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A B S T R A C T 

Observations of star-forming regions provide snapshots in time of the star formation process, and can be compared with 

simulation data to constrain the initial conditions of star formation. In order to make robust inferences, different metrics must 

be used to quantify the spatial and kinematic distributions of stars. In this paper, we assess the suitability of the INdex to 

Define Inherent Clustering And TEndencies (INDICATE) method as a diagnostic to infer the initial conditions of star-forming 

regions that subsequently undergo dynamical evolution. We use INDICATE to measure the degree of clustering in N -body 

simulations of the evolution of star-forming regions with different initial conditions. We find that the clustering of individual 

stars, as measured by INDICATE, becomes significantly higher in simulations with higher initial stellar densities, and is higher 

in subvirial star-forming regions where significant amounts of dynamical mixing have occurred. We then combine INDICATE 

with other methods that measure the mass se gre gation ( � MSR ), relativ e stellar surface density ratio ( � LDR ), and the morphology 

( Q -parameter) of star-forming regions, and show that the diagnostic capability of INDICATE increases when combined with 

these other metrics. 

Key words: stars: formation – stars: kinematics and dynamics – galaxies: star clusters: general. 

1  I N T RO D U C T I O N  

Most stars form in groupings of 10s to 1000s of members, located 

along dense filaments embedded within giant molecular clouds 

(GMCs; Lada & Lada 2003 ; Andr ́e et al. 2014 ). By understanding 

the origins of star-forming regions 1 and their subsequent evolution 

and dispersal, we can gain further understanding of galactic evo- 

lution and the effects on planetary systems (Laughlin & Adams 

1998 ; Bonnell et al. 2001 ; Smith & Bonnell 2001 ; Parker & 

Quanz 2012 ; Daf fern-Po well, Parker & Quanz 2022 ; Rickman 

et al. 2023 ). 

As an example, a planetary system is unlikely to suffer dynamical 

perturbations in a low-density star-forming region that rapidly 

disperses into the Galactic field, compared to a high-density region 

that remains gravitationally bound for many dynamical time-scales 

(Vinck e & Pf alzner 2016 ). In the latter case, the orbits of planets can 

be altered, either through direct interactions (e.g. Parker & Quanz 

⋆ E-mail: gablaylock-squibbs1@sheffield.ac.uk 

† Royal Society Dorothy Hodgkin fellow. 
1 In this paper, we use the term ‘star-forming region’ to refer to a population of 

young stars that we assume formed from the same giant molecular cloud. This 

star-forming region may be gravitationally bound, in which case it would be 

classified as a cluster, or unbound, in which case it would be an association. 

As we model the evolution of both bound and unbound stellar populations in 

this paper, we use ‘star-forming region’, though some researchers exclusively 

reserve this term for populations of stars still surrounded by gas left o v er from 

the star formation process. 

2012 ; Daf fern-Po well et al. 2022 ), or subsequently via secondary ef- 

fects such as von Zeipel–Lidov–Kozai cycles (Fabrycky & Tremaine 

2007 ; Malmberg, Davies & Chambers 2007 ). 

Recent work has suggested that even low-density star-forming 

regions are detrimental to planet formation if massive stars are 

present, whose far -ultra violet and extreme ultra violet radiation fields 

are strong enough to e v aporate protoplanetary discs during formation 

(Scally & Clarke 2001 ; Adams et al. 2004 ; Winter et al. 2018 ; 

Concha-Ram ́ırez et al. 2019 ; Haworth et al. 2023 ). 

We therefore need to quantify the evolution of star-forming regions 

so that we can quantify the effects of the star-forming environment 

on planetary systems, by determining how long a given star-forming 

region is likely to remain gravitationally bound before dispersing 

into the Galactic field. 

Ho we ver, an observ ation of one star-forming region only provides 

information about the stellar density and velocity field at that 

snapshot in time. If all star-forming regions formed with the same 

initial conditions, we could build up a statistical picture of the 

ev olution of star -forming regions by observing more than one region. 

This approach is complicated by the likelihood that star-forming 

regions form with a range of masses (Portegies Zwart, McMillan & 

Gieles 2010 ), a range of stellar densities (Parker 2014 ; Parker & Alves 

de Oliv eira 2017 ; P arker & Schoettler 2022 ), different de grees of 

initial substructure (Dale, Ercolano & Bonnell 2012 , 2013 ; Girichidis 

et al. 2012 ; Dale et al. 2014 ; Dib & Henning 2019 ; Daf fern-Po well & 

Parker 2020 ; Dib et al. 2020 ; Schneider et al. 2022 ), and a range of 

initial virial states, with compact, bound clusters being the tail of 

a broad distribution (Kruijssen 2012 ). This means that two star- 

© 2024 The Author(s). 

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative 

Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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forming regions that had very different initial conditions may evolve 

to be similar in appearance, or vice versa, something termed the 

‘density de generac y problem’. 

To o v ercome this problem, and to pinpoint the initial conditions 

of an observed star-forming region, different measures of the spatial 

distribution of stars, e.g. the mean surface density of companions 

(Larson 1995 ; Bate, Clarke & McCaughrean 1998 ; Gouliermis, 

Hony & Klessen 2014 ), the Q -parameter (Cartwright & Whitworth 

2004 ; Schmeja, Kumar & Ferreira 2008 ; S ́anchez & Alfaro 2009 ; 

Lomax, Whitworth & Cartwright 2011 ; Dib, Schmeja & Parker 

2018 ; Dib & Henning 2019 ), and the spatial distribution of massive 

stars relative to the low-mass stars (e.g. Allison et al. 2009 ; K ̈upper 

et al. 2011 ; Maschberger & Clarke 2011 ), can be used to provide 

information. 

Previous work has shown that combinations of these measures 

can be used as a dynamical clock, to infer the amount of dynamical 

evolution that a star-forming region has undergone (e.g Parker 2014 ; 

Parker et al. 2014 ; Parker & Alves de Oliveira 2017 ; Blaylock- 

Squibbs & Parker 2023 ). Whilst these combinations are powerful 

diagnostics, they can be degenerate, especially for low-density star- 

forming regions, and new measures of clustering are continuously 

being added to the literature that require e xtensiv e testing against 

more established metrics. 

First introduced by Buckner et al. ( 2019 ), INdex to Define Inherent 

Clustering And TEndencies (INDICATE) is designed to quantify the 

relative clustering of stars. INDICATE has been used to investigate 

NGC 3372 and NGC 2264, and also for assessing how accurately 

Gaia can observe young stellar clusters and associations (Buckner 

et al. 2019 , 2024 ; Nony et al. 2021 ). Until now INDICATE has not 

been applied to purely N -body simulations of the long-term (10 Myr) 

dynamical evolution of the star-forming region. 

In this paper, we measure the clustering evolution of N -body sim- 

ulations of star-forming regions using INDICATE. We also combine 

INDICATE with other methods [the Q -parameter (Cartwright & 

Whitworth 2004 ), � LDR (Maschberger & Clarke 2011 ), and � MSR 

(Allison et al. 2009 )] for different snapshots in our simulations to 

assess the diagnostic ability of INDICATE to pinpoint the initial 

conditions of star-forming regions. 

The paper is organized as follows. In Section 2 , we describe the 

set-up of our N -body simulations, and briefly define the different 

metrics for quantifying the spatial distribution of stars within the 

region, including INDICATE. In Section 3 , we present our results, 

and we conclude in Section 4 . 

2  M E T H O D S  

In this section, we describe the set-up of the N -body simulations 

before describing the methods used to quantify the clustering, 

morphology , surface density , and mass se gre gation of star-forming 

regions as they dynamically evolve. 

2.1 N -body simulation set-up 

We utilize the simulations previously described in Blaylock- 

Squibbs & Parker ( 2023 ). We have eight sets of simulations, each 

with different initial conditions (i.e. initial degree of substructure, 

density, and virial state). We run 10 regions for each set of initial 

conditions, as even though they share the same initial properties, there 

is some stochasticity in the dynamical evolution and two statistically 

similar star-forming regions can evolve very differently from one 

another (Parker et al. 2014 ). 

Our simulated regions contain 1000 stars, with average total 

masses of ∼600 M ⊙, which places them in the middle of the cluster 

mass distribution from Lada & Lada ( 2003 ), which ranges from 10 

to 10 5 M ⊙. 

We set up the simulations with two very different velocity fields, as 

defined by the virial ratio αvir = T / | �| , where T and | �| are the total 

respective kinetic and potential energies of the stars. Observations of 

pre-stellar cores show them to have a subvirial velocity dispersion 

(main-sequence stars will inherit their velocities from the pre-stellar 

cores; Foster et al. 2015 ; Kuznetsova, Hartmann & Ballesteros- 

Paredes 2015 ), and so we run a set of subvirial simulations ( αvir = 

0.1). We also run sets of supervirial simulations ( αvir = 0.9) as the 

observations of Bravi et al. ( 2018 ), Kuhn et al. ( 2019 ), and Kounkel, 

Deng & Stassun ( 2022 ) show that some young (around 1–5 Myr) 

star-forming regions are expanding. 

2.1.1 Substructure 

Observations of young star-forming regions show that stars appear 

to form in filamentary structures, with young stars exhibiting spatial 

and kinematic substructure (Efremov & Elmegreen 1998 ; Andr ́e et al. 

2014 ; Plunkett et al. 2018 ; Dib & Henning 2019 ; Hacar et al. 2022 ). 

We model this substructure in our simulations using the box-fractal 

method, generating simulations with a high degree of substructure 

(corresponding fractal dimension of D f = 1.6) and simulations 

with no substructure (corresponding fractal dimension of D f = 3.0; 

Goodwin & Whitworth 2004 ; Daf fern-Po well & Parker 2020 ). 

To generate substructure we follow the method of Cartwright & 

Whitworth ( 2004 ) and Goodwin & Whitworth ( 2004 ), which has 

been used e xtensiv ely in the literature (Allison et al. 2009 ; Parker & 

Goodwin 2015 ; Daf fern-Po well & Parker 2020 ; Daf fern-Po well et 

al. 2022 ; Blaylock-Squibbs & Parker 2023 ). The box-fractal method 

works as follows. A single star is placed at the centre of a cube 

with side length N Div = 2 (in order to create substructure, N Div must 

be greater than unity, but the choice of N Div = 2 is arbitrary; see 

Goodwin & Whitworth 2004 ). This cube is then subdivided into 

N 
3 
Div (eight in this case) smaller subcubes. A star is then placed at the 

centre of each of the subcubes. Each subcube then has a probability 

of N 
D f −3 
Div of being subdivided itself, where D f is the desired fractal 

dimension of the region. The lower the fractal dimension, D f , the 

more substructured the region will be. For example, if D f = 1.6, then 

the probability of that star’s cube being subdivided is N 
−1 . 4 
Div , whereas 

if D f = 3.0, then the probability of that star’s cube being subdivided 

is N 
0 
Div , i.e. unity. 

Stars whose cubes are not subdivided are remo v ed, along with 

any previous generation of stars that preceded them. A small amount 

of random noise is added to the position of the stars to remo v e an y 

regular structure that may appear. The stars’ cubes are subdivided 

repeatedly until the desired number of stars ( N ⋆ = 1000) is reached or 

exceeded. Once a generation consists of or exceeds the target number 

of stars, all previous generations of stars are remo v ed. In the ev ent 

the target number of stars is exceeded, we randomly select stars in 

the last generation and remo v e them until the target number of stars 

is reached. 

2.1.2 Stellar velocities 

The initial star in the box-fractal method has a v elocity dra wn from a 

Gaussian with mean 0 km s −1 and variance 1 km s −1 . Subsequent stars 

inherit this velocity plus a value drawn from the same Gaussian but 

multiplied by a factor of (1/ N Div ) 
g , where g is the current generation 
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of stars. Because of this, the velocity inherited decreases for each 

generation that results in stars spatially close to one another having 

similar velocities, whereas stars that are far apart spatially can have 

very different velocities. This means that our simulations also have 

kinematic substructure, which may be able to trace the formation 

mode of star clusters (Arnold, Wright & Parker 2022 ). 

We then scale the velocities of the stars to the desired initial 

virial ratio of the simulations, where the virial ratio αvir = T / | �| , 
where T and � are the total kinetic and potential energies of the 

stars, respectively, and αvir = 0.5 is virial equilibrium. We set the 

simulations to be either subvirial (cool, collapsing regions, αvir = 

0.1) or supervirial (warm, expanding regions, αvir = 0.9). 

2.1.3 Stellar masses 

Stellar masses in the simulations are drawn randomly from the 

Maschberger initial mass function (IMF; Maschberger 2013 ). The 

Maschberger IMF has a functional form, unlike the piecewise IMFs 

from Kroupa ( 2001 ) and Chabrier ( 2003 ). The probability density 

function of the Maschberger IMF is 

p( m ) ∝ 

(

m 

μ

)−α
( 

1 + 

(

m 

μ

)1 −α
) −β

, (1) 

where α = 2.3 is the high-mass exponent and β = 1.4 describes the 

slope of the IMF for lower masses. μ = 0 . 2 M ⊙ is the scale factor 

and the combination of these parameters produces a mean stellar 

mass of ∼0.4 M ⊙. This form of the IMF is very similar to other 

parametrizations (e.g. Chabrier 2003 ; Kroupa 2008 ). We note that 

other versions, where parameters such as the exponent α may vary 

with the surface density of stars, have been proposed in the literature 

(Dib 2023 ). 

The masses are selected using the quantile function 

m ( u ) = μ
(

[

u 
(

G ( m upp ) − G ( m low ) 
)

+ G ( m low ) 
]

1 
1 −β − 1 

)

1 
1 −α

, (2) 

where the input u is a value drawn from a uniform distribution in 

the range 0 < u < 1, m low = 0 . 1M ⊙ is the lower mass limit, and 

m upp = 50 M ⊙ is the upper mass limit. 

The function G ( m ) is the auxiliary function 

G ( m ) = 

( 

1 + 

(

m 

μ

)1 −α
) 1 −β

, (3) 

where m is either m low or m upp and the other the terms are as abo v e. 

2.1.4 Dynamical evolution 

We take the masses, positions, and velocities of the stars and evolve 

them using the fourth-order Hermite scheme KIRA integrator within 

the STARLAB software environment (Portegies Zwart et al. 2001 ). 

The simulations are evolved for 10 Myr and we do not include stellar 

evolution, nor do we simulate the background gas potential in our 

simulations nor the galactic tidal field. Both of these likely affect 

the dispersal of young stellar clusters via gas expulsion or by tidal 

stripping, reducing the time simulations remain bound (Fellhauer & 

Kroupa 2005 ; Mamikonyan et al. 2017 ). 

A summary of the initial conditions for the N -body simulations is 

given in Table 1 . 

Table 1. This table summarizing the initial conditions for the 

eight sets of 10 simulations. From left to right, the columns 

show the fractal dimension (lower values correspond to greater 

degrees of substructure), the initial radii of the simulations, the 

median initial stellar mass density, the mean total stellar mass 

in the sets, and the initial virial state of the regions where they 

can either be collapsing or expanding, αvir = 0.1 or αvir = 0.9, 

respectively. 

D f r (pc) 

˜ ρ

(M ⊙ pc −3 ) M̄ (M ⊙) αvir N ⋆ 

1.6 1 10 4 592 0.1 1000 

1.6 1 10 4 592 0.9 1000 

1.6 5 10 2 592 0.1 1000 

1.6 5 10 2 592 0.9 1000 

3.0 1 10 2 624 0.1 1000 

3.0 1 10 2 624 0.9 1000 

3.0 5 10 0 624 0.1 1000 

3.0 5 10 0 624 0.9 1000 

2.2 INDICATE 

To measure the clustering of stars in our simulations we use 

INDICATE (Buckner et al. 2019 ). INDICATE measures the degree 

of relative clustering on a star-by-star basis and also determines the 

significance of any clustering. 

The INDICATE algorithm proceeds as follows. First, an evenly 

spaced control grid is generated with the same number density as the 

data of interest. This control grid has the appearance of a regular grid- 

like distribution of points that e xtends be yond the original data set. 

Because the control grid is constructed o v er the same spatial scale, the 

degree of clustering measured by INDICATE is already normalized, 

allowing the degree of clustering measured by INDICATE to be 

compared with the clustering in different regions, without needing 

to normalize the data sets against each other (the Q -parameter, 

Cartwright & Whitworth 2004 , is normalized in a similar way). The 

number density of the data is calculated by dividing the number of 

stars by the rectangular area that encloses all stars. The rectangle is 

defined using the minimum and maximum ( x , y ) coordinates of stars 

in the region. Then, for each star, we calculate the Euclidean distance 

to its N th nearest neighbour in the control grid. The mean of these 

distances is then found, which we call ̄r . For each star, j , we calculate 

the number of other stars within r̄ of j . The INDICATE index is 

I j,N = 
N ̄r 

N 
, (4) 

where N ̄r is the number of stars within ̄r of star j , and N is the nearest 

neighbour number (we follow Buckner et al. 2019 and use N = 5 

in this work). In this work, we characterize the o v erall clustering in 

the simulations at each snapshot by calculating the mean INDICATE 

index, Ī 5 . 

2.2.1 Significant index 

INDICATE can determine the significance of clustering on a star- 

by-star basis by using a significant inde x, abo v e which stars are 

non-randomly clustered, and is calculated as follows. First, once 

the control grid has been generated for the data we then generate 

a uniform distribution of points with the same number density as 

the data. We then calculate the INDICATE indices for the uniform 

distribution of points and calculate the mean of all of these indices. 

The significant index is defined as 

I sig = Ī + 3 σ, (5) 
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Figure 1. The mean INDICATE index against time for high-density, substructured, subvirial and supervirial simulations. Both the subvirial and supervirial 

simulations have a high initial degree of substructure ( D f = 1.6) and both contain 1000 stars with initial radii of 1 pc, simulated for 10 Myr. From left to right, 

the columns show the INDICATE inde x es calculated along three different lines of sight, ( x , y ), ( x , z), and ( y , z). The top ro w sho ws the inde x es calculated for 

subvirial simulations, and the bottom row shows the inde x es calculated for supervirial simulations. The solid lines show the mean index for all stars, and the 

dashed lines show the mean index for the significantly clustered stars. We show the 10 simulations we run for the different sets of initial conditions, with the 

colour shading of the lines being consistent across the different lines of sight. 

Figure 2. Three different line-of-sight perspectives of a subvirial simulation of 1000 stars after 5 Myr of dynamical evolution. The panels show the simulation 

as viewed along the z, y , and x axes. The colour of the points corresponds to their INDICATE index. The redder the points, the more clustered a star is, according 

to INDICATE. The 10 most massive stars are highlighted with star symbols. We show the median index for all 1000 stars with the solid black line in the colour 

bar ( ̃  I 5 , all = 146 . 00 , 148 . 60 , 154 . 00 calculated along the z, y , and x axes, respectively), the black dashed line shows the median index for the 10 most massive 

stars ( ̃  I 5 , 10 = 152 . 10 , 154 . 20 , 156 . 90 calculated along the same lines of sight), and the thin black dotted line shows the significant index ( I sig = 2.2); a star with 

an index above this is said to be significantly clustered. The scale of the colour bar is scaled based on the maximum INDICATE index found in the ( y , z) plane 

of I max = 158.20. 

where Ī is the mean INDICATE index found for the uniform distri- 

bution of points, and σ is the standard deviation of the indices for the 

uniform distribution. Buckner et al. ( 2020 ) calculate the significant 

index by repeating the significant index calculation 100 times, each 

time using a different uniform distribution, then finding the mean 

significant index. Blaylock-Squibbs et al. ( 2022 ) show that for ∼1000 

stars a single calculation is suf ficient, gi ving a similar significant 

index ( ∼2.2) to the one calculated using repeats. Ho we ver, for 

data sets with < 100 stars a minimum of 20 repeats should be 

used. 

2.3 Q -parameter 

The Q -parameter was first introduced in Cartwright & Whitworth 

( 2004 ) and is used to differentiate between regions with different 

morphologies. The Q -parameter uses a minimum spanning tree 

(MST), which is a graph connecting all points in such a way that 
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Figure 3. Three different line-of-sight perspectives of a supervirial simulation of 1000 stars after 5 Myr of dynamical evolution. The panels show the simulation 

as viewed along the z, y , and x axes. The colour of the points corresponds to their INDICATE index. The redder the points, the more clustered a star is according 

to INDICATE. The 10 most massive stars are highlighted with star symbols. We show the median index for all 1000 stars ( ̃  I 5 , all = 41 . 60 , 27 . 00 , 28 . 60 calculated 

along the z, y , and x ax es, respectiv ely) with the solid black line in the colour bar, the black dashed line shows the median index for the 10 most massive stars 

( ̃  I 5 , 10 = 39 . 20 , 37 . 00 , 39 . 40 calculated along the same lines of sight), and the thin dotted line shows the significant index ( I sig = 2.2); a star with an index above 

this is said to be significantly clustered. The colour bar is scaled based on the maximum INDICATE index found in the ( y , z) plane for the subvirial simulation 

(see Fig. 2 ). 

Figure 4. The mean INDICATE index against time for low-density, substructured, subvirial and supervirial simulations. Both the subvirial and supervirial 

simulations have a high initial degree of substructure ( D f = 1.6) and both contain 1000 stars with initial radii of 5 pc, simulated for 10 Myr. From left to right, 

the columns show the INDICATE inde x es calculated for three different lines of sight, ( x , y ), ( x , z), and ( y , z). The top row shows the inde x es calculated for 

subvirial simulations, and the bottom row shows the inde x es calculated for supervirial simulations. The solid lines show the mean index for all stars, and the 

dashed lines show the mean index for the significantly clustered stars. We show the 10 simulations we run for the different sets of initial conditions, with the 

colour shading of the lines being consistent across the different lines of sight. 

the total edge length of the graph is minimized, and there are no 

closed loops. 

The Q -parameter is a ratio between the normalized mean edge 

length, m̄ , and the normalized correlation length, ̄s , and is calculated 

as follows. First, the normalized mean edge length is calculated by 

generating an MST of all stars in the data and finding the mean edge 

length of this MST. The mean edge length is normalized by dividing 

it by 
√ 

N total A 
N total −1 , where A is the circular area of the region (though see 

Schmeja & Klessen 2006 ; Parker 2018 for a discussion on alternative 

normalization methods). 

The normalized correlation length is the mean separation between 

all stars, which is normalized by dividing the mean separation by the 

radius of the region. The Q -parameter is defined as 

Q = 
m̄ 

s̄ 
. (6) 
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Figure 5. The mean INDICATE index against time for smooth, high-density, subvirial and supervirial simulations. Both the subvirial and supervirial simulations 

have no initial substructure ( D f = 3.0) and both contain 1000 stars with initial radii of 1 pc, simulated for 10 Myr. From left to right, the columns show the 

INDICATE inde x es calculated for three different lines of sight, ( x , y ), ( x , z), and ( y , z). The top ro w sho ws the inde x es calculated for subvirial simulations, and 

the bottom row shows the inde x es calculated for supervirial simulations. The solid lines show the mean index for all stars, and the dashed lines show the mean 

index for the significantly clustered stars. We show the 10 simulations we run for the different sets of initial conditions, with the colour shading of the lines 

being consistent across the different lines of sight. 

The value of the Q -parameter indicates the morphology of a group 

of stars; Q < 0.8 implies a substructured region, whereas Q > 0.8 

implies a smooth, centrally concentrated region. 

2.4 Local stellar surface density ratio: � LDR 

The local stellar surface density ratio was first used in Maschberger & 

Clarke ( 2011 ) to quantify the differences in stellar surface density of 

chosen subsets of stars compared to the entire region. In this work, 

our chosen subset is the 10 most massive stars. The method proceeds 

as follows. First, for each star, we calculate the two-dimensional 

Euclidean distance to the N th nearest neighbour, we use N = 5 in 

this work. The surface density of a star is then defined as 

� = 
N − 1 

πR 
2 
N 

, (7) 

where N = 5 and R is the distance from the star to its fifth nearest 

neighbour (Casertano & Hut 1985 ). The local surface density ratio 

is defined as 

� LDR = 

˜ � subset 

˜ � all 
, (8) 

where ˜ � subset is the median surface density of the 10 most massive 

stars, and ˜ � all is the median surface density of all stars in our 

simulations. If � LDR > 1, then the 10 most massive stars are located 

in areas of higher than average surface density, and if � LDR < 1, 

they are located in areas of lower than average surface density. We 

quantify the significance of any deviation from unity via a two- 

sample Kolmogoro v–Smirno v (KS) test, where a p -value of less than 

0.01 is associated with the difference between the subset of massive 

stars, and the entire sample means we reject the hypothesis that they 

share the same underlying parent distribution. Projection effects do 

not unduly affect this measurement (Bressert et al. 2010 ; Parker & 

Meyer 2012 ). 

2.5 Mass segregation ratio: � MSR 

The mass se gre gation ratio is a metric to quantify the degree of 

mass se gre gation in a star-forming re gion, and was first dev eloped 

by Allison et al. ( 2009 ), and has been used e xtensiv ely (Olczak, 

Spurzem & Henning 2011 ; Parker & Alves de Oliveira 2017 ; Dib et 

al. 2018 ; Plunkett et al. 2018 ; Dib & Henning 2019 ; Maurya et al. 

2023 ). Mass se gre gation is when the separation between the most 

massive stars is smaller than the separation between the average 

stars in a region (e.g. if the massive stars are all located in the centre 

of a star-forming region). The method proceeds as follows. First, we 

generate an MST for a chosen subset of stars; in this work we select 

the 10 most massive stars. We then generate MSTs for 10 randomly 

chosen stars (which can include stars from the chosen subset); we 

repeat this 200 times and calculate the mean edge length for the 

random MSTs. The mass se gre gation ratio is 

� MSR = 

〈

l average 

〉

l 10 

+ σ5 / 6 /l 10 

−σ1 / 6 /l 10 

, (9) 

where 〈 l average 〉 is the mean edge length for the randomly constructed 

MSTs, and l 10 is the edge length of the MST for the 10 most massive 

stars. We follow Parker ( 2018 ) and find the upper ( + σ 5/6 / l 10 ) and 

lower ( −σ 1/6 / l 10 ) uncertainties by taking an ordered list of all of the 

random MST lengths and selecting the upper and lower uncertainties 

from 5/6 and 1/6 of the way through the ordered list of MST lengths. 
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Figure 6. The mean INDICATE index against time for smooth, low-density, subvirial and supervirial simulations. Both the subvirial and supervirial simulations 

have no initial substructure ( D f = 3.0) and both contain 1000 stars with initial radii of 5 pc, simulated for 10 Myr. From left to right, the columns show the 

INDICATE inde x es calculated for different viewing angles, ( x , y ), ( x , z), and ( y , z). The top row shows the inde x es calculated for subvirial simulations, and the 

bottom ro w sho ws the inde x es calculated for supervirial simulations. The solid lines show the mean index for all stars, and the dashed lines show the mean index 

for the significantly clustered stars. We show the 10 simulations we run for the different sets of initial conditions, with the colour shading of the lines being 

consistent across the different lines of sight. 

The uncertainties will therefore correspond to a 66 per cent deviation 

from the median MST length and prevent outliers from affecting the 

uncertainty, which could be an issue if a Gaussian dispersion is used 

to estimate the uncertainty (Allison et al. 2009 ). 

In addition to the uncertainties, we follow Parker & Goodwin 

( 2015 ) and require � MSR > 2 as a significant detection of mass 

se gre gation. Therefore, if � MSR > 2, then the 10 most massive stars 

are said to be mass se gre gated (the 10 most massive stars are closer 

to each other than the average stars are to each other), and if � MSR 

∼ 1, then they are not mass segregated (the 10 most massive stars 

are separated by a similar distance to the average stars). If � MSR < 

1, then the region is said to be inversely mass se gre gated, with the 

most massive stars more widely distributed compared to the average 

stars in the region. 

3  RESULTS  

In this section, we present our results in which we follow the evolution 

of the INDICATE metric, I 5 , for N -body simulations with a high 

initial degree of substructure ( D f = 1.6) and simulations with little 

to no initial substructure ( D f = 3.0). We show results for both high- 

density (10 2 –10 4 M ⊙ pc −3 ) and low-density (10 0 –10 2 M ⊙ pc −3 ) 

realizations of these simulations, corresponding to initial radii of 1 

and 5 pc, respectively. We quantify the clustering using INDICATE 

along three different lines of sight; each line of sight being parallel 

to one of the component axes [i.e. ( x , y , z)]. 

We then present the results where we combine Q , � LDR , and 

� MSR with INDICATE, and assess which combinations most reliably 

constrain the initial conditions of the simulated star-forming regions. 

3.1 Evolution of INDICATE in substructured regions 

Fig. 1 shows the mean INDICATE inde x es for initially substructured 

simulations with fractal dimension D f = 1.6 with initial radii of 

1 pc. The general trend across all three lines of sight [( x , y ), ( x , z), 

and ( y , z)] for the subvirial regions (top row, panels a–c) is a rapid 

increase in the mean INDICATE index within the first 2 Myr, and 

then a gradual increase in the clustering for the remainder of the 

simulations. 

We show how different initial conditions and perspectives affect 

the measured amount of clustering in simulations at 5 Myr along 

three different lines of sight in Figs 2 and 3 . Although there is 

some variation depending on the line of sight, this is minimal 

compared to the differences between the subvirial and supervirial 

simulations. The supervirial simulations have a much lower degree of 

clustering. 

The same behaviour is seen for some of the supervirial simulations 

(Fig. 1 , panels d–f), but with a much slower initial increase in 

the mean inde x es. The supervirial simulations also never reach the 

same degree of clustering according to INDICATE that the subvirial 

simulations do. The lower final Ī 5 in the supervirial simulations is 

because the stars are all initially moving away from one another. 

Some stars assemble themselves in small bound groupings, but the 

o v erall lower number of stars in these subgroups results in lower 

values of Ī 5 . 

The main difference between the different initial virial states is 

in the final mean inde x es, with sub virial simulations attaining mean 

inde x es of � 100 and supervirial simulations not exceeding a mean 

index of ∼90 by 10 Myr. This behaviour is seen across all three 

different lines of sight. The subvirial simulations attain higher Ī 5 due 
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Figure 7. The Q -parameter plotted against INDICATE for simulations with a high degree of initial substructure ( D f = 1.6). The top ro w sho ws the results for 

high-density simulations with initial radii of 1 pc, and the bottom row shows the results for low-density simulations with initial radii of 5 pc. The black pluses 

show the results at 0 Myr, the blue crosses for 1 Myr, and the red triangles for 5 Myr. The horizontal grey dash–dotted line is at 0.8, abo v e which Q values signify 

the regions have a smooth, centrally concentrated morphology. The left-hand column shows the results for subvirial simulations, and the right-hand column 

shows the results for supervirial simulations. 

to all the stars falling into the gravitational potential well and forming 

a cluster (Allison et al. 2010 ; Parker et al. 2014 ), which also explains 

the rapid increase of Ī 5 during the first 2 Myr. 

Fig. 4 shows the mean INDICATE inde x es for substructured 

( D f = 1.6) low-density simulations with initial radii of 5 pc. We 

see the same general trend as in Fig. 1 with the subvirial simulations 

attaining higher final mean inde x es (panels a–c), compared to the 

supervirial simulations (panels d–f). A key difference is the lack of 

a rapid initial increase in the clustering; due to the low density of 

the simulations the stars take longer to interact and so the rate of 

clustering is slower. We see a maximum mean index of Ī 5 ∼ 120 

for the subvirial simulations at 10 Myr, but this is only for 1 out 

of the 10 simulations. The other subvirial simulations finish with 

40 � Ī 5 � 90, below the minimum mean index found in the much 

denser ( r = 1 pc) subvirial simulations. 

3.2 Evolution of INDICATE in smooth regions 

Fig. 5 shows the mean INDICATE inde x es against time for regions 

with no initial substructure ( D f = 3.0) and initial radii of 1 pc. 

When comparing between the different virial states we see similar 

behaviour as for subvirial and supervirial regions with D f = 1.6. We 

find that the final mean inde x es are similar to those of the regions 

with D f = 1.6. 

F or sub virial re gions (Fig. 5 , panels a–c) we see once again an 

initial rapid increase in the clustering before a gradual increase for 

the remaining duration of the simulations. The initial increase lasts 

longer in these simulations, with the increase lasting for around 

3 Myr, compared to it finishing within 2 Myr for the substructured 

( D f = 1.6) simulations. We see similar behaviour for the supervirial 

simulations (Fig. 5 , panels d–f) as well, in that they do not attain as 

high a mean INDICATE index by the end of the simulations. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
2
8
/4

/7
4
7
7
/7

6
0
9
0
5
7
 b

y
 S

c
h
o
o
l o

f H
lth

 &
 R

e
la

te
d
 R

e
s
e
a
rc

h
 (S

c
h
a
rr) u

s
e
r o

n
 2

9
 F

e
b
ru

a
ry

 2
0
2
4



Dynamical evolution with INDICATE 7485 

MNRAS 528, 7477–7491 (2024) 

Figure 8. The Q -parameter plotted against INDICATE for simulations with little to no initial substructure ( D f = 3.0). The top row shows the results for 

high-density simulations with initial radii of 1 pc, and the bottom row shows the results for low-density simulations with initial radii of 5 pc. The black pluses 

show the results at 0 Myr, the blue crosses for 1 Myr, and the red triangles for 5 Myr. The horizontal grey dash–dotted line is at 0.8, abo v e which Q values signify 

the regions have a smooth, centrally concentrated morphology. The left-hand column shows the results for subvirial simulations, and the right-hand column 

shows the results for supervirial simulations. The top row shows the high-density simulations, and the bottom row shows the low-density simulations. 

Fig. 6 shows Ī 5 against time for low-density regions with no 

substructure ( D f = 3.0) and initial radii of 5 pc. We see no significant 

difference in the evolution of the clustering between the different 

lines of sight. For subvirial simulations (Fig. 6 , panels a–c) there is 

no rapid increase in Ī 5 as the stars are further apart initially, and the 

absence of substructure also prevents the development of clustering. 

This delay is substantial; there is an increase in the clustering for some 

of the simulations near the end of the run time, at around 7 Myr, but 

the majority of simulations’ INDICATE inde x es do not increase. For 

the supervirial simulations (Fig. 6 , panels d–f) the clustering does 

not change significantly with Ī 5 < 20 for 10 Myr. 

3.3 Combining methods 

In this section, we present the 2D results (line of sight along the 

z-axis with the plane of sky being x and y ) of combining the Q - 

parameter, � LDR , and � MSR with INDICATE. We do this for each 

of the simulations at the following times: 0, 1, and 5 Myr (see also 

P arker et al. 2014 ; P arker & Goodwin 2015 ; Blaylock-Squibbs & 

Parker 2023 for other examples of Q -parameter, � LDR , and � MSR 

being used in combination). 

3.3.1 Q and INDICATE 

Fig. 7 shows INDICATE plotted against Q at 0, 1, and 5 Myr in 

the high-density, substructured ( D f = 1.6) simulations, for subvirial 

(panel a) and supervirial (panel b) simulations, respectively. Compar- 

ing the subvirial and supervirial simulations we see a clear distinction 

between them in both Q and Ī 5 . All the subvirial simulations have Q 

> 1 by 1 Myr, and at the same time Ī 5 lies between 20 and 100. The 

Ī 5 values found at 5 Myr in the subvirial simulations o v erlap slightly 

with the 1 Myr results, lying between 85 and 135. 

In the high-density supervirial simulations (Fig. 7 b), we find that 

some of the Q values at 1 and 5 Myr have remained below the 

boundary between substructured and smooth morphologies (stars 

are moving away from each other in a grouping of stars and this 
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Figure 9. The relative surface density of massive stars, � LDR , plotted against INDICATE for simulations with a high degree of initial substructure ( D f = 1.6). 

The black pluses show the results for 0 Myr, the blue crosses for 1 Myr, and the red triangles for 5 Myr. The horizontal grey dash–dotted line is at 1, above 

which � LDR finds the 10 most massive stars are in areas of greater than average surface density. The top row shows the results for high-density simulations 

with initial radii of 1 pc, and the bottom row shows the results for low-density simulations with initial radii of 5 pc. The left-hand column shows the results for 

subvirial simulations, and the right-hand column shows the results for the supervirial simulations. 

preserves some of the initial substructure, hence a lower Q value), 

with some Q values at 5 Myr o v erlapping with the 1 Myr values 

found in the subvirial simulations. The o v erlap between the Ī 5 values 

at 1 and 5 Myr has also increased, making distinguishing between 

the different times more difficult. 

Panels (c) and (d) of Fig. 7 show the results for the low-density, 

initially substructured ( D f = 1.6) simulations. The INDICATE results 

for 0 and 1 Myr are similar when comparing the subvirial and super- 

virial realisations, due to a lack of dynamical evolution at early times. 

We once again see that the 5 Myr Q values are higher in the subvirial 

regions as the substructure is more ef fecti vely erased due to the stars 

collapsing inwards into the gravitational potential well. On the other 

hand, the supervirial regions retain substructure, but do not become 

more clustered due to a lack of significant dynamical evolution. 

Fig. 8 shows the Q and Ī 5 values for initially smooth subvirial 

(left-hand panels) and supervirial (right-hand panels) simulations, 

respectiv ely. P anels (a) and (b) show simulations that are high density 

with D f = 3.0 (little to no initial degree of substructure). For subvirial 

simulations (panel a) both Q and Ī 5 values are distinct with very little 

o v erlap between the different times. For the supervirial simulations 

(panel b) there is much more o v erlap, with Q values being similar 

across 0, 1, and 5 Myr, and only the INDICATE values increase 

slightly o v er time. As in the highly substructured simulations, we find 

that the maximum Ī 5 values are found in the subvirial simulations. 

In panels (c) and (d) of Fig. 8 , we show the evolution of non- 

substructured ( D f = 3.0), low-density ( r = 5 pc) simulations and we 

find the Q values o v erlap across 0, 1, and 5 Myr. This o v erlap is 

seen for both subvirial and supervirial simulations implying that the 

initial virial state of low-density regions without substructure cannot 

be constrained using these methods. 

3.3.2 � LDR and INDICATE 

Parker et al. ( 2014 ) and Parker ( 2014 ) show that the relative surface 

densities of the most massive stars can be used in tandem with the 
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Figure 10. The relative surface density of massive stars, � LDR , plotted against INDICATE for simulations with no initial substructure ( D f = 3.0). The black 

pluses show the results for 0 Myr, the blue crosses for 1 Myr, and the red triangles for 5 Myr. The horizontal grey dash–dotted line is at 1, abo v e which � LDR 

finds the 10 most massive stars are in areas of greater than average surface density. The top ro w sho ws the results for high-density simulations with initial 

radii of 1 pc, and the bottom row shows the results for low-density simulations with initial radii of 5 pc. The left-hand column shows the results for subvirial 

simulations, and the right-hand column shows the results for the supervirial simulations. 

Q -parameter to infer the initial density and virial state of a star- 

forming region. 

Figs 9 (a) and (b) show the results for � LDR and INDICATE for 

high-density and highly substructured regions with D f = 1.6. The 

� LDR values are less reliable at inferring the initial conditions than 

the Q values, with an o v erlap between � LDR between the subvirial 

and supervirial simulations at 1 and 5 Myr. The Ī 5 values are the 

same here so the analysis in the previous section will apply for the 

rest of this section. 

Panels (c) and (d) show the combination for low-density simula- 

tions. Comparing across the subvirial and supervirial simulations we 

see some o v erlap in the � LDR values for the 0 and 1 Myr snapshots, 

although after 5 Myr it is possible to distinguish between the high- 

and low-density simulations. 

Figs 10 (a) and (b) show the results for dense simulations with 

no initial substructure ( D f = 3.0). The dense, subvirial simulations 

(panel a) show a very distinct difference between 1 and 5 Myr 

(compared the triangles with the crosses), but the distinction is less 

clear for the supervirial simulations (ostensibly because the degree 

of clustering measured by INDICATE does not increase as much in 

the supervirial simulations). 

In the low-density simulations without substructure (panels c and 

d of Fig. 10 ) there is a significant o v erlap of � LDR versus Ī 5 at all 

snapshot times, and as such it is impossible to differentiate between 

initially subvirial and supervirial simulations. 

We find that in the substructured simulations � LDR values tend to 

be higher at 5 Myr compared to simulations with no substructure, 

and the degree of clustering measured by INDICATE is also slightly 

higher in the substructured simulations. 

3.3.3 � MSR and INDICATE 

In addition to plotting the evolution of the Q -parameter against the 

relative surface density ratio, � LDR , Parker et al. ( 2014 ) showed that it 

is possible to also distinguish between subvirial and supervirial initial 
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Figure 11. � MSR versus INDICATE for simulations with a high degree of initial substructure ( D f = 1.6). The black pluses show the results for 0 Myr, the blue 

crosses for 1 Myr, and the red triangles for 5 Myr. The grey dash–dotted line is at � MSR = 2, abo v e this the 10 most massive stars are mass se gre gated. The top 

ro w sho ws the results for high-density simulations with initial radii of 1 pc, and the bottom ro w sho ws the results for lo w-density simulations with initial radii 

of 5 pc. The left-hand column shows the results for subvirial simulations, and the right-hand column shows results for supervirial simulations. 

conditions by using a combination of Q and the mass se gre gation 

ratio, � MSR . 

Fig. 11 shows the combination of � MSR and INDICATE for 

initially substructured simulations ( D f = 1.6). Although subvirial 

simulations tend to attain higher � MSR values (Allison et al. 2010 ; 

Parker et al. 2014 ), not all simulations dynamically se gre gate. 

This combined with the widespread in INDICATE inde x es makes 

inferring the initial virial state of dense regions using � MSR and 

INDICATE alone unreliable (compare panels a and b). The � MSR 

values are also similar between the subvirial and supervirial sim- 

ulations in the low-density initial conditions (panels c and d). The 

key difference between the low- and high-density simulations is the 

� MSR values at 1 Myr tending to be higher in the subvirial high- 

density simulations compared to the supervirial high-density simu- 

lations. 

Fig. 12 shows the results for simulations with no initial substruc- 

ture ( D f = 3.0). Comparing the high-density simulations we see no 

significant difference in the � MSR values, with a single simulation in 

both sets attaining � MSR > 4, which is a significant degree of mass 

se gre gation. 

Ho we ver, the combination of � MSR and INDICATE does provide 

some constraints, the smooth, subvirial simulations (panel a) are 

distinguishable from the supervirial simulations (panel b). 

For the low-density simulations (panels c and d) the two different 

initial virial states are indistinguishable. 

3.4 Determining the initial degree of substructure 

We have shown that combining INDICATE with other measures of 

the spatial distribution of stars can be used to infer the initial density 

of a star-forming region, and whether the star-forming region was 

initially subvirial or supervirial. 

Observations suggest that many star-forming regions form with the 

stars arranged in a substructured distribution, likely to be inherited 

from the filamentary nature of the gas from which they form. The 

substructure is not created during the dynamical evolution of a star- 
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Figure 12. � MSR versus INDICATE for simulations with no initial substructure ( D f = 3.0). The black pluses show the results for 0 Myr, the blue crosses for 

1 Myr, and the red triangles for 5 Myr. The grey dash–dotted line is at � MSR = 2, abo v e this the 10 most massive stars are mass se gre gated. The top row shows 

the results for high-density simulations with initial radii of 1 pc, and the bottom row shows the results for low-density simulations with initial radii of 5 pc. The 

left-hand column shows the results for subvirial simulations, and the right-hand column shows the results for supervirial simulations. 

forming region, it is al w ays erased (Goodwin & Whitworth 2004 ; 

Parker et al. 2014 ; Daf fern-Po well & Parker 2020 ). 

Hydrodynamical simulations of the early phases of star formation 

suggest that the initial degree of substructure of stars can vary quite 

considerably (Schmeja & Klessen 2006 ; Dale et al. 2012 , 2013 , 2014 ; 

Girichidis et al. 2012 ). As any observed star-forming region could 

hav e e xperienced some dynamical evolution, it is not clear what the 

typical degree of substructure is for star-forming regions (or even if 

there is a typical value). 

Furthermore, Dib & Henning ( 2019 ) suggest that the value of 

the Q -parameter increases with increasing star formation rate, and 

postulate a link between the early stages of star formation in clouds, 

and the later degree of substructure. This could, ho we ver, be af fected 

by any later dynamical evolution of the stars (Parker et al. 2014 ; 

Parker & Dale 2017 ), and if there is not a direct mapping of the 

structure of the gas to the stars (Parker & Dale 2015 ). 

Inspection of our results suggests that combining INDICATE with 

other measures of the spatial (and kinematic) information could be 

used to infer the initial degree of substructure. The most important 

factor in determining the amount of dynamical evolution is the initial 

local density within the star-forming region (Parker 2014 ). This 

means that in order to compare the effects of the substructure on 

the evolution of a star-forming region, we must compare regions 

with similar median local densities. 

F or re gions with similar radii, a highly substructured region ( D f = 

1.6) will have a very high median density compared to a region with 

no substructure ( D f = 3.0). Our substructured regions with large 

radii (5 pc) have similar median local densities ( ̃  ρ ∼ 100 M ⊙ pc −3 ) 

to our smooth regions ( D f = 3.0) with smaller radii (1 pc), and so we 

determine the effects of substructure on the evolution of INDICATE 

using these pairs of simulations. 

As an example, we compare the evolution of the Q -parameter and 

INDICATE for substructured simulations with large radii (Fig. 7 c) 

to smooth simulations with more compact radii (Fig. 8 a). We can see 

that both Q and INDICATE display a higher level of clustering in the 

more compact, smoother simulations, and this is also evident in the 
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subsequent plots that show the evolution of INDICATE combined 

with � MSR (compare Fig. 11 c to Fig. 12 a) or � LDR (compare Fig. 9 c 

to Fig. 10 a). 

This is interesting because for most combinations of metrics, 

their signal is enhanced from the dynamical evolution of initially 

substructured regions. Because the degree of clustering measured by 

INDICATE is highest for smooth rather than substructured regions 

(of comparable median local densities), INDICATE can be used in 

tandem with other metrics to distinguish between subtle differences 

in the initial degree of substructure in star-forming regions. 

4  C O N C L U S I O N S  

We apply the INDICATE clustering measure (Buckner et al. 2019 ) to 

eight sets of N -body simulations consisting of 1000 stars along three 

different lines of sight to understand how it behaves due to dynamical 

ev olution in star -forming regions with different initial conditions. We 

also combine INDICATE with other methods to assess its diagnostic 

ability in determining the initial conditions of the simulations from 

later snapshots. Our conclusions are as follows. 

(i) INDICATE is not significantly affected by projection effects in 

our simulations, and evolves similarly when measured along different 

lines of sight for the same set of simulations. 

(ii) INDICATE does evolve differently depending on the initial 

virial state of the simulations. We find that Ī 5 increases rapidly in 

the subvirial simulations during the first 2 Myr, and then steadily 

increases until the end of the simulations. This behaviour is seen in 

both simulations with a high degree of initial substructure ( D f = 1.6) 

and in simulations with no initial substructure ( D f = 3.0), albeit to a 

lesser extent in the less substructured simulations. 

(iii) The values of the INDICATE measure, Ī 5 , are higher for 

subvirial simulations than for supervirial simulations at the end of 

the simulations (10 Myr), and this is seen in all sets of simulations 

apart from very low density, initially non-substructured D f = 3.0 

simulations, where there has been little to no dynamical evolution. 

(iv) INDICATE is most sensitive to the initial density, rather than 

the initial degree of substructure in a region. The higher the initial 

density of a star-forming region, the more clustered the stars tend to 

become. 

(v) Ho we ver, INDICATE – in combination with other metrics 

such as the Q -parameter – can be used to infer the initial degree 

of substructure, but only if the initial densities and virial ratios are 

known. F or e xample, compare Figs 7 and 8 , where the plot of Q 

v ersus Ī 5 giv es different results for high-density simulations with 

and without substructure. This difference is much less pronounced 

for the low-density simulations. 

(vi) When we combine INDICATE with other measures of spatial 

clustering, we find that INDICATE used in combination with the Q - 

parameter (Cartwright & Whitworth 2004 ) provides the most reliable 

way of inferring the initial conditions of the simulated star-forming 

regions. 

Ideally, combinations of more than one spatial diagnostic (e.g. 

INDICATE and Q , Q and � LDR , etc.) are required to really pinpoint 

the initial conditions of a star-forming region, in addition to kinematic 

measures such as the distributions of ejected stars (Schoettler et al. 

2019 , 2020 ; Farias, Tan & Eyer 2020 ; Parker & Schoettler 2022 ; 

Schoettler, Parker & de Bruijne 2022 ; Arunima, Pfalzner & Govind 

2023 ). 
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