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ABSTRACT

Functional magnetic materials are used in a wide range of “green” applications, from wind turbines to magnetic refrigeration. Often the
magnetic materials used contain expensive and/or scarce elements, making them unsuitable for long term solutions. Further, traditional
material discovery is a slow and costly process, which can take over 10 years. Material informatics is a growing field, which combines infor-
matics, machine learning (ML) and high-throughput experiments to rapidly discover new materials. To prove this concept, we have devised
a material informatics workflow and demonstrated the core components of natural language processing (NLP) to extract data from research
papers to create a functional magnetic material database, machine learning with semi-heuristic models to predict compositions of soft mag-
netic materials, and high-throughput experimental evaluation using combinatorial sputtering and high-throughput magneto-optic Kerr effect
(MOKE) magnetometry. This material informatics workflow provides a quicker, cheaper route to functional magnetic materials discovery.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/9.0000657

I. INTRODUCTION

The drive to discover cheaper, more efficient materials for
green technologies has moved away from traditional methodolo-
gies toward digital solutions and the emerging field of material
informatics.1 The rationale for this is that traditional methodolo-
gies are too slow to make a difference within a short time scale.
Furthermore, they often involve tweaking existing compositions,
which does not allow for the radical step changes needed to move
material discovery forward at a faster pace. Magnetic materials are
an ideal test bed for digital material discovery, with no new com-
mercial hard or soft magnetic materials being discovered for over
30 years.2,3

Figure 1 gives the concept behind our material informatics
workflow. Recent work has demonstrated that ML algorithms can
be used to predict material compositions and properties that are of
interest for specific applications, once trained on existing material
databases.4–6 High-throughput experiments can be carried out to
validate the predictions and explore the surrounding composition
space. These experimental results can then be added back to the
materials database, creating a live document, where the more entries
to the database the better the ML predictions are.

A common issue is that these existing databases are often lim-
ited, with too few entries, missing information and biased toward
one class of material. For example, the NovaMag database,7 which
was utilised in this study for training our ML model to predict sat-
uration magnetisation, is heavily biased toward Fe-based magnetic
materials (over 1000 entries), with less than half the entries con-
taining Co or Ni. This means that any ML algorithms trained on
this database are likely to predict Fe-based materials. The arrival
of much larger databases based on high-throughput DFT calcula-
tions such as AFLOW,8 OQMD9 andMaterial Project10 have helped
to address this. However, these are often limited in the range of
magnetic properties calculated. New unbiased databases need to be
produced, but this can be time consuming if done by hand. Fur-
thermore, to realise the benefits of material informatics across mag-
netism, researchers need to have tools available to curate domain
specific databases, since the specialist functional material properties
(e.g., magnetostriction, Voigt constant etc.) are almost non-existent
in current databases. Onemethod of creating these databases is NLP,
which uses algorithms to extract information such as composition,
crystal structure and functional properties from papers.11 This has
been already used for simple database building, such as the critical
temperature of superconductors.12
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FIG. 1. Schematic of a proposed material informatics workflow for digital discovery of functional magnetic materials.

Our research has focused separately on the three different
aspects of digital materials discovery: database building using NLP,
materials composition and properties prediction using ML and
material verification using high-throughput experiments for soft
magnetic alloys.

II. METHODS

A. Natural language processing

Before developing our own NLP algorithm, we tested two
available models on Github: Chemdataextractor13 andMatSciBert.14

Chemdataextractor is a named entity recognition NLP algorithm,
which we adapted to extract composition and functional properties.
MatSciBert is a semantic network NLP algorithm.We ran 8 papers15

through both NLP softwares to extract the composition (Com) and

magnetic properties (saturation magnetisation, Ms, coercive field,
Hc and Curie temperature, Tc). Table I gives the results, where the
efficiency, ε is defined as

ε ≙
number of extracted parameters

total number of parameters to extract
× 100 (1)

Although this was a very small study, it is observed that neither
NLP software was good at extracting the composition, while Chem-
dataextractor was good for the functional properties. Furthermore
it was determined that if more than one composition was found
within the paper, then the composition must be linked to the related
functional properties. From these results, we developed our own
NLP algorithm16 that combined the best elements from both soft-
wares, and added a correlation function to link the compositions

TABLE I. Results from the different NLP algorithms tested.

Paper

Chemdataextractor MatScibert Our NLP code

Com Ms Hc Tc ε (%) Com Ms Hc Tc ε (%) Com Ms Hc Tc ε (%)

A ✓ ✓ ✓ ⋅ ⋅ ⋅ 100 x x x ⋅ ⋅ ⋅ 0 ✓ ✓ ✓ ⋅ ⋅ ⋅ 100
B ✓ ✓ ✓ ✓ 80a x x x x 0 ✓ ✓ ✓ ✓ 100
C x ✓ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 50 x x ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ✓ ✓ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 100
D In part ✓ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 75 x x ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ✓ ✓ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 100

E x ✓ ✓ ⋅ ⋅ ⋅ 66 x x x ⋅ ⋅ ⋅ 0 ✓ ✓ ✓ ⋅ ⋅ ⋅ 75b

F In part ✓ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 75 x x ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ✓ ✓ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 75b

G ✓ ✓ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 100 x x ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ✓ ✓ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 75b

H ✓ ✓ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 100 x x ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ✓ ✓ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 100
Average 80.8 0 90.6

aAn additional magnetisation was extracted.
bComposition and saturation magnetisation were both extracted, but were not linked together.
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TABLE II. Composition of the four CoFe–Ni–Mn–Ti films studied, with the predicted values from the model and the measured
values from Energy Dispersive Spectrum (EDS) data.

CoFeNi Mn Ti

Predicted Measured Predicted Measured Predicted Measured
Sample (%) (%) (%) (%) (%) (%)

r46c28 58 60 32 33 10 7
r55c32 62 65 28 29 10 6
r61c48 65 69 25 24 10 7
r74c52 67 73 23 20 10 7

and functional properties together. The results were then exported
to a structured database.

B. Machine learning

There are several different ML algorithms that can be adapted
to be trained on databases for material properties and compositions
predictions. For this work, we utilised the Random Forest algo-
rithm, as it is one of the better techniques for ML predictions when
trained on databases with limited entries. Our model was trained
on the Novamag database, as it contains calculated values for a
larger range of magnetic properties, including magnetocrystalline
anisotropy, exchange stiffness and Curie temperature. Saturation
magnetisation was the most populated field with only 0.4% of the
dataset (7 compounds) missing and consequently was selected as our
target variable.

C. High-throughput experiments

One way to test the predictions ofML is to use high-throughput
experiments.17 Here, we use combinatorial sputtering to achieve
over 50 different compositions on a three-inch silicon wafer. Before
sputtering, the wafer was cleaned using acetone followed by IPA.
It was then placed within a 3-gun sputtering chamber. Three dif-
ferent targets were used, for example when exploring soft magnetic
materials, a single CoFeNi target with two different elemental targets
(i.e. Mn, Al, Ti). We adapted the model of Frisk et al.18 for the geom-
etry of our sputtering system, to predict the composition across the
substrate, from the power and position of the three sputter guns.
The model was also able to predict the film thickness across
the substrate [Fig. 3(a)]. For demonstration of the technique, a
CoNiFe–Mn–Ti film was fabricated. Once fabricated, the substrate
was cut into three 2 cm wide strips and measured in a high-
throughput MOKE magnetometer. This MOKE magnetometer was

FIG. 2. (a) Results taken using our developed NLP code. (b) Frequency of transition metal element as a function of saturation magnetisation. (c) Saturation magnetisation as
a function of the composition weighted atomic mass, with solid blue and orange lines the values for Fe and Co respectively. (d). Predicted saturation magnetisation versus
actual saturation magnetisation.

AIP Advances 14, 015313 (2024); doi: 10.1063/9.0000657 14, 015313-3

© Author(s) 2024

 2
2
 F

e
b
ru

a
ry

 2
0
2
4
 0

9
:5

6
:4

5



AIP Advances ARTICLE pubs.aip.org/aip/adv

developed to measure a MOKE loop every 4 mm on the film sur-
face. The software then automatically determined the coercive field
(Hc) and Kerr voltage (VK) from each loop and plotted them against
the composition predicted. This provides a ternary map of the mag-
netic properties [Figs. 3(b) and 3(c)], allowing for compositions of
interest to be identified and studied further. For instance composi-
tions with high VK , and a low Hc can be determined and are good
candidates for soft magnetic material. For this study, four films with
the same Ti concentration but different Mn to CoFeNi ratio were
studied (Table II). The compositions are in good agreement with the
predicted values.

III. RESULTS

A. Natural language processing

We ran our newly developed NLP code on the 8 papers pre-
viously used in Ref. 15 and attained a >90% efficiency (Table I).
To further test the code, it was run on 1000 magnetic papers16 and
achieved >76% efficiency. The code was able to distinguish between
the different compositions and assign the correct properties to each
composition. Figure 2(a) shows an image of the code output that
was exported to a spreadsheet. The output parameters are Digital
Object Identifier (doi) of the paper; sentence number; composition

FIG. 3. (a) Predicted film thickness across the substrate; (b) and (c) ternary maps for the normalised Kerr voltage and coercive field for the CoFeNi–Mn–Ti film. (d) X-ray
diffraction (XRD). (e). Magnetisation as a function of Mn concentration and (f). Scanning electron microscopy (SEM) data for four selected CoFeNi–Mn–Ti films.
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and property parameter, unit, and value. It is observed that for the
one paper shown, the NLP code was able to extract two compositions
and two Tc from the same sentence. Further, it extracted a range
of compositions and properties from the same paper. This newly
designed NLP code is likely to speed up the process of materials
database building.

B. Machine learning

A number of different exercises were performed before the
algorithm was trained on the Novamag database.7 The first task
demonstrated how the saturation magnetisation of each alloy was
linked to the transition metal elements (i.e., Fe, Co, Cr and Mn)
within its composition [Fig. 2(b)]. It is observed that the alloys
with the highestMs mainly contain Fe, while most alloys containing
Cr have Ms ∼ 0. Although this is well established, it demonstrates
that the underlying dataset is largely consistent with expected results.

The second task performed was to design our input features for
the Random Forest model. All input features were derived from the
chemical formula of the alloy using readily available data. We cal-
culated several composition weighted values, including the atomic
number, atomic mass, melting temperature, valence electron num-
ber and electronegativity. For example, the composition weighted
atomic mass: Zw ≙ xiZi; e.g., for Fe8Co2N8⇒ (8/18)ZFe + (2/18)ZCo

+ (8/18)ZN. From Fig. 2(c), it is observed that the highest Ms occur
when combining the transitionmetal elements with lighter elements,
with the maximum value for Zw ∼ 50, i.e., combining Fe (ZFe ∼ 55)
with elements such as Al (ZAl ∼ 27) or B (ZB ∼ 11). There is a sec-
ond peak for Zw ∼ 65, thenMs decreases as the Zw increases, until a
plateau region is reached for Zw ≙ 150.

The third task was to train the algorithm to link the Ms to the
input features derived from the alloy composition, and then predict
Ms for known compositions. Figure 2(d) shows theML predictedMs

against the actual measured Ms. It is observed that there is a strong
correlation between the two, demonstrating that the ML code used
was able to perform the task. There are some obvious deviations as
expected. Since the code can predict saturation magnetisation for a
given composition, it can be adapted to predict compositions for a
givenMs.

C. High-throughput experiments

Figure 3 provides an overview of the magnetic and structural
data for the four films. It is observed that as the Mn concentration
increases within the composition, the films go from two phases to
one phase. From the X-ray diffraction (XRD) data [Fig. 3(d)], one
phase is represented by a broad peak at ∼44.5○, which is likely to be
a disordered BCC or FCC phase often found in multi-component
alloys. The second phase at the lower Mn concentration produces
sharper peaks due to a Co2Ti-like phase [indicated by

∗ in Fig. 3(d)].
These two phases are observed in backscattered electron (BSE)
images from the scanning electron microscope (SEM), as light and
dark phases [Fig. 3(f)]. The increase in Mn removes this second
phase (Co2Ti), as only a single phase is observed in the SEM micro-
graphs. The single phase corresponds to the decrease in magnitude
of the XRD peaks for these films. The formation of secondary phases
is often due to the enthalpy of mixing of the different elements
within the alloy. Ti has a high enthalpy of mixing with Co and Ni,
hence the second phase appears when Mn concentrations are low.

By increasing Mn, the effect of the high enthalpy of mixing of Ti is
reduced, and only a single phase is observed. The Ms decreases lin-
early as theMn concentration increases [Fig. 3(e)], which is expected
as the magnetic elements concentration was reduced. The addition
of the second phase does not appear to affect theMs.

Thus, using high-throughput experiments, has allowed for over
50 different compositions of CoFeNi–Mn–Ti to be studied. As part
of the material informatics workflow, this data would then be fed
back into the database before re-training the ML model.

IV. CONCLUSION

Material informatics is likely to revolutionise how new mate-
rials are discovered. The proposed material informatics workflow,
demonstrates the three core components (NLP, ML and high-
throughput experiments) in isolation with the potential for these
to be joined up in the cyclic workflow outlined by Fig. 1. Mag-
netic materials are a perfect test bed for such technology, with new
soft and hard magnetic materials being required for the advance-
ment of green technology. ML is proven as an efficient route to
predicting new magnetic materials, but it relies on large unbi-
ased databases. We have demonstrated how NLP algorithms can
be developed to extract compositions and properties from a range
of different sources (papers, abstracts etc.) creating such databases.
NLP will have an important role in generating bespoke databases for
less commonly modelled functional properties important for sub-
fields of magnetocalorics, magneto-optics etc. allowing ML models
to obtain domain specific knowledge. High-throughput experiments
can then be used to investigate the compositions predicted and val-
idate the ML predictions in a short period of time, while further
building the training database. This allows compositions of interest
to be identified quickly for further study.
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