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A B S T R A C T   

Advanced modelling and optimisation techniques have been widely used in recent years to enable intelligent 
manufacturing and digitalisation of manufacturing processes. In this context, the integration of artificial intel-
ligence in machining provides a great opportunity to enhance the efficiency of operations and the quality of 
produced components. Machine learning methods have already been applied to optimise various individual 
objectives concerning process characteristics, tool wear, or product quality in machining. However, the overall 
improvement of the machining process requires multi-objective optimisation approaches, which are rarely 
considered and implemented. The state-of-the-art in application of various optimisation and artificial intelligence 
methods for process optimisation in machining operations, including milling, turning, drilling, and grinding, is 
presented in this paper. The Milling process and deep learning are found to be the most widely researched 
operation and implemented machine learning technique, respectively. The surface roughness turns out to be the 
most critical quality measure considered. The different optimisation targets in artificial intelligence applications 
are elaborated and analysed to highlight the need for a holistic approach that covers all critical aspects of the 
machining operations. As a result, the key factors for a successful total machining performance improvement are 
identified and discussed in this paper. The AI methods were investigated and analysed in the frame of the 
IMPACT project initiated by the CIRP.   

1. Introduction to artificial intelligence in machining 

The immense increase of computational power, data storage capac-
ity, and transmission rates together with access to large volumes of data 
from a variety of sources provide the basis for the successful imple-
mentation of artificial intelligence (AI) technology in a broad spectrum 
of application areas. AI has become a key player in support and 
improvement of many everyday life activities and challenges, such as 
navigation, procuring, medical treatment, information management, 
and communication. It is also an important part of Industry 4.0 which 
denotes the digitalisation and automation efforts in manufacturing [1, 
2]. Machining, as one of the key secondary operations to generate 
functional surfaces, has attracted much attention and already benefited 
from AI, machine learning (ML), and optimisation since the rapid 
technological advancement in information processing technology has 

facilitated their application [3,4]. Predictive models based on ML al-
gorithms have been implemented to monitor, regulate, and enhance the 
resource and cost efficiency of various machining processes to ensure 
produced parts of high quality. 

1.1. AI technologies in machining 

AI applications in machining, according to the published literature so 
far, are mostly focused on using a single evaluation criterion, such as 
surface roughness [5–7] or tool wear [8–10], for process assessment and 
optimisation. This is even though machining is a very complex operation 
covering several processes defined by the interaction between machine 
tool, environment, and workpiece. Considering machining as a system of 
cutting tool, machine tool, and work material, the total machining 
performance (TMP) [11] must be evaluated by several criteria, including 
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surface finish, tool wear rate, tool geometry, dimensional and geomet-
rical accuracy, cutting power, and chip breakability. Therefore, a 
comprehensive approach to assess and improve the TMP should not only 
include process outputs such as cutting forces or tool wear, but also the 
quality of produced parts, environmental factors, and production costs 
to maximise the functional performance and the process sustainability 
via multi-objective optimisation techniques. 

Various modelling techniques including analytical, numerical, 
empirical, or physics-based methods [4,7,12–16] as well as data-based 
techniques, such as fuzzy logic and artificial neural networks (ANN), 
can be used to model process-related targets as a precondition for single- 
and multi-objective optimisation. However, in the last decade 
data-based algorithms from AI, such as ML and evolutionary optimisa-
tion algorithms, have rapidly become an important element of such 
models to enhance the machining performance and to enable a smart 
and sustainable manufacturing process [3,17,18]. 

A considerable number of review papers have already been pub-
lished in recent years covering various constituents of AI-based process 
optimisation in machining from general performance assessment mea-
sures and optimisation targets over typical data sources, up to ML and 
optimisation algorithms (see Fig. 1). These delve into general discus-
sions on the successful integration of AI in manufacturing or machining 
[15,19–23] and special considerations on selected machining operations 
including laser beam machining [24], abrasive finishing [25], drilling 
[26,27], or milling [28]. Additionally, application of particular model-
ling targets with respect to the ML approach and optimisation potential, 
for example, rate of penetration in drilling [4], surface roughness [29], 
cutting forces [16], and tool breakage [30], were analysed. Finally, deep 
learning for tool condition monitoring [31] or evolutionary techniques 
for machining [32] highlight the particular value of data-based algo-
rithms for manufacturing processes. 

1.2. Optimisation in machining 

Extensive research has been conducted over the past decades on the 
development and application of optimisation algorithms to enhance 
machining performance and process monitoring. However, with the 
continuous advancement of algorithms and the rapid progress in infor-
mation technologies, there is an urgent need to further develop opti-
misation methods in machining to fully harness the potential benefits of 

data-driven methods. The conventional machining performance assess-
ment methods are not very efficient for the evaluation of the TMP due to 
the large number of variables involved. Therefore, a series of fuzzy-set 
mathematical models have been developed and implemented to 
address this shortcoming [11]. However, the performance of these 
models is bound to the available algorithms and information technolo-
gies present at the time. Therefore, using the modern data-based toolbox 
of AI including the methods can significantly enhance the performance 
of these models with respect to both effectiveness and accuracy. 

1.3. Machine learning in machining 

ML applications in manufacturing processes have gathered signifi-
cant interest among researchers. The existing literature covers either 
summaries of ML applications in different operations [3,33] or discusses 
specific case studies, such as tool wear or surface quality of the 
machined parts [34]. Process outputs such as cutting forces and surface 
roughness are reportedly predicted using ANNs [35], while sensor fusion 
[36] and fuzzy optimisation [37] have been investigated to establish a 
reliable measurement setup for a high-quality data acquisition that is 
crucial for optimisation tasks. A review of literature from the late 20th 
century about the identification of optimal machining parameters pri-
marily using AI methods has been provided in [38]. This review high-
lights the fact that only a limited number of studies have utilised a 
combined approach involving both ML methods and optimisation al-
gorithms as presented in [39,40]. Furthermore, evolutionary and, in 
particular, genetic algorithms [12,41–45] were used and evaluated to 
achieve an optimal manufacturing process. Optimisation techniques 
such as particle swarm optimisation [46], response surface methodology 
[47], weighted grey relational analysis [48,49], or the NSGA-II algo-
rithm for single- and multi-view optimisation [50] have also been 
implemented in the field of machining. 

1.4. Paper structure 

Starting from recent work on advanced machining in [3] and 
considering the exponential development and application of data-based 
modelling, the present paper is focused on the state-of-the-art since 2018 
with particular emphasis on the improvement of the machining process 
by integrating ML modelling and data-based optimisation. The paper 

Fig. 1. AI-based optimisation in machining includes the identification of performance indices, the selection of optimisation targets and data sources, as well as the 
choice of ML and optimisation algorithms. 
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delivers a thorough analysis and systematic presentation of process 
parameters and variables as data sources as well as the modelling targets 
process characteristics, tool wear, and workpiece quality. The impor-
tance of multi-objective optimisation for TMP improvement as well as 
challenges and preconditions for the successful implementation are 
discussed extensively. 

A brief introduction to machining operations in Section 2 is followed 
by a brief description of ML and data-based optimisation algorithms 
applied to the field of machining science. Typical data sources and 
associated preprocessing, as well as feature extraction methods required 
for high-quality modelling and prediction of machining operations are 
discussed in Section 4. The review of the state-of-the-art in ML appli-
cations to machining in Section 5 provides a critical assessment of ML 
approaches as a precondition for data-based optimisation. Additionally, 
the most relevant modelling targets together with available information 
sources used as input and output data of the models are presented in 
detail in Section 5. Preconditions and obstacles for the implementation 
of AI and ML towards TMP optimisation are discussed in Section 6 and a 
strategy is proposed for a successful TMP assessment and optimisation. 
Finally, the concluding remarks are described in Section 7. 

2. The machining process 

Machining processes remain among the most frequently used oper-
ations to generate functional surfaces for applications in various sectors 
including aerospace, automotive, and energy. Cutting is generally 
defined as a form-shaping machining process via chip removal due to an 
interaction between a workpiece and a tool. Hence, it is commonly 
referred to as subtractive manufacturing to be easily differentiated from 
additive manufacturing [51]. Machining processes are often categorised 
into conventional and non-conventional operations depending on the 
source of energy used to remove the material [32,52]. The conventional 
operations are based on a relative motion between the tool and the work 
material, defined by the kinematics of the process, which results in the 
mechanical chip formation. The operations are divided into cutting (e.g., 
turning, drilling, milling) and abrasive processes (e.g., grinding, lapping, 
polishing) based on the number of defined geometrical features of the 
cutting edges. The shapes of the cutting edges are known and can be 
quantified in the cutting operations, while the features of the cutting 
edges can only be described statistically in the abrasive processes [53]. 
Process parameters (i.e., cutting speed, feed, and depth of cut), tool 
properties (e.g., size, coating, edge properties) and the cooling strategy 
(e.g., flood, minimum quantity lubrication, cryogenic) as well as the 
workpiece material are among the critical factors required to design a 
cutting process. 

The workpiece quality is often predetermined by technical specifi-
cations defining surface characteristics, and dimensional accuracy [29]. 
However, the produced surface integrity, which has an impact on the 
functional performance of the parts, is characterised by mechanical and 
metallurgical properties within the surface layer, including residual 
stresses, microhardness, or the grain structure [54]. Therefore, an 
optimised cutting process will positively affect the quality of the 
generated surfaces [52,55] as well as improve the sustainability of the 
machining process with respect to emissions and energy consumption 
[47,56]. 

3. Fundamentals of machine learning and optimisation 

In Section 3.1 necessary terms and concepts from ML theory, 
including a categorisation of algorithms and learning tasks, are pre-
sented. It is followed by an introduction of ML and optimisation algo-
rithms most frequently applied in the field of machining. 

3.1. Terms and learning tasks 

The terms artificial intelligence (AI), machine learning (ML), and 

deep learning (DL) are often used interchangeably and cannot be 
distinguished clearly in the literature, despite being different concepts 
with a decreasing level of generalisation. AI refers to the intelligent 
performance of machines [57,58] enabled through the entirety of al-
gorithms, software, and hardware and, hence, covers the broadest scope. 
According to [59], AI is the ability of a system to correctly interpret 
external data, to learn from such data, and to use those learnings to 
achieve specific goals and tasks through their flexible adaptation [60]. 
Whereas, ML refers to the mathematical algorithms which draw con-
clusions from data in the form of predictions, i.e., automatically trans-
form experience into knowledge [61]. In this sense, optimisation 
algorithms are both an integral part of AI and are applied to find optimal 
prediction models from ML to solve present learning problems. DL as a 
subgroup of ML refers to the application of artificial neural networks 
(ANNs) with hidden layers (Section 3.2). Therefore, the ML branches of 
ANNs and DL can be regarded practically the same. Modern ANNs are 
able to autonomously learn the representative features of data which are 
needed to solve ambitious learning tasks [62,63]. This specific capa-
bility of ANNs combined with the increased computing power, storage 
capacity, and data emergence in recent years has led to astonishing re-
sults, for example in object detection or speech recognition, however, at 
the expense of a limited explainability of the corresponding algorithms 
[64]. 

An ML model is a function f which assigns an appropriate output or 
label y ∈ Y to every instance x of an input space X (Fig. 2). The input x 
is an appropriate feature representation of the instance, e.g., an image, 
or a sensor measurement and labels are for example real values, classes, 
or rankings of data sets. If more than one feature sets for the instances 
are available, so-called multi-view learning techniques can be applied 
[65]. A predefined training data set is used to generate the predictor 
function using an ML algorithm in the training phase, while the per-
formance of a model is evaluated in the testing phase with an inde-
pendent test dataset together with a convenient performance measure. 
Supervised, unsupervised, and reinforcement learning (RL) are the three 
learning paradigms of ML. Supervised learning refers to scenarios where 
labelled examples, i.e., pairs (x, y) from X × Y , are available for 
training with the goal of optimally aligning true labels and predicted 
labels in a way that is determined by the algorithm. Regression, the 
prediction of a real-number, or classification, the prediction of two or 
more predefined classes, are typical tasks for supervised learning. 

In contrast, in an unsupervised setting only unlabelled instances, i.e., 
elements of X , are available for training. Clustering and dimensionality 
reductions are important examples of unsupervised learning tasks. These 
refer to an optimal grouping of instances and or reducing the input 
dimension with a minimal loss of information, respectively. RL describes 
learning by trial and error, e.g., in playing a game or optimising oper-
ations in a production process, whereby a programme or an agent 
operates in an environment and aims at maximising its success measured 
in form of cumulative rewards for a sequence of actions [58,60,66]. 
Independent of learning task or paradigm, transfer learning (TL) is an 
ML approach [67] which intends to transfer knowledge from the 

Fig. 2. The relation between process input x and output y can be captured with 
an ML model or a fitness function and the optimisation model can be used to 
determine the most suitable input x∗ which minimises the objective function. 
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solution of one learning task to another related task, e.g., by modifying 
an existing ML model to a similar problem and improving training data 
set [68]. 

3.2. Machine learning algorithms 

ML models are generated to tackle a specified learning problem from 
practice by inferring the underlying functional relationship between 
input and output of a process. A prior analytical relationship between 
input and output quantities is not needed to build an ML model, how-
ever, expert knowledge can be greatly beneficial. The performance of 
models for a given dataset depends on the used ML algorithm and 
evaluation measures during training and testing. The majority of ML 
algorithms applied in machining-related research in the reviewed 
literature can be grouped in (1.) support vector machines (SVMs), (2.) 
artificial neural networks (ANNs), (3.) decision tree (DT) algorithms, 
and (4.) regression analysis (RA). 

3.2.1. Support vector machines and kernel methods 
SVMs are linear models arising from a regularised risk minimisation 

approach with beneficial properties of the corresponding loss function, 
originally with the aim to solve supervised classification or regression 
problems in high-dimensional features spaces [69,70]. The main 
objective of support vector classification (SVC) is to find a hyperplane, i. 
e., a decision boundary, that separates different classes in the inputs 
such that the margin between instances and the hyperplane is maximal 
[71]. Additionally, support vector regression (SVR) was developed for 
regression problems where the optimal hyperplane is determined to best 
fit the training data points [72]. SVMs can be transformed into so-called 
kernel methods [73–76] where a symmetric kernel function is used to 
implicitly map the learning instances from the original feature space to 
another feature space to enable the solution of a non-linear problem 
with a linear model. Apart from classification or regression, SVM vari-
ations can also be used to tackle other learning problems, such as outlier 
detection, clustering, or multi-class classification. 

3.2.2. Artificial neural networks 
ANNs are learning algorithms which minimise the expected risk for 

future predictions with a model inspired by neural networks in biolog-
ical organisms [77,78]. An ANN is a connected directional network of 
nodes (or neurons) organised in multiple layers or complex structural 
units, such as convolution layers in convolutional neural networks 
(CNNs) [79]. A variety of input data formats, including image, tabular, 
or vectorial data can be processed by ANNs to solve different learning 
tasks. The neurons form the elementary functional units of the network 
and receive signals in form of edge weights from preceding neurons, 
process the signal, and pass it on to the subsequent neurons. Specific 
non-linear activation functions imply a characteristic sensitivity of the 
neurons and supply ANNs with the capacity to approximate any func-
tional relationship with arbitrary exactness. In contrast to feedforward 
connections, in recurrent neural networks (RNNs) the nodes’ outputs 
can affect the input of preceding layers by forming a loop, which make 
RNNs capable of predicting data sequence, e.g., via long-short term 
memory networks (LSTM). The perceptron algorithm displays the basic 
functionality of the ANN learning procedure. It implements the succes-
sive adaption of the edge weights to the training inputs via back-
propagation (BP). The multi-layer perceptron (MLP) is its generalisation 
with hidden layers. Mostly commonly, the gradient descent optimisation 
algorithm is utilised for the weight adjustment. The explainability and 
interpretability of ANNs are typically not obvious because of the 
non-linearity of the activations, the non-convexity of the corresponding 
optimisation problem during training, and a typically large number of 
parameters. 

3.2.3. Decision tree learning 
A decision tree (DT) is a supervised learning model where leaves are 

associated with labels and branches correspond to decisions that lead to 
those labels. At a tree branching the data instances are split according to 
their feature attributes or thresholds on the feature values. As it is 
computationally difficult to calculate the optimal tree, DT algorithms 
are greedy and achieve good results with locally optimal decisions. To 
this aim, DT learning starts with the root node and successively grows 
the tree deciding which data attribute (feature) to use for the splitting of 
the data subset in each node [60]. Gain measures are used to assess the 
efficiency of decisions based on to what extent they enhance the purity 
of labels in subsequent leaf nodes and, hence, improves the overall 
predictive performance of the model. DT models are well-known for 
their high degree of explainability and interpretability and although 
they have been developed to solve multi-class classification tasks with 
discrete-valued attributes, with slight modifications, they can also be 
used to solve regression tasks as well. These are originally developed to. 
The random forest algorithm (RF) [80] is an ensemble approach using 
DTs as well as the principles of bagging training data and subsampling 
representing features. 

3.2.4. Regression analysis 
Regression analysis establishes a mathematical model for the statis-

tical relationship of a real-valued dependent variable on one or more 
independent variables for prediction purposes or causality analysis [81]. 
Multi-linear regression (MLR) assumes a linear dependency on several 
input variables, whereas polynomial regression (PR) models the 
dependent variable as a linear combination of the powers of input var-
iables up to a certain polynomial degree. The method of least squares 
(LS) regression minimises the empirical risk for an MLR problem with a 
squared loss function that can be solved as a closed formula under 
specific conditions. Non-parametric regression is conceptually different, 
as the prediction function does not assess a fixed parameterisation of a 
prescribed functional form. Gaussian process regression (GPR) as one 
representative uses Bayes’ theorem to find probability distributions over 
possible models based on the available dataset. 

3.2.5. Other machine learning modelling approaches 
Instance-based and generative models from supervised learning have 

also been used occasionally to predict machining parameters. Instance- 
based learning does not generate an explicit prediction model but uses 
the available training data directly for a prediction [60]. The k-nearest 
neighbour (kNN) algorithm, for example, determines the label of new 
instances according to the labels of the k closest data points. Generative 
models, such as Bayesian belief networks [27], take the probability 
distribution of input and output variables into account for their pre-
diction. Clustering, dimensionality reduction, and outlier detection are 
important applications of unsupervised learning. Clustering is the 
attempt to group data points according to their similarity without the 
awareness of labels. Dimensionality reduction intends to reduce the 
feature space dimension, for example, via principal component analysis 
(PCA). Outlier detection aims at finding anomalies which significantly 
differ from the remaining data. 

3.3. Optimisation algorithms 

Optimisation, ML, and AI are closely linked with the notions of 
reasoning and decision making [19,26,82–84] which primarily relate to 
human attributes. The optimisation aims to maximise or minimise an 
output or objective function O by calculating the most appropriate input 
x∗ (Fig. 2). The machining process output y can sometimes be measured 
or calculated directly from the input y and covered with a fitness func-
tion (compare genetic algorithms in Section 3.3.1). Examples of such 
outputs are the measured energy or the calculated production costs. In 
the other case, ML algorithms can be employed to capture the under-
lying patterns and correlations from data samples of input x and output 
y. Given specified input values, the aim of single-objective optimisation 
(SOO) is to optimise one objective function with respect to the inputs. In 
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contrast, multi-objective optimisation (MOO) denotes the simultaneous 
consideration of various objective functions and aims to fulfil all targets 
to their greatest extent [27]. Depending on the preconditions of the 
optimisation problem, many strategies with corresponding solution 
have been developed that involve the calculation of Hessians, gradients, 
or values of the focused objective function in different manners. For 
example, the minimisation of a linear least squares problem can be 
calculated as closed formula whereas Newton’s method is an iterative 
procedure [88]. The optimisation approaches can be broadly grouped as 
deterministic or stochastic algorithms [89–91] based on their 
characteristics. 

In addition to the improvement of the machining process per se, 
optimisation is also used to find the best hyperparameters [8,13,24,85, 
86], feature representation, or ML pipeline [87] during training. 
Furthermore, optimisation is utilised to determine the best predictor 
function out of a set of candidates, for example, via sequential minimal 
optimisation (SMO) for SVMs [74] or stochastic gradient descent for 
ANNs [6]. 

In recent years, the application of data-based optimisation heuristics 
for machining processes are being used to an increasing extent along 
with the expansion of AI technology. The most frequently applied data- 
based optimisation algorithms in machining are briefly discussed in the 
following sections. Precise applications are presented in Section 5. 

3.3.1. Biology-inspired algorithms 
Algorithms inspired by biology mimic natural processes for optimi-

sation and improvement [17]. Genetic algorithms (GA), genetic pro-
gramming (GP), and particle swarm optimisation (PSO) are prominent 
representatives of evolutionary algorithms. A subset of domain instances 
(population of individuals) is considered in a GA [60,92], i.e., chro-
mosomes of genes, in a way to satisfy predefined descriptions of indi-
vidual features. The instances run through a cycle of mutation (random 
exchange of genes) and crossover (exchange of chromosome parts be-
tween instances) for the generation of new instances. A fitness function 
is used to select the most appropriate individuals to enter the next round 
of the cycle. Although most of the conventional GA algorithms target 
SOO problems, MOO can also be addressed directly using 
non-dominated sorting genetic algorithm II (NSGA-II) [93,94]. GPs [28, 
87] follow the principles of evolution as well, but their optimisation 
instances are subsequent calculation or preprocessing units called pro-
grammes whose number is not predetermined, unlike the number of 
genes in GAs. In a PSO [28] a population of individuals (swarm of 
particles) is moving around in the search space in order to find optimal 
points with respect to a fitness function. The particles can move either in 
random directions (similar to the mutation step) or according to the 
movement of the entire swarm, i.e., depending on other particles 
(similar to the crossover step). The flower pollination algorithm (FPA) is 
another bio-inspired optimisation approach imitating the natural flower 
pollination process [95,96]. The FPA stochastically combines aspects of 
abiotic self-pollination (local) and biotic cross-pollination (global) using 
random parameters and information of both the considered individuals 
(flowers) and the remaining population. The navigation behaviour of 
birds flying in various groups in search of food has inspired the devel-
opment of the pigeon optimisation algorithm (POA) [97] which can be 
applied for shortest paths problems in a given population of individuals 
(paths). 

3.3.2. Fuzzy optimisation 
Fuzzy optimisation or fuzzy programming refers to optimisation 

approaches under uncertainty conditions, i.e., where data is imprecise or 
fuzzy [84]. Often neither the exact values of variables are known nor a 
high-precision outcome is necessary to achieve an acceptable optimi-
sation result [98]. A fuzzy set is characterised by its membership func-
tion that indicates for each element the probability of its membership to 
the respective set. Similar to classical set theory, operations such as 
union, intersection, and complement can also be defined for fuzzy sets in 

order to formalise fuzzy logic and to allow for conclusions from uncer-
tain or incomplete information [84]. Fuzzy logic can also be applied in 
process control especially when dealing with input variables that exhibit 
instability or fluctuations [26]. The values of fuzzy variables can be 
included in quantitative prediction models and optimisation via mem-
bership functions or probability distributions [11,98–100]. A special 
case is fuzzy clustering, where the assignment of a data object to a 
cluster is not deterministic but fuzzy in the sense of a membership 
function [28]. Fuzzy inference systems (FIS) combine a prediction model 
and membership functions as well as fuzzy rules (fuzzy logic) to draw 
conclusions [24,101,102]. Consequently, neuro-fuzzy inference system 
(NFIS) or fuzzy neural networks apply ANNs as prediction model 
(ANFIS). 

3.3.3. Further optimisation algorithms 
Bayesian optimisation (BO), spiral dynamic algorithm (SDA), and the 

Levenberg-Marquardt algorithm (LMA) are also among the methods 
applied to optimisation in machining. BO is used to globally optimise an 
unknown objective or a function expensive to evaluate by treating it as a 
random function and iteratively updating an objective function until an 
optimum is reached [103,104]. Similar to biology-inspired algorithms, 
the SDA is motivated by spiral phenomena appearing in nature and aims 
at a global optimum via diversification and intensification strategies 
[105]. The LMA is used to solve non-linear least squares problems [106]. 

4. Data acquisition and preprocessing 

Process parameters are defined physical quantities that describe a 
machining process and can take different values to represent various 
operational conditions. Hence, process parameters are targets for pro-
cess optimisation. In contrast, process variables are continuously 
monitored during an operation to assess the machining performance. 
The process variables include all measurable signals, such as forces, 
temperature, or properties that can be observed while the process is 
running. Therefore, they cannot be adjusted or calibrated directly. This 
section reports on applied process parameters and measured process 
variables with respect to data content, recording, and preparation in the 
context of TMP optimisation. 

4.1. Process parameters and process variables 

The cutting conditions including cutting speed, depth of cut, and feed 
rate very often appear as considered adjustable parameters in AI models. 
Other factors such as lubrication, cooling strategies, cutting tool prop-
erties, such as geometry or coating, and machining tool can also be 
varied to some extent to achieve an optimised machining performance. 
Both process parameters and variables are used as model input for ML 
prediction models. Process variables as well as process characteristics 
like tool and product properties appear typically as ML model outputs. 
The three most frequent modelling scenarios are shown in Fig. 3. 

A large variety of sensor types have been used in different AI ap-
proaches to improve the TMP. Examples are reported in Table 1. The 
inclusion of acoustic [10,99,107–110], acceleration or vibration [111, 
112], force or torque [8,113,114], and displacement sensors [100] is 
already well-established and has been studied intensively in the field of 
machining. Their extensive application can be explained with the rela-
tive ease of assembly, data capture, and analysis compared to other 
signals, such as machining-induced temperature from thermocouples 
[115] or thermal imaging [116]. Despite technical difficulties involved 
in temperature measurements, it is reported that high-speed and thermal 
imaging combined with modern image processing technologies provides 
a wealth of information about machining systems that can support the 
development of relevant DL techniques [117]. 

In general, it is desirable to obtain information from multiple sensors 
to investigate and exploit the potentials of sensor fusion [118]. The 
simultaneous evaluation and combination of several sensors through 
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multi-view learning is reported to reveal correlations between input and 
output data that would not be available using a single signal [65]. A 
retrofit of machines with additional sensor equipment complicates both 
the experimental setup and the data analysis, for what reason it is 
preferable to use information from already embedded sensors in ma-
chine tools or obtained from the respective control unit. These can be 
extracted using hardware or software solutions, e.g., edge devices or 
gateways, and streaming the data directly to an Internet of Things (IoT) 
platform, databases, or a PC [119]. However, the potential intrinsic 
redundancy of information is generally lower when only few signals or 

features are used [19]. Feature extraction techniques can be applied to 
determine the degree of redundancy and to extract the most relevant 
features or data representations of the recorded signals (Section 4.3). 

4.2. Data acquisition and storage 

The acquisition of sufficient data of adequate quality is generally an 
essential part of ML approaches. For machining problems, the pipeline 
for acquisition, storage, and data transfer depends on the conditions and 
associated environment. Table 1 summarises the most important 

Fig. 3. The three typical ML modelling scenarios in machining with their associated (a) modelling targets, (b) input data, and (c) and output data.  

Table 1 
Important configurations of data acquisition, preprocessing, and feature extraction in ML applications for prediction and optimisation of different modelling targets in 
machining.  

Data source Reference Data acquisition Preprocessing and feature extraction Modelling target 
Acoustic 

emission 
(AE) 

[124] Piezoelectric AE sensor on the workpiece with grease as 
acoustic bond (40MSPS) -> data acquisition card -> voltage- 
time-signal -> computer -> AE software 

Amplified and high passed filtered to only observe 
continuous interaction, 
AE-RMS as input, tool wear as output of a neural 
network 

Tool wear 

[99] AE sensor on dresser holder -> Amplifier module 
-> oscilloscope with 2 MHz sampling rate -> PC for storage 
and digital signal processing 

Ratio of power (ROP) from 25-40 kHz band, mean 
and standard deviation values of ROP, fuzzy systems 

Grinding wheel wear 

Cutting force 
and torque 

[125] Kistler 9255B dynamometer ->TEAC DR-FI data recorder Force, feed rate, eccentricity of face cutting and 
workpiece geometry, neural network 

Average cutting force 

[100] Dynamometer: force and torque; feed rate, spindle speed and 
drill parameter manually recorded 

Delamination, thrust force and torque, normalised 
data 

Delamination, thrust 
force and torque 

[114] Kistler 9257 A dynamometer -> Kistler 5011 signal amplifier 
-> data acquisition system in Labview 

Transformation of the signals to numerical format 
-> data cleaning -> split into training and validation 
data 

Cutting force 

Vibration [126] Endevco 165 3-axis accelerometer to spindle housing and 
Kistler 8141 A 
accelerometer on workpiece 

Sampling and FFT -> feature selection -> band pass 
filtering -> backpropagation neural network 

Class of tool wear 

Merged 
signals from 
sensor 
fusion 

[127] Dynamometer & accelerometer combined -> amplifier -> data 
acquisition system DAP 2400/e6 -> PC 

Sampling, new features by combining signals and 
their statistical values through addition, 
multiplication, and division 

Tool wear 

[112] Dynamometer & accelerometer combined -> amplifier -> data 
acquisition system from national instruments -> TDMS file 

Feature generation from the power spectral density 
of the segmented raw signals -> feature selection 

Roughness, profile 
deviation, roundness 

Vision system [117] Optical imaging of the machined surface Feature extraction, SVR to find relation between 
surface features and tool wear 

Tool flank wear 

Motor current 
and power 

[122] Edge device, recording machine data with 500 Hz Data cleaning and sampling, classification model 
(defective tool or not) and regression model (tool 
wear) 

Tool condition 
monitoring, tool defect 
detection 

[128] Feedback sensors to record the main drive power Maximum, and minimum value at beginning, middle 
and end of the operation, data averaging 

Flatness deviation  
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measurement setups, including signals and associated data acquisition 
systems used to obtain required input and output data for ML ap-
proaches in machining with different optimisation targets. The reviewed 
literature indicates that no standard, such as OPC UA (open platform 
communications unified architecture), is used for data transmission or 
storage in databases. Despite offering flexibility for the data acquisition 
procedure, the lack of standardised pipelines poses a challenge when 
repeating experiments since details of the measurement chains, such as 
technical specifications and processing steps, are usually not reported or 
not in sufficient detail. Such critical information, however, provides a 
good insight into the state-of-the-art of modern data acquisition and 
required preprocessing for ML applications [112]. 

4.3. Preprocessing and feature extraction 

The preprocessing of data, including sensor signals or images, is an 
important prerequisite for the training procedure of ML models and 
strongly influences the resulting predictive performance. Preprocessing 
steps usually include:  

• Filtering and denoising: reducing the noise level in the gathered 
data using different filters, such as low-pass filters or Gaussian ker-
nels [120],  

• Replacement of missing values or outliers: implementing 
adequate interpolation functions to fill the gaps in the datasets when 
the instrumentation fails to capture complete data, 

• Normalisation and standardisation: normalising and stand-
ardising datasets with a large variation in the measured ranges as a 
scaling technique to boost the performance of the corresponding 
models,  

• Concept drift detection: detecting a change of statistical properties 
in the datasets (concept drift) using calibration runs [121] to 
determine whether a re-training is required to ensure the validity and 
high performance of the model,  

• Data splitting: splitting available data into training and testing sets 
to ensure a proper assessment of the model’s performance by inde-
pendent data [112],  

• Data labelling: assigning a label to data instances for supervised 
learning. 

A feature representation is a description of data (Section 3.1), for 
example vectors in Rn, images or graphs. Feature extraction can be used 
to calculate suitable and informative variables as model input. Statistical 
features such as minimum, maximum, mean or median value, amplitude 
range, or standard deviation of a time series are examples of time 
domain features. Typical frequency domain features are characteristic 
frequencies and their magnitudes as well as fast Fourier transformation 
(FFT) features or wavelet features (Table 1). Although many signals can 
be gathered from a machine tool from which again numerous feature 
representations can be calculated, various methods such as wrappers, 
filters, and hybrid methods [122,123] are used to extract the most 
relevant features to enhance the prediction performance and to avoid 
deteriorating effects. In this context, unsupervised dimensionality 
reduction techniques, such as PCA, isometric feature mapping, and 
locally linear embedding are employed. 

5. Review on recent ML modelling in machining 

Optimised process parameters can maximise the efficiency of the 
cutting process during machining, e.g., by increasing the material 
removal rate [48], minimising tool wear [49], or improving the surface 
quality [129]. In this manner, thermally induced defects, progressive 
tool wear, or tool vibrations during the process can be prevented [130]. 
ML combined with optimisation algorithms can be utilised in advanced 
machining [130] or manufacturing [131] to autonomously adjust pro-
cess parameters. As a result, general or specific output quantities, such 

as process efficiency, quality measures, or production costs, can be 
optimised. The results of the applied algorithms must be accessible to 
the process monitoring as well as the control system to enable the 
adjustment of the corresponding parameters [132]. 

The reviewed literature revealed that most of the research was 
focussed on ML applications in machining operations with defined 
cutting-edge geometries as they offer more opportunities to monitor and 
observe the cutting operation (Fig. 4a). Milling is the most widely 
studied process, followed by turning and grinding, while drilling oper-
ations have received significantly less attention in this context. This 
could be due to the complexity of the chip formation conditions, 
monitoring of process variables, and surface quality characterisation 
during drilling compared with milling and turning. Fig. 4b demonstrates 
that among all ML approaches, ANNs are the most frequently applied 
algorithms in machining-related problems, followed by SVM and RF. 
Relevant examples of the reviewed literature together with the intended 
outcomes are presented in more detail in Tables 2, 3, and 4. 

Recent applications of ML in machining cover various objectives, 
typically in one of the fields process characteristics, tool condition 
monitoring and tool wear, or surface integrity. The following sections 
provide the state-of-the-art in the respective fields and highlight applied 
algorithms and the main outcomes. 

5.1. Process Characteristics 

Process characteristics comprise all properties of a machining pro-
cess which can be observed during operation or inferred afterwards as a 
direct consequence of the procedure. These include general character-
istics, such as operation time and costs or CO2 emission, and process- 
specific characteristics, such as chip formation, cutting forces, or the 
temperature rise during cutting. 

The reviewed literature (Table 2) shows, firstly, that process pa-
rameters, such as cutting speed, feed, and depth of cut, are predomi-
nantly used as input variables to predict specific process characteristics. 
This is most probably due to the relatively simple preprocessing pro-
cedure and their in-process adjustability [116]. Furthermore, cutting 
tool properties, including the nose radius of indexable inserts [113], the 
tool geometry [133], and the coating [94] have also been utilised as 
input parameters. Secondly, cutting forces were considered most 
frequently as modelling targets in all studied operations in the literature 
due to their fundamental effect on the productivity, process perfor-
mance, and quality of the produced surfaces in machining. Varying 
cutting forces often cause disturbances of the process. Therefore, a 
precise prediction of the cutting forces is fundamentally important for 
process monitoring and control [134]. For example, different ML 
methods, including ANN, SVR and RA models, were applied to predict 
cutting forces when milling an aluminium alloy for different cutting 
parameters [94]. The feed value was found to be the most dominant 
factor influencing the predicted forces, followed by the tool type and the 
depth of cut. The authors reported that the ANN approach outperformed 
both the SVR and RA models in this specific application. An optimisation 
problem was solved combining the ANN with NSGA-II algorithm to 
minimise the cutting forces as well as the surface roughness depending 
on the input parameters. 

Different ML modelling approaches, such as ANN [116], GPR [135], 

Fig. 4. Reviewed literature of ML in machining: proportions of (a) considered 
machining processes and (b) applied algorithms. 
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and SVM [135], were also implemented for the prediction of tempera-
ture rise during machining as technical challenges associated with an 
accurate temperature measurement constitute the need for reliable 
predictive models. In this context, the quality and preprocessing of data 
and the applied ML algorithms significantly affect the accuracy of the 
predictions as reported in [116]. It was demonstrated that an adaptive 
neuro-fuzzy inference system (ANFIS) model with a feed-forward 
backpropagation multi-layer perceptron (BPMLP) with log-sigmoid 
activation function outperforms the temperature rise prediction 
compared with an ANN model which was optimised with the 
Levenberg-Marquardt algorithm. 

Table 2 demonstrates that cutting forces are the topic of interest in 
the majority of ML applications in the field of process characteristics, 
perhaps due to their influence on process stability and on TMP in almost 
all of the machining processes. The fact that there are only few studies 
on temperature and chatter prediction for the considered operations 
could be linked to the technical difficulties to capture the required high- 
quality data for the generation of ML models with high performance. 
This is even more apparent for the prediction of characteristics such as 
energy consumption as available data is scarce. 

5.2. Tool wear prediction and condition monitoring 

A direct tool measurement is impossible in most of the machining 
operations. Therefore, indirect tool wear characterisation or predictive 
models are used to assess the status of the cutting tool. Tool wear pre-
diction (TWP) and tool condition monitoring (TCM) denote very closely, 
yet different, approaches to estimate the tool life and its performance, 
respectively. 

TWP prediction is the data-based forecast of wear characteristics and 
the respective tool life via ML algorithms in dependence of the process 

Table 2 
Example applications of ML algorithms and corresponding model input and 
output for the prediction of process characteristics in machining.  

Process ML 
algorithm 

Model input Model output Year / 
Source 

Turning SVM, GPR Cutting speed, rake 
angle 

Cutting forces, 
temperature 

2020 / 
[135] 

ANN, SVM, 
GPR 

Cutting speed, feed, 
depth of cut, nose 
radius 

Cutting forces 2021 / 
[113] 

SVM, RF, RA Cutting speed, depth 
of cut 

Chatter 2022 / 
[136] 

ANN, SVM Cutting speed, feed, 
depth of cut 

Cutting forces 2018 / 
[137] 

ANFIS-ANN Cutting speed, feed, 
depth of cut 

Temperature 2018 / 
[116] 

Milling ANN, KNN Cutting speed, feed, 
depth of cut, tool 
diameter 

Cutting forces 2019 / 
[133] 

ANN Feed, depth of cut Cutting forces 2019 / 
[134] 

ANN, SVM, 
NSGA-II 

Cutting speed, feed, 
depth of cut, coating 

Cutting forces 2019 / 
[94] 

ANN Cutting forces Chatter 2021 / 
[138] 

SVM, RF, 
KNN, PR 

Cutting speed, feed, 
depth of cut 

Cutting forces 2018 / 
[114] 

ANN Cutting speed, depth 
of cut 

Chatter 2021 / 
[68] 

ANN Cutting speed, feed, 
depth of cut 

Cutting forces 2021 / 
[139] 

Grinding ANN Cutting speed, feed, 
depth per cut, AE 

Grinding forces 2020 / 
[108] 

GPR Current, voltage Grinding forces 2021 / 
[140] 

PSO-SVM Cutting speed, depth 
of cut 

Grinding forces 2020 / 
[7] 

GPR, 
Bayesian 

Cutting speed, feed Temperature 2020 / 
[141]  

Table 3 
Example applications of ML algorithms for tool wear prediction and tool con-
dition monitoring with corresponding input parameters and measured variables, 
respectively.  

Process ML algorithm Model input Year/ 
Source Tool wear 

prediction 
Tool condition 
monitoring 

Turning ANN, SVM, 
RF, DT, KNN 

- AE 2021 / 
[10] 

ANN, SVM Cutting speed, 
feed, depth of cut 

- 2018 / 
[137] 

ANFIS-ANN - Cutting force 2020 / 
[142] 

ANN Cutting speed, 
feed, material 
removal 

- 2020 / 
[9] 

ANN Cutting edge - 2018 / 
[149] 

ANN, RF, 
SVM 

Depth of cut, 
cutting speed, 
feed 

AE, cutting force 2021 / 
[146] 

ANN - Image processing 2019 / 
[150] 

ANN - Spindle current 2020 / 
[122] 

ANN - Cutting force, AE, 
vibration, 
acceleration 

2020 / 
[151] 

CNN - Cutting forces, 
acceleration, 
vibrations 

2019 / 
[152] 

CNN Cutting speed, 
feed, depth of cut 

Spindle load 2020 / 
[153] 

Milling 1D-CNN Feed AE, vibration, 
spindle current 

2021 / 
[154] 

RF - Spindle current, 
Image processing 

2021 / 
[155] 

RF, SVM Cutting speed, 
feed 

AE 2019 / 
[156] 

RNN Cutting speed, 
feed, depth of cut 

- 2022 / 
[157] 

RF  Cutting forces 2020 / 
[158] 

ANN, DT, 
KNN 

Cutting speed AE 2021 / 
[159] 

CNN - Cutting force 2018 / 
[160] 

SVM, RF  Cutting forces, 
current 

2019 / 
[161] 

RF, SVM Cutting speed, 
feed, depth of cut  

2021 / 
[122] 

CNN - Cutting forces 2018 / 
[162] 

ANN - Cutting forces, 
vibration 

2020 / 
[163] 

Grinding Fuzzy Cutting speed, 
feed, tool 
diameter 

- 2018 / 
[99] 

RF, MLR (RA) Dressing speed, 
dresser width 

AE 2018 / 
[107] 

SVM, kNN- 
GA 

Cutting seed, 
contact force 

AE 2019 / 
[109] 

RF, MLR (RA) - AE, cutting forces, 
acceleration 

2019 / 
[164] 

RF - Image processing 2021 / 
[147] 

ANN, SVM, 
RF 

- Image processing 2021 / 
[148] 

Drilling ANN, SVM, 
RA 

- Torque 2020 / 
[14] 

RF Cutting speed, 
feed 

- 2020 / 
[165] 

ANN, SVM, 
SDA 

- Image processing 2020 / 
[8]  
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design and the parameters chosen. Different combinations of process 
parameters and variables have been employed for various ML modelling 
approaches depending on the kinematics of the studied process and 
cutting tool features as demonstrated in Table 3. The cutting speed, the 
feed value, and the depth of cut are frequently used input parameters for 
TWP (Fig. 5), as they can be easily adjusted during a machining process. 
However, it is reported that the accuracy of the predicted outputs 
significantly depends on the selected ML algorithm and associated 
membership functions [142]. Similar to the cutting force prediction 
(Section 5.1), the ANFIS approach was proven to be a powerful tool in 
predicting tool wear depending on the cutting speed, feed per tooth, and 
depth of cut in milling [143]. The PSO algorithm was used to optimise 
the prediction performance of the model. 

While TWP mainly focusses on the prediction of tool life, TCM uti-
lises quantities such as cutting forces, temperature, AEs, or vibrations, 
which indirectly provide information about the condition of the tool and 
can be used to assess the wear status via ML predictions [144,145]. In 
this context, cutting forces [146] and AE signals (Fig. 5) are the pre-
dominant input variables in TCM as they can be linked directly to 
experimentally determined wear mechanisms. 

Table 3 shows that AE is the dominant input parameter for TCM in 
grinding operations, where discontinuous chips are formed and indi-
vidual cutting edges cannot be defined geometrically [107]. Direct sig-
nals from machine tools, such as spindle load [153] and spindle current 
[154,155], as well as visual characteristics of the produced surfaces, 
have also been used for TCM [147,148]. In this context, image pro-
cessing (IP) is proven to be a powerful tool when the produced surfaces 
are the primary concern and represent the tool performance [148]. 

In summary, ANN models are widely used for TWP and TCM. In 
turning operations, CNNs play an important role while other algorithms, 
such as SVM or RF, are also used for tool performance prediction in 
milling, drilling, and grinding. 

5.3. Product quality 

Product quality in machining generally refers to the quality of the 
produced surfaces for what reason the term surface integrity is 
frequently used synonymously in this context. The surface can be eval-
uated by measures of dimensional and geometrical accuracy (e.g., 
roundness), surface finish (e.g., roughness), or mechanical and micro-
structural properties of the surface (Fig. 7). As it can be seen in Fig. 6a, 
the primary cutting parameters cutting speed, feed, and depth of cut 
were mostly used as input for quality models as they have the most 
decisive impact on the machining process along with the tool and 
workpiece material [6]. However, also tool wear and the drive power of 
the CNC or variables, such as AE and vibrations, can be utilised to 
automatically predict the surface roughness [168]. Additionally, it was 
observed that measured process variables, such as AE signals [108,110] 
and vibrations [86], are predominantly used as input data in ML models 
for surface quality prediction in grinding. Fig. 6b shows that surface 
roughness followed by geometrical tolerances are the most widely 
studied measures to evaluate the surface quality as an output of ML 
models due to the relative ease of measurements compared with other 
factors of surface integrity such as residual stresses or microstructural 

Table 4 
Example applications of ML algorithms for product quality prediction with 
corresponding input and output quantities.  

Process ML algorithm Input Output Year/ 
Source 

Turning ANN Cutting speed Stability 
behaviour 

2019 / 
[171] 

PSO-SVM, 
ANN 

Cutting speed, feed, 
depth of cut 

Roughness 2018 / 
[137] 

SVM, RVM, 
PSO 

Cutting speed, feed, 
depth of cut, 
vibration, power 

Roughness 2018 / 
[166] 

ANN, SVM, 
GA-GBRT 

Cutting speed, feed, 
depth of cut 

Roughness 2019 / 
[172] 

ANN Cutting speed, feed, 
depth of cut, force, 
vibration, tool wear 

Roughness 2020 / 
[173] 

ANN Cutting speed, force Roughness, 
Roundness 

2021 / 
[112] 

ANN SVM, 
CAT (RA), 
GBR (RA), DT, 
XGB 

Cutting speed, feed, 
depth of cut, 
vibration 

Roughness 2021 / 
[174] 

ANN, SVM, 
GPR 

Cutting speed, feed 
depth of cut, tool 

Roughness 2021 / 
[113] 

RF Cutting speed, feed, 
depth of cut 

Residual stresses 2019 / 
[175] 

RF Cutting speed, feed, 
depth of cut 

Residual stresses 2020 / 
[176] 

ANN-POA, 
ANN-PSO 

Cutting speed, feed, 
depth of cut 

Residual stresses 2021 / 
[85] 

ANN-POA, 
ANN-FPA 

Cutting speed, feed, 
depth of cut 

Residual stresses 2021 / 
[167] 

ANN, SVM, RF Force, temperature Microstructural 
modification 

2021 / 
[13] 

ANN, DT, 
ElasticNet 

Temperature Thermal damage 2022 / 
[177] 

Milling ANN Tool wear, power Roughness 2018 / 
[168] 

ANN Cutting speed, feed, 
depth per cut, tool 

Roughness 2019 / 
[94] 

ANN Cutting speed, feed, 
depth of cut 

Roughness 2021 / 
[178] 

ANN Cutting speed, feed, 
depth of cut 

Roughness 2020 / 
[6] 

1D-CNN Cutting speed, feed, 
depth of cut 

Residual stresses 2018 / 
[179] 

ANN, RF, DT Cutting speed, feed, 
tool wear 

Barkhausen noise 2021 / 
[180] 

ANN, SVR, 
NSGA-II 

Cutting speed, feed, 
depth of cut 

Microhardness 2020 / 
[169] 

CNN Tool wear, power Flatness 2021 / 
[128] 

DT, SVM Cutting speed, feed Flatness 2018 / 
[181] 

ANN, SMOTE- 
RF, DT, 

Residual stresses, 
roughness, hardness 

Fatigue 2021 / 
[170] 

Grinding ANN AE Roughness 2020 / 
[108] 

ANN, SVM, 
GBR 

Acceleration, power Roughness 2020 / 
[111] 

BR-ANN, 
SVM, GBR 

Cutting speed, feed, 
workpiece 
geometry 

Roundness 2021 / 
[182] 

kNN, SVM, RF AE, power, spindle 
current 

Grinding burn 2021 / 
[110] 

kNN, SVM RF Tool, workpiece Grinding burn 2022 / 
[183] 

LSTM-ANN, 
RF 

Force, AE, vibration Roughness 2021 / 
[86] 

Drilling RF Force Concentricity 2020 / 
[184] 

RF Spindle current Roundness 2020 / 
[185] 

Bayesian 
Network 

Cutting speed, feed, 
tool coating 

Roughness, 
Roundness 

2020 / 
[186]  

Fig. 5. Reviewed literature of ML in machining: proportions of (a) input pa-
rameters for tool wear prediction and (b) input variables for tool condition 
monitoring (Table 3). 
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alterations [166]. 
Comparable with the observed trend for TWP (Section 5.2), ANNs 

represent the largest group of applied ML algorithms for quality pre-
diction, followed by SVM, RF, and RA, as reported in Table 4. However, 
a broader range of algorithms, including DT, kNN and Bayesian net-
works, are used for product quality prediction compared with TWP. In 
addition to the applied data and algorithms, it was shown that the 
training procedures have a strong effect on the prediction performance 
[6]. It was demonstrated that a response surface methodology (RSM) 
model outperforms ANN models trained by various optimisation algo-
rithms, e.g., quasi-Newton backpropagation, LMA, conjugate gradient or 
resilient BP. Furthermore, hybrid ANN models optimised by different 
algorithms, including PSO, the POA, and the FPA were demonstrated to 
significantly outperform conventional ANNs in the prediction of 
turning-induced residual stresses [85,167]. In addition to surface 
roughness and residual stresses, other surface integrity measures, 
including microstructural alterations [13] and subsurface microhard-
ness [169], have also been predicted using ANNs and SVMs, respec-
tively. In turn, these could be used as inputs for a further ML modelling 
of fatigue effects at machined parts, e.g., via DTs and partial least 
squares regression analysis [170]. 

6. AI-based total performance optimisation 

In the present section the findings of the reviewed literature in 
machining will be summarised and the importance of MOO for suc-
cessful TMP will be worked out and discussed. 

6.1. From ML prediction to process optimisation 

The simultaneous consideration of all parameters and variables 
affecting TMP is required to achieve the overall optimisation of 
machining processes. This directly implies the need for modelling 
various process-related targets and integrating different MOO methods 
for their simultaneous achievement. Targets corresponding to product 
quality, tool wear, and process characteristics (Sections 5.1 to 5.3) have 
been extensively investigated in recent years. Most of the ML applica-
tions in machining can be described as the following approaches:  

i. using an ML algorithm to model the relation between process 
input and output and subsequently selecting appropriate inputs 
for an optimal output by an appropriate optimisation algorithm 
[4,187],  

ii. directly calculating the optimisation objective (e.g., using a 
fitness function for GAs) without a need for a preceding ML 
modelling to apply the optimisation algorithm [45],  

iii. using an ML model to predict the outcome of a process from input 
parameters without direct exploitation of the result in an opti-
misation algorithm. In this case, the optimisation occurs indi-
rectly in form of online monitoring [154] or process 
comprehension from the ML predictions [8],  

iv. applying optimisation techniques for the hyperparameter tuning 
process to find an optimally parameterised prediction model [7,8, 
85,174],  

v. investigating optimisation techniques for the training of ML 
models, e.g., ANNs [94,116,151]. 

According to the literature research, the data-based adjustment of 
machining parameters in the sense of (ii.) is mostly realised via data- 
based heuristic optimisation techniques such as GAs. Few authors 
describe optimisation approaches as mentioned in (i.) based on the 
prediction of an upstream ML model [21]. Many AI applications in the 
field of machining were found to successfully generate an ML model for 
the automatic, data-based prediction of relevant process quantities ac-
cording to point (iii.) above, without a subsequent optimisation step. 
However, it is important to note, that the last two approaches, i.e., (iv.) 
and (v.), have only an indirect influence on the process optimisation by 
finding the most appropriate predictor function for a given learning task.  
Fig. 7 demonstrates the correlation between various process parameters 
and variables with the potential targets in ML modelling to define 
objective functions to address the required criteria for TMP. The aim of 
SOO and MOO in the context of TMP optimisation is finally to calculate 
optimal values for process parameters, such that their feedback in the 
actual process results in improved machining results. The solid lines in 
Fig. 7 describe that there is a direct link between the demonstrated 
entities. For example, process parameters directly affect the ML targets 
of process characteristics, tool wear and TCM, as well as the product 
quality, while the broken lines denote an indirect impact. Generally, the 
TMP can be optimised according to the three interdependent criteria of 
product quality, processing time, and processing costs. These criteria are 
strongly correlated with the factors surface finish, dimensional accu-
racy, tool-wear rate, and chip breakability [11]. 

Product quality can cover one or more aspects of surface integrity, 
geometric and dimensional accuracy, residual stresses, microhardness, 
and other properties of the machined products (Section 5.1). The pro-
cessing time can best be assessed via the material removal rate (MRR) 
and, hence, the production rate in machining. Although alteration of 
cutting parameters could lead to higher MRR values, this may negatively 
affect the surface integrity, i.e., increased roughness or residual stresses, 
the tool life through an increased wear rate, and process sustainability 
due to an increased energy consumption and demands for more cool-
ants. The production costs also depend on the MRR, costs associated 
with the raw material, and process consumables, including cutting tools. 
Depending on the machining process at hand, the three criteria time, 
costs, and quality affect the TMP to varying degrees which should be 
captured by ML and optimisation models based on a meaningful 
database. 

6.2. Single-objective and multi-objective optimisation in machining 

As explained previously, the aim of SOO is to optimise one objective 
function with respect to the inputs. The inclusion of the optimal process 
parameters via a feedback control system back to the process leads to the 
actual desired improvement of the machining process. The cutting 
conditions, i.e., cutting speed, depth of cut and feed rate, and to some 
extent cutting tool materials and characteristics, are the most important 
and flexible parameters for process optimisation in machining. 
Observable and measurable variables such as AE or acceleration signals 
can be used to predict target quantities, but due to their uncontrollable 
nature they cannot be used for optimisation in the strict sense. If they are 
used as model outputs, they can be optimised themselves depending on 
process parameters. As further objectives and potentially contradictory 
effects of different targets are ignored, SOO limits the optimisation result 
to a single aspect [47]. MOO, in contrast, considers multiple target 
quantities and, therefore, leads to a simultaneously optimised set of 
objectives and corresponding inputs [188]. It can yield SOO as a mar-
ginal case for the TMP optimisation [43]. 

The modelling of multiple targets in the form of ML predictions can 
be regarded as a preliminary step or precondition for an MOO. Different 
ANN models are, for example, utilised to predict different aspects of 

Fig. 6. Reviewed literature of ML in machining: proportions of (a) input and 
(b) output quantities for product quality prediction in machining (Table 4). 
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surface quality [112] or tool wear and roughness [154] from measured 
vibrations, forces, sounds, or spindle current signals. Similarly, residual 
stresses [85] or surface finish and dimensional deviation [36] are pre-
dicted from the cutting conditions using ANNs. Classical ML algorithms 
such as kNN, SVMs, DT, and RF [122,135,140] or fuzzy set models [11] 
are also implemented in multiple regression and classification tasks 
which assess machining processes. 

As for SOO, MOO can be performed based on different ML ap-
proaches and modelling (cases (i.) and (ii.) in Section 6.1). In the first 
case (i.), ML algorithms, such as ANNs, RF, and SVMs, are used for the 
prediction of forces, tool edge chipping, and surface quality with and an 
additional optimisation algorithm is utilised to determine the optimal 
cutting conditions [94,100,158]. A prediction from analytical, empir-
ical, and numerical model components as fitness function for GA [12] 
represents a hybrid approach of (i.) and (ii.). However, MOO is 
frequently performed without a preceding ML modelling. Instead, a 
data-based optimisation algorithm is calculated directly with respect to 
a measurable or computable objective function. In this context, evolu-
tionary algorithms, such as NSGA-II [43,50,189,190] or PSO [46,190], 
as well as the RSM [47,48] and grey relational analysis [48,188] play an 
important role. 

The presence of conflicting objectives is a general disadvantage of 
MOO which results in so-called Pareto-optimal solutions [43,189,191]. 
These are overall best solutions that are potentially suboptimal with 
respect to single optimisation criterion. It is, however, mathematically 
feasible to deal with multiple objectives via the introduction of con-
straints [44,45] or an SOO approach of a sum or other functional rela-
tionship of individual optimisation targets [41]. 

Generally, ANNs in their different forms followed by SVMs are the 
most frequently used ML algorithm in various applications related to 
machining operations. This can be explained by the fact that neural 
networks are able to generate the necessary feature representation of 
data for the learning task at hand as a part of the learning process. 
Additionally, they can handle multiple, dependent input parameters, as 
it is typical for manufacturing processes like machining. This capacity of 
ANNs is at the expense of a low explainability, which inhibits the 
deployment of neural networks in industrial applications. In contrast, 

SVMs require an appropriate feature representation of data from a 
preprocessing procedure, but they are explainable or interpretable by 
design. With respect to the algorithms for process optimisation in 
machining, the heuristic approaches of evolutionary algorithms, such as 
GAs, played the dominant role in recent years. The predominance of 
data-based heuristic methods can be explained with the fact that the 
objective functions frequently cannot be calculated as closed formula. As 
no information of function values or derivatives are available, heuristic 
approaches can be employed successfully in compensation. In the future, 
known properties of the objective function or its derivatives could 
increasingly be included to the process optimisation approach. 

6.3. Challenges and success factors 

The solution of MOO problems as a mathematical task meets 
computational challenges such as, e.g., the search for global optima or 
the compromise between Pareto-optimal solutions and optimal values 
for single-target objectives. Also the convergence rate [50], overfitting, 
and large datasets for the training of DL algorithms [28] pose problems 
for the practical implementation. Other limitations of online-monitoring 
and process improvement are real-time predictions [10,192] and the 
actual implementation of optimisation results at the production plant 
[4]. 

To achieve the demanding aim of TMP [11,12] optimisation, the 
following key success factors were identified:  

• ML prognoses by itself are beneficial for process monitoring or 
related applications. A true improvement of a machining process 
with respect to resources, costs, and product quality can only be 
achieved if optimal process settings are determined by an optimisa-
tion procedure and if these settings are used in the actual process.  

• Three classes of objectives along the process chain (refer to Section 
3) have been identified, to which the precise quantities from SOO 
and MOO can be assigned (Fig. 7). In order to ensure a holistic view 
on the machining process, the TMP must necessarily be evaluated by 
means of a consideration of all three classes via MOO [11,41,44,46]. 

Fig. 7. Overview of TMP optimisation: process parameters and variables as ML model inputs, outputs of ML models as optimisation targets, and the main TMP 
optimisation criteria time, costs, and quality. 
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• The inclusion of the ML and optimisation results into the process is 
crucial in practise, either for an immediate regulation or for a future 
process design and planning. Therefore, a pipeline on the basis of 
software and hardware must be installed which particularly com-
prises the database, continuous integration and continuous deploy-
ment (CI/CD) tools for the industrial implementation [4,26], and a 
visualisation platform for in-process or online monitoring [126,154].  

• Production plants are typically equipped with multiple sensors 
which permanently deliver sources of information about the process 
(either from the beginning or as a result of retrofitting). As the TMP 
optimisation exactly requires this variety of information, an effective 
sensor fusion procedure for the ML modelling should be integrated 
[36,118,127,154,192]. 

Apart from these key factors which are deemed to be necessary for 
the TMP optimisation, there are further modelling aspects that are not 
extensively researched, but significantly contribute to the machining 
process improvement. These include a broader observation of cause- 
effect relation chains that support the idea of TMP without limiting a 
complex problem to a single cause-effect relationship [193]. Addition-
ally, further investigation about the quality and quantity of the used data 
[20], as well as the selection of the best model for given learning tasks in 
the context of machining [28] increases the performance of predictive 
models. Finally, as soon as a prediction and optimisation can be used 
successfully for the in-process regulation, the question about the reus-
ability of models emerges. Transfer learning can be used to adapt ML 
models for the variation of conditions or other related processes that will 
be the basis for a sustainable, flexible, and robust application of AI in the 
near future [183,194]. ML models should be continuously retrained or 
adapted using various continual and transfer learning approaches [178] 
to avoid the drift in their prediction [181] and performance loss over 
time due to changes in the input data, the tool, or the environment. To 
sum it up, this review paper identifies the issues energy and CO2 
reduction [48,50,188], sustainable machining in general [18], transfer 
learning techniques [157], and effective MOO [93] as the most relevant 
future topics in AI-based research on process optimisation in machining. 

7. Conclusion 

In recent years, considerable research activity has been conducted to 
reliably model parameters and variables in machining. Machine 
learning (ML) and, in a broader context, artificial intelligence (AI) used 
in conjunction with data-based optimisation have become standard tools 
for analysis and monitoring of machining operations. They offer great 
potentials for a holistic view and improved design of cutting processes. 
Process characteristics and loads, resulting tool wear, and produced 
surfaces properties can be predicted via ML depending on cutting con-
ditions, the used machine tool, and other process data for a variety of 
machining operations including milling, turning, drilling, and grinding. 
Quantities, such as cutting forces or tool wear are reported to be used 
both as input and output for ML models, which is the prerequisite for 
prediction and optimisation along the whole process chain with AI. The 
predominant scenarios in the studied ML applications were found to be 
supervised regression and classification, which refers to learning a 
predictor function for a real-valued or discrete process information using 
labelled data. In general, the growing importance of DL due to improved 
storage and calculation capacities and the emergence of large data 
volumes with high frequency and dimension is reflected by the 
increasing deployment of ANNs within ML applications in machining. 
However, the majority of the reviewed literature reports on a successful 
generation of a single prediction model and its evaluation without an 
explicit optimisation step regarding a process-related objective function. 
ML predictions are very useful for condition monitoring and predictive 
maintenance. The actual ML models can serve as objective functions, 
however, they do not directly lead to a process improvement. To this 
aim, mainly data-based evolutionary optimisation algorithms such as 

GAs for SOO or NSGA-II for MOO are applied to determine process pa-
rameters for an optimal machining quality. 

MOO has been constituted as precondition for TMP optimisation on 
the way to advanced machining processes. Future research is required to 
consider targets related to fair and sustainable machining, in particular, 
to energy and CO2 reduction in TMP. In this context, continual and 
transfer learning techniques will likewise support the efficient con-
sumption of resources and provide a persistent adaption of the AI 
component. 
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