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Abstract

The proliferation of quantum fluctuations and long-range entanglement presents an out-

standing challenge for the numerical simulation of interacting spin systems with exotic

ground states. Here, we present a toolset of Chebyshev polynomial-based iterative meth-

ods that provides a unified framework to study the thermodynamical properties, critical

behavior and dynamics of frustrated quantum spin models with controlled accuracy. Sim-

ilar to previous applications of the Chebyshev spectral methods to condensed matter sys-

tems, the algorithmic complexity scales linearly with the Hilbert space dimension and the

Chebyshev truncation order. Using this approach, we study two paradigmatic quantum

spin models on the honeycomb lattice: the Kitaev-Heisenberg (K-H) and the Kitaev-Ising

(K-I) models. We start by applying the Chebyshev toolset to compute nearest-neighbor

spin correlations, specific heat and entropy of the K-H model on a 24-spin cluster. Our

results are benchmarked against exact diagonalization and a popular iterative method

based on thermal pure quantum states. The transitions between a variety of magnetic

phases, namely ferromagnetic, Néel, zigzag and stripy antiferromagnetic and quantum

spin liquid phases are obtained accurately and efficiently. We also determine the temper-

ature dependence of the spin correlations, over more than three decades in temperature,

by means of a finite temperature Chebyshev polynomial method introduced here. Finally,

we report novel dynamical signatures of the quantum phase transitions in the K-I model.

Our findings suggest that the efficiency, versatility and low-temperature stability of the

Chebyshev framework developed here could pave the way for previously unattainable

studies of quantum spin models in two dimensions.
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1 Introduction

In strongly correlated materials, the interplay between different types of interactions can en-
gender rich T = 0 phase diagrams characterized by a series of transitions between paramag-
netic, magnetically ordered and quantum spin liquid phases. These quantum phase transitions
are driven by one or more parameters in the Hamiltonian, such as an external magnetic field or
a spin exchange coupling constant. When a drastic change in the ground state occurs as one of
these parameters is varied, there is an accompanying change in the thermodynamic properties.
This change manifests itself in the form of critical behavior of quantities such as the structure
factor and the susceptibility, which scale with the parameter that drives the transition [1,2].

The study of the competition between quantum fluctuations and interactions at the heart
of quantum phase transitions often calls for a numerical approach [3–11]. Exact solutions
are only known for a handful of cases (a well-known example is the isotropic Heisenberg
chain [12]). Moreover, in low dimensions, the presence of strong quantum fluctuations limits
the applicability of mean-field approaches. Exact diagonalization (ED) methods, such as those
based on the Lanczos algorithm [13], are the next step beyond exact analytical solutions. There
are several examples of the application of this method to interacting spin systems, for example
Refs. [3, 11, 14]. Unfortunately, these are limited to relatively small system sizes, even when
algorithms are optimized to reflect symmetries of the model. The culprit is the exponential scal-
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ing of the computational cost with the system size, which is particularly severe in dimensions
greater than one. Beyond the Lanczos algorithm and its more recent variants [15–17], several
attempts to go beyond the limitations of full exact diagonalization have been made. Potent
numerical techniques have been deployed with varying degrees of success, including series ex-
pansions [18–24], quantum Monte Carlo (QMC) [7,8,25,26], density matrix renormalization
group (DMRG) [27–30], tensor-network approaches (such as iPEPS) [10,31–33] and thermal
pure quantum (TPQ) states [32,34–36]. Efficient numerical schemes amenable to large-scale
computations share a key feature: they aim at reconstructing expectation values of quantum
observables without having to fully diagonalize the Hamiltonian. The resulting computational
cost depends crucially on how the expectation values of the observables are evaluated. Here,
two relevant aspects are at play. The first has to do with how the corresponding operators are
reconstructed. The second relates to the process by which one obtains the expectation value.
Usually this process is a stochastic one, unless there is prior knowledge about some of the
system’s features, in which case a variational approach can be viable [25,37,38].

In principle, QMC methods can be used to probe large systems in any number of dimen-
sions, while remaining numerically exact [7, 8]. However, they often encounter the so-called
sign problem [26, 39]. This is a situation where the variance of the estimators of quantities
of interest increases exponentially due to quantum statistics. The severity of the problem de-
pends on the computational basis used to tackle the specific model [40–46]. Generally, the sign
problem tends to be more acute in frustrated systems [47,48], hampering the use of QMC to
extract quantities of interest, such as correlation functions. The sign problem and the limited
range of models that QMC is able to access emphasize the need for a general purpose method
that can be used more broadly as an alternative to Lanczos ED and QMC.

In this work, we apply a toolset of spectral methods to compute both static (e.g. spin corre-
lations) and dynamic (e.g. spin susceptibility) quantum observables in paradigmatic frustrated
systems with competing interactions. Spectral methods based upon Chebyshev expansions
have recently proven useful in different contexts [49–60], and here we will be interested in
extending this approach to models of interacting quantum spins. We focus on generalized
honeycomb Kitaev models, i.e. systems that combine Kitaev interactions with other types of
magnetic exchange. Specifically, we study the Kitaev-Heisenberg (K-H) model and the Kitaev-
Ising (K-I) model [3–5, 61]. The Kitaev model on the honeycomb lattice is one of the rare
examples of an exactly solvable microscopic model [62] showing exchange frustration, i.e.
nearest neighbor (NN) interactions that cannot be simultaneously minimized. This is similar
to geometric frustration which notably occurs in the case of the antiferromagnetic Ising model
on the triangular lattice [63]. In the Kitaev case, frustration is created by bond-directional in-
teractions which give way to a fractionalized excitation spectrum of Majorana fermions. This
has attracted great attention because it opens up the possibility of synthesizing spin liquid
materials with exotic topological orders [64, 65]. Notably, in honeycomb iridates, which are
transition metal oxides with partially filled d-shells, a subtle interplay of spin–orbit coupling
and electronic correlations produces the type of bond-directional interactions that appear in
the Kitaev model. Thus, these materials make good spin liquid candidates. In these spin-orbit
assisted Mott insulators, the Kitaev exchange interaction is thought to be responsible for the
emergence of a spin liquid phase [3,65–68].

The Kitaev exchange interaction also plays a key role in the modelling of other compounds
such as the van der Waals ruthenate α-RuCl3. A recent study proposes a minimal microscopic
2D spin model for α-RuCl3 [69]. The model at play is an extension of the Kitaev model that
considers both Kitaev and Heisenberg exchange interactions, third neighbor exchange and
Γ interactions (i.e., terms that couple different spin components for each nearest neighbor
bond). The authors treat this generalized K-H model using a a mean-field random-phase ap-
proximation, aiming at extracting quantities such as the dynamical structure factor [69]. The
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use of this mean-field approach is justified by comparing its results with those of exact diag-
onalization [14]. However, exact diagonalization is limited to relatively small system sizes
(for example, in Ref. [14], a 24-site cluster is used). Thus, this approach runs into the risk of
overlooking large scale properties of the model. In fact, in Refs. [70, 71], the authors detect
finite-size effects when computing the dynamical spin structure factor using QMC simulations
of the Kitaev model in the presence of disorder — which deems the study of large scale proper-
ties crucial — even for clusters of 288 sites.1 These developments illustrate the need to develop
accurate, general purpose computational methods that scale favorably with the system size.

The Chebyshev polynomial methods we shall introduce below have a comparable com-
plexity to Lanczos-based methods. They both share the advantage of being free of the sign
problem, even though they can’t reach the same system sizes as QMC. Yet, Chebyshev ex-
pansions have a few key features that can make them more advantageous than their Lanczos
counterparts, namely superior robustness and accuracy. For example, the finite temperature
Lanczos method [15] has a low-temperature counterpart [16] that was developed to tackle
loss of accuracy due to statistical convergence issues at low-temperature. In this work, we de-
velop a seamless Chebyshev approach that is accurate and does not require a low-temperature
counterpart. Moreover, as we will show below, it has advantages even over TPQ [34,35]. An-
other application is to study dynamics (e.g., spectral functions), where it proves more flexible
and efficient than its Lanczos-based counterpart [17].

This paper is organized as follows. Section 2 provides a bird’s-eye view of the Cheby-
shev scheme in condensed matter physics. In Sec. 3 we give details of the techniques used
throughout this study: i) in the microcanonical ensemble, we use the microcanonical Lanczos
(MCLM) method (Sec. 3.2.1), the microcanonical (MTPQ) variant of the TPQ (Sec. 3.2.2),
and the iterative Chebyshev polynomial Green’s function (CPGF) method (Sec. 3.2.3); ii) in
the canonical ensemble, we use the finite temperature Lanczos (FTLM) method (Sec. 3.3.1),
the canonical (CTPQ) variant of the TPQ (Sec. 3.3.2), and the newly developed finite tem-
perature Chebyshev polynomial (FTCP) method that we introduce in this work (Sec. 3.3.3);
iii) for dynamical studies, we use the Lanczos method using the continued fraction approach
and a hybrid Lanczos-Chebyshev approach, also introduced in this work (Sec. 3.4.2). Section
4 compares the convergence properties and performance of all these methods in detail by ap-
plying them to study the K-H and K-I models on the honeycomb lattice: i) we start by checking
consistency at zero temperature by computing the ground state energy and nearest-neighbor
spin–spin correlation function of the K-H model with all methods and comparing them with
previously known results that we reproduced using the ED Lanczos technique; ii) for the spin–
spin correlation, we present a detailed analysis of the dependence of our estimators on the
relevant parameters: the number of initial random states, truncation order and, in the case of
the CPGF, also the energy resolution; iii) we study the temperature dependence of the nearest-
neighbor spin–spin correlation, specific heat and entropy of the K-H model and show that our
results match the tensor network results of Ref. [10]; iv) we bench-mark our implementation
of the hybrid Lanczos-Chebyshev method and compute the dynamical spin susceptibility for
the K-I model, finding dynamical signatures of the quantum phase transitions described in
Ref. [61]. Finally, in Sec. 5, we point out the pros and cons of each method. In particular, we
summarize how this work highlights the efficiency of the CPGF, FTCP and the hybrid Lanczos-
Chebyshev methods and suggest potentially interesting applications of these methods. We also
discuss the dynamical signatures of the quantum phase transitions in the K-I model that we
found using the hybrid Lanczos-Chebyshev approach.

1The scheme in Refs. [70,71] requires the partial diagonalization of the original Hamiltonian in terms of Majo-
rana fermions. On the other hand, a direct QMC simulation of the Kitaev model suffers from the sign problem.
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Figure 1: Microcanonical CPGF approach, the rescaled energy spectrum is probed
using a coarse-grained average of energy states within a specified energy resolutionη.

2 Chebyshev spectral methods: Rationale

Spectral methods are an increasingly popular tool for the simulation of condensed matter sys-
tems that fulfill the requirement of general applicability [49,52,56–60,72–77]. These methods
rely on the iterative reconstruction of the target functions (e.g. static or dynamic correla-
tion functions), generally in terms of Chebyshev polynomial expansions due to their favorable
convergence properties [78]. The iterative scheme is stable and can be made as accurate as
required within a specified parameter. For example, if one is interested in computing expec-
tations of quantum observables in the microcanonical ensemble, this parameter is the energy
resolution. The canonical ensemble analogue of this parameter is the temperature.

Let us take the instructive case of the microcanonical ensemble. The spectral approach uses
a coarse-grained description of energy states to provide estimates for quantum observables in
large systems (see Fig. 1). This is to be contrasted with exact diagonalization, which relies
on the knowledge of individual states and thus is limited to small systems. Furthermore,
spectral methods can be combined with stochastic techniques for computation of traces to
further reduce the computational cost and are amenable to parallelization as we will see briefly.

The CPGF approach we exploit in this work to compute microcanonical averages [51,79]
has proven effective in dealing with tight-binding models, allowing unparalleled large-scale
simulations with billions of atomic orbitals [51, 55]. Motivated by these developments, the
main aim of this work is to introduce a finite-temperature spectral framework that can capture
the physics of two-dimensional quantum spin models over a wide range of temperatures (of
particular interest will be to probe the low-temperature behavior of spin liquids).

Spectral methods leverage efficient stochastic estimators for expectation values that use
random vectors2 to evaluate traces of operators [80]. This technique, dubbed stochastic trace
evaluation (STE), is ubiquitous in the study of condensed phases and is used in ED methods,
such as those based on the Lanczos algorithm and TPQ states [34,35], and in the kernel polyno-
mial method [49]. The rationale in the STE is to approximate the trace of an operator by an av-
erage of expectation values using Nrd.vec. random vectors, |φ(r)0 〉— where r is an index labelling

a specific realization of the random vector |φ0〉 — i.e. TrSTE Ô := 1
Nrd.vec.

∑Nrd.vec.
r=1 〈φ

(r)

0 |Ô|φ
(r)

0 〉.
The relative error scales favorably with the Hilbert space dimension, D (in fact the relative

2A random vector is defined as |φ0〉 =
∑D

i=1 ξi |i〉, with {|i〉} an arbitrary basis and ξi ∈ C random variables

that satisfy ξi = 0, ξiξ j = δi j and ξ∗
i
ξ j = δi j (here the bar denotes statistical average). The r-th realization, |φ(r)0 〉

corresponds to a specific set of coefficients, {ξ r
i
, i = 1,2, . . . , D.} and different sets are assumed to be uncorrelated.
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error is proportional to 1/
p

D for typical sparse operators) and, for a fixed system size, can be
made as small as desired by increasing Nrd.vec.. Moreover, stochastic trace estimators are free
from the sign problem.

A crucial feature of Chebyshev expansions is that they offer uniform convergence [78] (and
in the case of CPGF this translates into an energy resolution that can be specified exactly [51]).
This is appealing for studies of phase transitions, particularly when one wishes to character-
ize the critical behavior of thermodynamic functions, among others. There are two ways to
define a resolution. One of them uses a kernel that modifies the coefficients of the Chebyshev
expansion. This modification smears out so called Gibbs oscillations which occur upon trun-
cation of orthogonal polynomial series [49]. A resolution may then be defined as the spread
of the kernel in the x y-plane,3 and generally depends on the truncation order and energy.
Here, instead, we use a Green’s function-based method that was proposed independently in
the works of Ferreira and Mucciolo [51] and Braun and Schmitteckert [79]. This approach,
coined CPGF [51], has two main features: (i) it is based on a stable, asymptotically exact ex-
pansion of lattice Green’s functions in Chebyshev polynomials; and (ii) the energy resolution
is specified from the outset, in the form of a simple imaginary self-energy.

By extending these ideas to quantum spin models, we propose a Chebyshev-based method
for the computation of quantum expectations in the canonical ensemble, where the tempera-
ture plays the role of a resolution. This method — which we shall detail below — bypasses
potential low-temperature convergence issues by using an adaptive temperature step, while
maintaining rigorous control over convergence. Alternatively, TPQ-based methods can be used
to approximate either microcanonical [34] or canonical [35] averages by successive applica-
tion of the Hamiltonian operator onto an initial random state. In TPQ, the number of iterations
is proportional to a quantity that plays the role of an effective temperature. Broadly speaking,
this effective temperature acts similarly to a resolution that becomes finer as more iterations
are completed. Yet, this annealing scheme is susceptible to slow convergence, particularly in
the vicinity of critical points as shown later.

In the following sections, we will compare Lanczos, TPQ, and Chebyshev-based approaches
since they all scale linearly with the dimension of the Hilbert space D. Moreover, all methods
scale linearly with the number of polynomials required for spectral convergence (or iterations
in the case of TPQ) Npoly/it. and with the number of realizations of the initial random state
required for statistical convergence Nrd.vec..

3 Methodology

The methods described here involve two main steps. First, a numerically exact or approximate
spectral representation of the target state is obtained by means of algorithms with polynomial
computational complexity. This is achieved by recursive application of the Hamiltonian, Ĥ, to
an initial random state, |φ0〉. Some examples of typical target states are the ground state, a
microcanonical state (with energy restricted to an energy shell) or a canonical (finite temper-
ature) state. After the target state is converged to the desired precision, physical observables
may be computed by means of the STE technique introduced earlier in Sec. 2, i.e. by averaging
the expectation value 〈φ0|Ô|φ0〉 over an ensemble of random vectors.

These techniques are general in scope and, as discussed below, when combined provide a
powerful means of accessing excited states, reconstructing Green’s functions, computing aver-
age and local density of states, and can be easily extended to the study of quantum dynamics,
either in the time domain, by exploiting a spectral approximation of the time evolution oper-
ator, or in the frequency domain, via the resolvent operator.

3The two variables x , y are defined as follows. x is the variable upon which the function we wish to approximate
depends on, say the energy. y is the integration variable used when the function is convoluted with the kernel.
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3.1 Lanczos exact diagonalization

While the iterative methods discussed here generate different polynomials of the Hamiltonian
during the recursion, they have a crucial aspect in common. After M iterations, they create a
state in the so called Krylov subspace, defined as follows:

KM (ĥ, |φ0〉)≡ span{|φ0〉 , ĥ |φ0〉 , ĥ2 |φ0〉 , . . . ĥM |φ0〉} , (1)

where ĥ = Ĥ/N is the Hamiltonian normalized to the number of lattice sites (referred to as
Hamiltonian density throughout) and |φ0〉 is a normalized initial random state. The Lanczos
method [13] converges quickly to the ground state and low-lying excitations. It consists of
iteratively generating a set of orthonormal states {|φ j〉, j = 0,1, . . . , M} spanning the Krylov

space. Let α j = 〈φ j |ĥ|φ j〉. Then, α0 is used to generate an unnormalized orthogonal state:

|Φ1〉= (ĥ−α0)|φ0〉 , (2)

which can then be normalized to obtain the second Lanczos state:

|φ1〉= β −1
1 |Φ1〉 , β1 =

Æ

〈Φ1|Φ1〉 . (3)

Subsequent Lanczos states are generated using the recursion and normalization scheme:

|Φ j+1〉= (ĥ−α j)|φ j〉 − β j |φ j−1〉 , |φ j+1〉= β −1
j+1|Φ j+1〉 , j = 1, 2, . . . , M − 1 , (4)

with β j =
Æ

〈Φ j|Φ j〉. Notice that acting with 〈Φ1| upon Eq. (2), yields 〈φ1|ĥ|φ0〉 = β1. Other
nonzero matrix elements of the Hamiltonian are obtained by acting with either 〈φ j−1|, 〈φ j |,
or 〈φ j+1| on the recursion of Eq. (4):

〈φ j−1|ĥ|φ j〉= β j , 〈φ j |ĥ|φ j〉= α j , 〈φ j+1|ĥ|φ j〉= β j+1 . (5)

Thus, the representation of the Hamiltonian in the Lanczos basis is a tridiagonal matrix,
which is exact when M coincides with the size of the Hilbert space, D. A low-energy approxi-
mation of the Hamiltonian is obtained by truncating the tridiagonal matrix at M ≪ D:

TM =

















α0 β1 0 . . . 0

β1 α1 β2
. . .

...

0 β2
. . . . . . 0

...
. . . . . . . . . βM

0 . . . 0 βM αM

















. (6)

In our Lanczos implementation, TM is diagonalized using the method of Multiple Rela-
tively Robust Representations (MR) [81], implemented e.g. in LAPACK [82–84]. MR was
chosen to maximize efficiency because it has O(M2) computational complexity and allows
one to specify a range of desired eigenpairs, rather than computing all eigenpairs. This is
useful because we are only interested in the lowest eigenvalues of TM , {ϵ j=0,1,...,λ} (with

λ ≪ M), which accurately approximate the low-lying eigenvalues of ĥ. The corresponding
eigenstates, {|ψ j〉} are obtained by transforming to the original basis using the eigenvectors
of TM , v j = (v j0, v j1, . . . , v jM ):

|ψ j〉=
M
∑

i=0

v ji |φi〉 . (7)

The dominant memory cost of the methods discussed throughout is incurred via the storage
of vectors of dimension D (D-vectors). This is because the Hamiltonian is never stored in
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memory, e.g. as a sparse matrix. Instead, the matrix-vector multiplications encoding the action
of the Hamiltonian on a state are carried out “on-the-fly”, based on the bit representation of
spin states explained in Ref. [85]. For completeness, we provide a brief description. Each of the
D = 2N states in a basis of product states of individual spins is encoded by an integer between
0 and D−1, represented by a set of bits. Mapping the lattice sites to the N bit positions and the
individual spin states to the value of the bit (either 0 or 1), the Hamiltonian acts on a basis state
in one of the two ways. Either the state: i) gets multiplied by a constant that depends on the
value of two bits at different positions; or ii) it gets converted to a state encoded by a different
integer, obtained by flipping only two bits, and then multiplied by a constant that depends
on the values of the two flipped bits. Once a model is translated into these simple rules —
which are stored at virtually no memory cost — any matrix-vector multiplication boils down
to applying the rules to basis states. In particular, the Lanczos recursion requires only two
D-vectors (|φi〉, |φi−1〉) to be stored in memory in each step, i. Consequently, constructing the
corresponding eigenstates, |ψ j〉 entails a second Lanczos recursion in order to regenerate the
Lanczos vectors, while accumulating the weighted sum of Eq. (7). This can only be done once
the eigenvectors v j are obtained at the end of the first recursion. Suppose we are interested
in constructing one of the low-lying states, |ψ j〉. Then, we require an additional vector to be
stored in memory so as to accumulate the weighted sum of Eq. (7) during the second recursion,
implying that the memory cost is dominated by three D-vectors.

Once a low-lying eigenstate, |ψ j〉, is found, the static expectation value of a quantum
observable in that state can be evaluated. If multiple low-lying states are desired, it is still
possible to preserve the 3-vector memory cost by carrying out multiple Lanczos recursions to
evaluate the relevant expectations for different low-lying states. In contrast, constructing the
whole set of eigenstates, {|ψ j〉} during the second recursion requires as many extra vectors as
desired eigenstates to be stored in memory. While the ground state and low-lying excitations
are important, there are problems that require knowledge of higher-excited states or even the
whole spectrum. Below, we compare different approaches to go beyond low-lying states.

3.2 Microcanonical ensemble

In the standard Lanczos algorithm, the core of the spectrum of ĥ is inaccessible. Loss of orthog-
onality due to finite machine precision impedes convergence beyond low-lying excitations. To
complicate matters further, reorthogonalization schemes are computationally expensive [85].
An alternative approach is to set a target energy, construct a quasi-eigenstate corresponding
to that energy and compute observables using the obtained microcanonical state.

3.2.1 Microcanonical Lanczos

In the microcanonical Lanczos method (MCLM) [17, 86], excited states in the core of the
spectrum — and thus inaccessible to the “ground state” Lanczos method above — are probed
by setting a target energy density, ϵ and finding the lowest-lying eigenpair of

v̂ = (ĥ− ϵ)2 . (8)

The lowest eigenvalue found by performing a Lanczos recursion with v̂ approaches 0 and,
using its corresponding Lanczos vectors, one can construct the quasi-eigenstate |ψϵ〉. The
MCLM converges slower than the standard Lanczos approach in most applications. For ex-
ample, the microcanonical variant was found to require O(103) iterations to construct quasi-
eigenstates in the spin-1/2 Heisenberg chain [86]. This is to be contrasted to the standard
Lanczos algorithm, which typically requires O(102) iterations to retrive a low-lying state [17].
The energy uncertainty reads

σϵ =
Æ

〈ψϵ|v̂|ψϵ〉 . (9)

8
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As a rule of thumb, in Ref. [17], the authors state that in order to resolve the desired energy
level with small energy spread σϵ/W < 10−3, where W is the spectrum width, M ′ ∼ 103

iterations are typically needed. Then, the quasi-eigenstate can be used to compute observables
reliably. The computational complexity is dominated by two main components. One of them
comes from the diagonalizations of the tridiagonal matrices at each Lanczos iteration. Since
we use MR [81,83,84] for these diagonalizations, the number of floating point operations for
this part scale as

M ′
∑

m=1

m2 = M ′(M ′ + 1)(2M ′ + 1)/6∼O(M ′3) . (10)

The other component comes from the M ′ matrix-vector multiplications in the Lanczos re-
cursion, each carried out “on-the-fly”, incurring a cost O(zD log2 D), where z is the coordina-
tion number of the lattice. Thus, the computational effort from matrix-vector multiplications
scales as O(zM ′D log2 D), where D = 2N for spin-1/2 systems.

For N ≳ 20, the ratio between the two costs is zD log2 D/M ′2 ≳ 1, and the computational
complexity is dominated by the cost of matrix-vector multiplication. However, if the more
standard implicit QR method is used for diagonalization instead of MR, the complexity of
the diagonalization increases to O(M ′4). The relevant ratio of computational costs becomes
zD log2 D/M ′3, which only becomes significantly larger than 1 for N ≳ 30.

As a final note on memory cost, we remark that the ĥ2-term in Eq. (8) requires an addi-
tional vector to be stored in memory compared with the “ground state” Lanczos, increasing
the number of stored D-vectors to four.

3.2.2 Thermal pure quantum states

In this subsection, we follow closely the work of Sugiura and Shimizu [34]. The rationale of
the TPQ method is to find a pure state that faithfully captures the equilibrium properties of
a quantum system at finite temperature as accurately as possible using microcanonical TPQ
states with well defined energy, constructed as follows. First, one generates a random state

|φ0〉 ≡
D
∑

i=1

ξi |i〉 . (11)

For simplicity, {|i〉} is usually taken as the set of product states of individual spins. The distri-
bution of energy in |φ0〉 is proportional to the density of states

g(u; N) = exp[Ns(u; N)] , (12)

where s(u; N) is the entropy density, which converges to a function of the energy density,
s(u;∞), in the thermodynamic limit [34].

The basic procedure is an iterative one similar to minimization annealing schemes. The
goal is to modify the distribution of energy in the random state so that it becomes sharply
peaked at the desired energy density, ϵ. This is achieved by operating with a suitable poly-
nomial of the Hamiltonian density onto |φ0〉 iteratively. Take a constant ϵupper ∼ O(1), such
that ϵupper ≥ ϵM, where ϵM is the maximum eigenvalue of the Hamiltonian density. Thus,

ϵupper is an upper bound on the spectrum of ĥ. Then, start from |φ0〉 and iteratively compute,
respectively the energy density, uk and the (normalized) new state, |φk+1〉 at iteration k:

uk = 〈φk| ĥ |φk〉 ,

|φk+1〉=
|Φk+1〉
p

〈Φk+1|Φk+1〉
, where |Φk+1〉 ≡ (ϵupper − ĥ) |φk〉 ,

(13)

9
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iteratively for k = 1,2, . . . , Nit, the maximum number of iterations. Later on, we will see that
Nit plays a role analogous to the inverse of the resolution in the Chebyshev expansion. Since
the microcanonical states are now generated directly, as opposed to being reconstructed via a
Lanczos recursion, the memory cost is now dominated by two D-vectors rather than four.

The first energy density corresponds to the infinite temperature state at β = 0. Thus,
g(u; N) has its maximum at u= u0. Then, the energy density decreases gradually towards the
ground state energy, ϵm, as k is increased: u0 > u1 > · · · > uNit

≥ ϵm. One stops iterating at
k = Nit, when uk gets close enough to the ground state energy density, ϵm. The obtained TPQ
states in the sequence |φ0〉, |φ1〉, . . . , |φNit

〉 correspond to decreasing thermal energy densities
u0 > u1 > · · · > uNit

. Thus, an estimate of the equilibrium average value of an arbitrary
observable Â is obtained as 〈Â〉k = 〈φk| Â |φk〉 as a function of uk. Notably, in the large system
limit, the effective temperature associated with each TPQ iteration, βk, accurately reproduces
the true thermodynamic temperature of a state with energy density uk. In fact, it is possible
to approximate the thermodynamic temperature with an error of order O(1/N2) [34].

Finally, the static expectation value 〈Â〉k obtained for each realization of the random coef-
ficients {ξi} depends exponentially less on the number of sites, N , as the latter is increased,
due to self averaging properties. Hence, accurate results are often obtained with a few or even
a single random vector realization [34,35].

3.2.3 Chebyshev polynomial Green’s function

This method consists of numerically evaluating the lattice resolvent operator

Ĝ(z) = (z − ĥ)−1 , (14)

via an exact expansion in terms of Chebyshev polynomials of the Hamiltonian density. Here,
z = ϵ + iη is a complex energy variable. A key aspect is that the Green’s function is recon-
structed with uniform energy resolution over the entire energy range. For numerical stability,
the resolution parameter should satisfy η = Im z ≳ δϵ, where δϵ is the mean level spacing. To
expand Eq. (14) in Chebyshev polynomials, we consider the following linear transformation of
the Hamiltonian and the energy variables: h̃= (ĥ− b)/a and z̃ = ϵ̃+ iη̃, where ϵ̃ = (ϵ− b)/a,
η̃ = η/a, and

a = f
ϵM − ϵm

2
, b =

ϵM + ϵm

2
, (15)

where ϵM and ϵm are the extremal eigenvalues and f ≃ 1.001 is a safety factor to ensure that
the spectrum of the reconstructed operator falls inside the Chebyshev domain of convergence
at each iteration step. As customary, we work with Chebyshev polynomials of the first kind
{Tn(x) = cos(n arccos x) , n= 0,1, 2 . . . } due to their favorable convergence properties [78].

Typical target functions of energy, including density of states and static expectations values,
are evaluated by making use of the Chebyshev polynomial expansion of the imaginary part of
the rescaled Green’s function [51]

Im[Ĝ(ϵ̃ + iη̃)] =
∑

k

η̃

(ϵ̃ − ϵ̃k)
2 + η̃2

|k〉 〈k|=
∞
∑

n=0

Im[gn(z̃)]Tn(h̃) , (16)

with

gn(z) =
−2i

1+δ0,n

(z − i
p

1− z2)n

π
p

1− z2
. (17)

The operators Tn(h̃) of Eq. (16) are constructed using the operator versions of the Cheby-

10
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shev recursion relation

T0(h̃) = 1 ,

T1(h̃) = h̃ ,

Tn+1(h̃) = 2h̃Tn(h̃)− Tn−1(h̃) .

(18)

The series is truncated when the desired accuracy is achieved for a given choice of resolu-
tion. The (Npoly + 1)-th order approximation of the lattice Green’s function is therefore

ĜNpoly+1
(ϵ̃ + iη̃)≡

Npoly
∑

n=0

gn(ϵ̃ + iη̃)Tn(h̃) . (19)

For most cases, Npoly = cη̃−1, with c =O(1) sufficing to achieve machine precision [55].
The spectral operator within the CPGF approach can be defined as follows

δη̃(ϵ̃ − h̃) = −
∑

n

Im[gn(ϵ̃ + iη̃)]Tn(h̃) . (20)

By applying this operator to the r-th realization of the random state |φ(r)0 〉, we obtain
|ϵ̃, η̃〉r , a quasi-eigenstate with rescaled energy ϵ̃ (within the rescaled resolution η̃). To com-
pute static expectation values, we start by defining

{Â}r(ϵ,η)≡ 〈ϵ,η|Â|ϵ,η〉r = a−2〈ϵ̃, η̃|Â|ϵ̃, η̃〉r . (21)

Provided that the resolution η is adequate (η→ δϵ⇔ η̃→ δϵ/a, where δϵ is the mean
level spacing), one obtains an accurate estimate of the expectation value of Â for a given energy
ϵ, A(ϵ) by averaging over realizations of the initial random state and using Eq. (21):

〈A〉STE(ϵ,η) =

∑Nrd.vec.
r=1 {Â}r(ϵ,η)
∑Nrd.vec.

r=1 {1̂}r(ϵ,η)
−→
η→δϵ+

A(ϵ) . (22)

3.3 Canonical ensemble

While microcanonical methods are useful, one might also be interested in evaluating observ-
ables using canonical states. In practice, one may decide which ensemble is more convenient
to perform a given calculation because the principle of ensemble equivalence guarantees that
results are consistent across statistical ensembles. For example, canonical methods have the
advantage of allowing direct specification of temperature as an input, so they may be prefer-
able to study temperature dependence of systems in thermal equilibrium. Moreover, for finite
systems, calculations done with the microcanonical ensemble tend to show significant statisti-
cal fluctuations [17]. As temperature increases, higher energy states in the spectrum become
increasingly important for determining the properties of the system and these statistical fluc-
tuations are smeared out. The most interesting features of the systems we tackle in this work
appear at low temperature, so the canonical methods detailed below are particularly useful in
this context.

3.3.1 Finite temperature Lanczos method

The finite temperature Lanczos method (FTLM) has been introduced in Ref. [15] and dis-
cussed in depth in Ref. [17]. The basic idea is to generate a set of eigenpairs {ϵ j,r , |ψ(r)j

〉}
using MFT Lanczos steps and starting from different realizations of the initial random state.
Throughout the recursion, we need only store two sets of overlaps: Qr, j ≡ 〈φ(r)0 |ψ

(r)

j
〉 and

11
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Ar, j ≡ 〈ψ(r)j
|Â|φ(r)0 〉. The memory cost is still dominated by the D-vectors: two for the recur-

sion and one to store the initial random state so as to allow the computation of the overlaps,
totaling three D-vectors. The STE estimator of the canonical average, 〈A〉 (β , N), defined as

〈A〉 (β , N)≡ Tr[Âe−β Ĥ]

Tr[e−β Ĥ]
=

Tr[e−β Ĥ/2Âe−β Ĥ/2]

Tr[e−β Ĥ]
, (23)

in the FTLM [15,17] is obtained as

〈A〉STE (β , N) =

∑Nrd.vec.
r=1

∑MFT
j=0 e−Nβϵ j,r Qr, jAr, j

∑Nrd.vec.
r=1

∑MFT
j=0 e−Nβϵ j,r |Qr, j |2

. (24)

Since the statistical fluctuations of this estimator increase significantly as the temperature
is decreased, the need for an optimized low-temperature Lanczos method (LTLM) arose and
this method has been introduced in Ref. [16]. Apart from the Qr, j overlaps defined above, the
computation of the STE estimator for this method requires the storage of O(M2

FT) additional

overlaps: A′
r,l, j ≡ 〈ψ

(r)

j
|Â|ψ(r)

l
〉, with l, j = 0,1, . . . , MFT. In terms of these overlaps and using

the symmetric form in the right hand side of Eq. (23), the final estimator becomes

〈A〉STE (β , N) =

∑Nrd.vec.
r=1

∑MFT
l, j=0 e−Nβ(ϵl,r+ϵ j,r )/2Qr,lA

′
r,l, jQ

⋆
r, j

∑Nrd.vec.
r=1

∑MFT
j=0 e−Nβϵ j,r |Qr, j |2

. (25)

Notice that the LTLM requires a double sum with O(M2
FT) terms. It becomes increasingly

more expensive to compute these overlaps as the temperature is decreased and more Lanczos
iterations MFT are required. However, the estimator of Eq. (25) has the advantage of reach-
ing smoothly the zero temperature limit — as opposed to that of Eq. (24) — which is the
reason behind its advantageous statistical convergence properties. Below, we introduce other
alternative methods to FTLM since LTLM has an inherently high cost.

3.3.2 Canonical thermal pure quantum states

The microcanonical TPQ state we outlined previously is specified by the independent variables
(u, N). It can be shown [35] that its (unnormalised) canonical counterpart |β , N〉— specified
by the inverse temperature, β instead of u — is obtained as follows:

|β , N〉 ≡ e−Nβ ĥ/2 |φ0〉 . (26)

A simple analytic transformation reminiscent of the principle of ensemble equivalence al-
lows one to cast canonical TPQ states in terms of their microcanonical counterparts. This
correspondence is obtained as follows. First, we assume that the minimum and maximum
eigenvalues of ĥ, respectively ϵm and ϵM , are known. These can be obtained numerically, for
example with Lanczos. Let us now define an unnormalised microcanonical TPQ state for a
given realization of the initial random state:

|k(r)〉=
�

ϵM − ĥ

W

�k

|φ(r)0 〉 , (27)

where W = ϵM −ϵm is the bandwidth. Here, dividing by W ensures some degree of numerical
stability since the operator inside parentheses is then bounded. Multiplying and dividing Eq.
(26) by eNβϵM/2 and Taylor expanding the exponential, one finds:

|β , N〉= e−NβϵM/2
∞
∑

k=0

(NβW/2)k

k!
|k〉 . (28)

12
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In the canonical TPQ formulation (CTPQ), the STE estimator is then given by

〈A〉STE (β , N) =

∑Nrd.vec.
r=1 〈β , N |Â|β , N〉r
∑Nrd.vec.

r=1 〈β , N |β , N〉r
, (29)

where the subscript r means that the canonical states of Eq. (28) have been constructed using
the r-th realization of the initial random state. Naively, one might expect that computing this
expectation would involve performing a double sum over the iterations and storing O(N 2

it )

overlaps, yielding a cost comparable to LTLM. This is because Eq.(28) implies that

〈β , N |Â|β , N〉r∝
∑

k,q

(NβW/2)k+q

k!q!
〈k|Â|q〉r , with 〈k|Â|q〉r = 〈k(r)|Â|q(r)〉 . (30)

If the observable of interest is a constant of motion (i.e. [Â, ĥ] = 0), Eq.(30) simplifies
significantly. Let Ak,r = 〈k|Â|k〉r , A′

k,r = 〈k|Â|k+ 1〉r . Then, we have

〈β , N |Â|β , N〉r∝
∑

k

�

(NβW/2)2k

(2k)!
Ak,r +

(NβW/2)2k+1

(2k+ 1)!
A′

k,r

�

≡ {Â}r(β , N) . (31)

In such cases, we only need to store 4Nit≪ D overlaps for each random vector:

Ak,r = 〈k|Â|k〉r , A′
k,r = 〈k|Â|k+ 1〉r , Nk,r = 〈k|k〉r , N ′

k,r = 〈k|k+ 1〉r .

Finally, for each inverse temperature, the STE expectation of Eq.(29) can be reconstructed
using the stored overlaps:

〈A〉STE (β , N) =

∑Nrd.vec.
r=1 {Â}r(β , N)
∑Nrd.vec.

r=1 {1̂}r(β , N)
. (32)

While this derivation is only strictly valid when [Â, ĥ] = 0, in Ref. [35], the authors show
that it holds remarkably well in general. We shall confirm this in practice below.

Memory-wise, CTPQ is similar to its microcanonical counterpart, requiring two D-vectors.
Unfortunately, numerical instabilities build up rapidly as k increases. Lower-temperature prop-
erties are thus challenging to probe.

3.3.3 Finite temperature Chebyshev polynomial approach

So far, we have reviewed the generalization of the ideas behind TPQ and Lanczos to the study
of canonical expectations. In what follows, we introduce the finite temperature Chebyshev
polynomial (FTCP) method, a new approach that we developed to extend the CPGF method
to the canonical ensemble description of interacting quantum systems.

In Ref. [51], the g-coefficients of Eq. (16) are obtained by exploiting the operator version
of the Jacobi-Anger identity

e−izh̃ =

∞
∑

n=0

2i−n

1+δn,0
Jn(z)Tn(h̃) , (33)

where Jn(z) is the Bessel function of order n. We follow a similar route, and seek a Chebyshev
expansion of the operator e−β h̃/2. Suppose we are interested in low-temperature behavior,
i.e. a high inverse temperature, βmax. We could expand the operator e−βmaxh̃/2 in Chebyshev
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polynomials directly as done e.g. in Ref. [87]. However, such an expansion is vulnerable to
numerical instabilities for large βmax due to the rapid growth of the Bessel functions. Using

e−βmaxh̃/2 =

L
∏

k=1

e−δβk h̃ , (34)

where
∑L

k=1δβk = βmax/2, we can decompose e−βmaxh̃/2 into a string of L operators. This
expansion enables us to bypass the divergent behavior of Jn(z) in Eq. (33) for large negative
imaginary arguments z = −iβmax. Moreover, the inverse temperature steps, δβk need not be
uniform, but may instead vary for each operator, e−δβk h̃, in our string of L operators. This
opens the door to the use of an adaptive temperature step.

Using the modified Bessel functions — which obey the relation In(x) = i−nJn(i x) , x ∈ R
— we can use the Jacobi-Anger identity to cast each operator in our string of operators as a
Chebyshev series:

e−δβk h̃ =

∞
∑

n=0

2
1+δn,0

In(−δβk)Tn(h̃) . (35)

Applying Eq. (35) to a random state |φ(r)0 〉 produces a sequence of approximate finite tem-

perature states (with inverse temperatures βl = 2
∑l

k=1δβk with l = 1, . . . , L), with accuracy
controlled by the truncation order. In practice, a Chebyshev truncation order Npoly,k ∼ O(10)
ensures convergence for a typical inverse temperature step of δβ ≲ 102 (in rescaled units).
The l-th finite temperature state reads

|φ(r)
l
〉 ≡

Npoly,l
∑

n=0

2
1+δ0,n

In(−δβl)Tn(h̃)|φ(r)l−1〉 , (36)

where, as customary, the Chebyshev vectors are generated starting from the r-th realization of
the initial random state. We note that, at all steps, the arguments of the fast growing modified
Bessel functions need to be kept small in order to avoid numerical instabilities.

As the l-th operator in the string of operators is applied to |φ(r)
l−1〉, the canonical average

of a quantum observable, Â, can be evaluated for the l-th inverse temperature. In order to
compute a thermal average, it suffices to notice that

〈φ(r)0 |e−βl h̃/2Âe−βl h̃/2|φ(r)0 〉= 〈φ
(r)

l
|Â|φ(r)

l
〉 . (37)

Then, using the RHS of Eq. (23), we obtain the STE expectation with the FTCP method:

〈A〉STE (βl , N) =

∑Nrd.vec.
r=1 〈φ

(r)

l
|Â|φ(r)

l
〉

∑Nrd.vec.
r=1 〈φ

(r)

l
|φ(r)

l
〉

, where 2
l
∑

k=1

δβk = βl ≤ βmax . (38)

The adaptive inverse temperature step used in this work allows us to maximize efficiency
by focusing the computational effort at low temperature, where a finer temperature grid (and
thus a larger spacing δβk) is required to capture the key features of the systems at play. The
reconstruction of 〈A〉STE (βl , N) for a discrete set of L inverse temperatures, {βl , l = 1, 2, . . . , L}
involves storing 2L overlaps, 〈φ(r)

l
|Â|φ(r)

l
〉 and 〈φ(r)

l
|φ(r)

l
〉 for each random vector realization.

The total number of Chebyshev iterations is thus NCheb =
∑L

l=1 Npoly, l ∼ 103. As shown shortly
in Sec. 4, the FTCP favorable convergence properties will allow us to reach very low tem-
peratures that are hard to access with FTLM and CTPQ. Finally, FTCP has the same memory
requirement of three D-vectors as CPGF: two for the Chebyshev recursion and one to cumula-
tively generate the finite temperature state at each inverse temperature.
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3.4 Dynamical properties

The prototype simulation aimed at studying the dynamics of a quantum system starts from a
well defined initial state |Ψ(t = 0)〉, such as the ground state of the model Hamiltonian at play,
|GS〉, which can be obtained, e.g. using the Lanczos method. This initial state is then evolved
using the time evolution operator. Successive small time steps are taken in order to maintain
enough numerical accuracy, while keeping track of the evolution of quantities of interest, such
as time-domain correlators of the type

G B̂Â(t) = 〈GS|B̂(t)Â(0)|GS〉 , (39)

where Â, B̂ are two generic quantum observables in the Heisenberg picture. Both Lanczos and
a Chebyshev-based approaches exist to approximate the time evolution operator. Within the
Lanczos approach, the time evolution operator for a short time step δt is approximated as

e−iNδtĥ ≈
Mt∑

j=0

e−iNϵ jδt |ψ j〉〈ψ j | , (40)

where {ϵ j} and {|ψ j〉} are sets of energies and corresponding eigenstates obtained using Mt

Lanczos steps and starting the Lanczos procedure from a previously computed state |Ψ(t ′)〉.
On the other hand, the Chebyshev approximation of the time evolution operator — which is
used e.g. in Ref. [88] in combination with CTPQ4 — relies on Eq.(33):

e−iNδth̃ ≈
Nt∑

n=0

2i−n

1+δn,0
Jn(Nδt)Tn(h̃) . (41)

Both methods require O(10) iterations for a standard time step δt ≈ W−1 [17]. Yet, the
Chebyshev approach has an important advantage. Unlike Lanczos, where a tridiagonal matrix
has to be diagonalized at each time step to generate the coefficients of the Lanczos expansion,
the coefficients in the Chebyshev expansion in Eq. (41) can be easily and efficiently evaluated
using freely available numerical libraries.

The efficiency of the Chebyshev approximation of the time evolution operator suggests
that a Chebyshev approach can also be advantageous when studying zero-temperature spectral
functions, C B̂Â(ω), obtained by Fourier transforming the time-domain correlators of Eq. (39):

C B̂Â(ω) =

∫

d t

2π
eiωt G B̂Â(t)

= 〈GS|B̂δ(ω− ĥ+ ϵm)Â|GS〉

= − 1
π

lim
η→0
〈GS|B̂Im
�

1

ω− ĥ+ ϵm + iη

�

Â|GS〉 ,

(42)

where we recall that ϵm is the ground state energy density, obtained e.g. with Lanczos.

3.4.1 Dynamical autocorrelation response functions with Lanczos

In the particular case where B̂ = Â†, the spectral function CÂ†Â is referred to as the autocorre-
lation response function for observable Â and is defined as follows (with z =ω+ ϵm + iη):

A(ω) = − 1
π

lim
Im z→0
〈GS|Â†Im
�

(z − ĥ)−1
�

Â|GS〉 . (43)

4In Ref. [88], CTPQ is used to generate an initial thermal state at t = 0. Time evolution is carried out using the
Chebyshev approximation of e−i t Ĥ .
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Once the ground state, |GS〉, is reconstructed with Lanczos, the response function above
can be computed by performing an additional Lanczos recursion (where the number of itera-
tions needed for satisfactory convergence is typically M̃ ∼ 103) with the initial state

|φ̃0〉=
Â|GS〉
Æ

〈GS|Â†Â|GS〉
. (44)

Similarly to Sec. 3.1, this recursion also generates a (much larger) tridiagonal matrix

T̃M̃ =

















α̃0 β̃1 0 . . . 0

β̃1 α̃1 β̃2
. . .

...

0 β̃2
. . . . . . 0

...
. . . . . . . . . β̃M̃

0 . . . 0 β̃M̃ α̃M̃

















, (45)

whose entries can be used to compute the response function [17] with no need to compute
the eigenpairs {ϵ j , ṽ j , j = 0,1, . . . , M̃}. The resolvent (z − ĥ)−1 can be approximated using a
continued fraction, thus giving the “Lanczos” response function

A(ω,η) = − 1
π

Im
〈GS|Â†Â|GS〉

ω+ ϵm + iη− α̃0 −
β̃2

1

ω+ ϵm + iη− α̃1 −
β̃2

2

ω+ ϵm + iη− . . .

, (46)

where the continued fraction is terminated with β̃M̃+1 = 0. This procedure is signficantly
more expensive computationally than simply approximating the ground state with Lanczos as
described in Sec. 3.1. This is due to the accumulated cost of matrix-vector multiplications as
more iterations are completed, which is O(zM̃ D log2 D). Unlike Sec. 3.2.1, the accumulated
cost of diagonalizing the tridiagonal matrix at each iteration using MR [81,83,84] only applies
to the first recursion. This diagonalization cost is O(M3)∼ 106, which is very small compared
to the cost of matrix-vector multiplications, e.g. O(zM̃ D log2 D)∼ 1012 for N = 24.

3.4.2 Hybrid Lanczos-Chebyshev method for spectral functions

Here, we use the Chebyshev expansion of the resolvent operator of Eq. (19) to compute spec-
tral functions directly in the frequency domain. This approach is inspired by a similar tech-
nique described in Ref. [49], where a kernel polynomial approximation based on Chebyshev
polynomials is used. This approach was further exploited in Refs. [50, 74], where Chebyshev
expansions were combined with Matrix Product States (MPS) and DMRG to investigate one-
dimensional strongly correlated systems. Yet, this technique has so far relied on the use of a
kernel convolutions to damp Gibbs oscillations in the Chebyshev expansion. Here, we combine
the numerically exact Chebyshev expansion of Eq. (19), which avoids the use of a kernel, with
Lanczos. The key advantage of this approach is the rigorous control over resolution, a feature
that is shared with the CPGF method that was described above in Sec. 3.2.3. In principle, the
ideas of the method described below could be combined with MPS and DMRG as well, but
such a task is outside the scope of this work.

Similarly to Lanczos, we start the procedure with the state |φ̃0〉— obtained from two prior
Lanczos recursions — and, instead of a third Lanczos recursion, we carry out a Chebyshev
recursion to generate the polynomials Tn(h̃) using Eq. (18), while storing the moments

µn = 〈φ̃0|Tn(h̃)|φ̃0〉 . (47)

16



SciPost Phys. Core 7, 006 (2024)

The autocorrelation response function is then obtained as follows:

A(ω,η) = −〈GS|Â†Â|GS〉
∑

n

Im[gn(z̃)]µn , (48)

with z̃ = (ω + ϵm + iη − b)/a, where a, b are defined in Eq. (15) and we recall that ϵm

is the ground state energy density. This procedure has significant advantages. The first is
that two moments can be obtained per matrix-vector multiplication, which implies that the
the numerical effort is halved (other parameters being fixed). Thus, the computational ef-
fort is proportional to the number of iterations, Ñit = Ñpoly/2, where Ñpoly is the number
of Chebyshev moments needed for convergence. This is derived by applying the product
identity 2Tm(x)Tn(x) = Tm+n(x) + Tm−n(x) to the overlaps 〈φ̃n|φ̃n〉 and 〈φ̃n+1|φ̃n〉, where
|φ̃n〉= Tn(h̃)|φ̃0〉:




φ̃n|φ̃n

�

=
1
2




φ̃0

�

�

�

T2n(h̃) + I
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T2n+1(h̃) + T1(h̃)
� �

�φ̃0

�

=
1
2
(µ2n+1 +µ1) .

(49)

For a given iteration, given a new |φ̃n〉, two moments can now be computed:

µ2n = 2



φ̃n|φ̃n

�

−µ0 ,

µ2n+1 = 2



φ̃n+1|φ̃n

�

−µ1 .
(50)

Two remarks are now in order:

• Ñit is typically of the same order of magnitude as M̃ , which guarantees that CPGF is
at least as fast as Lanczos. In practice, we observe faster performance with CPGF. We
attribute this to the possibility of better parallelization with CPGF because it requires half
as many vector update loops. These loops are needed in order to carry out the Lanczos
and CPGF recursions with only two vectors of dimension D stored in memory. They
incur a cost that, whilst not dominating over that of matrix-vector multiplications, still
compares closely. In fact, the complexity of each of these loop is proportional to D. With
Lanczos, the two steps of Eq. (4) involve two of these loops that need to be executed
one after the other, in opposition to CPGF, which needs only a single loop vector update.

• CPGF can easily be modified to compute more general spectral functions (for which we
might have B̂ ̸= Â†) without a significant additional memory or computer time cost. The
3-vector memory cost is preserved because the vector used to generate |GS〉 during the
second Lanczos recursion is not used in CPGF once the initial state, |φ̃0〉 is generated.

Thus, this vector can be used to store |ϕ〉 ≡ B̂†|GS〉/
Æ

〈GS|B̂B̂†|GS〉, which in turn can
be used to compute the modified moments, µ′n = 〈ϕ|Tn(h̃)|φ̃0〉 needed to Chebyshev-

expand C B̂Â(ω):

C B̂Â(ω,η) = −
q

〈GS|Â†Â|GS〉〈GS|B̂B̂†|GS〉
∑

n

Im[gn(z̃)]µ
′
n . (51)

In contrast, the continued fraction Lanczos approach does not work in the case B̂ ̸= Â†. One
must then resort to Eq. (40) to directly study the behavior of the time-domain correlator. This
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Figure 2: Left panel — 24-spin hexagonal cluster on the honeycomb lattice. The red,
green and purple bonds illustrate the periodic boundary conditions. Right panel —
Nearest neighbor bonds colored in red, green and purple (respectively γ = x , y, z in
our cartoon). The bond-directional character of the Kitaev interaction implies that
to each bond corresponds a different type of interaction. Similarly to the case of the
Ising model on the triangular lattice, where we have geometrical frustration, here we
have exchange frustration due to the nature of the interaction and it is not possible
to find a spin configuration that simultaneously minimizes the energy on all bonds.

leads to short time expansions with Mt Lanczos vectors and the initial state |Ψ(t = 0)〉= |φ̃0〉:

G B̂Â(δt) = 〈GS|eiNδtĥB̂e−iNδtĥÂ|GS〉 ≈
q

〈GS|Â†Â|GS〉
Mt∑

j=0

e−Ni(ϵ j−ϵm)δt〈GS|B̂|ψ̃ j〉〈ψ̃ j |φ̃0〉 .

(52)
The eigenvectors of the tridiagonal matrix of Eq. (45), {ṽ j} give 〈ψ̃ j |φ̃0〉 = ṽ j0. However,

the overlaps of the type 〈GS|B̂|ψ̃ j〉 must be evaluated explicitly using the vector B̂|GS〉, which
now has to be stored in memory separately, thus adding to the memory cost:

〈GS|B̂|ψ̃ j〉=
Mt∑

i=0

ṽ ji〈GS|B̂|φ̃i〉 . (53)

Moreover, we must update the initial state of the Lanczos expansion at each time interval,
|Ψ(t)〉 using short time Lanczos expansions. Then, we re-compute the eigenvectors of a new
tridiagonal matrix and re-evaluate 〈GS|B̂|ψ̃ j〉 for each time step. This process becomes compu-
tationally expensive very quickly since we may require a large number of time steps to capture
important features of G B̂Â(t). On the other hand, the CPGF treats the cases B̂ ̸= Â† and B̂ = Â†

on equal footing. Therefore, the CPGF is a general purpose approach, which accesses spectral
functions for the case B̂ ̸= Â† using the same methodology and with the same computational
complexity and memory requirements as the case B̂ = Â†.

4 Applications

In this section we apply the methods described in Sec. 3 to two generalized Kitaev models on
the honeycomb lattice for a 24-spin hexagonal cluster with periodic boundary conditions (see
left panel of Fig. 2): the K-H and the K-I models.

4.1 Kitaev-Heisenberg model

The K-H model combines Kitaev and Heisenberg interactions. The Hamiltonian can be cast as
a sum over NN bonds 〈i, j〉γ on the honeycomb lattice (the superscript refers to the type of

18



SciPost Phys. Core 7, 006 (2024)

bond, see right panel of Fig. 2):

Ĥ = A
∑

〈i, j〉γ

�

KŜ
γ

i
Ŝ
γ

j
+ J Ŝi · Ŝ j

�

. (54)

with K = sinϕ, J = cosϕ, and where γ = x , y, z is one of the three types of bond on the hon-
eycomb lattice. We use the conventions of Ref. [5]: ϕ ∈ [0,2π] parameterizes the strength of
each term and ensures that all possible ratios of the Heisenberg and Kitaev interactions are con-
sidered, and an overall energy scale is defined and set to unity throughout: A=

p
J2 + K2 ≡ 1.

The Kitaev interaction is bond-directional, i.e. for each distinct type of bond γ= x , y, z, there
is a correspondent interaction (respectively S xS x , S yS y , SzSz), as shown on the right panel
of Fig. 2. The calculations presented throughout the next subsections serve two purposes: to
prove that the classes of methods considered in this work are consistent and correctly capture
the physics of frustrated quantum magnets and, more importantly, to show that the Chebyshev
polynomial-based approaches offer significant advantages in terms of performance, stability
and generality, especially when combined with Lanczos algorithms.

4.1.1 Zero-temperature consistency and microcanonical approaches

Firstly, we reproduced the results of Refs. [3–5] using ED (via the “ground state” Lanczos
algorithm), as used in the original references. Then, we recovered these results using both
microcanonical and canonical approaches based on Lanczos, TPQ and Chebyshev recursions.

In order to bench-mark the microcanonical approaches — MCLM, MTPQ and CPGF — we
set the ground state energy obtained from Lanczos as the target energy. Crucially, MTPQ and
CPGF (and their canonical counterparts) require an estimate of the maximum eigenvalue as
well. Although we could have applied Lanczos to the operator −ĥ to obtain it, the Hamiltonian
of Eq.(54) happens to have a symmetry that can be used to avoid this additional computation:
−ĥ(ϕ) = ĥ((ϕ + π) mod (2π)). Thus, the maximum eigenvalues can be obtained by simply
reorganizing the minimum eigenvalues as a function of ϕ and switching their sign (see Fig. 3).
These are the minimum and maximum energies that are then used as inputs to the TPQ and
Chebyshev methods. We remark that even though the ground state energy can be accurately
estimated solely using MTPQ, the method requires an upper bound on the maximum eigen-
value (that one would normally obtain from Lanczos anyway). Moreover, MTPQ has much
slower convergence to the ground state than Lanczos, as we will also show later, so it is simply
more efficient to use Lanczos to obtain extremal eigenvalues. Still, MTPQ provides us with
a useful consistency check, while being less memory-intensive — requiring 2 rather than 3
vectors of size D — and giving access to good approximations of finite temperature states.

The results we present throughout this section are for the ground state energy density and
NN spin–spin correlation of the K-H model. The NN spin–spin correlation is used for our bench-
mark for two reasons. Firstly, in Ref. [5], the authors show that longer-range correlations
vanish in the vicinity of the spin liquid phases. Given that we are particularly interested in
this region of the phase diagram, it is reasonable to focus on NN correlations. Secondly, the
step-like behavior of the NN spin–spin correlation coincides with quantum critical points [5].
Moreover, the behavior of the NN correlation as a function of the temperature is intimately
connected to peaks in the specific heat [10]— that we also compute using Lanczos, TPQ and
Chebyshev — and that are particularly relevant experimentally [89].

For each value of ϕ, we computed the minimum eigenvalue, or ground-state energy of
the Hamiltonian, ϵGS, using the Lanczos ED technique. In the top panel of Fig. 4, we show
these results, along with the second derivative−d2ϵGS/dϕ

2, which accurately detects quantum
phase transitions between magnetically ordered phases (Néel, stripy and zigzag antiferromag-
nets and a ferromagnet) and two spin liquid phases, which we refer to as “antiferromagnetic”
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Figure 3: Minimum (ϵm) and maximum (ϵM ) eigenvalues of the K-H Hamiltonian
on a 24-spin hexagonal cluster on the honeycomb lattice, computed with the ground
state variant of Lanczos ED. The energy is normalized to the number of spins and the
shaded green area represents the spectrum width W = ϵM − ϵm for each value of ϕ.
ϵtarget = ϵm + 0.1W are target energies used later to compare MCLM and CPGF.

(ϕ ∼ π/2) and “ferromagnetic” (ϕ ∼ 3π/2) QSL phases, or AFQSL and FQSL in short. The
phase boundaries we obtained are summarized in Table 1 and agree well with Ref. [5]. The
Lanczos algorithm shows small statistical fluctuations, enabling one to use a single realization
of the initial random state across the entire phase diagram. As mentioned in Sec. 3.2.2, a
single random vector suffices to achieve good accuracy in the MTPQ approach as well due
to the self-averaging properties of the TPQ estimator. In fact, error bars obtained with more
realizations are negligibly small and thus are not shown in our plots.

We now move gears to the spin correlator. Figure 4 shows excellent agreement between
the spin–spin correlation computed with Lanczos and MTPQ. As mentioned earlier, the step
discontinuities in the correlator signal the quantum phase transitions of the K-H model [3–5].
MTPQ achieves its maximum effective resolution at low-temperatures (i.e. large Nit.) where
Fig. 4 shows that it accurately approximates the ground state [34–36,90]. These methods are
designed to reconstruct the ground state in a recursive fashion. Thus, it is perhaps not too
surprising that the energy and N-N spin correlation can be both computed with great accuracy
provided enough iterations are completed. Also shown in the bottom panel of Fig. 4 is the
behavior of the spin correlation for the target energies larger than the ground state by 10%
of the spectrum width, obtained with CPGF (the MCLM results coincide, and thus are omitted
to avoid unnecessary clutter on the figure). These excited states are still close enough to the
ground state that the spin correlation preserves its general shape, albeit with a considerable
broadening of its sharper features.

Table 1: Phase boundaries of the K-H model on a 24-spin hexagonal cluster obtained
with Lanczos.

QCP ϕ/π QCP ϕ/π

Néel-AFQSL 0.4940 Ferromagnet-FQSL 1.4500
AFQSL-Zigzag 0.5064 FQSL-Stripy 1.5364
Zigzag-Ferromagnet 0.8156 Stripy-Néel 1.7048
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Figure 4: Top panel — Ground state energy density obtained with Lanczos ED (solid
blue line) and MTPQ (dashed orange line). The solid red line is minus the second
derivative of the Lanczos ED curve obtained via finite differences. Its peaks signal
the quantum critical points labeled “QCP”. Bottom panel — Ground state nearest
neighbor spin–spin correlation computed with Lanczos ED compared with MTPQ.
The correlator is also computed with CPGF for states with target energy ϵtarget. The
symbol 〈i, j〉 denotes an average over all nearest neighbors 〈i, j〉.

The top panel in Fig. 5 summarizes a careful convergence study aimed at understand-
ing how the optimal number of iterations, N ∗it ,

5 depends on the microscopic details of the
model. Our simulations show that convergence is relatively fast in the purely Heisenberg lim-
its (ϕ = 0,π) and becomes slower as we approach the quantum phase transitions and, in
particular the Kitaev limits (ϕ = π/2,3π/2), in both Lanczos and MTPQ. Note that in spite
of the strong dependence of N ∗it with ϕ, Lanczos converges considerably faster throughout the
K-H parameter space, requiring about 2 orders of magnitude less iterations for convergence
than MTPQ.

Next, we address convergence around the quantum critical points near the Kitaev limits in
more detail; see Fig. 5 (bottom panel). The convergence of the Lanczos and TPQ estimators for
the spin–spin correlation is found to slow down notoriously as the Kitaev term on the Hamilto-
nian becomes dominant (|K |/|J | ≫ 1) and the ground state energy per site ϵGS(ϕ) and the NN
spin–spin correlation 〈SiS j〉

〈i, j〉
GS (ϕ) start to differ significantly. As a result of the slower conver-

gence away from the purely Heisenberg points, the computational effort grows substantially,
notably so close to the Kitaev points. For example, for ϕ ≃ 0.506π ⇐⇒ |K |/|J | ≃ 53, MTPQ
requires around 4× 104 iterations for optimal convergence as defined earlier to be achieved.

Figure 6 shows the energy density and spin correlation function of the 24-site cluster across
the phase diagram calculated with CPGF. We compare the latter with MCLM, which also has

5Here, optimal convergence is defined as a variation of less than 10−9 in the energy density between consecutive
iterations.
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Figure 5: Convergence in computations of ground state N-N spin–spin correlations.
Top panel – Dependence of N ∗it with ϕ in Lanczos and MTPQ -(left and right vertical
axes, respectively). Bottom panel – Convergence of Lanczos (left) and MTPQ (right)
around the Kitaev limits: AFQSL on top and FQSL on the bottom .

the ability to probe an input target energy. We also establish the accuracy of the STE of Eq. (22)
using CPGF. A detailed analysis shown in Appendix A confirms that the standard deviation of
the estimate for the N-N spin–spin correlation function scales as expected, i.e. as the inverse
square root of the number of realizations of the initial random state.

These results also show that finer CPGF resolutions are needed to probe the phase dia-
gram around the Kitaev points (ϕ = π/2,3π/2). On the contrary, near the Heisenberg limits
(ϕ = 0,π), convergence occurs with comparatively coarse resolution. A useful feature of the
CPGF method is that the optimal number of Chebyshev iterations, N ∗poly = N ∗poly(η), follows
a predictable pattern: it is roughly proportional to the spectrum width and inversely propor-
tional to the required resolution [51, 55]. The results reported in Appendix B confirm this
expected behavior. We find that the convergence speed of MCLM and CPGF compares very
differently throughout the phase diagram. MCLM seems to show unpredictable behavior as
some points of the phase diagram require significantly more computional effort than others.
CPGF behaves more intuitively, requiring a greater effort for points close to the phase transi-
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Figure 6: Comparative study between CPGF and MCLM. Top panel — Ground state
energy density obtained with MCLM (solid blue line) and CPGF (dashed lines) with
varying resolution as a function of ϕ. The two methods show excellent agreement
provided that the CPGF resolution is sufficiently fine. Bottom panel — Ground state
N-N spin–spin correlation as a function ofϕ. We used a single realization of the initial
random state for both methods. The results shown here also match the Lanczos and
MTPQ results shown in Fig. 4.

tions, which need finer resolutions and, consequently more iterations and thus more computer
time. Although the CPGF approach is significantly faster in some regions of the K-H parameter
space, the MCLM approach is faster close to the transitions (see Appendix B). Nevertheless,
when targeting the ground state, CPGF is 25% faster on average. For the excited states, the
difference in performance is much more pronounced and the results of Appendix B show that
CPGF is the method of choice due to its faster overall convergence (about an order of magni-
tude less CPU time required).

Next, we bench-mark the MCLM and CPGF methods around the Kitaev limits in detail, i.e.
for spreads of ϕ-values in the intervals [0.4800, 0.5200]π and [1.5160,1.5760]π. To assess
convergence in the K-H model, we carefully track the evolution of the correlation function as
more iterations are completed with each of the two methods.

In Fig. 7, we show the dependence of the NN spin correlation on the number of iterations
in the MCLM and CPGF approaches. Here, we focused on a range of resolutions in the interval
[2.5 × 10−5, 5 × 10−4], but only plotted the curves corresponding to the energy resolutions
that yield convergence. In this case, we consider that a given resolution yields convergence
when the energy density and spin correlation no longer change appreciably as finer resolutions
are considered. To ensure that convergence has indeed occurred, we compute the difference
between the energy density for two consecutive resolutions and ensure that the difference is
smaller than the resolution itself. As it turns out, convergence is achieved for Npoly ∼ 102−103

depending on the value of ϕ. Figure 7 confirms that enhanced resolutions are crucial in the
vicinity of quantum critical points. Moreover, it also shows that MCLM and CPGF have comple-
mentary convergence behavior. The top left panel shows that MCLM converges quicker around
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Figure 7: Convergence of the ground state nearest neighbor spin–spin correlation
computed with MCLM (left) and CPGF (right) around the Kitaev limits.

0.500π, but dramatically slows down around 0.480π and 0.520π. The top right panel shows
that CPGF has more consistent and faster convergence, with only the points closest to the tran-
sition (0.494π, 0.506π) requiring more iterations due to the need for a finer resolution. The
bottom panels exhibit a similar tendency. The points near 1.576π display faster convergence
with CPGF than with MCLM, while the curves in the center of the two plots show that con-
vergence is faster with MCLM due to the increased resolution that is needed with CPGF. Here,
we emphasize that we found each iteration to be faster with CPGF due to a lower number of
necessary operations than with MCLM. Thus, CPGF is still faster even in situations where the
number of iterations required for convergence is similar, e.g. for the points near 1.516π in the
bottom panels. The main contribution to the extra time per iteration in MCLM is the action of
ĥ2 upon a state at each iteration. Since the Hamiltonian is generated “on-the-fly”, one must act
with ĥ twice in order to obtain the action of ĥ2. Thus, each iteration incurs an extra cost due
to the additional matrix-vector multiplication, which is the most computationally expensive
operation in these methods.

4.1.2 Canonical approaches: Finite temperature

In what follows, we discuss the performance of the finite-temperature approaches introduced
in Sec. 3.3. We also include the microcanonical variant of the TPQ method in this analysis and
confirm that the temperature corresponding to each energy density can be accurately estimated
as explained in Ref. [34]. For concreteness, we focus on the Kitaev point at ϕ = 1.5π and
restrict the temperature to the range T = [0.004, 24] in units of the Kitaev coupling, which
suffices to capture the relevant features of the model.

We set out to obtain the NN spin correlation, specific heat and entropy with all methods,
with a careful convergence analysis. Thus, we compute the minimum (i.e., optimal) number of
iterations such that the target functions are reliably captured within the desired accuracy at all
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Table 2: Number of iterations (or Chebyshev polynomials) required for convergence
for each method and CPU time per core per iteration.

Method No. iterations CPU time per core per iteration / s

MTPQ (eupper = eM ) 1200 0.56
MTPQ (eupper = 35eM ) 22000 0.57
FTLM 200 2.05
CTPQ 500 0.58
FTCP (5< Npoly < 20) 7515 0.98

temperatures. Naturally, the relevant convergence parameters need to be adjusted separately
for each method due to their different characteristics. These are summarized in Table 2. It
is important to note that the results presented below not only agree with each other, but also
with QMC and exponential tensor renormalization group (XTRG) studies of Ref. [10], thus
supporting the validity of our implementation for all methods. The specific heat is computed
as follows: c = Nβ2(〈ĥ2〉 − 〈ĥ〉2). Similarly to Ref. [91], the entropy density is computed by
integrating c/T . We perform the integral numerically using Simpson’s rule.

At first sight, Table 2 seems to indicate that FTLM is the most efficient method. However,
notice that in Fig. 8, FTLM shows large low-temperature fluctuations, reaching about 26 times
the fluctuations of FTCP (calculated from root-mean-square deviations). The inset of Fig. 8
shows that these fluctuations are larger for FTLM than for the other methods throughout the
temperature range. Here, we note that the same initial random vectors are used in all methods
so that statistical fluctuations can be directly compared. Moreover, the total computational
cost is dictated not only by the number of iterations, but also by the number of matrix-vector
multiplications per iteration. This number is higher for FTLM than FTCP, leading to about twice
the average computer time per iteration (2.05 seconds with FTLM compared to 0.98 seconds
with FTCP).

Figure 9 shows a very important shortcoming of the CTPQ method. Unlike the NN spin
correlation, the specific heat has an important feature that cannot be reproduced with CTPQ,

Figure 8: Finite temperature N-N spin correlator computed with MTPQ, FTCP, CTPQ
and FTLM for the 24-site cluster at the Kitaev limit ϕ = 3π/2. We used 50 random
vector realizations in all cases. Error bars are negligibly small, except for FTLM.
Inset: Standard deviation of the N-N spin correlator. CTPQ is not shown because the
fluctuations are comparable to MTPQ.
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Figure 9: Specific heat (entropy density on the inset) computed with MTPQ, FTCP,
CTPQ and FTLM. We use 50 realizations of the initial random state for all methods.
The error bars are negligibly small in most of the temperature range, except for tem-
peratures below that of the low-temperature peak. The error bars are of comparable
size for every method (except for CTPQ, for which their meaning is ill-defined due
to a numerical instability). Model parameters as in Fig. 8.

namely the decay to zero of the low-temperature peak as T → 0. The limitation is related to
the need to consider more terms in the summation of Eq. (31) so as to achieve convergence.
We find that when we considered 500 terms, we reached the limit of machine precision (80-
bit floating-point on an Intel Core i5 processor) before reaching enough accuracy. The CTPQ
results gradually lose accuracy as temperature decreases and at some point between 10−1 and
10−2, they are no longer reliable. The entropy also shows signs of the numerical instability of
CTPQ (see inset of Fig. 9). FTCP avoids this instability via the numerical stabilization proce-
dure described in Sec. 3.3.3. The operator break-up into the product of Eq. (34) ensures that
each Chebyshev expansion in Eq. (36) is stable. The arguments of the fast growing modified
Bessel functions are guaranteed to remain in check because they can be controlled via the
inverse temperature step. This is to be contrasted with Eq. (31), where the also fast growing
functions of the inverse temperature and the number of iterations are not controlled, leading
to the numerical instability visible in Fig. 9.

Having discussed the limitations of FTLM (large low-temperature fluctuations) and CTPQ
(numerical instability), we now move on to MTPQ. An often ommited detail in the literature
is that the upper bound on the maximum eigenvalue of the Hamiltonian density, eM , given as
an input to MTPQ determines: i) the temperature range that is covered, and ii) how much
accuracy is achieved for a given temperature. The strong influence of eM can be traced back
to the evolution of the TPQ energy density distribution with the number of iterations [34]. We
found that in order to cover the desired temperature range with enough accuracy in MTPQ,
we had to increase the upper bound to 35 times the maximum eigenvalue of the Hamiltonian
density (computed with Lanczos). We consider that enough accuracy has been reached when
the specific heat and entropy computed with MTPQ match the FTCP and FTLM results.

The results of Fig. 9 indicate that the disparity between MTPQ with eupper = eM and the
other methods is solely due to insufficient accuracy at high temperature. While MTPQ captures
the high-temperature peak of the specific heat even with eupper = eM , the amplitude of this peak
is severely underestimated. As more iterations are completed, the accuracy of the method
increases and the low-temperature peak matches the results of other methods better, but still
not perfectly. Moreover, even though the MTPQ result with eupper = eM captures the general
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behavior of the entropy density, there is not enough accuracy because of accumulated error
from the lack of accuracy at high temperature and the reduced temperature range (note that we
compute the entropy as an integral over temperature). The other methods match perfectly and
show comparable fluctuations. Since there are only small error bars of approximately the same
size for all methods at low temperature, the disparity can only be due to insufficient accuracy
for MTPQ with eupper = eM . By probing higher values of eupper, we find that is necessary to input
eupper ≈ 35eM for the high and low-temperature peaks to reproduce the correct behavior. When
we consider this upper bound, MTPQ requires about twice the total computer time compared
to FTCP in order to achieve comparable results (14268 versus 7376 seconds per core). Even
though the number of iterations is nearly 3 times higher in MTPQ compared to FTCP, the former
requires 40 % less matrix-vector operations per iteration. Still, FTCP remains about two times
faster due to its significantly faster convergence.

Finally, notice that for both the specific heat and the entropy in Fig. 9, FTLM does not show
the low-temperature fluctuations of Fig. 8. We attribute this to the fact that Lanczos methods
are designed to quickly achieve an approximation of the Hamiltonian in a subspace restricted
to the ground state and low-lying excitations. The specific heat and the entropy are calculated
solely in terms of averages of the Hamiltonian density,




ĥ
�

and



ĥ2
�

. Thus, convergence is
better for these quantities than for more general observables, such as the NN spin correlation,
which are not as closely associated with the Hamiltonian.

4.2 Kitaev-Ising model

The K-I model combines Kitaev and Ising interactions. The model Hamiltonian is:

Ĥ = −
∑

〈i, j〉γ

�

Kγσ̂
γ

i
σ̂
γ

j
+ JI σ̂

z
i σ̂

z
j

�

, (55)

where we use the parametrization of Ref. [61]. We allow not only for the isotropic case, but
also a particular type of anisotropy, for which we have: Kx = 1−2α/3, Ky = Kz ≡ Kyz = α/3,
where α ∈ [0, 1.5] is a parameter and the energy scale is set by Kx + Ky + Kz = 1, Kγ ≥ 0.

In Ref. [61], the authors study this model for the 24-spin hexagonal cluster of the left panel
of Fig. 2 using Lanczos at T = 0. We start by reproducing some of their results so as to validate
our implementation. Then, we present a new study displaying dynamical signatures of the
phase transitions described in Ref. [61]. These signatures are found in theσz spin susceptiblity,
which we obtain using both the Lanczos and the hybrid Lanczos-Chebyshev (HLC) approach
that we introduced in Sec. 3.4.2.

4.2.1 Lanczos bench-mark

Figure 10 summarizes our Lanczos results and reproduces those of Ref. [61]. The top panel
shows two steps in the first derivative of the ground state energy density for fixed α= 0.7 and
varying JI ∈ [10−4, 10]. Correspondingly, the center panel displays two peaks in the second
derivative. These steps/peaks indicate two quantum phase transitions. From left to right, the
first quantum critical point separates a quantum spin liquid (blue) from a nematic (green)
phase and the second one separates the latter from a ferromagnetic phase (red). Similarly
to how the steps in the spin-spin correlation signal transitions for the K-H model (see bottom
panel of Fig. 4), the mean squared magnetization also signals transitions in the K-I model, with
its value approaching saturation very quickly as we enter the ferromagnetic phase.

4.2.2 Finite temperature: Comparing thermal pure quantum states and Chebyshev

In section 4.1.2, we bench-marked the FTCP approach by computing the temperature depen-
dence of the specific heat, entropy density and NN spin correlation. In principle, MTPQ could
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Figure 10: Top and center panels – Negative first (top) and second (center) deriva-
tives of the Lanczos ground state energy density. Bottom panel – Mean square of the
magnetization, 〈m2〉 ≡ 〈[(1/N)

∑

i σ
z
i
]2〉. These results match those of Ref. [61] and

illustrate the transitions between ferromagnetic (red), nematic (green) and quantum
spin liquid (blue) phases found in Ref. [61]. Here, a single realization of the initial
random state was found to be sufficient due to negligible statistical fluctuations.

be the most viable competitor of FTCP (despite being a microcanonical method) because it
avoids the shortcomings of FTLM and CTPQ. Yet, we found that MTPQ required about twice
the computer time of FTCP in the context of the K-H model. Here, we further bench-mark FTCP
by considering the K-I model. We also seek to clarify whether FTCP outperforms MTPQ in terms
of computer time for a different model, which would suggest that the advantages of FTCP are
not problem-dependent. We start by recovering the MTPQ results of Ref. [61] using our own
implementation. Then, we repeat the calculation using FTCP. These results — shown in Fig. 11
— are for two specific points of the phase diagram: (α, JI ) = {(0.7,0.001), (0.7,0.03)}. Going
back to Fig. 10, we can see that these two points are located within the Kitaev quantum spin
liquid and nematic regions of the phase diagram, respectively.

In Ref. [61], the authors remark that the well known results for the pure Kitaev model that
we recovered in Figs. 8 and 9 remain qualitatively valid even when JI ̸= 0, and even within the
nematic phase (see right panels of Fig.11 with results for (α, JI ) = (0.7, 0.03)). The specific
heat has a two-peak structure, corresponding to a two-step release of entropy. At high temper-
ature (T ∼ 0.5), the Majorana fermions c (defined in [61]) release their entropy (0.5kB ln 2).
The other half of the entropy is released by Z2 fluxes at low temperature (T ≲ 10−2) [8]. The
high temperature crossover coincides with an enhancement of the expectation of the kinetic
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Figure 11: MTPQ and FTCP results for the K-I model on a 24-spin cluster with α= 0.7
and JI = 0.001 (left panels) and JI = 0.03 (right panels). We used 50 and 100
random vector realizations for JI = 0.001 and JI = 0.03, respectively. Panels a)
and b) show the specific heat, with a zoom-in on the standard deviations — from
which the error bars are derived — at low temperature; panels c) and d) show the
entropy density, with the grey lines marking s = 0.5kB ln 2; panels e),f) show the
finite temperature expectation of the kinetic energy of the Majorana fermions c.

energy of the Majorana fermions c, defined in terms of the spin operators as follows:

K̂ =
2
N

∑

γ=x ,y

∑

〈 j,k〉γ
σ̂
γ

j
σ̂
γ

k
. (56)

The features mentioned above are all apparent in Fig. 11 and our MTPQ and FTCP results
match nearly perfectly. The striking difference between the two approaches is that once again,
FTCP cuts the computer time in approximately half. To be more precise, for JI = 0.03, FTCP
is around 2.1 times faster and for JI = 0.001, it is around 1.8 times faster. Table 3 summarizes
these differences in computer time.

Figures 11 a),b) confirm the two-peak behavior of the specific heat. In the right panel
(JI = 0.03), statistical fluctuations are more apparent and even doubling the number of ran-
dom vectors compared with the case JI = 0.001 (going from 50 to 100), we find that sta-
tistical fluctuations remain higher. This is illustrated in the low temperature behavior of the
standard deviation of the specific heat estimator, which is shown on the insets. MTPQ and
FTCP show identical statistical properties, with these standard deviations matching remark-
ably well. Notice that the optimal value for the upper bounds on the maximum eigenvalue
of Hamiltonian used in MTPQ were different in each case (40eM for JI = 0.001 and 30eM

for JI = 0.03). These were chosen so as to ensure enough accuracy throughout the chosen
temperature ranges (T ∈ [0.002,24] for JI = 0.001 and T ∈ [0.004,24] for JI = 0.03, in
units of Kx + Ky + Kz). Figures 11 c),d) show the two-step release of entropy. Compared with

29



SciPost Phys. Core 7, 006 (2024)

Table 3: Average CPU times, tCPU, for MTPQ and FTCP calculations for the K-I model
on a 24-spin hexagonal cluster with α= 0.7 and JI = 0.001,0.03.

JI

tCPU/ hours
MTPQ FTCP

0.001 142 77
0.03 61 29

the pure Kitaev case of Fig. 9, the left panel (c) shows a much more pronounced plateau-like
behavior between T = 10−1 and T = 10−2, ending in an abrupt decrease of entropy. In con-
trast, the right panel (d) shows no plateau at all, with a gentler decrease in entropy between
T = 10−1 and T = 10−2. This is a manifestation of the intrinsic differences between the two
liquid phases (Kitaev QSL and nematic). Finally, figures 11 e),f) illustrate the high tempera-
ture enhancement of the kinetic energy of the Majorana fermions c, a behavior that is shared
between the two phases. Here, statistical fluctuations are very small for both MTPQ and FTCP,
with negligible error bars.

4.2.3 Dynamics: Hybrid Lanczos-Chebyshev approach

Lastly, we present novel results that elaborate on the picture of the K-I system that was outlined
in Ref. [61]. We find that the signatures of the quantum phase transitions are present not only
in static quantities, such as the energy and squared magnetization, but also in the dynamical
spin susceptibility. This spectral function is obtained by considering the relevant observable in
Eq. (48) to be the Fourier-transformed spin operator, i.e. Â =

∑

r e−iq·rŜz
r/
p

N , where r is a
position on the lattice and q is the wave vector.

In Fig. 12, we show the variation of the q = (0, 0) dynamical spin susceptibility, SΓ (ω),
with the model parameter JI . These results are obtained with the hybrid Lanczos-Chebyshev

Figure 12: Dynamical spin susceptibility of the K-I system for varying JI and α= 0.7,
normalized to its maximum value. The phase transitions are marked as gray dashed
lines. The results obtained with the Lanczos and HLC methods are identical. The
white space corresponds to a vanishing SΓ (ω), as shown on the bottom of the
color bar.
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(HLC) method. The initial Lanczos run is stopped when the variation between the ground state
energy density computed for consecutive iterations is less than 10−9 in units of Kx + Ky + Kz .
We compute 3000 Chebyshev moments, which is enough to achieve convergence for all the
values of η considered. Specifically, for each JI , the resolution parameter is fixed to 0.1% of the
spectrum width, which translates to values in the interval η ∈ [0.0011, 0.0036](Kx +Ky +Kz).
In terms of statistical sampling, we find that lower values of JI require more random vectors
for the peaks of the dynamic susceptibility to be resolved satisfactorily. Thus, for JI < 0.0057,
we use 16, rather than the 4 initial random vectors that we use for JI > 0.0057. Our inter-
pretation of these results is in line with a similar reasoning for the K-H model presented in
Ref. [5], albeit with a crucial difference due to the specifics of the liquid-to-liquid transition.
In the ferromagnetic limit (JI ≳ 10−1), theω = 0 component dominates because of the strong
ferromagnetic correlations. As JI is lowered and the transition to the nematic phase occurs,
the gapless magnon mode gradually turns into a gapped mode. Moreover, there is a prolif-
eration of sharp well-defined excitations in the nematic phase, which abruptly collapse onto
a smaller set of modes as the transition to the Kitaev phase occurs (JI ∼ 10−2). This rapid
change in the spin susceptibility is consistent with the T = 0 first order topological phase tran-
sition described in Ref. [61]. The gap is found to peak for the Kitaev liquid, at which point the
lowest-ω mode occurs for a larger ω than in the nematic phase.

We close this section with a note on computational resources and memory cost. Through-
out the paper, our calculations are done using Intel Xeon Gold 6138 processors running at 2
GHz and each simulation requires between 0.5 and 1 GB of memory. All Chebyshev methods
showed improved performance. In the case of the dynamics studies of this section, we found
that under the exact same circumstances, our HLC method is 33 % faster than the continued
fraction Lanczos approach. This estimate was obtained as follows. We reproduced a previ-
ously known result for the dynamical spin susceptibility from Ref. [5] using the same number
of Lanczos iterations/polynomials and averaging over ∼ 400 simulations, each running with
parallelization enabled with 16 cores using the aforementioned processors. We used our own
implementation of Lanczos in both cases, so our results are implementation-independent.

The main conclusion of this section is that our newly introduced Chebyshev approach is not
only remarkably flexible, in the sense that it allows the study of generic (not necessarily auto-
correlation) spectral functions, but also faster overall than the traditional Lanczos approach.

5 Concluding remarks

We studied the Kitaev-Heisenberg (K-H) and Kitaev-Ising (K-I) models on the honeycomb lat-
tice for a 24-spin hexagonal cluster with periodic boundary conditions using three distinct ap-
proaches: Lanczos, TPQ and Chebyshev. This work is mainly divided in three parts. In the first
part, we started by reproducing the results of Refs. [3–5] for the K-H model using Lanczos ED.
Then, we recovered those results using microcanonical variants of the Lanczos (MCLM) and
thermal pure quantum state (TPQ) methods and the Chebyshev polynomial Green’s function
(CPGF) method, independently of each other. For these three methods, we carefully examined
the spectral and statistical convergence properties. While Lanczos is found to be ideal to ap-
proximate the ground state, we find that CPGF is the most efficient method capable of probing
an arbitrary target energy with well controlled accuracy, proving to be faster than both MTPQ
and MCLM on average throughout the phase diagram of the K-H model.

In the second part, we computed the temperature dependence of the N-N spin correlation,
specific heat and entropy density. The aim of this study was to compare three methods based
on Lanczos, TPQ and Chebyshev ideas, respectively: the finite temperature Lanczos method
(FTLM), the canonical variant of TPQ (CTPQ) and the finite temperature Chebyshev Polyno-
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mial method (FTCP), introduced in this paper. The MTPQ method is also considered because
it is capable of estimating the temperature corresponding to each energy density remarkably
accurately. Our implementations are bench-marked against the exponential tensor renormal-
ization group results of Ref. [10]. We find our newly introduced FTCP method to be the most
efficient and versatile of the three, namely showing a two-fold increase in speed compared
with TPQ, while also avoiding the large low-temperature statistical fluctuations of FTLM.

The third and last part of this work started with the reproduction of Lanczos ED and TPQ
results for the K-I model [61]. This bench-mark allowed us to validate our implementation
and carry out a novel dynamical study for the K-I model, where we used a hybrid Lanczos-
Chebyshev method. The latter was also shown to be more flexible and about 33% faster than
Lanczos on average. Our detailed calculation of the dynamical spin susceptibility identifies
signatures of the quantum phase transitions in the K-I model. This third part of our work also
provides further evidence for the efficiency of FTCP, confirming the two-fold speed-up with
respect to TPQ in finite temperature calculations for the K-I model.

In what follows, we summarize the key aspects that support the conclusions above for each
part of our work.

All microcanonical methods show low statistical fluctuations and considering even just a
single realization of the initial random state seems to suffice to achieve negligible deviations
from the exact diagonalization results throughout the phase diagram of the K-H model. Unlike
the number of realizations, the resolution plays a central role when comparing the performance
of the three microcanonical approaches. In CPGF, finer resolutions always require more poly-
nomials to achieve convergence. There is no one-to-one correspondence between the CPGF
resolution and the effective resolutions of MTPQ and MCLM (which vary as more iterations are
completed). Nonetheless, we managed to compare the three methods. TPQ showed an erratic
convergence speed, with particularly significant slow-down for ϕ = 0.506π in the K-H model,
at which point around 4×104 polynomials/iterations are needed to achieve convergence and
thus match the Lanczos ED results satisfactorily. On the other hand, CPGF requires very fine
resolution to recover the ED results near the quantum phase transitions, thus converging rel-
atively slower (but still faster than MTPQ) at these points of the phase diagram. Yet, away
from quantum critical points, comparatively coarse resolutions are enough to reproduce the
ED results. For most points of the phase diagram, CPGF has fast convergence and a relatively
coarse input resolution suffices to match the results of ED. Even though the convergence be-
havior of MCLM throughout the phase diagram is not as predictable as CPGF, the convergence
speed is comparable to that of CPGF and both typically converge faster than MTPQ. Overall,
we find that CPGF requires less computer time and has well controlled accuracy through the
resolution and number of polynomials, thus having a slight edge over MCLM. In spite of not
being ideal for probing target energies with well controlled accuracy, we still find that MTPQ
is very useful because of its ability to estimate the temperature corresponding to each energy
density over the course of the iteration. This means that MTPQ is a viable method to carry out
studies that would otherwise only be possible using canonical methods.

Regarding finite-temperature studies, we find shortcomings in both MTPQ and its canonical
counterpart, CTPQ. Both seem advantageous at first sight due to their lower memory cost.
However, in the case of MTPQ, this implies a trade-off that we show to greatly increase the
computer time. On the other hand, in the case of CTPQ, a numerical instability limits its ability
to probe very low temperatures. We show that the main competitor of TPQ, the Lanczos-based
FTLM, has comparatively larger statistical fluctuations when studying the low-temperature
behavior of the NN spin correlations. These fluctuations, along with a high number of matrix-
vector multiplications per iteration in FTLM, limit the method’s efficiency. Finally, we show that
the newly introduced FTCP method circumvents the shortcomings of the other methods. Its
statistical fluctuations are smaller than FTLM and comparable to the TPQ methods. Whilst the
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FTCP memory cost is the same as FTLM (but slightly higher than TPQ), the trade-off is that the
method is more efficient, i.e. twice as fast as MTPQ. This can be a crucial advantage in practical
applications. Moreover, when using FTCP, accuracy can be controlled at each iteration, unlike
in MTPQ, where the only way to guarantee sufficient accuracy is to increase the upper bound on
the maximum eigenvalue of the spectrum by trial-and-error and carry out more costly, longer
simulations. This is a demanding process, where one considers that accuracy is sufficient when
no changes are detected in the relevant quantities for the desired temperature range as the
upper bound is increased and the simulations are repeated. FTCP provides us with the the
option of choosing the number of polynomials for convergence in each Chebyshev expansion
throughout the iterative process, thereby ensuring that accuracy is maintained in the whole
temperature range, without dramatically increasing the computational cost.

Our results show clear trade offs that must be taken into account when choosing which
method to use. For example, MTPQ is designed to achieve maximum accuracy for the ground
state. However, it cannot isolate excited states nor can it ensure uniform accuracy through-
out large temperature windows. Concomitantly, the additional control afforded by the CPGF
approach — which can access excited states directly — could be useful for studying non equilib-
rium systems, such as those studied in Ref. [9]. Another example is that of canonical methods.
While we find Lanczos to be efficient for the computation of observables closely related to the
Hamiltonian, it has large statistical fluctuations for more generic observables that might be of
interest, such as the NN spin correlation in the K-H model.

A particularly powerful competing method is DMRG, originally devised to investigate 1D
interacting systems [27–29]. DMRG aims to systematically truncate the exponentially large
Hilbert space basis. The basis is rotated in the process in order to improve the accuracy of the
truncation. This rotation is achieved via a series of global rotations generated by sweeping
the lattice and thus focusing on a few sites at a time. The wide applicability of the DMRG
procedure means that it can be used as a general purpose, sign problem free method. More-
over, it yields results that are competitive with QMC. However, the application of DMRG to
2D systems remains challenging [30]. The Chebyshev-based methods used throughout this
paper are a potential alternative to DMRG because, unlike the latter, they pose no restrictions
on boundary conditions and their accuracy can be precisely controlled by ensuring statistical
convergence and, in the case of CPGF, by adjusting the spectral resolution. As far as the system
size is concerned, Ref. [85] details the use of conservation laws to improve the efficiency of
ED methods, particularly from the computer memory point of view. For example, translational
symmetry implies that some configurations of the spins are equivalent up to a phase factor.
This is a consequence of the block structure of the Hamiltonian, which gives forth to a reduced
basis approach, enabling the study of larger system sizes. The only caveat is that systems with
open boundary conditions and/or random couplings cannot be tackled with this approach.

To sum up, our results show that Chebyshev methods are more versatile and efficient than
their Lanczos and TPQ counterparts, unless one is interested in properties that are well de-
scribed using solely the ground state, or a small set of low-lying excitations. While in that
case, Lanczos is still the method of choice, Chebyshev methods have significant advantages in
various other scenarios, namely for the study of: properties that depend on an arbitrary tar-
get energy; finite temperature behavior of observables of interest that cannot be expressed in
terms of the Hamiltonian and low-order polynomials of the latter; and dynamical quantities,
such as spectral functions.
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A Stochastic trace evaluation

Statistical convergence is obtained when the error bars become acceptably small. This infor-
mation is encoded in the scaling of the standard deviation with the number of used initial
random states. In Fig. 13, we confirm that we obtain the expected scaling (σ∝ N

−1/2
rd.vec.) [49],

that is our error bars can made as small as required by simply averaging over more realizations
of the initial random state. This calculation was carried out with CPGF for a point in the phase
diagram of the Kitaev-Heisenberg model with the parametrization of Ref. [3].
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Figure 13: Behavior of the standard deviation of the NN spin correlation with the
number of realizations of the initial random state for the CPGF method. Here, we
consider a specific point of the phase diagram (α = 0.818 in the parametrization of
Ref. [3]). We obtain the expected scaling: σ∝ N

−1/2
rd.vec..

B Spectral convergence and computational effort of CPGF

As mentioned in Sec. 4, the spectral convergence of CPGF follows a predictable pattern: the
optimal number of polynomials needed for convergence, N ∗poly, is inversely proportional to the
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resolution, η. Our results shown in the top panel of Fig. 14 confirm this behavior. In the CPGF,
we used a stricter definition of convergence than before: A variation of less than 10−9 in the
energy density between three consecutive iterations. This is necessary because convergence
occurs in a “damped oscillatory” manner in CPGF (as we have shown in Fig. 7).

When targeting the ground state, the convergence of the CPGF method slows down close
to critical points, despite showing comparably faster convergence in other parts of the phase
diagram (center panel of Fig. 14). Surprisingly, MCLM behaves in a complementary fashion:
convergence tends to become faster near a phase transition. Furthermore, each iteration is
faster overall with CPGF, so even when in cases where both require comparable numbers of
iterations for convergence, CPGF tends to be faster. Thus, the CPGF is faster than MCLM at
reproducing the complete phase diagram.

The cost of targeting the excited states with CPGF is comparable to targeting the ground
state. In contrast, MCLM requires significantly more iterations for convergence, resulting in a
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Figure 14: Top panel: Number of iterations required for convergence with CPGF
times the required resolution (left vertical axis) and spectrum width (right vertical
axis). N ∗poly is approximately proportional to the spectrum width and inversely pro-
portional to the required resolution. Thus, the number of iterations required for
convergence can be estimated in advance, unlike in other approaches. Center panel:
Computer time required for convergence using MCLM and CPGF to target the ground
state. Bottom panel: Similar to the center panel, but now targeting excited states
with energy ϵtarget. Here, we allowed a maximum of 10000 iterations with MCLM.
In comparison, CPGF never required more than 3195 polynomials for convergence.
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total CPU time about an order of magnitude larger than CPGF. The complementary behavior of
the convergence properties of the two methods persists, i.e. the convergence speed of MCLM
increases for the parts of the phase diagram where the convergence speed of CPGF decreases.
Still, CPGF remains faster for the whole of the phase diagram when targeting the excited states.
In conclusion, CPGF is the method of choice for targeting excited states.
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