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Online Human Capability Estimation through Reinforcement Learning

and Interaction

Chengke Sun1, Anthony G. Cohn1 and Matteo Leonetti2

Abstract— Service robots are expected to assist users in a
constantly growing range of environments and tasks. People
may be unique in many ways, and online adaptation of robots
is central to personalized assistance. We focus on collaborative
tasks in which the human collaborator may not be fully able-
bodied, with the aim for the robot to automatically determine
the best level of support. We propose a methodology for online
adaptation based on Reinforcement Learning and Bayesian
inference. As the Reinforcement Learning process continuously
adjusts the robot’s behavior, the actions that become part of
the improved policy are used by the Bayesian inference module
as local evidence of human capability, which can be generalized
across the state space. The estimated capabilities are then used
as pre-conditions to collaborative actions, so that the robot can
quickly disable actions that the person seems unable to perform.
We demonstrate and validate our approach on two simulated
tasks and one real-world collaborative task across a range of
motion and sensing capabilities.

I. INTRODUCTION

Assistive and service robots are expected to help people

in a wide variety of settings, from factories to care homes.

The range of people that robots will support is large and

unpredictable. We consider robots performing collaborative

tasks with the goal of providing personalized support at the

right level for each person. People may be differently able

for a number of reasons, such as chronic conditions, injury,

or simply age. We want the robot to determine how to best

assist automatically and online.

We propose a framework for human capability estima-

tion based on Bayesian inference and online Reinforcement

Learning (RL). We focus our modeling effort on the robot,

rather than the person, and determine what human capability

each collaborative action that the robot can execute may

require. For instance, consider a robot giving a guided tour.

The robot can drive fast, which would require the person

to move fast. A person may not be able to move fast for

a number of reasons (old age, injury, handicap...), but the

robot will not attempt to estimate the underlying condition.

It focuses on the pre-condition of its own actions and if it

acquires enough evidence that the person cannot benefit from

that action it disables the action.

The capability estimation provides another layer of ab-

straction, orthogonal to the state space, and not observable

by the robot. Capabilities are a property of the person, and as

such are latent variables. We propose a Bayesian framework

for capability estimation that gathers evidence through RL
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without deploying the more general and computationally

intensive model of Partially Observable Markov Decision

Processes (POMDPs). In the previous example of the guided

tour, the RL agent may receive a low reward because by

driving fast it is leaving the person behind. The agent ties this

information to the observable state space, and learns that it

cannot drive fast with that person at that particular location.

It will have to receive low rewards across a range of locations

to generalize that driving fast is just never appropriate for

this person. With the additional capability estimation, on the

other hand, the latent capability to move fast can be detected

early on, and the action can be disabled everywhere when

enough evidence has been accumulated.

A plethora of approaches have been developed for adap-

tation and personalization using demonstrations, preference

learning, statistical inference, and POMDP planning, to

mention a few. To the best of our knowledge, this is the

first method using the behavior learned by an RL agent

as evidence for human capability. We introduce an online

learning component that requires no special calibration,

demonstrations, question answering, or user-specific tuning.

While we propose to gather evidence through RL, the

framework is more general, and can be integrated with other

existing approaches to provide further information to the

Bayesian estimation, for example through computer vision.

In this work, we focus on adaptation through interaction and

learn exclusively from the robot’s actions.

We implemented our framework in a PAL Robotics

TIAGo1, and demonstrated it in three collaborative tasks,

two in simulation, and one in the real robot. We demonstrate

that learning capabilities indirectly through RL allows the

robot to adapt much faster than by RL only. Furthermore,

the capability estimation enables online personalized support,

contributing to the democratization of collaborative robotics.

II. RELATED WORK

User adaptability of service robots has been widely re-

searched in the robotic community. Users prefer robots that

respect human conditions and preferences [1]. Preferences

have been organized in a taxonomy for physically assistive

robots involving human capabilities as parameters that affect

how robots’ actions are performed [2]. Fischinger et al.

present an adaptive system where the robot actively asks the

user for preferences to keep related parameters as individual

configurations [3]. In our work, capabilities are not global

1https://pal-robotics.com/robots/tiago/



but task-related (as a consequence of model-free RL), and we

learn them through acting rather than by asking questions.

Much research on user-adaptable robots is rooted in

the framework based on stochastic dynamic programming,

chiefly among all, POMDP approaches. Broz et al. intro-

duced a time-indexed POMDP model that contains hidden

user intentions [4]. Another approach is based on Mixed

Observability Markov Decision Process (MOMDP), which

uses hierarchical states to simplify the POMDP compu-

tation [5]. A POMDP model encoding multiple Human-

robot Interaction (HRI) variables has also been applied to

an intelligent wheelchair [6]. Our approach is also based

on latent variables, but does not require the fully-fledged

POMDP modeling. The state space is treated just as an

MDP, and the capabilities are estimated separately. Model-

free learning is used online, circumventing complex POMDP

planning.

Another category of approaches is those based on statis-

tical inference. Abdo et al. present a system that learns user

preferences from pre-collected ratings and makes predictions

using collaborative filtering [7]. The pre-trained user model

can adapt to new users rapidly by matching known character-

istics. Bayesian inference has been applied to estimate user

intention [8]. Martins et al. introduce a user-adaptive service-

selecting model using Bayesian programming [9]. In our

work, Bayesian inference does not produce the action that

the robot executes, which is instead obtained through RL. It

is used as a side-effect of RL, to estimate human capabilities

as action pre-conditions. The outputs of an independent user

labeling module can be generalized to diverse control flows.

For example, planners based on symbolic reasoning can

adjust social interaction parameters using capability labels.

Martins et al. present a distributed learning system to infer

the characteristics of users [10]. Our work focuses on human

capabilities that are prerequisites for collaborative actions in

task planning. We further show how the estimated capability

labels make the learning process user-adaptable.

Lastly, existing work aims to learn adaptive behaviors

from guidance and human feedback explicitly. Senft et al.

present a supervised Reinforcement Learning framework to

learn personalized behaviors from expert guidance [11]. The

robot can also learn from user feedback [12] [13] [14].

Such approaches require an expert or user to keep track of

the robot’s behaviors and rely on providing proper human

advice. Our work, instead, aims at adaptation without human

demonstration.

III. PROBLEM DEFINITION

We build on the common task model of Markov Decision

Processes (MDPs) D = 〈S,A, Pa, Ra, γ〉, where S is a set

of states, A is a finite set of actions, Pa is the transition

function, Ra is the reward function, and 0 ≤ γ ≤ 1 is the

discount factor.

We augment this model with the capabilities of the human

collaborator as preconditions to robot actions. For instance,

in the tour guide example, the robot’s action drive_fast

depends on the person’s capability to move_fast. We

represent the capabilities as a vector of binary random

variables c, and denote with 2c the set of all possible binary

vectors of capabilities c. We define for each action the subset

of the capabilities that are required for that action, and denote

it with C(a). In the example above, C(drive_fast) =
{move_fast}. The set C(a) must be specified by the

designer along with the set of actions. An action a is enabled

at time step i, if the probability of all the capabilities in C(a)
is above a given threshold d. The set of enabled actions at

time i is, therefore, Ai = {a ∈ A | ∀c ∈ C(a);P (c = 1) >=
d}.

The goal of the agent is to compute an optimal pol-

icy π∗(a | s) that maximizes the expected return G =

Eπ

[

∑

T

i=1
γi−1ri

]

, where ri is the reward at time step i,

extracted from Ra. The policy is only allowed to choose

among enabled actions, that is, the domain of the random

variable A in π(A = a | s) is Ai.

The explicit estimate of the probability of human capabil-

ities allows the robot to accumulate evidence and, when the

presence of a capability is sufficiently unlikely, to disable

the corresponding action, regardless of the current state. A

critical aspect of this formulation, therefore, is the estimation

of human capabilities, for which we describe our approach

in the next section.

(a)

Policy
Initialization

Guided
Exploration

Offline
Pre-training

Online RL
(Capability
Estimation)

(b)

Fig. 1: (a) We model capabilities as random variables on

which actions are conditioned. (b) The optimal policy under

known capabilities must be available for the online Bayesian

update, and is pre-trained. Since the pre-trained policy is

available, it is also used to initialize the agent and to guide

its exploration.

IV. APPROACH

We propose to estimate the probability of human ca-

pabilities indirectly, through the underlying continuous RL

process. In this section, we introduce a Bayesian framework

for capability estimation, while in the next section we discuss

the implementation details and offline training.

A. Capability Estimation

We define a capability-conditioned policy π(a | s, c)
as shown in the Bayesian network in Figure 1(a). In our

model, capabilities influence the effectiveness of actions, and

therefore the actions are conditioned on them. The agent is

trained offline under known capabilities, converging to the

optimal policy π∗(a | s, c) (cf. Section V-B).

The robot is deployed with a new user and expected to

adapt to the user’s actual capabilities as quickly as possible.

The underlying RL process selects actions while improving



the policy and thereby generating a sequence of states and

actions τ = {(s0, a1), (s1, a2), ..., (sl−1, al)}. The approach

does not require an episodic task, and the sequence is

possibly infinite, but we consider it in batches of length l.

Given such a trajectory, the pre-trained policy can be used

to accumulate evidence on human capabilities as follows:

P (c | τ) =
P (τ | c)P (c)

P (τ)
. (1)

The likelihood in Equation 1, for a given policy π, unfolds

to:

P (τ | c) =P (s0)π(a1 | s0, c)Pa(s1 | s0, a1)π(a2 | s1, c) · · ·

Pa(sl−1 | sl−2, al−1)π(al | sl−1, c).
(2)

The probability of the trajectory can be factored into two

parts, one that depends on the capabilities, and one that does

not:

P (τ | c) =P (s0)

l−1
∏

i=1

Pa(si | si−1, ai)

l
∏

i=1

π(ai | si−1, c).

(3)

The first two terms in the right-hand side of Equation 3,

which do not depend on the capabilities, appear in both the

numerator and the denominator of Equation 1 (that is, in

both P (τ | c) and P (τ)) and therefore cancel each other out.

The estimate of the capabilities can then be obtained from

the optimal capability-conditioned policy and a trajectory

through the Bayesian update:

P (c | τ) =

∏

l

i=1
π∗(ai | si−1, c)P (c)

∑

k∈2c

∏

l

i=1
π∗(ai | si−1,k)P (k)

. (4)

The resulting multi-label classification can be simplified in

case of dependency between capabilities, but for this paper

we consider the full set of |2c| combinations, and therefore

work with a small number of capabilities.

V. IMPLEMENTATION AND DEPLOYMENT

The proposed method is composed of the following steps

as shown in Figure 1(b): (i) pre-training of the capabili-

ty-conditioned policy π∗(a | s, c) under known capability

combinations; (ii) initialization of the value function of the

RL agent using the pre-trained value function; (iii) online

RL with a new user, while continually estimating capabilities

using Equation 4 and enabling or disabling actions; (iv) tak-

ing advantage of the pre-learned policy for exploration. In

the rest of this section, we discuss each step. We will use

the first task of our experimental evaluation as a running

example, and therefore begin with its description.

A. Robot Navigation Task

In this task, the robot has to lead a person to a desired

location. The Gazebo2 simulation environment is shown in

Figure 3 (a). The robot starts from a fixed initial location,

marked in green, and is requested to lead the person to the

2https://gazebosim.org/

goal location, in blue. Two red doors provide shortcuts in

the environment.

The state space is composed of the robot’s position, the

observed distance between the robot and the human, and

whether each door is open or closed. The action space

consists of nine actions: four navigation actions in the four

cardinal directions both driving fast and slow, and the action

open_door to ask the collaborator to open doors and take

the shortcut. The dimensions of the navigation map are 7×6
units. Slow-driving actions make the robot move 1 unit per

step, while fast-driving actions make the robot move by 2
units. Two human capabilities, c = {c_fast,c_open},
are used, to enable the fast navigation actions and the

open_door action. The human model always catches up

to the robot if c_fast = 1, otherwise it moves by 1 unit

per step. Significant time may be saved by passing doors and

taking shortcuts. Every step will result in a negative reward

of -1. Reaching the goal will bring a reward of 50. When

the distance between the robot and the collaborator exceeds

1 unit, the agent will be assigned a negative reward of -

50. To make the environment stochastic and more realistic,

we introduce the following features: The robot’s perceived

distance is affected by Gaussian noise (µ = 0, σ = 0.05);

Each door may be open at the start of every episode with

probability P = 0.1; The human model makes slow steps

even if c_fast = 1 with P = 0.05; the collaborator may

refuse to open doors even if c_open = 1 with P = 0.05.

B. Pre-training

The online capability estimation hinges on having the

optimal policy π∗(a | s, c), which must be trained offline

under a sufficiently representative, known, set of capabilities.

This training can be entirely model-free, executing the task

in the real world with a group of people with different

known capabilities, but such an effort would be considerable

and, in many cases, unrealistic. In this paper, we rely on

simulations modeling the behavior of people with different

capabilities, and on which the training to learn the optimal

policy π∗(a | s, c) can be carried out offline. The simulation

will inevitably be different from real users, but the capability

estimation can be made tolerant to uncertainty by selecting

a sufficiently low threshold d, so that an action is disabled

only when the system is highly confident that the capability

is not present.

In the navigation task, training results in four policies, one

for each combination of c_open = {0, 1} and c_fast =
{0, 1}. Having the pre-trained policies π∗(a | s, c) and their

value functions, the robot can take advantage of them both

as initialization and to guide online learning, as described in

the following sections.

C. Policy Initialization

The underlying online learning is generalized policy it-

eration, and its convergence is not affected by the initial

value function (in MDPs). However, learning can be sped

up significantly with a favorable initialization, and the pre-

training phase may provide such further benefit.
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Fig. 2: The average return of the navigation task: (a) Agents are initialized with the pre-trained policy over fully available

capabilities. (b) Agents are initialized with the pre-trained policy over random capabilities.

The robot has a set of |2c| value functions to choose

from and use while adapting to the particular user. The

policy trained with a user with all capabilities, that is,

π∗(a | s, {1, 1, . . . , 1}) may seem like a natural choice:

since all actions are enabled in this policy it is an optimistic

initialization, and then exploration may determine which

actions to disable. However, the value function of this policy

relies on all actions, and if some actions are disabled during

learning it becomes invalid, and must be relearned almost

entirely. Committing to any initial capability combination

has a risk of similar overfitting. Therefore, a better option

for initialization is a value function pre-trained over random

capabilities.

We demonstrate this phenomenon in the navigation task.

Figure 2 shows the return of the pure RL agent, the RL

agent using capability estimates (RLC) and the same agent

using both initialization and exploration (RLC k-exp) from

pre-training (cf. Section V-E). All three agents start with

the same initial value function, which for Figure 2(a) is the

value function of π∗(a | s, {1, 1}) and in Figure 2(b) is

pre-trained across uniformly random capabilities. The agents

are then deployed separately with collaborators of all 4
combinations, and the plot shows the average reward across

all. All three agents perform better when initialized with the

policy pre-trained using random capabilities. Note that the

initialization of the value function is distinct from the prior

over capabilities. The agent starts with the value function

pre-trained with random capabilities, but always a prior over

all capabilities being present, so that actions are not disabled

from the beginning. The parameters used of this domain are

presented in Section VI-B.

D. Online Capability Estimation

Online capability estimation is a direct application of

Equation 4, as shown in Algorithm 1. The estimation starts

with a prior P (c). The robot accumulates l state-action pairs,

and then updates the probabilities of the capabilities, which

will result in actions being enabled or disabled. The step()

function at Line 4 returns, in addition to the latest state

Algorithm 1: Human Capability Estimation

Input: P (c): The prior probabilities of capabilities.

l: The batch length.

1 τ ←− [];
2 j ←− 0;

3 while learning is running do

4 s, a, e←− step();
5 if e is false then

6 Append the state-action pair (s, a) to τ ;

7 j ←− j + 1;

8 end

9 if j mod l = 0 then

10 Update capability probabilities according to

Equation 4;

11 Replace prior with current estimate;

12 τ ←− [] ;

13 end

14 end

and action, also whether the last action was the result of

exploration, so that it is disregarded for capability estimation.

Exploratory actions are not the expression of the learned

policy, and would taint the capabilities.

E. Capability-guided exploration

The online capability estimation can be used in conjunc-

tion with pre-training to further improve sample complexity.

In principle, the robot starts with the optimal policy for

every capability combination, therefore when sufficiently

confident in the presence of the capability, it could switch to

the corresponding optimal policy. However, the capability-

conditioned optimal policy was learned in simulation, and

it may not be optimal in the real world and with the

specific user at hand. Nonetheless, we propose to use it

for exploration advice, limiting purely random exploration.

The exploration strategy we used is shown in Algorithm 2.

The principle is the same as ǫ-greedy: when exploring, the

agent selects with probability k the optimal action of the pre-



Algorithm 2: Capability-guided Exploration

Data: A: The set of actions.

q∗(s, a | c): The pre-trained value function.

s: The current state.

c: The current capability estimate.

d(n): The optional liner decay function.

1 n←− 0;

2 Function Exploration(n):

3 λ←− uniform random value between 0 and 1;

4 k ←− d(n);
5 if λ < k then

6 a←− argmax q∗(s, a | c);
7 n←− n+ 1;

8 else

9 a←− random(A);
10 end

11 return a;

(a) (b)

Fig. 3: The Gazebo worlds for simulation tasks: (a) The

navigation task. (b) The manipulation task.

trained policy corresponding to the current estimate of the

capabilities, and a random action with probability 1 − k. If

executed on top of ǫ-greedy this algorithm results in choosing

the current optimal action with probability 1− ǫ, the optimal

action of the pre-trained policy with probability ǫk and a

random action with probability ǫ(1 − k). We decay k over

time, so that the advice is gradually removed.

The navigation task is a prototypical case in which a

capability like c_fast can be estimated locally in a few

steps and generalized globally regardless of the state. Figure

2 shows how the RLC agent outperforms the RL agent from

early on. Furthermore, this domain highlights how the ad-

ditional use of pre-training for initialization and exploration

carries additional benefits on the agent convergence speed.

VI. EXPERIMENTAL EVALUATION

A. Tasks

For all our tasks we used a PAL Robotics TIAGo, both in

a Gazebo simulation and in the real world. The first task is

the robot navigation task introduced in Section V-A.

Robot Manipulation The second task is a simulated

collaborative manipulation task whereby the collaborator and

robot tidy up items together. The Gazebo world is shown in

Figure 3 (b). A board with three rows and three columns

on the table provides nine slots for placing items. There are

nine objects to be sorted: two are red, four are orange, and

three are blue. At the beginning of the task, some objects are

spawned randomly on the board, leaving at most two empty

slots. The remaining items are placed outside the board. The

goal is to sort all objects on the board so that objects of the

same color are next to each other, like in the examples in

Figure 4, resulting in different possible solutions. Once all

items are grouped based on color, the task ends.

Fig. 4: Examples of acceptable solutions in the manipulation

task.

The state space consists of observations of the content

of nine slots (3 × 3) on the board. The action space

contains nine actions: place_{red, orange,

blue}, swap_red_orange, swap_red_blue,

swap_orange_blue, ask_swap_red_orange,

ask_swap_red_blue, ask_swap_orange_blue.

The place_* actions indicate that the robot puts an item

of the corresponding color into the board. The swap_*

actions indicate the robot swaps two items on the board by

itself. The ask_swap_* actions indicate that the robot asks

the collaborator to swap items. The robot and collaborator

operate alternately, but the latter can only rearrange items

within the board. The RL agent serves as the high-level

decision maker and only issues instructions that indicate

the action type and target color. A separate motion planner

computes the manipulation movement for the robot.

This experiment considers two human capabilities

c_color and c_swap. Lack of c_color means that

the collaborator cannot distinguish between red and orange

(Deuteranomaly) [15]. The capability c_swap implies being

able to swap two objects in one move, impacted, for instance,

if the person has a mobility impairment, or is one-armed. In

the simulation, the human model does not distinguish red

items from orange items if it does not have the c_color

capability, and will not execute swaps if it does not have the

c_swap capability. The reaction of a person requested by

the robot to swap two objects is also affected by c_color,

because a correct exchange depends on the accurate per-

ception of colors. To consider that the person can make

mistakes, the human model improves, with its actions, the

correct grouping of the objects (e.g., place a blue object near

other blue objects) with probability P = 0.7, and make the

configuration worse with P = 0.3. The initial object layout

is generated randomly at the beginning of each run.

The reward function is as follows. The cost of any placing

action the robot performs is -1. The cost of a robot asking

a human to swap items is -0.1. The cost of the robot

performing the swap itself is -5. If the robot’s strategy does

not result in layout variations, the additional reward is -10

as a penalty. An additional reward of 80 would be assigned

to the agent if the robot’s strategy resulted in correct goal



configurations.

Scavenger Hunt Game The experiment we run in the real

world is a collaborative version of the Scavenger Hunt game

[16], a benchmark for autonomous robots. The task consists

in finding a certain number of objects, which, in our version,

the robot and the person do together. At the beginning of each

episode, the referee program generates the layout of objects

based on a predefined distribution. Then the operator places

the objects accordingly. Next, the robot and the collaborator

will set off to find the items. During the execution, the referee

program also automatically rewards the RL agent. The person

does not need to know the environment. The robot, which

has access to the object distribution, but does not know

the exact locations, can lead the way and ask whether the

person can find a specific object in the current room. The

person can help with object recognition, which involves both

vision and hearing. However, should the person be partially

impaired, the robot will fill in the required capabilities. With

a fully capable person, the pair acts most effectively with the

robot leading the way and the person identifying the objects.

However, the robot can slow its pace as in the navigation

task, if necessary, and also use its own vision and sound

detection if it collects enough evidence that the person is

unable to. The robot can explicitly ask the collaborator if an

object is around during the game and decide whether to trust

the human’s answer.

The state space consists of the position of the robot

base, the current navigation goal, the target object, the latest

answer from the person, the robot’s distance from the person

and the position of the objects found up to that point. The ac-

tion space consists of drive_slow, drive_fast, ask,

inform, accept, and reject. drive_slow represents

the robot’s mobile base moving to a waypoint at low speed,

while drive_fast is at high speed. ask represents the

robot asking the person if he can find the target object

around the current location. Then, the robot has two actions:

accept and reject. accept represents that the robot

trusts and takes the human’s answer. reject means that

the answer is rejected, and the robot plans to scan the area

by itself (the person may not see the object, even though

the object is there). Besides asking for human responses,

the robot has an alternative action inform. This action

represents the robot expecting the person’s answer to be

wrong and sticking to its observations. Rather than explicitly

asking the person, rejecting the answer and then scanning

around, it is considerably time-efficient to scan the area

directly and tell the person the result.

Four human capabilities c_fast, c_color, c_sight,

and c_sound are considered in this experiment. The

c_fast capability represents that the person can walk fast;

c_color represents that the person can discriminate red and

orange; c_sight represents that the person can recognize

objects from far away; c_sound represents that the person

can locate hidden objects that emit a sound. There are a total

of six rooms to be searched. Four target objects red_ball,

chickpeas, breadsticks and speaker are shown in

Figure 7. A blue ball or orange ball may also be placed

where the red_ball may be, requiring c_color to be

discriminated by the collaborator. The canned chickpeas

can be found anywhere. The breadsticks will be placed

far away from the center of the room. Thus the collaborator

requires c_sight to see it. The speaker will be turned on

to play music and placed in a position invisible to the robot

and the collaborator, requiring c_sound to be located.

The reward function is as follows. Denoting with d the

human-robot distance, and with dmax = 4 the desired

maximum distance, the rewards are assigned to the agent

based on the rules listed below, with a default reward of 0.

Since this task aims to encourage human-robot collaboration,

the reward function favors actions that involve discussing the

location of objects with the person over providing answers

directly by the robot, even if the latter takes less time:

• If d ≤ dmax: Ra(drive_fast) = −1,

Ra(drive_slow) = −2.

• If d > dmax: Ra(drive_fast) = −20,

Ra(drive_slow) = −10.

• If the robot correctly identifies the location of an

object that is in the room: Ra(accept) = 80,

Ra(inform) = 60, Ra(reject) = 40.

• If the robot does not return a false positive, for an object

that is not, in fact, in the room (otherwise the robot

may just guess in every room): Ra(accept) = 30,

Ra(inform) = 20, Ra(reject) = 10.

The collaborator carries a smartphone with software to

answer the robot’s questions, providing two options Yes and

No. This software also calculates the human-robot distance

according to the signal strength of Bluetooth beacons on

the torso of TIAGo, and reports the distance to the robot.

The robot also carries a tablet reporting the text of what the

robot says, allowing hearing-impaired people to answer and

interact.

B. RL Performance

We experimentally evaluate two aspects: the performance

of the RL agent in terms of cumulative reward, and the

accuracy of the capability estimate over time. The RL

performance is shown in Figure 2 for the navigation task

and Figure 8 for the manipulation task.

The pure RL agent and our full agent (estimating capa-

bilities, initializing from the policy pre-trained over random

capabilities, and performing capability-guided exploration)

use the same Q-learning implementation, with the same

parameters. In the navigation task of Figure 2(a) the learning

rate α = 0.3, the discount factor γ = 0.99, ǫ = 0.8 for the ǫ-

greedy exploration, and k = 0.5. In Figure 2(b) the learning

rate α = 0.1, the discount factor γ = 0.95, ǫ = 0.4 for

the ǫ-greedy exploration, and k = 0.75. In the manipulation

task α = 0.1, γ = 0.95, ǫ = 0.6, and k = 0.7. In both

tasks, the agent starts with a prior of P (c) = 0.8 for all

capabilities, and is evaluated on all four combinations for 30
trials in the navigation task, and 20 trials in the manipulation

task (the simulation is significantly more time-consuming).

Figure 2 and Figure 8 show the average return and the 95%
confidence intervals over the 30× 4 and 20× 4 trials. Given
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Fig. 5: The average probabilities of capabilities in the navigation task: (a) The collaborator has no available capabilities. (b)

The collaborator’s capability set is {c_open}.
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Fig. 6: The average probabilities of capabilities in the manipulation task: (a) The collaborator has no available capabilities.

(b) The collaborator’s capability set is {c_swap}.

Fig. 7: TIAGo Robot and Objects

the thousands of episodes required for the RL baseline to

converge, this experiment was infeasible on the real robot.

The plots show how the agent starts with an average return

already close to optimal, and fine-tunes over time.

C. Capability Estimation

The second experiment answers the main question behind

the presented methodology: can capabilities be estimated as

a side-effect of the RL process? This question is particularly

of interest in the real-world experiment, where the model

and the world are different, and therefore we also aim to
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Fig. 8: The average return of the manipulation task.

show that the estimate of the capabilities does converge

to the correct values, in addition to how fast. There are 4
combinations of capabilities for each simulated task, and

16 for the real-world task. In all cases, the prior is on all

capabilities being present, so we selected 2 combinations of

capabilities for the simulated domains, and 3 for the real-
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Fig. 9: The average probabilities of capabilities in the Scavenger Hunt Game: (a) The actual collaborator’s capability set

is {c_color,c_sound}. (b) The actual collaborator’s capability set is {c_fast,c_sight,c_color}. (c) The actual

collaborator’s capability set is {c_sight,c_color}.

world domain, in which some capabilities are not present

and therefore their estimates need to change, to show how

they vary across learning. In the navigation task, we show

in Figure 5, the estimation averaged over 30 trials. For

the manipulation task, we show in Figure 6, the estimation

averaged over 20 trials. Lastly, in Figure 9 we show the

estimation for the Scavenger Hunt task, averaged over 5
trials. In all cases, the x-axis is the number of actions, and

the estimates are updated for every l = 10 state-action pair.

The estimates may fluctuate, but are eventually correct in

all cases, and almost always fluctuate on the correct side of

d = 0.5.

VII. CONCLUSIONS

We presented an approach for human capability estimation

based on Reinforcement Learning and Bayesian inference.

The adaptation based purely on interaction complements

existing approaches and contributes to the personalization

of robotics to people with different capabilities. We ex-

perimentally showed that estimating capabilities is indeed

feasible with a real-world experiment, and using them as

pre-conditions for actions significantly improves the agent’s

online performance. Since our approach is independent of

the RL algorithm, we used simple Q-learning, resulting in

a relatively slow learning speed. However, we expect that

performance can be further improved with more efficient

algorithms and representations. Due to the model-free nature

of the approach, learning must be undertaken for each task.

Generalization of capability estimation across tasks is a

promising direction for future work.
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