
This is a repository copy of Monotonicity of Multi-Term Floating-Point Adders.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/209513/

Version: Accepted Version

Article:

Mikaitis, M. orcid.org/0000-0001-8706-1436 (2024) Monotonicity of Multi-Term Floating-
Point Adders. IEEE Transactions on Computers. ISSN 1557-9956

https://doi.org/10.1109/TC.2024.3371783

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Monotonicity of Multi-Term Floating-Point Adders
Mantas Mikaitis

Abstract—In the literature on algorithms for computing multi-term addition sn =
∑

n

i=1
xi in floating-point arithmetic it is often shown

that a hardware unit that has single normalization and rounding improves precision, area, latency, and power consumption, compared

with the use of standard add or fused multiply–add units. However, non-monotonicity can appear when computing sums with a

subclass of multi-term addition units, which is currently not explored in the literature. We prove that computing multi-term floating-point

addition with n ≥ 4, without normalization of intermediate quantities, can result in non-monotonicity—increasing one of the addends xi

decreases the sum sn. Summation is required in dot product and matrix multiplication operations, operations that are increasingly

appearing in the hardware of high-performance computers, and knowing where monotonicity is preserved can be of interest to the

developers and users. Non-monotonicity of summation in existent hardware devices that implement a specific class of multi-term

adders may have appeared unintentionally as a consequence of design choices that reduce circuit area and other metrics. To

demonstrate our findings we simulate non-monotonic multi-term adders in MATLAB using the CPFloat custom-precision floating-point

simulator.

Index Terms—Monotonicity, floating-point arithmetic, multi-term addition, dot product, matrix multiply.

✦

1 INTRODUCTION

A real function f is monotonically nondecreasing on an
interval [a, b] if f(x) ≤ f(y) whenever a ≤ x ≤ y ≤ b. In
other words, when the argument of a monotonic function is
increasing, the value of the function does not decrease. Sim-
ilarly for a function that is monotonic nonincreasing: when
the input argument is increasing the value of the function
is not increasing. For the multivariate functions, a function
is monotonic if it is monotonic for all the input values. For
example, f(x1, x2) is monotonic nondecreasing if for any
x1 ≤ x∗

1 and x2 ≤ x∗
2 we have f(x1, x2) ≤ f(x∗

1, x
∗
2).

Summation of a set of values is a multivariate function
that is monotonic nondecreasing (just monotonic thereafter).
Given a set of input values x1, x2, ..., xn, summation is
expressed as

f(x1, x2, ..., xn) =
n∑

i=1

xi. (1)

This function is monotonically nondecreasing by the defi-
nition of the sum: take xn = a followed by xn = a + ε,
with ε > 0. Then f(x1, x2, ..., a) = (

∑n−1
i=1 xi) + a, whereas

f(x1, x2, ..., a + ε) = (
∑n−1

i=1 xi) + a + ε > (
∑n−1

i=1 xi) + a.
Because of the commutativity of the sum this is true for all
the input arguments.

Summation of values is at the core of scientific
computing—it is required, for example, for calculating
vector–vector products, matrix–vector and matrix–matrix
multiplications, as well as in evaluating polynomials. Most
computer software works with floating-point numbers [1],
rather than exact numbers, so the addition operation is
different from the exact addition and the monotonicity of
summation should be tested rather than assumed to hold be-
cause it holds in exact arithmetic. This is similar to the prop-
erties of associativity, commutativity and distributivity—
commutativity is generally preserved, but associativity and

School of Computing, University of Leeds, Leeds, LS2 9JT, United Kingdom
(M.Mikaitis@leeds.ac.uk). Preprint version: 4th of December, 2023.

Algorithm 1.1: Given numbers S = {x1, ..., xn},
compute sn =

∑n
i=1 xi.

1 Repeat while S contains more than one element
2 From S , remove two numbers a and b
3 Put fl(a+ b) to S
4 The remaining element in S is sn

distributivity in basic arithmetic operations, when transi-
tioning from exact to floating-point arithmetic, are not [2,
Sec. 2.6].

From here we use the notation of the standard model [3,
Sec. 2.2] of addition in precision-p arithmetic:

fl(x+ y) = (x+ y)(1 + δ), |δ| ≤ u

where u = 2−p, the unit roundoff, and fl(x) refers to
normalizing (see Section 2.1) and rounding x to form a
floating-point value defined above.

Most floating-point units on general-purpose hardware
include 2-term adders that compute the sum of floating-
point numbers z = fl(a + b) which is required by the IEEE
754 standard [1, Sec. 5.4.1]. This operation includes comput-
ing a + b as though in infinite precision, normalizing the
resultant significand if required and rounding it to obtain
z [2, Sec. 7.3]. At software level, this operation is called
repeatedly to compute sums of arbitrary length (Equation 1).
A high-level algorithm [3, Sec. 4.2] is given as Algorithm 1.1.
On line 3 the operation fl(a + b) includes rounding and
normalization, which means that, when implemented this
way, overall the n-term addition performs n−1 such round-
ings and normalizations. It is safe to say that most software
is implemented this way on the hardware that includes
circuitry only for adding two numbers as per IEEE 754.

Summation of three, four or longer vectors of floating-
point values can be classified under reduction operations
which are recommended but not required by the IEEE 754

2

standard [1, Sec. 9.4]. The guideline provided by IEEE 754
for implementing them is not significantly constrained.

Addition of more than three values can be achieved by
an accumulator which takes as one of the inputs its output
from the previous stage or by using multiple 2-term adders
in series or in parallel (Figure 1). However, in hardware,
a custom design is often considered to gain in speed and
circuit area compared with the straightforward approach of
using the standard 2-term adders. Algorithm 1.2 shows the
main steps taken by most of the multi-term adders available
in the literature (see Section 2.1 for the details on floating
point). The main point to note is that normalization and
rounding are performed once, at the end, rather than after
each intermediate addition operation, as in Algorithm 1.1,
which in literature on hardware appears to be beneficial
for saving hardware resources and even increasing the
accuracy. All of this applies to dot products and matrix
multiplies, by replacing fl(a + b) with fl(fl(a × b) + c) or
the fused multiply–add (FMA) fl(a× b+ c).

Algorithm 1.2: Given numbers S = {x1, ..., xn},
with exponents {e1, ..., en} and significands
{1.m1, ..., 1.mn} compute sn =

∑n
i=1 xi.

1 Determine emax = max(e1, ..., en)
2 Align all 1.mi by shifting each emax − ei steps right
3 Perform addition of aligned significands
4 Perform normalization and rounding to form sn

As a side note, unnormalized floating-point arithmetic
appeared as early as 1958 in the work of Metropo-
lis and Ashenhurst [4]; the performance improvement com-
pared with the normalized arithmetic was noted even then.

In this paper we identify four types of implementation
for the Algorithm 1.2 and demonstrate that one class of de-
signs for multi-term addition are non-monotonic, including
various commercial hardware designs available and widely
present on the machines in the TOP5001. We also suggest
that this issue can be fixed by masking off the bottom bits
when carries occur or by using an adder from a different
class, which can be added into the future summation and
dot product hardware designs as an option.

We mentioned that non-monotonic summation in
floating-point arithmetic adds to the list of mathematical
properties that are not preserved when switching from
exact arithmetic. One other motivating point for studying
this is reproducibility of numerical computations. Bit-wise
reproducibility is not impossible on single-core CPUs that
implement the IEEE 754 standard correctly and assuming
special features such as 80-bit arithmetic are not enabled
by compilers. If we run some code in IEEE 754 software,
using basic operations of a floating-point unit (FPU), we
get one behaviour, but if we run that code in hardware
that performs summation non-monotonically, we may get
unexpected results that may be hard to explain. We now
demonstrate this with an example.

1. https://top500.org/lists/top500/list/2023/11/

1.1 An example on current hardware

For the following we use NVIDIA A100 SXM 80GB GPU
because we have access to it, however we predict that most
commercial hardware in the market would not pass the
following, and similar, tests.

A100 GPUs are equipped with matrix multiply hardware
that can perform D = A × B + C , where A ∈ R

8×8

and B ∈ R
8×4 are binary16 matrices, and C,D ∈ R

8×4

are binary32 matrices [5, p. 20]. We showed before that
matrix multipliers in this GPU have one extra bit in the
alignment of binary32 significands [6]. We will focus on
two resulting matrix elements, which perform dot prod-
ucts d11 = a11b11 + a12b21 + · · · + a18b81 + c11 and
d12 = a11b12 + a12b22 + · · · + a18b82 + c12 by most likely
implementing a 9-term adder of products. We set A,B = 1
(matrices of ones) and c11 = 33554430 and c12 = 33554432.
Computing A×B +C with the GPU matrix multipliers re-
turns a matrix that has d11 = 33554436 and d12 = 33554432,
demonstrating non-monotonic behaviour where an increase
in one of the 9 addends decreases the sum. Note that we
increased the addend by 2 and the sum was decreased by
4 since the amount we decrease by comes from the other
8 addends not contributing to the sum. Similar examples
can be constructed around any powers of two, and at the
edges of the dynamic range the quantities by which the
sum changes by decreasing one of the addends would be
larger in absolute terms. In the past we performed tests that
indicated that NVIDIA V100 and the T4 GPUs have similar
behaviour, although the V100 differs due to narrower in-
ternal accumulator in the multi-term addition [6]. NVIDIA
H100 and the AMD matrix multipliers are yet to be tested.

1.2 Multi-term floating-point addition in literature

Hardware designs of multi-term adders (Algorithm 1.2),
including those that are part of dot product and matrix
multiply hardware, can be classified into four main cate-
gories. Some of the ways to build multi-term adders are
demonstrated in the high-level diagrams of Figure 1.

We will use a term fused. From the user’s perspective, in
most cases it means that only one rounding error is incurred
in the computation, except where stated otherwise.

1.2.1 Class I: Adders that use long accumulators

One approach is to retain all the bits in the summation
of multiple values and round it once at the end. This is
advocated by Kulisch [7, Sec. 8]. See the design-space explo-
ration by Uguen and de Dinechin [8] for a detailed analysis
of the costs. An implementation by Koenig, Bachrach, and
Asanović [9] used 4288 bits internally for multiplying and
accumulating binary64 values exactly. These kind of multi-
term adders are fused because they contain only one round-
ing across the whole computation; however, keeping all of
the bits can be expensive in circuit area and latency due to
carry propagation.

While not directly a multi-term adder, the accumulator
of binary16 products by Brunie [10] uses an exact 80-bit
fixed-point internal format and therefore can be used to
implement fused dot products or matrix multiplies with a

3

+

xi

+

x1 x2

+

x3

+

x4 +

x1 x2

+

x3 x4

+

+

x1 x2 x3 x4

Fig. 1. Various methods for implementing 4-term addition in hardware. The left-most method, which is present in virtually all modern hardware, is
to iterate over an IEEE 754 floating-point addition multiple times to sum a vector of numbers x; with this method, every iteration requires a new
addition instruction to be fetched and executed. The second and third approaches demonstrate two ways to utilize multiple IEEE 754 floating-point
adders—the first one simply chains four adders while the second one creates an adder tree to reduce the latency. In these three methods, the
order of addition can be changed by rearranging the inputs. The remaining method is a black box which contains a specialized hardware design for
performing the summation, not necessarily using the operations outlined in IEEE 754 and usually enforcing a specific order of summation. The first
three approaches correspond to Class III adders and the last one encapsulates Classes I, II, and IV (Section 1.2).

single rounding error. Brunie [11] also proposed an archi-
tectural extension to CPUs which adds basic linear alge-
bra instructions that work on matrices packed in general-
purpose vector registers. The papers suggest that whether
the accumulation is exact or not depends on the precision
of input arguments and whether it is feasible to build the
hardware required to accumulate exactly.

Burgess, Goodyer, Hinds, and Lutz [12] propose High-
Precision Anchored (HPA) accumulators for accurate
floating-point summation and suggest extensions to ARM
Scalable Vector Extension (SVE) units to efficiently support
them. The HPA number format would be used for compu-
tation, while the input and output data would still be in
an IEEE 754 format, such as the binary64, which requires
conversion to and from the HPA. The main concept is
to convert a floating-point value into the HPA format by
placing different parts of the significand into different reg-
isters, based on the significance of the bits when taking into
account the exponent. HPA numbers are therefore stored
in a wider format, across multiple registers. Similar to fixed-
point representation, scaling is applied to choose the balance
between the range and precision. HPA numbers can be
configured to calculate correctly rounded sums of floating-
point values, therefore we classify this software-hardware
concept in the Class I of multi-term adders.

1.2.2 Class II: Adders that achieve correct rounding without

the use of long accumulators

Tenca [13] provides an optimized algorithm for finding
the largest exponent and choosing the amounts to shift
the significands by. The general algorithm is not changed,
however, with the main steps in Algorithm 1.2 still present.
Tenca [13] actually proposes a fused design for performing
fl(a+b+c) with only one rounding error, which complicates
the problem in that bits that are shifted out in the significand
alignment step have to be tracked. This is not what is
implemented in the hardware; for example in the A100,
which we used for the demonstration above, n−1 rounding
or truncation errors are incurred when aligning and adding
significands in limited precision.

Sohn and Swartzlander propose a series of fused op-
erators, such as a two-term dot product [14], a three-term

adder [15], and a four-term dot product [16]. A general-
ized n-term fused dot product architecture is explored by
Tao et al. [17]. The goal is to implement fused operations,
meaning that computation is not performed through stan-
dard hardware multipliers and adders joined together, but
by making a new optimized unit without the intermediate
rounding and normalization steps. Since these operators are
fused, we do not expect non-monotonicity to appear when
computing with them.

Multi-term adders also appear is in the hardware designs
of the fast Fourier transform (FFT) operation. Swartzlan-
der and Saleh [18] utilize a two-term adder for implement-
ing a fused two-term dot product while Kaivani and Ko [19]
discuss an implementation of FFT for which a five-term
floating-point adder was used. The authors mention not
using intermediate normalization and rounding blocks by
implementing a custom-design five-term adder, which in
turn allowed to reduce the area of the FFT design. This
5-term adder is fused, but it is not specified what the
accumulator’s size is and how the sticky bits are computed
to replicate the exact accumulation.

A generalized algorithm by Boldo, Gallois-
Wong, and Hillaire [20] computes a correctly rounded
dot product of a series of fixed-point numbers with varied
precisions. Instead of using a long accumulator that could
cover all possible values, the algorithm uses some number
of extra bits and round-odd rounding mode.

1.2.3 Class III: Adders that replicate software behaviour

Kim and Kim [21] propose a 4-term dot product unit with-
out the intermediate normalization of sums but with inter-
mediate rounding performed in correct places (by taking
into account where the most significant nonzero bit is) to as-
sure bit reproducible operation compared with an IEEE 754
software implementation. Even though the monotonicity is
not addressed in this work, the implementation should be
monotonic as it mimics a software implementation with the
correctly rounded elementary operations. The application
space is 3D graphics—for this a 4-term dot product in single
precision is particularly useful and this is what the authors
explored. It was noted that “the exact bit-level matching be-
tween hardware units and software models is more important in

4

3D graphics than the rounding errors to the real value.” [21,
p. 892] as the motivation for performing rounding in the
intermediate calculations.

1.2.4 Class IV: Adders that use limited precision accumu-

lator

In machine learning, Kaul et al. [22] discuss a generalized
n-term dot product hardware design. It is proposed to
split the calculation of the maximum exponent and the
differences to all the other exponents into two phases, to
reduce the critical path of the design. For the purposes of
our study, the main feature of Kaul et al. [22] design is
that it implements the behaviour of Algorithm 1.2: it aligns
the products relative to the product with the maximum
exponent, the alignment right-shifts are in limited precision
and the addition is performed with extra bits for carries,
with a single normalization step of the sum.

Lopes and Constantinides [23] have designed a config-
urable dot product unit which was tested on FPGAs for up
to 150 terms and compared it with a basic implementation
that uses a tree of multipliers and adders. The main fea-
ture of the design is that internally it uses a configurable
precision fixed-point register to accumulate the products in
before normalizing and rounding it to produce the floating-
point answer. This design follows the general structure of
Algorithm 1.2 with precision growth due to no intermediate
normalization (as the authors point out, precision growth
allows to avoid overflows), and therefore should be non-
monotonic.

Hickmann et al. [24] present a 32 × 32 matrix multi-
ply accelerator with 16-bit floating-point inputs and 32-bit
outputs. The internal accumulation of products is limited
to 37 bits. One interesting aspect of this work is that the
term fused is used, but since only the products are exact, not
the accumulation of them, this has a different meaning than
the Class I/II designs which perform everything as though
the computation is exact and rounded once. Another aspect
worth noting is that this design explicitly adds the products
aibi of the 32 × 32 dot product operation before adding
their sum to the accumulator ci in order to reduce the error
accumulation when the value in the accumulator is growing
in magnitude.

Bertaccini et al. [25] developed a three-term addition
unit for performing dot products or sums of floating-point
values of various formats. The internal accumulator is ex-
panded twice, after each addition, but it is not reported
to be an exact accumulator that would cover all right-shift
distances in the alignment of addends.

Lee et al. [26] implemented a four-core mixed-precision
AI chip which includes a three-term floating-point adder
as part of the FMMA (fused multiply–multiply–accumulate)
instruction. The multiplicands are 8-bit floating-point values
and the accumulator is 16-bit. The three-term addition is
performed in 16-bit precision followed by normalization
and rounding.

1.2.5 Adders that lie in multiple classes

Ledoux and Casas [27] proposed a hardware generator of
general matrix multiply–accumulate (GEMM) accelerators.
The generator is parameterized and provides a choice of
numerical formats and the option for setting the sizes of

internal accumulators, including making them long accu-
mulators to accumulate products exactly. Irrespective of the
setup of the accumulator, rounding and normalization from
the internal hardware numerical format to some chosen
standard format is performed at the end, once the whole dot
product has been computed. The work does not mention the
use of multi-term adders and implements GEMM accelera-
tors through the accumulation of values by iterating through
the hardware. Nevertheless, in terms of resultant numerical
behaviour, this work potentially can generate hardware of
classes I and IV listed above.

1.3 Commercial hardware

Table 1 lists hardware that is available and contains multi-
term floating-point addition, as part of dot product and
matrix operations.

Most of the companies do not provide information on
low level numerical hardware details which makes it hard
to classify them and say what numerical features, such
as rounding and monotonicity, are present. An attempt
can be made at deducing some of the features from the
numerical results that are obtained when computing on
these devices, as demonstrated with NVIDIA V100 GPUs
by Hickann and Bradford [34] and with V100, T4, and the
A100 by Fasi et al. [6]. Fasi et al. [35] have subsequently
demonstrated, through error analysis, that low level features
such as rounding can become significant when multiplying
matrices with matrix arithmetic hardware.

1.4 Our contributions

In summary, the present manuscript’s contributions to com-
puter arithmetic and beyond are three-fold:

1) We identify conditions in which floating-point oper-
ations that involve multi-term addition can be non-
monotonic—this allows to explain surprising nu-
merical results of some of the commercial hardware
and construct tests that can be used to look for non-
monotonicity of summation within the vector and
matrix operations in hardware devices. We show
that Class IV operations are not monotonic, but
Class I-III are and provide proofs in each case.

2) We demonstrate various applications that may be
impacted.

3) We propose ways to modify architectures that con-
tain units for adding multiple floating-point num-
bers in order for the computed approximations of
sums to be monotonic.

4) The paper acts as a survey of hardware designs that
are and are not monotonic, and fills an important
gap in the literature by addressing the monotonicity
of multi-term addition.

2 BACKGROUND

2.1 Floating-point representation and arithmetic

We will be using the following IEEE-compliant floating-
point systems and properties. A binary floating-point num-
ber x has the form (−1)s × m × 2e−p+1, where s is the
sign bit, p is the precision, m ∈ [0, 2p − 1] is the integer

5

TABLE 1
List of devices that contain vector or matrix arithmetic hardware, such as dot product and matrix multiply. In the last column we make a prediction
on the class of the multi-term addition based on the available information. †This number is determined only from the H100 whitepaper as no other

information is available, to the best of our knowledge, on what inputs tensor cores take at hardware layer; ∗Two 8-bit floating-point formats are
available, one with a 4-bit exponent and a 3-bit significand, and one with a 5-bit exponent and a 2-bit significand; ‡Configurable Floating Point 8-bit

data type, with programmable bias.

Year Device/Architecture Input formats Output formats Multi-term adder terms Throughput (max) Predicted class

2016 Google TPUv2 [28] bfloat16 binary32 - 46 Tflop/s Class III
2017 Google TPUv3 [28] bfloat16 binary32 - 123 Tflop/s Class III
2018 NVIDIA V100 binary16 binary32 5 125 Tflops/s Class IV
2018 Graphcore IPU1 binary16 binary32 - 125 Tflop/s -
2020 Google TPUv4i [28] bfloat16 binary32 4 138 Tflop/s Class IV
2020 Graphcore IPU2 binary16 binary32 - 250 Tflop/s -
2020 NVIDIA A100 [5] bfloat16,

binary16,
binary64,
TensorFloat-32

binary32/64 9 312 Tflop/s Class IV

2021 AMD MI250X [29] bfloat16,
binary16,
binary32,
binary64

- 5 383 Tflop/s -

2021 GroqChip [30] binary16 binary32 160 188 Tflops/s Class I or II
2022 NVIDIA H100 8-bit∗,

bfloat16,
binary16,
binary64,
TensorFloat-32

binary32, binary64 17† 1978.9 Tflop/s -

2022 Intel Ponte Vecchio [31] bfloat16,
binary16,
binary64,
TensorFloat-32

- - - -

2016-2022 Intel AMX [32] binary16 binary32 17 - Class III
2023 Tesla Dojo [33] CFP8‡, bfloat16 binary32 8 360 Tflops/s Class IV

significand, and e ∈ [emin, emax], with emin = 1 − emax,
is the integer exponent. In order for x to have a unique
representation, the number system is normalized so that the
most significant bit of m is set to 1 if |x| ≥ 2emin . Therefore,
all floating-point numbers with m ≥ 2p−1 are normalized.
Numbers below the smallest normalized number 2emin in
absolute value are called subnormal numbers, and are such
that e = emin and 0 < m < 2p−1. The set of floating-point
numbers is denoted by F.

The results of floating-point operations may not be nor-
malized and must be normalized by shifting the significand
left or right until it falls within [2p−1, 2p − 1] and adjusting
the exponent accordingly. Those numbers that cannot be
normalized in such a way, due to requiring exponents
lower than the minimum exponent value, form subnormal
numbers.

The IEEE 754 standard for floating-point arithmetic pro-
vides a limited set of requirements for reduction operations
such as multi-term addition [1, Sec. 9.4] or vector and matrix
operations: a particular order of adding the partial sums is
not required, and the use of arbitrary precision accumulator
is allowed. The standard does not specify: 1) whether this
internal format should be normalized after each addition,
2) which rounding mode should be used, and 3) when the
rounding should happen. IEEE 754-2019 [1] specifies six
rounding modes for various purposes. These requirements
provide a lot of freedom in implementation choices and can
potentially introduce a wide array of different numerical
behaviours. We identified four main classes of algorithms
that are present in literature and made their way into
various devices (Section 1.2).

2.2 Monotonicity of IEEE 754 arithmetics

In this section we demonstrate a few results about the ap-
proximation of a sum computed using the 2-term correctly
rounded addition operation [1].

2.2.1 Rounding

The default rounding mode of IEEE 754 arithmetics is
round-to-nearest ties-to-even (RN) and it can be shown that
it is monotonic. Take x, y ∈ R, x ≤ y, and two neighbouring
floating-point values in some precision-p arithmetic over F,
a and b. Assume that x and y lie between a and b such
that a ≤ x ≤ y ≤ b. Normalization of the floating-point
significand [1] followed by rounding x ∈ R to F is denoted
by fl(x) and in this case x and y can be rounded to a or b.

The definition of round-to-nearest does not allow non-
monotonic behaviour: since a ≤ x, y ≤ b and x ≤ y, fl(x) ≤
fl(y) because a = fl(y) < fl(x) = b contradicts the definition
of round-to-nearest [1].

Other IEEE 754 [1] rounding modes can also be shown
to preserve monotonicity: round-toward-zero (RZ), round-
toward-negative (RD) and round-toward-positive (RU) are
all monotonic because when they are used, fl(x) = fl(y) = a
or fl(x) = fl(y) = b.

2.2.2 Addition of two operands

Now we look at fadd(x, y) = fl(x+y) where as per IEEE 754,
x+ y is computed as though in infinite precision arithmetic
and then rounded to the nearest value in some F. Take a, b,
and c > b, s1 = a+b, and s2 = a+c, then s1 < s2. Using the
same approach as in Section 2.2.1 we can show that fl(s1) ≤

6

fl(s2) and therefore that the addition of two operands in
IEEE 754 arithmetics is also a monotonic function.

Theorem 2.1. Addition of two operands, fl(x+y) with x, y ∈ R,
computed using the addition operation as defined in the IEEE 754
is monotonic with round-to-nearest, round-towards-zero, round-
toward-negative, and round-toward-positive.

Proof. Since the addition in IEEE 754 arithmetics is first per-
formed as though in infinite precision, the computed quan-
tities will be fl(s1) and fl(s2). Since s1 < s2 the reasoning is
equivalent to that of Section 2.2.1 and fl(s1) ≤ fl(s2).

2.2.3 Addition of three or more operands

Multi-term addition in IEEE 754 floating-point arithmetics
is also monotonic. Let x1, . . . , xn ∈ R. Consider fl(fl(x1 +
x2) + x3). Take x3 = a and set s1 = fl(x1 + x2) + a. Then
take x3 = a+ε, with ε > ulp(a)/2, where ulp(a) = 2ea−p+1

is the size of the gap between a and the following floating-
point number, and set s2 = fl(x1+x2)+a+ε. Since a+ε > a
we get that s1 < s2 and we can show that fl(fl(x1+x2)+x3)
is monotonic by showing that fl(s1) ≤ fl(s2) is, using the
reasoning in Sec. 2.2.2.

This can be repeated for showing that fl(fl(· · · fl(x1 +
x2) + · · ·) + xn) is also monotonic, and when any of the
addends is increased, not necessarily the last one.

Theorem 2.2. Summation
∑n

i xi, with xi ∈ R and n ≥ 3,
computed using the floating-point addition operation as defined in
the IEEE 754 is monotonic with round-to-nearest, round-towards-
zero, round-toward-negative, and round-toward-positive, in any
ordering, such as fl(fl(· · · fl(x1 + x2) + · · ·) + xn).

Proof. First, consider computing x1+x2+· · ·+xn recursively
as fl(fl(· · · fl(x1+x2)+ · · ·)+xn). Then, consider increasing
the last addend xn. We can define the partial sum of the first
n − 1 addends as sp = fl(· · · fl(x1 + x2) · · ·) + xn−1). Then
consider two cases, s1 = fl(sp + xn) and s2 = fl(sp + (xn +
ε)). Then s1 ≤ s2 through the result in Section 2.2.1.

Secondly, we can check what can happen when any of
the addends xi for 1 ≤ i ≤ n − 1 are increased before the
sum is computed.

Take j to be the index of an addend which we modify.
Let

x′
i =

{
xi + ε, i = j,

xi, i ̸= j,

and define the partial sums as

si =

{
fl(x1), i = 1,

fl(si−1 + xi), 2 ≤ i ≤ n,

and

s′i =

{
fl(x′

1), i = 1,

fl(s′i−1 + x′
i), 2 ≤ i ≤ n.

We need to prove that s′n ≥ sn. If i < j, then s′i = si. Using
Theorem 2.2 and the fact that x′

j ≥ xj we can conclude that

s′j = fl(s′j−1 + x′
j) = fl(sj−1 + x′

j) ≥ fl(sj−1 + xj) = sj .

For j < i ≤ n, the result follows by induction:

s′i = fl(s′i−1 + x′
i) = fl(s′i−1 + xi) ≥ fl(si−1 + xi) = si.

The proof is analogous for other orderings of evaluation of
the sum.

An anonymous referee has pointed out that each order-
ing can be represented by a tree with vertices representing
rounded operations. For each ordering we need two trees,
one with and one without the ε update to one of the
addends xj . Similarly to the proof above, we can prove
monotonicity for each operation and use induction to prove
the monotonicity at all levels of the tree as the expression
is being computed. This would allow us to confirm that
s′n ≥ sn which are at the roots of the trees.

2.2.4 Multiplication

Now we look at fmul(x, y) = fl(x×y) where as per IEEE 754,
x× y is computed as though in infinite precision arithmetic
and then rounded to the nearest value in some F. Take a, b,
c > b, m1 = a × b, and m2 = a × c. If a > 0, m1 < m2

(multiplication is monotonic increasing). If a < 0 we have
m1 > m2 (monotonic decreasing).

Theorem 2.3. Multiplication of two operands, fl(x×y) with x ∈
R and y ∈ R, computed using the floating-point multiplication
operation as defined in the IEEE 754 is monotonic with round-to-
nearest, round-towards-zero, round-toward-negative, and round-
toward-positive.

Proof. Since the multiplication in IEEE 754 arithmetics is
first performed as though in infinite precision, the com-
puted quantities will be fl(m1) and fl(m2). Since m1 < m2

the reasoning is equivalent to that of Section 2.2.1 and
fl(m1) ≤ fl(m2). The proof is analogous for a < 0 which
gives fl(m1) ≥ fl(m2).

Theorem 2.4. The inner product of column vectors a, b ∈ R
n,

aT b , computed using the floating-point multiplication and ad-
dition operations as defined in IEEE 754 with round-to-nearest,
round-towards-zero, round-toward-negative, and round-toward-
positive is monotonic for any ordering, such as fl(· · · fl(fl(a1 ×
b1) + fl(a2 × b2)) + · · ·+ fl(an × bn)).

Proof. The proof follows from the monotonicity of the scalar
multiplication (Theorem 2.3) and the monotonicity of the
n-term sum (Theorem 2.2).

Since matrix multiplication is comprised of inner prod-
ucts, elementwise monotonicity results from the mono-
toncicity of the inner product operation. This proves the
monotonicity properties of the units that lie in Class III
(Section 1.2.3), which implement multi-term addition hard-
ware to mimic the behaviour of IEEE 754, equivalent to
normalizing and rounding after every operation.

2.3 Fused multi-term adders

Theorem 2.5. Summation using fused multi-term adders which
perform addition as though in infinite precision and then round
once, is monotonic.

Proof. Since fused multi-term adders compute as though the
overall sum is computed in infinite precision and rounded
once, fl(x1 + xn + · · · + xn), they are monotonic due to
monotonicity of rounding, showed in Section 2.2.1.

This proves the monotonicity properties of the Class I/II
units (Sections 1.2.1 and 1.2.2).

7

3 RESULTS

In this section we prove a few results about the Class IV
multi-term floating-point adders (Section 1.2.4).

3.1 Modified IEEE 754 arithmetics: addition without

normalization

We need a modified floating-point addition model to de-
scribe Class IV multi-term addition units with precision
growth. We take the normalized significand of a floating-
point number to be 2p−1 ≤ m < 2p [1]. In the binary
representation of m the binary point is defined to be be-
tween the first and second left-most bits of m [1]. We now
consider a modified version of IEEE 754 addition operation
without this constraint, meaning that the normalization step
in the addition is not performed. Specifically, we will focus
on the normalization that requires the right-shift of the
significand by one step (Figure 2). Namely, instead of having
one bit to the left of the binary point we assume there are
multiple bits for carries to propagate when the result of the
partial summation reaches or crosses the powers of two.
Equivalently, we can keep the normalization but add one
bit of precision if the sum reaches the next power of two.

Take a, b ∈ R. If |a| < |b| swap them so that in general
we assure |a| ≥ |b|. Define t = 21+⌊log

2
|a|⌋: this finds the

absolute value of the power of two nearest to |a| with
|a| < |t|. Then the adder with precision increase (which
describes an adder without the right-shift normalization)
can be defined as

flr(a+ b) =

{
flp(a+ b) if |a+ b| < t,

flp+1(a+ b) if |a+ b| ≥ t.
(2)

When we use this adder multiple times, for example to
compute flr(flr(x1 + x2) + x3) any precision increase in
the first adder is propagated into the next adder. Therefore
this expression can grow precision from p to p + 1, while n
additions could grow precision from p to p + ⌈log2 n⌉—we
call this precision growth after each addition in a multi-term
summation a gradual precision growth. In practice the final
result may also be rounded to some desired target precision:
fl(flr(x1 + x2)), fl(flr(flr(x1 + x2) + x3)), and so on. As an
aside, this double rounding can cause issues with accuracy
of the final result [36], [37], but this is not the cause of the
non-monotonicity and is not addressed further in this paper.
This model of addition does not model the lack of left-shift
normalization (Figure 2); it is not required for the purposes
of this article.

A similar device was used by Ashenhurst and Metropo-
lis [38, p. 418] for error analysis of unnormalized floating-
point arithmetic.

3.2 Monotonicity of the modified addition

It can be shown using the similar reasoning as in Section 2.2
that fl(flr(x+y)) and fl(flr(flr(x1+x2)+x3)) are monotonic.

Theorem 3.1. Addition of two operands, flr(x+ y) with x ∈ R

and y ∈ R, is monotonic with round-to-nearest, round-towards-
zero, round-toward-negative, and round-toward-positive.

Proof. First, if the internal adder does not grow precision,
the final rounding does not have any effect and the summa-
tions are monotonic as shown in Section 2.2. Let us consider

the monotonicity of fl(flr(x+ y)) when the precision grows
by one bit. Take s1 = flr(a+b) and s2 = flr(a+c) with c > b.
Due to monotonicity of rounding, s1 ≤ s2, and therefore
fl(s1) ≤ fl(s2).

Theorem 3.2. Addition of three operands, flr(flr(x1 + x2) +
x3) with xi ∈ R, is non-monotonic with round-to-nearest,
round-towards-zero, and round-toward-negative (xi > 0) or
round-toward-positive (xi < 0), except if the final rounding
fl(flr(flr(x1 + x2) + x3)) to the starting precision is performed.

Proof. Take a, b, and c where b is a power of two, a is the
floating-point number preceding b, and c is the floating-
point number following b, such that a < b < c. We
consider positive values, but the proof for negative values
is analogous. Also, take ε = c−b

2
. Then, flr(b + ε) = b

with RN, RD, and RZ, as is flr(flr(b + ε) + ε) = b.
However, flr(a + ε) = b and precision grows by one bit.
Due to precision growth, flr(flr(a + ε) + ε) > b. Therefore
monotonicity is not preserved. However, the final rounding
fl(flr(flr(a + ε) + ε)) = b and overall the monotonicity is
preserved. With RU monotonicity is present even without
the final rounding.

However, as we now show, a sum that includes n > 3
terms computed with non-normalized additions modelled
by Equation 2 can be non-monotonic in general.

Theorem 3.3. Summation flr(· · · flr(x1+x2)+· · ·)+xn), with
xi ∈ R and n ≥ 4 is not monotonic with round-to-nearest, round-
towards-zero, and round-toward-negative (xi > 0) or round-
toward-positive (xi < 0), with and without the final rounding
to the starting precision.

Proof. Take three consecutive positive floating-point values
in some precision-p arithmetic, a, b, and c with b a power
of two. Then consider evaluating a 4-term summation
flr(flr(flr(x + ε) + ε) + ε) with x, ε > 0 (similar example
can be shown for x, ε < 0). In precision-p arithmetic, with
round to nearest ties to even, we can show that flr(b+ε) = b
for ε ≤ (c − b)/2, while in precision-(p + 1) arithmetic
flr(b+ε) = b for ε ≤ (c−b)/4. Also, in precision-p arithmetic
a+ (c− b)/2 = b.

Take ε = (c− b)/2 and consider two cases.

1) x = b, then flr(flr(flr(b + ε) + ε) + ε) = b (all in
precision-p).

2) x = a, then the first addition flr(a + ε) = b (and
precision increases to p+1 since b is a power of two).
Following that, the second addition flr(b+ε) = b+ε
as well as the third addition flr(b+ ε+ ε) = c (since
we are in precision-(p+ 1)).

Since the sum evaluates to b when x = b and to c when x =
a < b, we have shown that the 4-term sum in this modified
arithmetic is non-monotonic. The final rounding would not
change the result because fl(flr(b + ε + ε)) = c since 2ε is a
value stored in the bits to the left of the rounding point.

Corollary 3.3.1. The inner product of vectors a, b ∈ R
n,

fl(· · · flr(fl(a1×b1)+fl(a2×b2))+ · · ·+fl(an×bn)) for n ≥ 4,
with round-to-nearest, round-toward-zero, and round-toward-
negative (ai × bi > 0) or round-toward-positive (ai × bi < 0) is
non-monotonic.

8

1.0101+ 1.0000
10.0101

Normalization

1.00101

Rounding

1.0010

1.0010+ 0.10001Shift by 1

1.10101

Round.

1.1010

IEEE 754

No norm.

10.0101

No round.

10.0101

10.0101+ 1.0001

11.0110

Norm.

1.10110

Round.

1.1011

No intermediate
right normalization

1.0001− 0.11110
0.0010

Norm.

1.0000

1.0000+
Shift by 2 0.0100

1.0100

IEEE 754

No norm.

0.0010

0.0010+ Shifted by 5 at start0.00001

0.0010

Norm.

1.000

No intermediate
left normalization

Fig. 2. Example summation of three precision-p numbers (significands showed) in IEEE 754 arithmetic and a Class IV multi-term adder without the
intermediate normalization and rounding. In the multi-term adder the carry bits on the left are kept but the bits past precision p in the fraction are
discarded; the normalization and rounding steps are performed at the end, after all the addition operations have been completed. We take p = 5. On
the left is the case in which the significand grows and requires a right-shift to be normalized. On the right is the case with a significant cancellation [2,
p. 242] which requires multiple left-shifts to normalize. Notice that the former improves the accuracy of the second addition operation, while the
latter makes it worse for the multi-term adder compared with the sum computed using IEEE 754 2-term addition operations. IEEE 754 arithmetic
uses round-to-nearest even-on-ties in this example. The monotonicity issue is caused by the lack of right-shift normalization and Equation 2 models
the adder that lacks only this normalization in order to simplify.

Proof. Set all elements of b to 1. Then the proof of Theo-
rem 3.3 concludes this proof.

Corollary 3.3.2. Matrix-vector multiplication Ax and matrix-
matrix multiplication AB, where A ∈ R

m×n, x ∈ R
n,

B ∈ R
n×l, n ≥ 4, with round-to-nearest, round-toward-zero,

and round-toward-negative (aik × bkj > 0) or round-toward-
positive (aik × bkj < 0) are element-wise non-monotonic.

Proof. Each element of the output vector or matrix is com-
puted by the inner product.

3.3 Impact of the order of addition

Class IV multi-term adders align all input significands rel-
ative to the largest magnitude addend. This is performed
so that all the significands can be right-shifted, with lower
order bits dropped or rounded. If the alignments were
performed relative to an addend of arbitrary choice, shifting
both to the left and right would be required. When the
shifts are to the left, shifted bits cannot be dropped and
would have to be preserved, which would introduce a high
hardware cost similar to Class I/II adders. As many bits
from the left shifts would have to be preserved as the highest
difference between the exponents of addends.

After the significands are aligned relative to the largest
magnitude addend’s exponent, if there is no normalization
of intermediate sums, the addition acts like the addition of
fixed-point values and is associative; the order of perform-
ing additions in such a method will not impact the final

result. Whether all the addends are added in series or in
parallel also does not have any impact on the final result.

When adding a series of positive floating-point values,
doing so in an increasing rather than a decreasing order
in absolute value reduces the worst-case error bound [3,
Sec. 4.2]; this ordering may not reduce the actual error [39,
Sec. 2]. When considering both positive and negative num-
bers, the decreasing order can yield better accuracy in the
face of cancellation [39, Sec. 2]. However, the hardware
starts at the largest magnitude addend, as discussed above;
therefore it can be interesting to check the accuracy of the
summation, which we do in the following section. Note that
that when there is no intermediate normalization imple-
mented, the addition is in effect growing precision, which
may improve the accuracy.

4 NUMERICAL EXPERIMENTS

We have simulated the Class IV multi-term adders with the
gradual precision growth in MATLAB, using the custom
precision simulator CPFloat [40]. The code for reproducing
the results is available2.

4.1 Order of addends and associativity

In Figure 3 we plot relative errors
|sn−ŝn|

sn
for adding

n floating-point values in binary16 arithmetic (ŝn), with

2. https://github.com/north-numerical-computing/
multi-operand-add-monotonicity

9

0 0.5 1 1.5

·104

0

0.2

0.4

0.6

0.8

n

|s
−
ŝ
|

s

4-term adder

0 0.5 1 1.5

·104

0

0.2

0.4

0.6

0.8

64-term adder

0 0.5 1 1.5

·104

0

0.2

0.4

0.6

0.8

512-term adder

0 0.5 1 1.5

·104

0

0.2

0.4

0.6

0.8

1024-term adder

Inc. order Dec. order Use of multi-term adder

Fig. 3. Summation of positive random binary16 vectors of increasing length. Three summation algorithms are used: recursive summation in
increasing order of magnitude using the binary16 IEEE 754 arithmetic, recursive summation in decreasing order of magnitude using the binary16
IEEE 754 arithmetic, and recursive blocking summation using Class IV multi-term adders of various sizes. Relative errors are measured by
comparing with the summation of the same values in binary64 arithmetic.

p = 11 and emax = 15, compared with the sum in binary64
arithmetic (sn). The addends are pseudo-random numbers
generated in MATLAB using the mrg32k3a random number
generator with a seed of 500, in the range (0, 0.001). We
vary n and perform summations with recursive summation
algorithm with addends in the decreasing and increasing
orders, as well as in the original order with the multi-term
adders with terms 4, 64, 512, and 1024. As expected, the
decreasing ordering results in the largest errors. In most
cases, multi-term adders are worse or very close to recursive
summation with increasing ordering of addends. However,
with the 1024-term adder, sums become more accurate. This
can be explained through precision growth—with the larger
adders there is a possibility for more precision growth,
which improves accuracy. In this experiment we observed
precision to grow to the total of 19 bits, from the default 11.

In test_associativity.m we generated a vector of
64 pseudo-random binary16 values, randomly permuted
them 104 times and each time computed the sum in IEEE
754 arithmetic and the model of a 64-term Class IV adder.
Checking the range of computed sums we found that it
is non-zero for the IEEE 754 arithmetic and zero for the
64-term Class IV adder, confirming non-associativity and
associativity, respectively.

4.2 Monotonicity

For the purposes of demonstrating non-monotonicity of the
Class IV adders, we compute

fl(· · · fl(x1 + x2) + · · ·) + xn)

and
fl(flr(· · · flr(x1 + x2) + · · ·) + xn))

in three small floating-point systems: p = 3, emax = 3;
p = 4, emax = 3; and p = 5, emax = 4. We construct
the sum for severe non-monotonicity to appear, as follows.
First, we set all xi = 0.25 and then vary x1 by changing
it to the adjacent floating-point value towards +∞ until all
representable values are covered. On each iteration we sum
the values xi with the two different addition models, the
multi-term adder with precision growth (Class IV) and the
IEEE 754 adder with normalization and rounding after each
addition operation (Class III). We report the value of the sum

as well as the relative error compared with the same sum
performed in binary64 arithmetic. The results are plotted in
Figure 4.

First, consider the first column of diagrams in Figure 4.
In the top diagram, we see that from the beginning the sum
saturates to some quantity and for a while stagnates with
the IEEE 754 arithmetic. Relative error starts increasing.
When the sum reaches this point, all remaining addends
(set to 0.25) are rounded down and do not contribute to the
sum. With the multi-term adder this does not occur because
precision grows on powers of two, allowing the sum to
keep changing as x1 is being increased. At a certain point,
when x1 crosses the value at which the sum stagnates, the
overall value of the sum becomes x1 and both arithmetics
align. At the beginning of this, non-monotonicity appears in
the multi-term addition. As precision is increased (rows of
the matrix of diagrams in Figure 4), the point at which the
IEEE 754 stagnates, and the point at which the multi-term
addition shows non-monotonicity, moves to higher values
of the sum.

Other columns in Figure 4 correspond to the larger
number of terms being added. The main observation is that
with more terms the severity of non-monotonicity increases
because a larger number of terms can grow the sum more
in the range where IEEE 754 arithmetic stagnates and the
multi-term adder grows precision.

5 DISCUSSION

5.1 Where non-monotonicity can cause issues

In this subsection we discuss various algorithms that may
be impacted by the non-monotonicity of floating-point arith-
metic.

In a 1967 paper, Forsythe [41] notes that despite the lack
of associativity and distributivity in floating-point addition
and multiplication, one can do good analysis provided only
that the arithmetic is monotonic. At that time monotonicity
was not always preserved in arithmetics, like it was after
the IEEE 754 was released: “Such properties seem elemental but
they are extremely helpful. And they are surprisingly absent!” [41,
Sec. 4].

Demmel, Dhillon, and Ren [42] explore the bisection
algorithm for finding eigenvalues of real symmetric tridi-
agonal matrices. The algorithm relies on the count(x) to

10

p
=

3
e m

a
x
=

3
p
=

4
e m

a
x
=

3
p
=

5
e m

a
x
=

4

0

5

10

15
S

u
m

8 terms

0

5

10

15
16 terms

0

5

10

15
32 terms

0 5 10 15

0
0.2
0.4

x1

R
el

.
er

ro
r

0 5 10 15

0
0.2
0.4
0.6

x1

0 5 10 15

0

0.5

x1

0

5

10

15

S
u

m

8 terms

0

5

10

15

16 terms

0

5

10

15

32 terms

0 5 10 15

0
0.1
0.2
0.3

x1

R
el

.
er

ro
r

0 5 10 15

0

0.2

0.4

x1

0 5 10 15

0
0.2
0.4
0.6

x1

0

10

20

30

S
u

m

8 terms

0

10

20

30

32 terms

0

10

20

30

64 terms

0 10 20 30

0

0.1

0.2

x1

R
el

.
er

ro
r

0 10 20 30
0

0.2

0.4

x1

0 10 20 30
0

0.2
0.4
0.6

x1

Multi-term adder IEEE 754 adder

Fig. 4. Summation with various floating-point formats and two types of addition: multi-term addition with precision growth (Class IV) and IEEE
754 addition with normalization and rounding after each operation. Value of of the sum (top of each subdiagram) and the relative error (bottom)
compared with the sum performed in the binary64 arithmetic. The x-axis corresponds to the quantity of x1 which we vary, with the rest of xi = 0.25.

11

Algorithm 5.1: Count(x, T): return the number of
eigenvalues of a real symmetric tridiagonal matrix
T .

1 count← 0;
2 d← 1;
3 for i← 1 to n do

4 d← ai − x− b2
i−1

d
;

5 if d < 0 then
6 count← count+ 1;

7 return count;

count the number of eigenvalues that are smaller than
x (Algorithm 5.1). This function is monotonic, but when
implemented in floating-point arithmetic, various imple-
mentation details can introduce non-monotonicity, which in
turn can cause wrong results by finding negative number
of eigenvalues (count(xb) − count(xa)) < 0 over a specific
range xa to xb with xb > xa. We have shown that non-
monotonicity can appear in the three-term adder if no final
rounding is performed (Theorem 3.2), which would invali-
date the Assumption 1A [42, p 120] and introduce a source
of non-monotonicity in an implementation of count(x).

Higham [3, Sec. 2.6] demonstrates that monotonicity of
rounding may be an important property when solving a
quadratic equation ax2 − 2bx + c = 0. Computing an ex-
pression

√
b2 − ac is required and if b2 = ac but fl(b2) < b2,

computing fl(fl(b2) − ac) with an FMA can result in a
negative number passed into the square root function. While
this would not require a 4-term or wider adder, which we
explore in this paper, if an expression

√∑n
i=1 ai −

∑n
i=1 bi,

where a and b are vectors, which uses the multi-term adder
twice and then subtracts the sums, appears in applications,
a similar issue to that discussed by Higham can appear. We
provide an example in test_sqrt.m. We use a binary32
arithmetic with p = 24 and emax = 127, and n = 8. Then
take

a = [1, 1, 1, 1, 1, 1, 1, 16777216]

and

b = [1, 1, 1, 1, 1, 1, 1, 16777214].

Computing sums recursively left to right with IEEE 754
additions in order we get

√
4, while computing them with

the 8-term Class IV adder we get
√
−4 due to the non-

monotonicity in the sum. The correct result, computed in
binary64 arithmetic, is

√
2. Note that with the IEEE 754

binary32 arithmetic we can change the order of addends
and impact the result:

a = [16777216, 1, 1, 1, 1, 1, 1, 1]

b = [16777214, 1, 1, 1, 1, 1, 1, 1]

gives
√
0, but

a = [16777216, 1, 1, 1, 1, 1, 1, 1]

b = [1, 1, 1, 1, 1, 1, 1, 16777214]

gives
√
−4. However, as discussed, with the Class IV adder

the order does not impact the final result and this example

results in
√
−4 irrespective of it; as a result it cannot be fixed

at software layer by reordering.
In computing elementary functions often monotonicity is

one of the properties that is desired [43]. Silverstein et al. [44]
in the report on the UNIX math library libm, note: “Mono-
tonicity failures can cause problems, for example, in evaluating
divided diferences. The only function we have observed to violate
monotonicity for C/SVR4 is lgamma. We would not be surprised
to learn of others.”. This is of general interest, and we are not
aware of a link between the non-monotonicity of multi-term
adders and mathematical functions.

Interval arithmetic can be impacted by non-monotonicity
of floating-point. Rump [45, Sec. 2.1] gives an example
of computing lower and upper limits of the interval of
matrix multiplication of point matrices (lower and upper
limits are equal) through the change of rounding modes
in floating-point arithmetic. Similar to Rump’s example, in
test_interval.m we compute the interval of summa-
tion operation, through round-toward-negative and round-
toward-positive, for lower and upper limits, respectively.
First we sum a vector a = [16777216, 1, 1, 1, 1, 1, 1, 1] which
yields an interval [16777216, 16777230]. We then decrease
a1 and perform the same for b = [16777214, 1, 1, 1, 1, 1, 1, 1]
which yields an interval [16777220, 16777222]. By decreas-
ing one of the arguments we expect the interval to shift
down the real axis, but the lower end shifts up and the
interval becomes narrower due to precision growth in the
multi-term adder. As before, it is possible to cause a similar
issue with the IEEE 754 arithmetic, by changing the order of
the addends.

5.2 Possible solutions

Having gradual precision growth in the dot product can
be beneficial in getting more accurate results. However, if
monotonicity is needed, a straightforward solution would
be to always normalize after each addition to stop the
gradual precision growth in the internal accumulator. This
can replicate the behaviour of a software implementation
of summation based on standard IEEE 754 operations. The
hardware cost would most likely be increased substantially.

Another approach could be to detect where precision
growth occurs by monitoring the carry-out bits in the
significands of the sums and then informing any further
additions to cancel an appropriate number of bits from the
bottom of the significand and not take them into account
when adding. However, this is highly dependent on what
particular implementations are doing and would probably
impact guard, round and sticky bits which might or might
not be used in the intermediate additions inside the multi-
term adder, depending on the rounding properties needed.
The additional logic for this may make the Class IV adders
as expensive as Class I/II adders, but we leave this for a
separate hardware-oriented study.

As a summary:

• Class I/II adders perform the summation as though
only one rounding error is induced at the end, and
with these adders monotonicity and associativity of
summation are preserved.

• Class III adders perform the summation which nu-
merically behaves as a software implementation with

12

the IEEE 754 addition operations, with normalization
and rounding after each. With these adders, associa-
tivity is not preserved, but monotonicity is.

• With the Class IV adders, monotonicity is not pre-
serverd, as we have demonstrated, but the associa-
tivity is.

One can choose an appropriate implementation based on the
numerical properties required in a particular architecture.

6 CONCLUSION

IEEE 754-2019 provides the following guidance for imple-
menting multi-term summation or dot product operations
(collectively called reduction operations) [1, Sec. 9.4]: “Lan-
guage standards should define the following reduction operations
for all supported arithmetic formats. Unlike the other operations
in this standard, these operate on vectors of operands in one
format and return a result in the same format. Implementations
may associate in any order or evaluate in any wider format.”. In
the present manuscript we analysed how various hardware
designs in the literature as well as in the available hardware
implement this. We demonstrated that there are four classes
of implementation, each with different hardware complexity
and numerical properties.

Focusing on Class IV multi-term addition, where the
significand alignment of the summands is performed in
limited precision and the sum is performed without the
normalization, all resulting in precision growth during the
summation, we proved that non-monotonicity can occur. We
also showed that Class I–III devices are not subject to this.
Our results should assist in understanding numerical differ-
ences between different implementations and show what is
needed in order to preserve the property of monotonicity in
floating-point multi-term addition. This applies to dot prod-
ucts and matrix multiplication operations, which use multi-
term addition. The results do not necessarily apply only to
hardware as the same low level floating-point algorithms
could be implemented in software, for example on devices
that do not contain floating-point units.

Finally, our results indicate that monotonicity should be
considered in the next iteration of the IEEE 754 standard
and the new standard, P31093, of low-precision floating-
point formats. Suitable recommendations for the reduction
operations may need to be provided when the preservation
of monotonicity is needed.

7 ACKNOWLEDGEMENTS

The author is grateful to M. Fasi for the help on the proof
of Theorem 2.2 and other comments and suggestions, and
N. J. Higham, Nicolas Brunie and three anonymous referees
for comments and suggestions.

8 FUNDING

This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC) grant EP/P020720/1,
and by the Exascale Computing Project (17-SC-20-SC), a col-
laborative effort of the U.S. Department of Energy Office of

3. https://sagroups.ieee.org/p3109wgpublic/

Science and the National Nuclear Security Administration.
The author also acknowledges the support of the School of
Computing, University of Leeds.

REFERENCES

[1] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019 (re-
vision of IEEE Std 754-2008). Piscataway, NJ, USA: Institute of
Electrical and Electronics Engineers, Jul. 2019.

[2] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes,
V. Lefèvre, G. Melquiond, N. Revol, and S. Torres, Handbook of
Floating-Point Arithmetic, 2nd ed. Birkhäuser, 2018.

[3] N. J. Higham, Accuracy and Stability of Numerical Algorithms,
2nd ed. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2002.

[4] N. Metropolis and R. L. Ashenhurst, “Significant digit computer
arithmetic,” IRE Transactions on Electronic Computers, vol. EC-7,
no. 4, pp. 265–267, 1958.

[5] NVIDIA A100 Tensor Core GPU architecture. NVIDIA,
2020, NVIDIA whitepaper v1.0. [Online]. Avail-
able: https://www.nvidia.com/content/dam/en-zz/Solutions/
Data-Center/nvidia-ampere-architecture-whitepaper.pdf

[6] M. Fasi, N. J. Higham, M. Mikaitis, and S. Pranesh, “Numerical
behavior of NVIDIA tensor cores,” PeerJ Comput. Sci., vol. 7, pp.
e330(1–19), Feb. 2021.

[7] U. Kulisch, Computer Arithmetic and Validity: Theory,
Implementation, and Applications. De Gruyter, 2013. [Online].
Available: https://doi.org/10.1515/9783110301793

[8] Y. Uguen and F. de Dinechin, “Design-space exploration
for the Kulisch accumulator,” Mar. 2017, working paper or
preprint. [Online]. Available: https://hal.archives-ouvertes.fr/
hal-01488916

[9] J. Koenig, D. Biancolin, J. Bachrach, and K. Asanovic, “A hardware
accelerator for computing an exact dot product,” in 2017 IEEE 24th
Symposium on Computer Arithmetic (ARITH), 2017, pp. 114–121.

[10] N. Brunie, “Modified fused multiply and add for exact low pre-
cision product accumulation,” in 2017 IEEE 24th Symposium on
Computer Arithmetic (ARITH), 2017, pp. 106–113.

[11] ——, “Towards the basic linear algebra unit : Replicating multi-
dimensional FPUs to accelerate linear algebra applications,” in
2020 54th Asilomar Conference on Signals, Systems, and Computers,
2020, pp. 1283–1290.

[12] N. Burgess, C. Goodyer, C. N. Hinds, and D. R. Lutz, “High-
precision anchored accumulators for reproducible floating-point
summation,” IEEE Transactions on Computers, vol. 68, no. 7, pp.
967–978, 2019.

[13] A. F. Tenca, “Multi-operand floating-point addition,” in 2009 19th
IEEE Symposium on Computer Arithmetic, Portland, OR, USA, Jun.
2009, pp. 161–168.

[14] J. Sohn and E. E. Swartzlander, “Improved architectures for a
floating-point fused dot product unit,” in 2013 IEEE 21st Sympo-
sium on Computer Arithmetic, 2013, pp. 41–48.

[15] ——, “A fused floating-point three-term adder,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 61, no. 10, pp. 2842–
2850, 2014.

[16] ——, “A fused floating-point four-term dot product unit,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 3,
pp. 370–378, 2016.

[17] Y. Tao, G. Deyuan, F. Xiaoya, and J. Nurmi, “Correctly rounded
architectures for floating-point multi-operand addition and dot-
product computation,” in 2013 IEEE 24th International Conference on
Application-Specific Systems, Architectures and Processors, 2013, pp.
346–355.

[18] E. E. Swartzlander and H. H. Saleh, “FFT implementation with
fused floating-point operations,” IEEE Transactions on Computers,
vol. 61, no. 2, pp. 284–288, 2012.

[19] A. Kaivani and S.-B. Ko, “Area efficient floating-point
FFT butterfly architectures based on multi-operand adders,”
Electronics Letters, vol. 51, no. 12, pp. 895–897, 2015. [Online].
Available: https://ietresearch.onlinelibrary.wiley.com/doi/abs/
10.1049/el.2015.0342

[20] S. Boldo, D. Gallois-Wong, and T. Hilaire, “A correctly-rounded
fixed-point-arithmetic dot-product algorithm,” in 2020 IEEE 27th
Symposium on Computer Arithmetic (ARITH), 2020, pp. 9–16.

13

[21] D. Kim and L. Kim, “A floating-point unit for 4D vector inner
product with reduced latency,” IEEE Transactions on Computers,
vol. 58, no. 7, pp. 890–901, Jul. 2009. [Online]. Available:
https://doi.org/10.1109/TC.2008.210

[22] H. Kaul, M. Anders, S. Mathew, S. Kim, and R. Krishnamurthy,
“Optimized fused floating-point many-term dot-product hard-
ware for machine learning accelerators,” in 2019 IEEE 26th Sympo-
sium on Computer Arithmetic (ARITH), 2019, pp. 84–87.

[23] A. Roldao Lopes and G. A. Constantinides, “A fused hybrid
floating-point and fixed-point dot-product for FPGAs,” in Recon-
figurable Computing: Architectures, Tools and Applications, P. Sirisuk,
F. Morgan, T. El-Ghazawi, and H. Amano, Eds. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2010, pp. 157–168.

[24] B. Hickmann, J. Chen, M. Rotzin, A. Yang, M. Urbanski, and
S. Avancha, “Intel Nervana Neural Network Processor-T (NNP-
T) fused floating point many-term dot product,” in 2020 IEEE 27th
Symposium on Computer Arithmetic (ARITH), 2020, pp. 133–136.

[25] L. Bertaccini, G. Paulin, T. Fischer, S. Mach, and L. Benini,
“MiniFloat-NN and ExSdotp: An ISA extension and a modular
open hardware unit for low-precision training on RISC-V cores,”
in 2022 IEEE 29th Symposium on Computer Arithmetic (ARITH),
2022, pp. 1–8.

[26] S. K. Lee, A. Agrawal, J. Silberman, M. Ziegler, M. Kang,
S. Venkataramani, N. Cao, B. Fleischer, M. Guillorn, M. Cohen,
S. M. Mueller, J. Oh, M. Lutz, J. Jung, S. Koswatta, C. Zhou,
V. Zalani, M. Kar, J. Bonanno, R. Casatuta, C.-Y. Chen, J. Choi,
H. Haynie, A. Herbert, R. Jain, K.-H. Kim, Y. Li, Z. Ren, S. Rider,
M. Schaal, K. Schelm, M. R. Scheuermann, X. Sun, H. Tran,
N. Wang, W. Wang, X. Zhang, V. Shah, B. Curran, V. Srinivasan,
P.-F. Lu, S. Shukla, K. Gopalakrishnan, and L. Chang, “A 7-
nm four-core mixed-precision AI chip with 26.2-TFLOPS hybrid-
FP8 training, 104.9-TOPS INT4 inference, and workload-aware
throttling,” IEEE Journal of Solid-State Circuits, vol. 57, no. 1, pp.
182–197, 2022.

[27] L. Ledoux and M. Casas, “A generator of numerically-tailored and
high-throughput accelerators for batched GEMMs,” in 2022 IEEE
30th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2022, pp. 1–10.

[28] N. P. Jouppi, D. Hyun Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,
G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma, T. Norrie, N. Patil,
S. Prasad, C. Young, Z. Zhou, and D. Patterson, “Ten lessons from
three generations shaped google’s TPUv4i : Industrial product,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), 2021, pp. 1–14.

[29] AMD Instinct™ MI200 Series Accelerator. Advanced Micro
Devices, Inc., Nov. 2021. [Online]. Available: https://www.amd.
com/system/files/documents/amd-instinct-mi200-datasheet.pdf

[30] D. Abts, G. Kimmell, A. Ling, J. Kim, M. Boyd, A. Bitar, S. Parmar,
I. Ahmed, R. DiCecco, D. Han, J. Thompson, M. Bye, J. Hwang,
J. Fowers, P. Lillian, A. Murthy, E. Mehtabuddin, C. Tekur,
T. Sohmers, K. Kang, S. Maresh, and J. Ross, “A software-defined
tensor streaming multiprocessor for large-scale machine learning,”
in Proceedings of the 49th Annual International Symposium on Com-
puter Architecture, ser. ISCA ’22. New York, NY, USA: Association
for Computing Machinery, 2022, pp. 567–580.

[31] W. Gomes, A. Koker, P. Stover, D. Ingerly, S. Siers, S. Venkatara-
man, C. Pelto, T. Shah, A. Rao, F. Mahony, E. Karl, L. Cheney,
I. Rajwani, H. Jain, R. Cortez, A. Chandrasekhar, B. Kanthi, and
R. Koduri, “Ponte Vecchio: A multi-tile 3D stacked processor for
exascale computing,” in 2022 IEEE International Solid- State Circuits
Conference (ISSCC), vol. 65, 2022, pp. 42–44.

[32] Intel Corporation, “Intel architecture instruction
set extensions and future features programming
reference,” Dec. 2022. [Online]. Available:
https://software.intel.com/sites/default/files/managed/c5/15/
architecture-instruction-set-extensions-programming-reference.
pdf

[33] E. Talpes, D. D. Sarma, D. Williams, S. Arora, T. Kunjan, B. Floer-
ing, A. Jalote, C. Hsiong, C. Poorna, V. Samant, J. Sicilia, A. K.
Nivarti, R. Ramachandran, T. Fischer, B. Herzberg, B. McGee,
G. Venkataramanan, and P. Banon, “The microarchitecture of dojo,
tesla’s exa-scale computer,” IEEE Micro, pp. 1–5, 2023.

[34] B. Hickmann and D. Bradford, “Experimental analysis of matrix
multiplication functional units,” in Proceedings of the 26th IEEE
Symposium on Computer Arithmetic, Kyoto, Japan, Oct. 2019, pp.
116–119.

[35] M. Fasi, N. J. Higham, F. Lopez, T. Mary, and M. Mikaitis, “Matrix
multiplication in multiword arithmetic: Error analysis and appli-
cation to GPU tensor cores,” SIAM J. Sci. Comput., vol. 45, no. 1,
pp. C1–C19, Feb. 2023.

[36] P. Roux, “Innocuous double rounding of basic arithmetic opera-
tions,” J. Formaliz. Reason., vol. 7, no. 1, pp. 131–142, Jul. 2014.

[37] S. M. Rump, “IEEE754 precision-k base-β arithmetic inherited by
precision-m base-β arithmetic for k < m,” ACM Trans. Math.
Software, vol. 43, no. 3, p. 1–15, Jan. 2017.

[38] R. L. Ashenhurst and N. Metropolis, “Unnormalized floating point
arithmetic,” J. ACM, vol. 6, no. 3, p. 415–428, Jul. 1959.

[39] N. J. Higham, “The accuracy of floating point summation,” SIAM
J. Sci. Comput., vol. 14, no. 4, pp. 783–799, Jul. 1993.

[40] M. Fasi and M. Mikaitis, “CPFloat: A C library for simulating low-
precision arithmetic,” ACM Trans. Math. Softw., vol. 49, no. 2, Jun.
2023.

[41] G. E. Forsythe, “Today’s computational methods of linear alge-
bra,” SIAM Rev., vol. 9, pp. 489–515, 1967.

[42] J. W. Demmel, I. Dhillon, and H. Ren, “On the correctness of some
bisection-like parallel eigenvalue algorithms in floating point
arithmetic,” Electron. Trans. Numer. Anal., vol. 3, pp. 116–149, 1995.

[43] J.-M. Muller, Elementary Functions: Algorithms and Implementation,
3rd ed. Boston, MA, US: Birkhäuser, 2016.

[44] J. D. Silverstein, S. E. Sommars, and Y.-C. Tao, “The unix system
math library, a status report,” in USENIX - Winter’90, 1990.

[45] S. Rump, “INTLAB - INTerval LABoratory,” in Developments in Re-
liable Computing, T. Csendes, Ed. Dordrecht: Kluwer Academic
Publishers, 1999, pp. 77–104, http://www.tuhh.de/ti3/rump/.

Mantas Mikaitis received a B.Sc. (Hons.) de-
gree in Computer Science in 2016 and a PhD de-
gree in Computer Science in 2020, both from the
University of Manchester, Manchester, United
Kingdom. Between 2019 and 2020 he was an
EPSRC Doctoral Prize Fellow and between 2020
and 2022 a Research Associate, both within the
Numerical Linear Algebra group at the University
of Manchester. He is currently a Lecturer at the
School of Computing of the University of Leeds,
Leeds, United Kingdom. His research interests

include various aspects of computer arithmetic and mathematical soft-
ware.

	Introduction
	An example on current hardware
	Multi-term floating-point addition in literature
	Class I: Adders that use long accumulators
	Class II: Adders that achieve correct rounding without the use of long accumulators
	Class III: Adders that replicate software behaviour
	Class IV: Adders that use limited precision accumulator
	Adders that lie in multiple classes

	Commercial hardware
	Our contributions

	Background
	Floating-point representation and arithmetic
	Monotonicity of IEEE 754 arithmetics
	Rounding
	Addition of two operands
	Addition of three or more operands
	Multiplication

	Fused multi-term adders

	Results
	Modified IEEE 754 arithmetics: addition without normalization
	Monotonicity of the modified addition
	Impact of the order of addition

	Numerical experiments
	Order of addends and associativity
	Monotonicity

	Discussion
	Where non-monotonicity can cause issues
	Possible solutions

	Conclusion
	Acknowledgements
	Funding
	References
	Biographies
	Mantas Mikaitis

