselected by a surveyor. A

radio map consists of N pairs of the form, i.e., (fi, li), where

fi is the fingerprint obtained at location li.

For simplicity, we consider a single floor. In a multi-floor

setting, our proposal can be applied to each floor separately, as

studies show that it is possible to perform floor identification

with high accuracy (e.g., 99+% [53]).

As mentioned, fingerprinting based positioning has two

phases. In the offline phase, surveyors collect fingerprints and

use the collected data to create a radio map. We target the

relatively efficient data collection approach based on walking

surveys, to be detailed in Section II-B.

In the online location estimation phase, a user’s current

location is estimated by an algorithm that compares an online

fingerprint fo from the user’s device with a pre-collected radio

map. Typical location estimation algorithms are listed below.

• KNN [57] finds fo’s K nearest fingerprints in the radio map

and uses the mean of their RPs as the estimated location.

• Unlike KNN, WKNN [19] uses a weighted mean. Weights

are inversely proportional to the distances between fo and

the fingerprints in the radio map.

• Others [28] use a radio map (fingerprints as features and

RPs as labels) to train a regression model (e.g., a Random

Forest) that predicts fo’s location.

In all cases, the positioning accuracy relies heavily on the radio

map data quality.

TABLE II: Walking Survey Record Table

Time Type Measurement Time Type Measurement

t1 = 0 RP (x1, y1) t5 = 9 RP (x5, y5)
t2 = 1 RSSI 〈r1 : −70, r2 : −83, r3 : −76〉 t6 = 12 RSSI 〈r1 : −74, r5 : −80〉
t3 = 3 RSSI 〈r1 : −71, r3 : −78〉 t7 = 13 RSSI 〈r2 : −77, r5 : −82〉
t4 = 8 RSSI 〈r3 : −80, r4 : −68〉 t8 = 16 RP (x8, y8)

TABLE III: Created Radio Map

No. Radio Map Record Time

1 ((−70,−83,−76,null,null), (x1, y1)) t2
2 ((−71,null,−78,null,null),null) t3
3 ((null,null,−80,−68,null), (x5, y5)) t4
4 ((−74,−77,null,null,−81),null) t6
5 ((null,null,null,null,null), (x8, y8)) t8

B. Walking Survey based Radio Map Creation

In a walking survey [12], [24], [31], [37], [54], a surveyor

visits a sequence of preselected RPs with flexible movement

in-between each two consecutive RPs, collecting RSSIs of

APs along with corresponding collection times and then enters

these into a Walking Survey Record Table.

Fig. 2 shows an example with four survey paths. The top-

left one yields the record table in Table II. There are two types

of records, namely RP and RSSI, sorted on timestamps. The

surveyor started at RP (x1, y1) at time t1, visited RP (x5, y5)
at t5, and reached RP (x8, y8) at t8. The RSSI records capture

additional RSSI data, e.g., at time t2, RSSIs of the 1st, 2nd, and

3rd APs are −70 dBm, −83 dBm and −76 dBm, respectively.

As it is possible that the two types of records are collected

asynchronously, a pre-processing method has been widely

used [51] to create the radio map as follows.

• Step 1 merges consecutive RSSI records if their time

difference is below a threshold ǫ. The merged record uses

the earlier time, and gets its RSSIs as follows. If an AP is

in one record only, that RSSI is used. If an AP is in both

records, the average RSSI is used. Otherwise, null is used.

• Step 2 merges consecutive RSSI and RP records if their

times differ by less than ǫ. The time and RSSIs are as

produced in Step 1; the RP is copied from the RP record.

Each remaining RSSI or RP record is converted into a record

in which each missing value is set to null.

The threshold ǫ is specified by the surveyor. Setting ǫ = 1 for

Table II, we get the radio map records and times in Table III.

Though a radio map does not contain timestamps, we show

them in Table III because we use them for imputation later

on. In Step 1, RSSI records at t6 and t7 are merged into 〈r1 :
−74, r2 : −77, r3 : null, r4 : null, r5 : −81〉 at t6 = 12. In

Step 2, this new record is not merged with an RP record but is

converted to a pair ((−74,−77,null, null,−81), null).
In contrast, the RP record at t1 is merged with the RSSI record

at t2, resulting in the pair ((−70,−83,−76,null,null),
(x1, y1)). Likewise, records at t4 and t5 are merged into

((null,null, −80,−68,null), (x5, y5)). Moreover, the

RP record at t8 is converted to ((null,null, null,null,
null), (x8, y8)).

3
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Fig. 4: Framework overview.

This method generates temporally dense radio map records

that, however, may contain many RP and RSSI nulls.

C. Problem and Solution Overview

Problem (Radio Map Imputation). Given a radio map, we

impute the RSSI and RP null values in the radio map,

such that indoor positioning using this radio map yields lower

positioning errors.

As pointed out in Section I, missing RSSIs are random or

non-random, yielding Missing At Random (MAR) and Missing

Not At Random (MNAR) RSSIs. They should be differentiated

before data imputation [47]. To solve this problem, we propose

a framework (cf. Fig. 4) with two modules.

Missing RSSI Differentiator Module (Section III). Given

a radio map, this module categorizes missing RSSIs as

MNARs and MARs. Specifically, the differentiation process

(Section III-A) regards MARs as random absences of AP

signals in fingerprints and employs a clustering based approach

to identify those random absences according to the locality

of AP profiles (i.e., observability of APs). We design two

algorithms (Sections III-B and III-C) for clustering AP profiles

in different ways. The differentiation process returns the

recognized MNARs and MARs as a mask matrix, where −1
means MNAR, 0 means MAR, and 1 means an observed RSSI.

Data Imputer Module (Section IV) imputes missing RSSI

and RP values. Initially, all MNARs are assigned the value

−100 dBm. Then, a bidirectional encoder-decoder based

model called BiSIM (Section IV-A) imputes MAR and RP

nulls jointly for a sequence of radio map records from a sur-

vey path. In particular, BiSIM considers the aging of records

by applying a time-lag mechanism (Section IV-B) to sequential

radio map records. BiSIM subsequently encodes fingerprint

feature sequences and decodes the corresponding RP feature

sequences to capture correlations in a radio map record and

among sequential radio map records. BiSIM also employs

a sparsity-friendly attention mechanism (Section IV-C) to

perform weight calculation against missing values. The finger-

prints and RPs predicted sequentially by the encoder/decoder

units form the final imputed radio map records.

III. MISSING RSSI DIFFERENTIATOR

A. Differentiation Approach

In a wireless setting, identifying MNARs is non-trivial due

to the complexity of analyzing the signal transmission paths

between RPs and APs [48]. To this end, we instead identify

MARs as “unusual” RSSI missing events when comparing to

observed RSSIs in the same or similar signal environments.

We thus rely on the following hypothesis: Within a certain

small range of space, the observability of APs is similar due

to the similar signal transmission surroundings.

To verify this hypothesis, we did an exploratory analysis on

two real-world shopping malls named Kaide and Wanda that

we describe in detail in Section V-A.

First, we generate an AP profile for each observed RP by a

process called BINARIZATION. The process of BINARIZATION

is shown in Algorithm 1. We assume each RP corresponds to

one fingerprint. In case multiple fingerprints are generated for

an RP, the fingerprints are averaged into one. The process

constructs a D-dimensional binary vector bi for the RP li:

bi[d] = 1 if the dth AP is observed at li, and bi[d] = 0,

otherwise.

Algorithm 1 BINARIZATION (an RP li’s fingerprint fi)

1: binary vector bi ← 1D

2: for d = 1 to D do

3: if fi[d] is null then bi[d]← 0

4: return bi

Next, we conducted a clustering of the binarized AP

profiles. We use the widely-used K-means using Euclidean

distance3 and tune the hyperparameter K carefully. We color

the resulting clusters and visualize the RPs in Fig. 5. We see

that in most cases, the similar AP profiles (in the same cluster)

are spatially close to each other. Although some exceptions

occur due to noise (MARs) in fingerprints when generating

the AP profiles, the hypothesis holds.

room
hallway
RP

room
hallway
RP

Fig. 5: Preliminary clustering tests on real-world venues.

We thus identify MARs based on the clustering of AP

profiles. The idea is that if a value rd is missing in an AP

profile bi while an rd value is present in a certain fraction of

3We also considered Manhattan distance, but it achieved inferior results.
We thus employ Euclidean distance for K-means unless stated otherwise.
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AP profiles similar to bi in the same cluster, the missing rd is

likely to be a MAR in the fingerprint. To this end, a threshold

η is used such that a fraction higher than η indicates MARs.

Algorithm 2 formalizes the differentiator with a predefined

fraction threshold η as the input. It returns an N × D mask

matrix M (initialized in line 1), where M[i, j] is 0 if the jth
(1 ≤ j ≤ D) AP dimension of the ith fingerprint (1 ≤ i ≤ N)

in the radio map is a MAR, −1 if it is an MNAR, and

1 if it is observed. Lines 2–5 construct the sample set X
for clustering. We highlight two differences related to X in

Algorithm 2 versus the exploratory analysis: First, each sample

in X is a concatenation of the AP profile and the RP location.

This enables us to utilize prior knowledge of RP locations

to form clusters with spatially close RPs. Second, X covers

all radio map records including those with null RPs. To

this end, each null RP is interpolated linearly based on its

previously and subsequently observed RPs in the radio map.

Although imprecise, these interpolated RP positions capture

spatial proximity, which improves the clustering effectiveness.

Line 6 generates a set C of clusters by one of two clustering

algorithms (to be detailed in Sections III-B and III-C).

Lines 7–12 identify MARs in each cluster ck by considering

all its AP profiles. In particular, each AP dimension rj is

checked (line 8) to determine whether the missing of rj in ck is

unusual. If ηj, the fraction of observed rj across all samples in

ck, exceeds the threshold η, rj nulls are MARs and marked

as 0 in M. Otherwise, they are MNARs and marked as −1
(lines 9–12). Finally, M is returned.

Algorithm 2 DIFFERENTIATION (fraction threshold η)

1: mask matrix M← 1N×D

2: sample set X ← ∅

3: for each record (fi, l̂i) in the radio map do

4: xi ← BINARIZATION(fi)⊕ l̂i ⊲ l̂i is interpolated

linearly

5: add xi to X

6: C ← CLUSTERING(X)
7: for each cluster ck ∈ C do

8: for each AP dimension rj do

9: ηj ← the fraction of observed rj for all samples in

ck

10: if ηj > η then

11: mark all rj nulls within ck as 0 in M ⊲

MARs

12: else mark all rj nulls within ck as −1 in M ⊲

MNARs

13: return M

Algorithm 2 works with different clustering algorithms. Sec-

tion III-B presents DasaKM (Differentiation accuracy aware,

sampling-based K-means) to replace the manually-tuned K-

means used in the exploratory analysis. In Section III-C,

we utilize indoor topology information and devise TopoAC

(Topology-aware Agglomerative Clustering) that achieves even

better performance without hyperparameters. In Section V-B,

Algorithm 2 is evaluated experimentally with different cluster-

ing algorithms in terms of indoor positioning error. In general,

TopoAC performs better as it takes the indoor topology into

account, while DasaKM does not require any prior knowledge.

B. Algorithm DasaKM

A straightforward way of applying K-means is to use the

elbow method [33] that employs a within-cluster sum of

square metric to examine intra-cluster similarity. This method,

however, leads to subpar performance at missing RSSI differ-

entiation (see evaluations in Section V-B) as it disregards our

ultimate goal of differentiation. To address this, we propose a

more intuitive metric called differentiation accuracy (DA) that

measures the differentiation ability of the clustering result. As

the ground-truth MARs and MNARs are not known, we first

propose a ground-truth sampling procedure.
Ground-truth Sampling Procedure. It is non-trivial to gen-

erate the ground-truth mask matrix Mg by manually differ-

entiating MARs and MNARs. Thus, we modify the original

sample set X to “create” ground-truth MARs and MNARs:

• Sampling MARs. We nullify some observations in a record

and mark them as 0 in Mg. They correspond to random

RSSI missing events that are actually observable.
• Sampling MNARs. We search the indoor venue to sample a

set of adjacent RPs that cover a sufficiently large area in the

venue4. These RPs are likely to share a similar AP profile.

If such RPs all missed an AP dimension in their records,

then their corresponding missing values should be MNARs.

The relevant masks in Mg are set to −1 accordingly.

Ideally, MARs and MNARs should be sampled according

to their real distributions in the original dataset, which are,

however, unknown. Hence, to mitigate potential ground-truth

sampling biases, we propose to sample multiple ground-truth

sets using different proportions of MARs and MNARs and

measure the average accuracy on these ground-truth sets.

Moreover, we design the differentiation accuracy as a balanced

metric that is agnostic to the imbalanced proportion of the

sampled ground-truth set.
Differentiation Accuracy Metric. The design of DA is based

on the metric called balanced accuracy, which is shown to

be effective for imbalanced positive and negative samples [5],

[22]. Specifically, DA computes the true positive rate as the

fraction of positive samples (MARs) identified correctly, and

the true negative rate as the fraction of negative samples

(MNARs) identified correctly. Then, DA simply takes the

arithmetic average of the true positive rate and the true

negative rate, thus disregarding the ratio of positive and

negative ground-truth samples. The arithmetic average used

by DA implies that either class is of equal importance for

differentiation. In contrast, the conventional F-score measures

only the performance of identifying positive samples—its

precision and recall measure the fractions of correct positive

samples in the result and positive samples being returned,

respectively. Thus, the F-score is not used to implement DA.

4In our implementation, we fix the RP size to 6. It forms a sufficiently
large area and also avoids extra search cost caused by a larger size.
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Algorithm. DasaKM (Algorithm 3) first generates iteratively

a ground-truth set GSγ in a particular input proportion of sam-

pled MARs and MNARs and then removes it from the input

dataset to form Xγ (lines 1–3). Next, it goes through a set of K
values until reaching a predefined upper-bound U and selects

the optimal K̂ as the one achieving the highest DA (lines 4–

10). For each K, DA is averaged over different ground-truth

datasets (lines 6–9). Finally, the K-means clustering on the

original data X using K̂ is returned (line 11).

Algorithm 3 DASAKM (sample set X, proportion list Γ,

upper-bound U)

1: for proportion γ ∈ Γ do

2: sample a ground-truth set GSγ from X such that γ =
#(MNARs)
#(MARs)

3: Xγ ← X\ GSγ

4: maxDA← 0; K̂ ← 0
5: for K = 1 to U do

6: for γ ∈ Γ do ⊲ try different sampled datasets

7: Cγ ← KMEANS(Xγ, K)

8: DAγ ← calculate DA w.r.t Cγ and GSγ

9: D̂A← average({DAγ | γ ∈ Γ})

10: if D̂A > maxDA then K̂ ← K
11: return KMEANS(X, K̂)

DasaKM finds close samples based on inter-vector dis-

tances in a transformed signal space, which may, however,

batch samples having distinct signal transmission surroundings

in the indoor space. We have found two abnormal cases, shown

as the two resultant clusters in Fig. 6. Their RPs scatter around

the rooms, and their AP profiles may differ largely due to the

existence of the walls among them which constitute distinct

signal transmission environments.

room
hallway

cluster
RP

room
hallway

cluster
RP

Fig. 6: Result of DasaKM.

C. Algorithm TopoAC

To avoid abnormal cases and improve accuracy, we design

the Topology-aware Agglomerative Clustering (TopoAC) that

considers the topology of the indoor space.

Heuristic of Topology. If a set of RPs share similar AP pro-

files, there should not exist topological entities such as walls

and obstacles that cause non-line-of-sight signal propagation

within the closed region of these RPs. In other words, if the

convex hull of a set of RPs contains topological entities, these

RPs should not form a cluster. The basis for such a heuristic

is formalized in Algorithm 4. It takes as input a cluster c
and topological entities T in the form of a multipolygon. It

returns True if any entities exist in the convex hull CH formed

by the locations in cluster c. Otherwise, it returns False. For

example, the case in Fig. 6(a) returns True because that cluster

CH intersects polygons in T .

Algorithm 4 ENTITYEXIST (cluster c, multipolygon T )

1: location set L← {li | xi = ( fi, li) ∧ xi ∈ c}
2: CH← convex hull covering L
3: return (CH \ T 6= ∅)

Integrating the Topology Heuristic into the Algorithm. The

above topology heuristic can be integrated naturally into an

agglomerative clustering process where two adjacent clusters

are merged if the resulting cluster passes the examination of

Algorithm 4. Note that the heuristic does not work with K-

means, where it is too complex to assign samples to clusters

while satisfying the heuristic.

The integrated clustering is detailed as TopoAC in Algo-

rithm 5. Initially, each sample xi forms a single cluster ci. It

then iteratively merges the pair of clusters with the minimum

center-to-center Euclidean distance that passes the topological

examination (lines 2–4). It terminates when no clusters can be

merged. TopoAC does not require any hyperparameters.

Algorithm 5 TOPOAC (sample set X, multipolygon T )

1: initialize C ← {ci | for each xi ∈ X}
2: while ∃ cluster pair (ci, cj) s.t. !ENTITYEXIST(ci ∪ cj, T )

do

3: pick (c′i, c′j) with the minimum distance s.t.

!ENTITYEXIST(c′i ∪ c′j, T )

4: merge c′i and c′j in C

5: return C

Results of TopoAC for the settings in Fig. 6 are visualized in

Fig. 7. Each abnormal cluster in Fig. 6 is divided into smaller

clusters, each spanning an open area.

room
hallway
RP
cluster

room
hallway

cluster
RP

Fig. 7: Result of TopoAC.

IV. DATA IMPUTER

After the differentiation of missing RSSIs, the data imputer

first replaces all identified MNARs with −100 dBm and

changes their corresponding −1 in the mask matrix M to 1.
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The amended matrix, denoted as M′, contains 0s only for

MARs and 1s for MNARs and observed RSSIs.

Subsequently, the data imputer imputes MARs and RP

nulls jointly using a sequential neural network. The intuition

is that radio map records on the same survey path are tempo-

rally correlated and the fingerprint and RP in one record are

also correlated. To capture the correlations among sequential

records and in each radio map record, we propose a Bi-

directional Sequence-to-Sequence Imputation Model (BiSIM).

A. BiSIM Architecture

The BiSIM architecture is shown in Fig. 8. The encoder-

decoder [16] architecture enables BiSIM to handle heteroge-

neous input data such that fingerprint and RP data sequences

can be fed into the encoder and decoder units, respectively. In

Fig. 8, the tail of the encoders (the yellow part) is connected

to the head of the decoders (the blue part) via a hidden vector

hT = s0, meaning that the fingerprint sequence can decode the

underlying RP sequence. Note that conventional RNN-based

imputation models [11], [13], [17], [44], [56] can only handle

homogeneous data sequences and thus fall short in our setting.

In general, BiSIM receives a sequence of T radio map

records on a survey path as input and outputs a corresponding

sequence of T imputed records. Its data flow is as follows.

First, the features of the ith (1 ≤ i ≤ T) fingerprint in

the sequence is fed to an encoder unit. The input feature

consists of three components (δi, fi, mi), to be detailed in

Section IV-B. The ith encoder unit generates an imputed vector

fc
i as well as a latent vector hi to be passed to the next encoder

unit. The initial latent vector h0 is randomized.

Second, the features of the jth (1 ≤ j ≤ T) RP in the

sequence is fed to a decoder unit. As also to be introduced in

Section IV-B, its input consists of two components (lj, kj).
The jth decoder unit transforms the input features into an

imputed RP vector lc
j by utilizing the latent vector sj−1 from

its preceding decoder unit, and it generates sj that will be

passed to the next decoder unit.

As the latent vector s0 (hT) is learned from the fingerprint

sequence as a whole, we introduce a sparsity-friendly attention

mechanism to make the decoder unit aware of on which parts

of the fingerprint sequence to focus. The jth attention unit (in

pink in Fig. 8) receives the latent vectors {h1, . . . , hT} from

all encoder units and the latent vector sj−1 from the (j− 1)th
decoder unit and then generates a context vector cj that is

passed to the jth decoder unit for generating lc
j .

The internals of BiSIM, including the encoder unit, decoder

unit, and attention unit, are detailed in Section IV-C. Above,

we covered the encoding-decoding process in the forward

direction. Indeed, we also capture the backward dependencies

of the feature sequences. As shown at the bottom of Fig. 8,

we feed the feature sequences backwards to obtain another

set of imputed vectors. Our loss function takes into account

the imputed vectors obtained from both forward and backward

inputs, to be covered in Section IV-D.

TABLE IV: Input Features for BiSIM
r1 r2 r3 r4 r5 x y

m
as

k
v
ec

. m1 1 1 1 0 0 k1 1 1
m2 1 0 1 0 0 k2 0 0
m3 0 0 1 1 0 k3 1 1
m4 1 1 0 0 1 k4 0 0
m5 0 0 0 0 0 k5 1 1

ti
m

e-
la

g
v
ec

. δ1 0 0 0 0 0
δ2 3 3 3 3 3
δ3 5 8 5 8 8
δ4 9 12 4 4 12
δ5 4 4 8 8 4

B. Input Feature Preparation

Fingerprint Input Feature. Given a fingerprint fi, the corre-

sponding row in the mask matrix M′ is retrieved as mi. The

mask vector mi records which AP values of fi are nulls. In

the encoding stack, each unit’s encoding depends on the latent

vector from the previous unit. Intuitively, a latent vector from

a more distant time should exert less influence on the current

unit. To reflect this time decay effect on encoding, we intro-

duce a time-lag vector [11], [44] δi = 〈δ
1
i , . . . , δ

j
i , . . . , δD

i 〉 for

each input fingerprint fi, where

δ
j
i =





0 if i = 1

ti − ti−1 if i > 1∧m[i− 1, j] = 1

δ
j
i−1 + (ti − ti−1) if i > 1∧m[i− 1, j] = 0

(1)

In Eq. 1, each time-lag vector value δ
j
i for the first encoder

unit is set to 0 by default. For other units, we differentiate

two cases. If the previous observation is not null (i.e.,

m[i− 1, j] = 1), the value is simply the difference between the

current time and the previous time, i.e., ti − ti−1. Otherwise,

the value is the sum of (ti − ti−1) and δ
j
i−1 (the value of

the previous time). Note that only observed values from the

previous time affect the current encoder unit. In this sense, δ
j
i

in Eq. 1 keeps track of the difference between the current time

and the last observation’s time.

RP Input Feature. Given a RP lj, we generate a mask vector

kj ∈ {0, 1}2 as follows. If lj is not null then kj = 〈1, 1〉;
otherwise, kj = 〈0, 0〉. We have generated a similar time-lag

vector for lj as the decoder input. However, ablation studies

in Section V-C show such extra decoder input brings about no

gains. As time decay has been captured by encoder units, a

more complex structure may degrade model generalizability.

Example 1. Table IV shows mask vectors m1 to m5 and k1 to

k5 for Table III. Fingerprints’ time-lag vectors are generated

as follows. According to Eq. 1, δ1 is simply 〈0, 0, 0, 0, 0〉. For

f2 of time t3 = 3 in Table III, the values δ1
2 to δ3

2 all equal

to t3 − t1 = 3; the value δ4
2 equals to δ4

1 + (t3 − t1) = 3 as

δ4
1 = 0, and δ5

2 = 3 follows a similar computation as δ4
2 . For f2

of time t4 = 8 in Table III, δ1
3 = t4− t3 = 8− 3 = 5, whereas

δ2
3 = δ1

2 + (t4 − t3) = 3 + (8 − 3) = 8. The subsequent

computations are performed similarly.
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C. Internals of BiSIM

Unlike traditional encoder-decoder models, BiSIM must

handle the nulls in the network units. This is achieved by

including the mask vectors mi and kj in the computation.

Taking the forward feature input as an example, we elaborate

on each type of unit as follows.

Encoder Unit. Fig. 9 shows the ith encoder unit’s internals. It

takes fi, mi, δi, and the previous latent vector hi−1 as input,

and it generates an intermediate imputed vector fc
i and the

current latent vector hi. The formulas are given below.

f
′
i = W f hi−1 + b f (2)

f
c
i = mi ⊙ fi + (1−mi)⊙ f

′
i (3)

γi = exp
(
−max(0, Wγδi + bγ)

)
(4)

hi = σ
(
Wh(hi−1 ⊙ γi) + Uh(f

c
i ⊕mi) + bh

)
(5)

Above, matrices W∗ and U∗ and vectors b∗ in the network

units are learnable parameters. Eq. 2 is a linear operator

that maps the previous latent vector hi−1 to an estimated

fingerprint vector f′i. Eq. 3 is a combination operator that

replaces the missing value in the fingerprint fi with the cor-

responding values in the estimated fingerprint f′i. It performs

an element-wise product (i.e., ⊙) of the fingerprint vectors

and the mask vector mi. The resulting complemented vector

fc
i forms the imputation result for fi (see Eq. 13). Eq. 4

generates a scalar temporal decay factor γi based on the time-

lag vector δi. Generally speaking, a larger δi leads to a smaller

γi, capturing that the effect of a past observation is reduced

if the observation is temporally distant. Finally, the temporal

decay factor γi is applied to hi−1, and the result is passed

to a standard LSTM cell along with the imputed fingerprint

fc
i concatenated with mi. The LSTM cell’s computation is

formalized in Eq. 5, where σ(·) is the sigmoid function and

⊕ is the concatenation operator.

Decoder Unit. Shown in Fig. 10, the internal of a decoder unit

is similar to that of an encoder unit, except that no time-lag

vector is used. The formulas are given below. In particular,

the latent vector sj−1 is mapped to an estimated RP vector l′j

through a linear operator (Eq. 6). Then, l′j is used to replace

the null RP vector lj in a combination operation (Eq. 7).

Finally, the concatenation of the resulting imputed vector lc
j

and the context vector cj is passed to an LSTM cell along

with the latent vector sj−1. The LSTM cell in Eq. 8 generates

the latent vector sj for the next unit.

l
′
j = Wlsj−1 + bl (6)

l
c
j = kj ⊙ lj + (1− kj)⊙ l

′
j (7)

sj = σ
(
Wssj−1 + Us(l

c
j ⊕ cj) + bs

)
(8)

Attention Unit. As shown in Fig. 11, the jth attention

unit generates a context vector cj to help the jth decoder

selectively retrieve information from the fingerprint sequence

in decoding the corresponding RP vector. We employ the

Bahdanau attention mechanism [9], which can dynamically

capture the relationship between the current decoding moment

and each past encoding moment and then assign higher at-

tention (i.e., weights) to the more related encoding moments.

However, the original Bahdanau attention does not consider

the incompleteness in the input of an encoder unit, which may

involve noise in the resulting latent vector. To avoid this, we

design a sparsity-friendly variant of the Bahdanau attention,

by allowing only observed values’ latent vectors to participate

in the computation. Specifically in Eq. 9, we transform each

latent vector hi linearly to h′i and retain only the observed part
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of h′i by performing an element-wise product of h′i and mi.

h
′
i = Wahi + ba; h

′′
i = h

′
i ⊙mi (9)

eji = MLP(sj−1, h
′′
i ) (10)

αji = exp(eji)/ ∑
T

k=1
exp(ejk) (11)

cj = ∑
T

i=1
cji; cji = αjih

′′
i (12)

Next, Eq. 10 – 12 use the original Bahdanau attention [9]. In

particular, Eq. 10 implements an alignment function that aligns

sj−1 and h′′i into an energy factor eji based on a Multilayer

Perceptron (MLP). The energy factor reflects the importance

of the encoder’s latent vector h′′i with respect to the decoder’s

latent vector sj−1 in generating sj, the next decoder’s latent

vector. Afterwards, eji is normalized into a weight αji by a

softmax function, in Eq. 11. With such weights, we calculate

the context vector cj as a weighted sum of all h′′i s, in Eq. 12.

D. Output and Loss Function

Recall that we generate two pairs of imputed vectors, i.e.,

fc
i,≻ and lc

i,≻ for forward input features, and fc
i,≺ and lc

i,≺ for

backward input features. We average the vectors from both

directions to get the final output. Formally, we have:

l̂i = (lc
i,≻ + l

c
i,≺)/2; f̂i = (fc

i,≻ + f
c
i,≺)/2 (13)

As we lack ground-truth of the imputed results in model

training, we base our loss function on the reconstruction

errors between the observed values in the radio map and the

corresponding values predicted by the model. Intuitively, if the

model makes predictions close to the original observed values,

the model is likely to impute missing values reliably [11]. The

overall loss Lo of BiSIM is defined as follows.

Lo = Lforward + Lbackward + Lcross, where

Lforward = 1/T ·∑
T

i=1

(
L(f′i,≻, fi,≻, mi) + L(l

′
i,≻, li,≻, ki)

)

Lbackward = 1/T ·∑
T

i=1

(
L(f′i,≺, fi,≺, mi) + L(l

′
i,≺, li,≺, ki)

)

Lcross = 1/T ·∑
T

i=1

(
L(f′i,≻, f

′
i,≺, mi) + L(l

′
i,≻, l

′
i,≺, ki)

)

L(a, a
′, mask) = MSE(mask⊙ a, mask⊙ a

′)

Above, fi,≻ and li,≻ (resp. fi,≺ and li,≺) are the forward (resp.

backward) input features. The overall loss Lo consists of three

terms. The forward loss Lforward captures the reconstruction

error of the forward imputation results. The backward loss

Lbackward captures the reconstruction error of the backward

imputation results. The cross loss Lcross captures the closeness

between each pair of forward and backward imputation results.

To measure reconstruction errors, we use the predicted vector

(e.g., f′i,≻ in Eq. 2) instead of the final imputation result

(e.g., fc
i,≻) because the observed part of the final imputation

result comes directly from the input feature (e.g., fi,≻). The

function L(a, a′, mask) measures the MSE (mean square

error) between the observed parts of the input vectors a and

a′, where mask is a mask vector for retaining the original

observed values in the input vectors. In particular, mask is

m and k for fingerprints and RPs, respectively.

V. EXPERIMENTAL STUDIES

A. Experimental Settings

All algorithms are coded in Python 3.8 and run on a Linux

server with 3.60 GHz Intel Core i9 CPU and NVIDIA RTX

3080 GPU with 12 GB memory. All neural network models

are implemented using PyTorch 1.6 and trained on the GPU.

The code, datasets, and tuning details are available online [3].

Datasets and Real Indoor Venues. We use real-world indoor

positioning datasets [4] published by Microsoft Research,

which encompass walking survey records, building topological

information, and online testing data collected from shopping

malls in China. For our studies, we randomly pick two

malls: Kaide Mall and Wanda Square as Wi-Fi fingerprinting

scenarios. In addition, to gain insights into the effectiveness of

our proposals in other application scenarios and indoor venues,

we conducted additional experiments using Bluetooth finger-

printing data from a different indoor venue named Longhu.

For radio map creation, the parameter ǫ is set to 1 second

for both venues. The characteristics of the venues and radio

maps are given in Table V. Wanda features a larger radio map

with a higher fingerprint dimensionality and more fingerprints,

whereas Kaide features a higher RP density. Note that the APs

in Longhu are Bluetooth-based instead of Wi-Fi based.

TABLE V: Statistics of Venues and Created Radio Maps

Venue Kaide Wanda Longhu

Floor Area (m2) 3225.7 4458.5 6504.1

RP density (per 100 m2) 3.53 2.65 3.11
# of fingerprints 894 4104 4617
# of RPs 114 118 202
# of APs (i.e., # of fingerprint dimensions) 671 929 330

Evaluation Controls. To evaluate our overall solution frame-

work with an MNAR/MAR differentiator A and a data imputer

B, we employ an online location estimation algorithm C as

follows. Given an original radio map, we select 10% of the

records with observed RPs as testing data and use the RPs as

ground-truth locations for evaluation. Modules A and B are

combined to impute both testing data and the rest radio map

records. After that, the remaining records form a radio map

used by C to estimate the locations on the testing data5.

Given different combinations of A, B, and C, we use the

method of control variates in the evaluations. In Section V-B,

we compare different differentiators (A), fixing B to BiSIM

and C to WKNN. BiSIM and WKNN together perform best

across different differentiators, to be shown in Section V-C,

where we compare different data imputers (B) across different

combinations of A and C.

5We also apply imputation to the (online) fingerprints in the test data. Usu-
ally, complete online fingerprints are obtained by using techniques unavailable
or unaffordable for walking surveys [34].
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B. Evaluation of Differentiators

1) Setting: Methods. Based on Algorithm 2, we evalu-

ate three differentiators using different clustering methods6,

namely our DasaKM and TopoAC, and K-means based on

the elbow method for K selection [33] (denoted as ElbowKM).

For DasaKM and ElbowKM that decide K through iterations,

we set K’s upper-bound U to 200. To sample ground-truth

sets in DasaKM, we fix the number of sampled MNARs

(6960 for Kaide and 9612 for Wanda) and take the proportion

γ = #(MNARs)
#(MARs) from the list Γ = (1, 2, . . . , 20). The proportion

starts from 1 as there should be more MNARs than MARs (i.e.,

random events) in practice. We also implement two baselines

without differentiation: MAR-only treats all missing RSSIs as

MARs, and MNAR-only treats all as MNARs.

Parameters. First, we examine how differentiators are af-

fected by the sparsity of input radio maps. Specifically, we

introduce a removal ratio α ∈ {0, 5, 10, 15, 20}% such that

a fraction α of RSSIs are randomly selected and nullified in

an original radio map. As a result, the input radio map has

{85.6, 86.3, 87.0, 87.7, 88.4}% missing RSSIs for Kaide, and

{93.1, 93.4, 93.7, 94.0, 94.3}% missing RSSIs for Wanda. We

test the performance of differentiators under such high missing

rates of RSSIs in the input radio map.

Further, we test the effect of the fraction threshold η
in Algorithm 2 on the differentiators by varying it in

{0, 0.1, 0.2, 0.3}. By default, we set α = 0 and η = 0.1. In

each test, we vary one parameter and set the others to default.

Metrics. We measure the average positioning error (APE)

between all estimated locations and their ground-truth loca-

tions. Note that we do not evaluate the differentiators using

the DA metric. As DA is utilized in DasaKM (and not in the

other methods), this could lead to an unfair comparison.

2) Results: Effect of Removal Ratio α. The APE results

for different removal ratios are reported in Fig. 12. All methods

are affected negatively by a larger α since more observed val-

ues are removed, which reduces the final positioning accuracy.

Also, the three differentiator methods consistently outperform

MAR-only and MNAR-only, showing the significance of

differentiation. By distinguishing MNARs and MARs and im-

puting them differently, these methods reduce bias that exists

in MAR-only and MNAR-only methods which treat all the

missing RSSIs as the same kind in the imputation. MAR-only

always outperforms MNAR-only—MNAR-only naively fills in

all missing RSSI with −100 dBm, while MAR-only employs

the imputer to approach the true values of missing RSSIs.

Regarding the differentiators, ElbowKM performs worse than

DasaKM and TopoAC, and its performance degrades more

rapidly. Due to its inferiority, ElbowKM is excluded from

evaluations of data imputers in Section V-C.

Compared to ElbowKM, DasaKM improves the positioning

accuracy by more than 0.3 m in Kaide and by more than

0.4 m in Wanda. In practice, a positioning error of 0.3 m is

likely to localize a user mistakenly to another room behind a

wall, thus impairing the quality of downstream services such

6We omit the inferior results of other clustering methods like DBSCAN.

as indoor navigation and contact tracing. Overall, the proposed

differentiation accuracy (DA) is shown to be effective and

necessary for the K-means based missing RSSI differentiation.

Compared to DasaKM, TopoAC requires no brute-force K
search or DA measurement, while achieving better APE in all

tests. This shows the effectiveness of utilizing indoor topology

in clustering. However, in case topological information is un-

available, the proposed DasaKM provides a useful, alternative

method for missing RSSI differentiation.
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Fig. 12: The removal ratio α vs. APE.

Effect of Fraction Threshold η. The APE results are re-

ported in Fig. 13. Threshold η imposes requirements on the

identification of MARs within a cluster. The setting η = 0
means that all differentiators consider missing RSSIs as MARs

despite the clustering results; thus, they result in the same

APE as MAR-only. As η increases, the requirement for a

missing RSSI to be judged as a MAR becomes stricter, and

thus previously incorrectly identified MARs are identified as

MNARs, which initially improves the APE for differentiators

(cf. η = 0.1). However, as η increases further, more MARs are

mistakenly recognized as MNARs, which leads to worse APE

results. This can be highlighted by ElbowKM (e.g., η = 0.3
in Wanda), where the APE is even higher than that of MAR-

only. In contrast, DasaKM and TopoAC are more stable to the

increasing η thanks to their effectiveness in clustering similar

AP profiles against identification errors. If η goes up to 1,

all three differentiators would have the same APE as MNAR-

only, as all missing RSSIs are regarded as MNARs. Overall,

TopoAC outperforms the others, and η = 0.1 is the best

threshold for all differentiators.

Distribution of Differentiated Results. Based on TopoAC’s

differentiated results in the default setting, MARs account for

10.12% of all missing RSSIs in Kaide and 7.06% in Wanda.

Note that this is only an estimated result—as mentioned

earlier, the real distribution is unknown.
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Fig. 13: The threshold η vs. APE.
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C. Evaluation of Data Imputers

1) Setting: Methods. We implement two BiSIM variants:

(1) D-BiSIM combines DasaKM and BiSIM and (2) T-BiSIM

combines TopoAC and BiSIM. In addition, we include the

following data imputers: (3) Case Deletion (CD) [32] removes

all radio map records with null RPs and uses −100 dBm

for each missing RSSI; (4) Linear Interpolation (LI) [37]

differs from CD in that it interpolates the missing RPs

linearly based on their previously and subsequently observed

RPs along a path. (5) Semi-supervised Learning (SL) [49]

replaces RP interpolation in LI by a semi-supervised model

that utilizes records with observed RPs as samples for iterative

inferencing of missing RPs; (6) Multiple Imputation by

Chained Equation (MICE) [6] iteratively fills-in missing

values of a column with other columns filled with their mean

values by default; (7) Matrix Factorization (MF) [25] fills-in

missing values in the radio map based on matrix completion;

(8) Bidirectional Recurrent Imputation for Time Series

(BRITS) [11] captures time-series data dependencies based on

an RNN for imputing null RSSIs with known RPs and uses

the LI7 strategy to impute null RPs; (9) Semi-Supervised

Generative Adversarial Network (SSGAN) [44] is the state-

of-the-art GAN model for multivariate time series imputation.

Note that MICE, MF, and BRITS can also use MAR results

obtained by either DasaKM or TopoAC. These imputation

methods achieve better performance when using results from

TopoAC. Only such results are reported due to the page

limit. We divide all imputers into three categories: (1) CD, LI,

and SL are traditional imputers used in fingerprinting based

indoor positioning [32], [37], [49]; (2) MICE and MF are

autocorrelation based imputers that exploit the autocorrelation

of radio map records; and (3) BRITS, SSGAN, and *-BiSIM

are neural network imputers that learn and utilize sequential

data dependencies.

Implementation. For BRITS, SSGAN and *-BiSIM, we set

the learning rate to 0.001, the batch size to 32, and the training

epochs to 500. The latent vector lengths in encoder/decoder are

set to 64. The length T of an input feature sequence is tuned

optimally to 5. Longer sequences are sliced before encoding

and assembled after decoding. The Adam optimizer is used;

all neural networks are tuned to optimal for evaluations.

Parameters. We study how data imputers are affected by

the sparsity of radio map. We introduce a removal ratio

β ∈ {0, 10, 20, 30, 40, 50}%—the fraction β of RSSIs (or RPs)

are randomly removed in the original radio map. The removed

values serve as the ground-truth for measuring the imputation

errors (metrics to be given below). Here, β carries a different

meaning from the one (i.e., α) used in Section V-B: the

removal in this section is conducted after filling in all MNARs

with −100 dBm. In addition, we scale the original RP density

from 60% to 100% such that we only keep {60, . . . , 100}%
of RPs in the raw walking survey record table.

7BRITS cannot impute RSSIs and RPs jointly. The BRITS variants with
CD and SL to missing RPs achieve similar performance. We omit them here.

Metrics. In addition to APE, we consider the errors of the

imputed results with respect to their ground-truth. Specifically,

we use the Mean Absolute Error (MAE) for the D-dimensional

fingerprints and the Euclidean Distance for the 2-dimensional

RPs. In the subsequent reporting, we highlight the best and

second-best imputation errors in each group of experiments.

2) Results: Accuracy Comparison. We employ three loca-

tion estimation algorithms: KNN [57], WKNN [19], and ran-

dom forest (RF) [28]. Referring to Table VI, on both venues,

*-BiSIM imputers always clearly outperform the competitors

across different location estimation algorithms. This shows that

the BiSIM data imputer contributes greatly to improving the

indoor positioning accuracy.

In addition, T-BiSIM performs better than D-BiSIM, which

shows the superiority of TopoAC. Both BRITS and SSGAN

perform poorer than *-BiSIM as they fail to capture the

dependencies between fingerprints and RPs, which are handled

by the encoder-decoder in *-BiSIM. Overall, neural network

imputers perform much better than traditional imputers and

autocorrelation based imputers. The poor performance of

autocorrelation based imputers is attributed to their inability

to deal with heterogeneous radio map records.

Comparing the three location estimation algorithms, WKNN

performs best in most cases. In subsequent experiments, we

thus use WKNN for location estimation.

Imputation Time Cost Comparison. The total time costs

to impute the radio map are given in Table VII. Traditional

imputers, LI and SL, take much less time due to their sim-

plicity. MICE and MF involve iterative processes on matrices

and thus take more time. MF is the most time-consuming

imputer as the high data sparsity of matrices makes it hard

for MF to converge. Next, BRITS and *-BiSIM take time

cost comparable to MICE and MF, but achieve much higher

accuracy than all other models (cf. Table VI). SSGAN is

the slowest among neural network-based imputers as its GAN

model converges slowly [43]. The most accurate imputer, T-

BiSIM, takes two minutes more than BRITS in imputation,

while achieving an APE improvement of 1 m on both venues.

Considering that imputation is an offline procedure, employing

T-BiSIM is the most cost-effective.

Effect of Removal Ratio β. We consider the imputation

of RSSIs and RPs, respectively. Referring to Fig. 14, when

more RSSIs are removed from the radio map (due to a higher

removal ratio), each method’s MAE increases, as more missing

values have to be imputed. Still, T-BiSIM and D-BiSIM

perform the best and second best in all tests, respectively,

and their performance is affected the least by an increasing β.

The MAE of MICE and MF increase rapidly as their captured

autocorrelation becomes less reliable when more RSSIs are

removed. We disregard all traditional imputers from the RSSI

imputation comparison as they fill in −100 dBm by default.

Referring to Fig. 15, for all imputers, the Euclidean distance

error on RPs increases when more RPs are removed before

imputation. Still, *-BiSIM is the best. When 50% of RPs are

removed, T-BiSIM retains a distance of 2.59 (4.16) meters in
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TABLE VI: Overall APE Comparison (unit: meter)

location
estimation alg.

Kaide Wanda

CD LI SL MICE MF BRITS SSGAN D-BiSIM T-BiSIM CD LI SL MICE MF BRITS SSGAN D-BiSIM T-BiSIM

KNN 6.79 5.76 6.83 15.37 15.58 2.99 2.26 1.98 1.78 12.73 9.96 8.63 25.13 28.23 5.14 4.62 3.41 2.43

WKNN 6.64 5.76 7.10 15.37 15.65 3.07 2.23 1.96 1.66 12.52 9.95 8.45 27.91 28.35 4.78 3.47 3.27 2.41

RF 7.23 5.57 7.35 15.00 15.36 5.07 4.49 2.93 2.70 11.28 9.25 9.03 26.81 27.64 18.52 8.02 3.44 3.10

TABLE VII: Data Imputation Time Cost (unit: minute)

LI SL MICE MF BRITS SSGAN D-BiSIM T-BiSIM

Kaide 1.35 2.41 12.06 29.89 13.84 21.41 12.87 15.10

Wanda 2.38 5.50 22.64 67.02 23.13 33.43 22.74 25.43

TABLE VIII: APE on Bluetooth Data (unit: meter)

CD LI SL MICE MF BRITS SSGAN D-BiSIM T-BiSIM

KNN 22.65 17.99 20.42 57.41 19.57 7.52 6.67 6.28 5.95

WKNN 22.76 16.14 18.7 57.27 19.68 7.33 6.74 6.24 5.86

RF 23.21 17.69 20.7 63.37 20.36 9.49 8.31 7.13 6.29

Kaide (Wanda), so it is robust to RP data sparsity. We omit

CD, BRITS, and SSGAN for not involving RP imputation.

Effect of RP Density. Referring to Fig. 16, as fewer RPs

are removed during walking surveying, APE improves for T-

BiSIM as more RP information is available for the differentia-

tor and the imputer. In particular, the differentiator TopoAC

benefits from more RPs that results in better clustering of

AP profiles, while the imputer BiSIM captures the temporal

dependencies better if radio map records are denser. Also,

we observe that Kaide constantly achieves better APE than

Wanda. We believe this is because Kaide features denser RPs.

Ablation Study (Attention). We compare the T-BiSIM vari-

ants with (1) our adapted Bahdanau attention (Section IV-C),

(2) traditional Bahdanau attention, and (3) no attention. Re-

ferring to Fig. 17, the variant without attention performs

worst, showing the effectiveness of adding an attention unit in

the encoder-decoder architecture. Moreover, our adapted Bah-

danau attention outperforms the traditional Bahdanau attention

on both venues. This is because the adapted attention design

focuses on the observed part of the input features and generates

more accurate weights for imputation.

Ablation Study (Time-lag). Recall that Section IV-B intro-

duces a time-lag mechanism into BiSIM. We compare the

T-BiSIM variants with (1) time-lag employed in encoders

(fingerprint part) only (our design), (2) time-lag employed

in decoders (RP part) only, (3) time-lag employed in both

encoders and decoders, and (4) no time-lag employed. Fig. 18

shows that our design with time-lag fingerprint vectors per-

forms best and the variant without time-lag yields the highest

APE. Interestingly, using time-lag vectors in both encoders and

decoders degrades the performance. The possible reason is that

the extra time-lag mechanism applied to decoders complicates

the model and reduces its generalizability.

Generalizability. We conduct additional experiments with

Bluetooth fingerprinting data in a third venue (i.e., Longhu)

to study the generalizability of our proposals. The APE

results for the Bluetooth dataset from Longhu are presented
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Fig. 15: The removal ratio β vs. Euclidean distance.

in Table VIII. We see that *-BiSIM continues to outperform

the other data imputation methods with a significant advantage,

indicating that the proposed imputation framework is effective

in Bluetooth fingerprinting scenarios [27] and has the potential

for applications across diverse indoor positioning systems.

VI. RELATED WORK

Radio Map Completion. Traditional positioning meth-

ods [18], [21], [23] simply replace null RSSIs in fingerprints

with the minimum value of −100 dBm. However, this adds

errors to a radio map as missing RSSIs may be caused by

random events (e.g., temporarily blocked signal transmission)

and their actual values are not null or −100 dBm. Next,

existing studies handle missing RPs based on a simple deletion

of corresponding pairs [32], linear interpolation with contex-

tual RPs [37], or semi-supervised learning using records with

observed RPs [49]. A major issue of linear interpolation and
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Fig. 16: The RP density vs. APE.
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TABLE IX: Neural Networks for Time-series Imputation

Models Features Labels Structure Time-lag Attention

BiSIM Imputed Imputed Seq2Seq X X

GRUD [13] Imputed - RNN X -
MRNN [56] Imputed - RNN X -
BRITS [11] Imputed - RNN X -

DeepMVI [10] Imputed - Transformer - X

GRIL [17] Imputed - GRU-GNN - -

GRU-GAN [41] Imputed - GRU-GAN X -
NAOMI [40] Imputed - GRU-GAN - -
E2GAN [42] Imputed - GRU-GAN X -
SSGAN [44] Imputed - RNN-GAN X -

semi-supervised learning is that a radio map itself is sparse.

Differently, our solution differentiates MARs and MNARs and

employs a sequential neural network to impute missing RSSIs

and RPs jointly based on temporal dependencies of radio map

records and correlations between fingerprints and RPs.

Missing Data Imputation. Straightforward zero and mean

filling approaches usually yield low accuracy. Autocorrelation-

based imputation methods such as MICE [6] and MF [25],

[35] focus on homogeneous data records and do not fit in our

setting where each record consists of a signal vector and a

location. Moreover, these methods do not contend well with

high data sparsity. In addition, there exist deep learning studies

for imputating multi-variate time series data [10], [11], [13],

[17], [36], [44], [56]. For instance, Che et al. [13] incorporate

masking and time-lag mechanisms into a vanilla GRU and

impute nulls based on a weighted combination of the last

observation and a global mean. Relaxing smooth assump-

tions [13], Cao et al. [11] propose BRITS, a bidirectional

RNN that regards missing values as trainable variables and

imputes them directly by backpropagation of loss computed

on observed data. Moreover, generative adversarial networks

(GANs) [40]–[42], [44] have been used to learn the overall

distribution of a time-series dataset to impute missing values.

Table IX compares these works.

Existing neural network approaches do not apply to our

problem setting directly. First, existing models impute missing

values in feature sequences only, while our problem needs

to handle missing values in both feature sequences (missing

RSSIs) and label sequences (missing RPs). Second, existing

models either disregard labels [10], [13], [17], [56] or assume

a many-to-one setting where a time series corresponds to a

single label [10], [11], [44], while our problem is a many-to-

many setting, where each fingerprint is associated with one RP.

Third, GAN-based models assume that all nulls are MARs,

while our missing RSSIs form a mix of MARs and MNARs.

All these key differences call for a way to differentiate types

of missing RSSIs and means of handling missing values in

both features and labels jointly.

Differentiating MARs and MNARs is beneficial to missing

data imputation. Studies [39], [47], [50] point out that the

design of differentiation methods requires domain knowledge,

as data characteristics are tied closely to the specific applica-

tion. Some studies focus on differentiation methods for specific

domains, e.g., longitudinal clinical trials [30] and answer

quality in surveys [15], but such studies are inapplicable in

our data setting. To the best of our knowledge, we are the

first to study the differentiation of missing RSSI values.

Indoor Positioning Data Cleansing. Some studies [7], [8],

[14], [20], [29] use sensor deployment knowledge and time-

series dependencies to repair missing readings caused by

sensor failures. Missing values in these studies are identifiers

of sensors such as RFID readers. In addition, Lin et al. [38]

propose a semi-supervised scheme to detect and impute miss-

ing AP identifiers in raw Wi-Fi connectivity data. Our work

differs from these works in that we aim to impute numerical

values instead of AP or RFID reader identifiers. Also, our radio

map imputation targets fingerprinting-based localization at a

point level rather than at a regional level. Sun et al. [52] pro-

pose a sequential alignment-and-matching method to complete

missing RSSI values and an AP distribution-based mapping

method to amend missing and false location labels. That work

assumes that all nulls are MNARs and location labels are at

the room level. Therefore, it is not applicable to our problem.

VII. CONCLUSION

We impute missing received signal strength indicator values

(RSSIs) and reference points (RPs) in radio maps by designing

a framework encompassing a missing RSSI differentiator

and a data imputer. The clustering-based differentiator deter-

mines missing at random (MAR) and missing not at random

(MNAR), whereas the model-based imputer leverages tempo-

ral dependencies and correlations in data to impute MARs

and missing RPs. Extensive experimental studies demonstrate

that our proposed framework clearly outperforms existing

alternatives in terms of positioning and imputation accuracy.

In future work, it is of interest to design more efficient

methods that enable online imputation of fingerprints. Also, it

is relevant to integrate our separate differentiator and imputer

into a single model, thus enabling end-to-end support of

imputation processes.
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[23] Rafał Górak and Marcin Luckner. Automatic detection of missing access
points in indoor positioning system. Sensors, 18(11):3595, 2018.

[24] Dongsoo Han, Sangjae Lee, and Sunghoon Kim. KAILOS: KAIST
indoor locating system. In IPIN, pages 615–619, 2014.

[25] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H
Friedman. The elements of statistical learning: Data mining, inference,

and prediction, volume 2. 2009.
[26] Suining He and S-H Gary Chan. Wi-Fi fingerprint-based indoor

positioning: Recent advances and comparisons. IEEE Commun. Surv.

Tutor., 18(1):466–490, 2015.
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[35] Mourad Khayati, Michael Böhlen, and Johann Gamper. Memory-
efficient centroid decomposition for long time series. In ICDE, pages
100–111, 2014.

[36] Mourad Khayati, Alberto Lerner, Zakhar Tymchenko, and Philippe
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