
This is a repository copy of Quantitative review of probabilistic approaches to fatigue 
design in the medium cycle fatigue regime.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/209423/

Version: Published Version

Article:

Kufoin, E. and Susmel, L. orcid.org/0000-0001-7753-9176 (2024) Quantitative review of 
probabilistic approaches to fatigue design in the medium cycle fatigue regime. Probabilistic
Engineering Mechanics, 75. 103589. ISSN 0266-8920 

https://doi.org/10.1016/j.probengmech.2024.103589

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Probabilistic Engineering Mechanics 75 (2024) 103589

Available online 21 February 2024
0266-8920/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Quantitative review of probabilistic approaches to fatigue design in the 
medium cycle fatigue regime 
Elvis Kufoin , Luca Susmel * 

Department of Civil and Structural Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK   

A R T I C L E  I N F O   

Keywords: 
Medium cycle fatigue 
Scatter band 
Probability of survival 
Regression analyses 
Stress levels 
Fatigue design 

A B S T R A C T   

To quantify the fatigue behaviour of materials, a Wöhler diagram is required. The state of the art shows that, over 
the years, numerous approaches suitable for determining Wöhler curves have been devised and validated 
through large fatigue data sets. The variation in experimental fatigue data elicits the use of statistics for analysis 
and design purposes. By focusing on the medium-cycle fatigue regime (i.e., failures in the range 103÷107 cycles 
to failure), this paper reviews relevant statistical approaches, particularly the methods suggested by the Amer-
ican Society for Testing Materials (ASTM) as well as the International Institute of Welding (IIW) and the so-called 
Linear Regression Method (LRM). Their responses were assessed on virtual data sets tailored to satisfy specific 
statistical requirements as well as experimental fatigue data sets from the literature. While the scatter bands at 
two times or less of the spread are similar for all approaches, the ASTM approach is seen to be the most 
conservative.   

1. Introduction 

To guarantee the structural integrity of components during in-service 
operations, fatigue design considerations are a key aspect to address 
because repeated cyclic loading accounts for most failures [1]. Factors 
accounting for crack initiation range from material microstructure, 
loading path, geometry, defects and environment [2]. Designing against 
fatigue, therefore, becomes complex when considering these factors. A 
stress (S) – number of cycles to failure (N) curve (i.e., the so-called 
"Wöhler curve" or “S–N curve”) summarises the failure ratio and has 
shapes that depend on both the trend in the experimental result and 
methods used to model the curve [3]. Before progressing, it is important 
to briefly explain how an S–N curve is generated. 

The S–N curve, also referred to as the Wöhler curve, is a graphic 
representation of the relationship between applied stress and the cor-
responding number of cycles to failure for a material under specific 
loading conditions and the environment. Fatigue data comprises of a 
stress level (σ), wherein σ can be the stress amplitude, maximum stress 
in the cycle, or stress range, alongside the number of cycles (Nf ) the 
material endures before failure. By subjecting numerous specimens to 
various stress levels (σi, i = 1..n, with n being the total number of 
specimens), an experimental dataset (σi,Nf ,i) is obtained, which in turn 
is utilized to construct the S–N curve. Fig. 1 illustrates the profile of an 

S–N curve particularly in the medium cycle fatigue (MCF) regime where 
(for the sake of clarity) the curve is assumed to be linear in the log – log 
space. The shapes of the curve in the low cycle fatigue (LCF) and high 
cycle fatigue (HCF) regimes are dependent on the material. Of particular 
interest is the shape of the curve in the HCF, which is horizontal if the 
material has a fatigue limit σ0. The fatigue limit is the theoretical stress 
level below which failure does not occur. For materials that do not have 
a fatigue limit, an endurance limit is estimated at a referenced number of 
cycles, typically in the region of 106 and 108 cycles, and the curve 
continues with the same gradient beyond this point. In some cases, the 
fatigue curve deviates in steepness from the one that describes the 
medium-cycle fatigue behaviour of the same material, resulting in the 
observation of a knee point. Beyond the HCF is the very high cycle fa-
tigue (VHCF) regime typically occurring beyond approximately 107 

cycles. The shape of the curve in this region depends on the material. 
Some materials may exhibit a fatigue limit within this region, leading to 
the observation of a second horizontal plateau in the S–N curve. 

The S–N curve in the LCF is either modelled in accordance with 
Coffin–Manson and Morrow model [4] or, under some stated consider-
ations, the ASTM strain-energy approach [5]. A Weibull model can also 
be used as explained in Ref. [6]. The behaviour in the MCF regime can be 
modelled using stress-based approaches like in linear regression analysis 
or by using the Basquin approach. Similar to the LCF, the Coffin–Manson 
strain–based approach can also be used in the MCF region. These 
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approaches can be extended to the HCF regime where the plastic 
contribution to the fatigue properties is insignificant. In the VHCF re-
gion, the assumptions behind the application on models in the LCF to 
HCF may not hold due to the increase in experimental scatter for 
decreasing stress amplitudes. Weibull and extreme value statistics are 
approaches that can be used to model the S–N curve in this region [2,7, 
8]. Different approaches can also be used, depending on the specific 
application. This paper will explore a few approaches used to model the 
S–N in the MCF region. 

Consider for example, the S–N curve in the MCF regime for practical 
design, where the variability in fatigue life results from various sources. 
Some of these sources include material mechanical properties, discon-
tinuities, environmental factors and setup or equipment variations. This 
elicits for accurate analysis for design purposes. Cutting edge statistical 
approaches are commonly applied throughout the industry to post 
process experimental fatigue data. For instance, in Ref. [9] a Weibull 
Probabilistic Technique is used to estimate parameters, followed by a 
Bootstrap method for critical design. Similarly, Ref. [10,11] uses neural 
networks (NN) machine language for fatigue design, with neither the 
Weibull Probabilistic Technique nor NN assuming a distribution in the 
fatigue data. Though this has been successful, the statistical analysis of 
fatigue data remains tricky because the stress vs. fatigue life relationship 
is fundamentally nonlinear and the fatigue life distribution is assumed 
[5,12]. Other challenges originate from sample size which is restricted 
by cost and time, as well as varied disproportionate scatter at stress 
levels, which accounts for the complexity in the re-analysis. Moreover, 
fatigue data can either be censored (runouts excluded) or uncensored, 

whilst the statistical distribution of fatigue life at a given stress level is 
assumed to be lognormal depending on the approach. Non-cutting-edge 
approaches are also known to be applied in the industry. For instance, 
the design by eye approach [13] is a very basic approach which is 
applied by drawing a line that follows the experimental data yet 
providing a “little white space” between these points and the design 
curve. Clearly, this design curve does not depend on a distribution, is 
subjective and lacks consistency across the board. 

Considering the linear schematisation of the S–N curve in the MCF 
(see Fig. 1); one of the linear functions that is commonly used in a log-log 
representation is [14,15]: 
LogNf =Co + C1 Log σ (1)  

where Nf is the fatigue life and σ is the stress level. Co and C1 are the 
intercept and inverse slope constants respectively which are dependent 
on the fatigue data. The inverse slope determines the sensitivity of the 
material to fatigue, and a lower value indicates that the material is more 
sensitive to small changes in stress or strain amplitude. At any point on 
the curve, equation (1) is similar to Basquin’s equation. Basquin’s 
equation assumes a power-law relationship between the stress level and 
the number of cycles to failure [16,17]. Consider, for example, two 
reference points in the HCF regime, one defined as (σ0,NA) at the 
endurance limit and any other point, the corresponding equation (often 
referred to as Wöhler’s equation) can then be written as: 
σkNf = σ0

kNA = constant (2)  

where k is the negative inverse slope (k = − C1) as defined in Fig. 1. 
In the challenging scenario briefly summarised above, the aim of this 

paper is to review some of the standardised methods used for practical 
design in the MCF regime. These methods have been established over the 
decades using statistical approaches. The outputs from these approaches 
are analysed based on the assumption that the curve is linear. Virtual 
sample sets with varied statistical properties and fatigue data sets from 
the literature will be used for analysis. This quantitative review will 
exclusively concentrate on failures in the range of 103÷107 cycles to 
failure, a range commonly used in the industry for design purposes. 
Exploring the methodologies employed in the HCF and beyond will 
constitute a key aspect of the upcoming work in this field, and it will be 
addressed accordingly. This will encompass approaches to materials that 
lack a fatigue limit, and analyses of the S–N curve around knee points. 
The next section explains the characterisation of the S–N curve in the 
MCF regime and its application in fatigue design. 

Nomenclature 

C0 Intercept of mean S–N curve (constant) 
C1 Coefficient of independent variable (constant) 
k Negative inverse slope 
KD(Owen) Scatter factor from Owen tolerance limit approach 
KD(LM) Scatter factor from the linear regression approach 
KD(ASTM) Scatter factor from the ASTM approach 
KD Scatter factor 
log Nf ,ij Log of life at the replication level 
logNfij Mean log of life at the replication level 
log σi Mean log of stress level, log σi =

∑n
i=1

log σi
n 

logNf ,i Mean log of fatigue life, logNf ,i =
∑n

i=1
log Nf ,i

n 
log Nf ,D Log of estimated life for design life 
mi Replication level at the ith stress level 
Nf Number of cycles to failure 
Nf ,i Number of cycles to failure at the i-th stress level 

n Number of experimental results (sample set) 
nσ Number of stress levels 
NA Reference number of cycles to failure 
Nkp Number of cycles to failure at the knee point 
Ps Probability of survival 
q Index depending on the probability of survival 
R Stress ratio (R = σmin/σmax) 
s Standard deviation of log cycles to failure 
σ Generic stress level (stress amplitude, maximum stress or 

stress range) 
σi i-th stress level (i = 1, 2 …, n) 
σmin,σmax Minimum and maximum stress in the cycle 
σ0 Endurance limit 
σ0,P% Endurance limit at a probability of survival P 
σ0,(1−P)% Endurance limit in error at a probability of survival P 
Tσ Scatter ratio of reference stress for (1-P) % and P% 

probabilities of survival 
μY/X Expected value of logN given log σ  

Fig. 1. S–N curve profile for the various fatigue regimes.  
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2. S–N Curve and associated scatter band: theoretical 
schematisation 

An essential consideration is the definition of the failure criterion 
used to generate data for S–N curves. Fatigue life typically comprises 
three phases: initiation, propagation, and final breakage. While theo-
retically, any of these phases could establish a suitable failure criterion, 
the choice influences the appearance of points on the S–N curves, 
leading to distinct fatigue curves. This is the reason why, normally, S–N 
curves are generated experimentally by adopting crack initiation as the 
failure criterion. In this setting, crack initiation is usually defined as the 
number of cycles required to initiate a technical crack with a length of 
the order of a few millimetres. An alternative solution is to define the 
crack initiation lifetime which results in a given reduction of the spec-
imen stiffness. The criterion being adopted is always established prior to 
the investigation and generation of fatigue datasets. Further to this 
clarification, this paper maintains focus on the statistical analysis of data 
sets generated by using the initiation phase as the failure criterion. 

The mean S–N curve plotted from the experimental data has a 
probability of survival Ps = 50%, from which the fatigue limit (if it 
exists) or the endurance limit σ0 is calculated. The fatigue limit is the 
theoretical stress level which a component survives without failure. 
Meanwhile, the endurance limit is the reference stress extrapolated in 
the HCF regime at NA cycles to failure. The specific number of cycles 
chosen as the reference point may vary depending on factors such as 
material properties, application, and engineering standards or regula-
tions, all of which are essential for design and analyses purposes. In this 
paper, the endurance limit is used and estimated at NA = 2× 106 cycles 
for analyses purposes. 

Fatigue tests which are terminated after surviving a specified 
maximum number of cycles (referred to as runouts) are treated differ-
ently by different analysis methods. In some methods, runouts are 
considered failures [15], whereas in others, they are entirely dis-
regarded (censored) [17–19]. However, both approaches tend to un-
derestimate the variation around the fitted line, as indicated by the 
standard deviation. In this paper (detailed in section 4), censored data 
sets are used to estimate the mean curve [5,14] and the endurance limit. 

How is the design curve derived for the mean S–N curve? The design 
curve and corresponding design stress are determined by considering 
the variability in the fatigue data points. Through statistical analysis, the 
design stress (σ0,P%) based on the design curve at a given probability of 
survival P is obtained by shifting the mean curve by a scatter factor KD as 
illustrated in Fig. 2. Therefore, the design stress/curve depends on the 

size of the scatter factor, which in turn is dependent on the approach and 
the recommended probability of survival. This is the key focus of this 
paper (See section 4). For example, Eurocode 3 (EN1993-1-9) suggests a 
probability of survival of at least 97.7% to design welded joints against 
fatigue [5,15,20]. 

A confidence interval represents the range of stress levels for which 
the estimated endurance limit is likely to lie, based on the sample data. 
The confidence interval depends on the chosen confidence level, which 
indicates the probability that the estimated range will contain the true 
endurance limit. Suppose the endurance limit is calculated for a prob-
ability of survival P% (i.e σ0,P%), the maximum value of this endurance 
limit at this probability is the value estimated at 1-P%. (i.e. σ0,(1−P)%). 
The interval between these stress levels is known as the confidence in-
terval, and its size is referred to as the scatter band, τσ . This scatter band 
is extrapolated for the mean curve and serves as a visualisation tool to 
indicate the accuracy of estimation from experimental data sets. It 
makes use of statistical analysis to represent the uncertainty in the es-
timate of the S–N curve and is calculated as the ratio between the 
reference stress in the HCF regime for (1-P) % and P% probabilities of 
survival (see Fig. 2). The size of the scatter band is, therefore, dependent 
on the chosen approach as well. 

Returning to the previously summarised challenges, the first of 
which was the generation of the S–N curve from a set experimental 
result, and the second challenge the determination of the associated 
scatter band with a probability of survival, what follows is a description 
of how these challenges can be addressed using some standardised ap-
proaches. The S–N curve problem is then addressed using the approach 
suggested by ASTM and its confidence interval [5]. The scatter bands 
problem is addressed using approaches suggested by the IIW, the ASTM 
and the LRM. In the considered fatigue lifetime region, it is assumed that 
the distribution of the logarithm of the fatigue life is normal at each 
stress level. However, this is not always the case, since different mate-
rials show different behaviours in the medium-cycle fatigue regime. 
Accordingly, the validity of this initial hypothesis must be checked 
before determining the associated scatter band. This is discussed below. 

3. The mean S–N curve determined according to the ASTM 

To determine a mean S–N curve from a set of experimental data, 
there are some essential assumptions that need to be considered [5,13, 
18,20–26]. In addition to these assumptions, Refs. [26,27] further 
emphasise the requirement to test several identical specimens at 
different stress levels such that the stress-life approach can be accurately 
utilized. Ref. [5] further emphasises the necessity of replication and 
suggests that the design curve with a probability greater than 50% is 
only as good as its level of replication. The suggested replication levels 
from Refs. [15,20,28] are summarised in Table 1. What follows is a 
description of these assumptions which are common to all methods. 

3.1. Assumptions to determine mean S–N curves 

For the statistical methods mentioned above to be consistent and 
accurate for S–N curves in the MCF region, the following arguments are 
required to be true. These arguments are essential in designing the S–N 
field around the mean curve. 

Fig. 2. The mean S–N curve showing the nature of the scatter factor KD, the 
reference stress levels σ0,P% at a probability of survival P, and the definition of 
the scatter band. 

Table 1 
Minimum number of specimens and replication requirements for testing [11].  

Type of test Minimum Number of 
specimens 

Replication 
percentage (%) 

Preliminary and exploratory 6–12 17–33 
Research and Development 

testing of components 
6–12 33–50 

Design data 12–24 50–75 
Reliability data 12–24 75–88  
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3.1.1. Linearity 
The relationship linking fatigue life and the stress level in a log-log 

representation must be linear [5,15,28], assuming that the stress 
range chosen during testing corresponds to the linear section of the S–N 
curve in the MCF regime. There are a few possible linear relations used 
in fatigue [26] and the most common linear relationship in the log-log 
schematisation is defined in equation (1). This equation is valid only 
within set limits of the lifecycle of a specimen, for which the lower limit 
corresponds to the endurance/fatigue limit and the upper limit the 
transition region into LCF regime which varies depending on the ma-
terial, into the static strength of the material specimen. Each stress level 
produces a unique impact on the fatigue life, and if this is not the case, 
then the assumption of linearity is invalid, and the Analysis of Variance 
(ANOVA) statistical model calculations are executed. In this case, the 
variance procedure uses F-tests to compare variances amongst dupli-
cates in the data with the variance of the estimated population. If the 
variance within the replicates is far less than the variance in the esti-
mated line, then linearity assumption is rejected. 

3.1.1.1. Checking the condition of linearity. To verify the condition of 
linearity, the test statistic is employed in the null hypothesis. This in-
volves using the F-distribution, which is effective in comparing the 
variances of two or more sample sets derived from continuous data sets 
with continuous distributions [5,15]. The critical values of the F-dis-
tribution are determined based on the desired level of confidence, which 
can be obtained from the F-tables in Refs. [26,29,30]. The degrees of 
freedom, denoted as n1 and n2 are derived from the two respective 
sample sets. 

To determine if a fatigue dataset is linear, the sample data set can be 
grouped into two subsets. The first subset consists of the stress levels 
used to generate the data and the second subset considers all individual 
specimens independently. Suppose there are l number of stress levels 
with m replicates in the first subset with weighted averages logNfi,j 
representing the average life at each stress levels. (i= 1.. l, j= 1..m). This 
weighted fatigue life has a degree of freedom defined as n1 = l− 2. The 
second subset of the data is treated as the complete set of experimental 
data without any replications, has degrees of freedom n2 = n− l, where 
n is the overall sample set. To determine the critical value Fp, the two 
entries n1 and n2 are used as: 

Fpcal=
n1

n2

=
l − 2

n − l
(3) 

Similarly, the Fp calculated is compared to the Fpcrit value calculated 
using the equation: 

Fpcrit=

∑l

i=1

mi(log(Nfi)− logNfi)
2

(l−2)

∑n

i=1

∑mi

j=1

(log(Nfij)− logNfij )
2

n−l

(4) 

in which log Nfij (i = 1..l and j = 1 ..m) is the logarithm of life at the 
replication level. The stress levels are carefully chosen to fall within the 
medium cycle fatigue region [5,22]. The null hypothesis is then used to 
determine linearity of the data set as follows: 

Null Hypothesis. 

• Fpcal ≤ Fpcrit; Null hypothesis confirmed, linearity model consider-
ation can be adopted  

• Fpcal > Fpcrit; Null hypothesis is rejected and a Non-linear model of 
some form: log Nf = C0 + C1 log σi + C2log σi 2, where C0, C1 and C2 
are polynomial constants that describes the envelope of the curve. 

Where the null hypothesis cannot be confirmed, Ref. [5,15] suggests 
that the non-linear consideration is adopted. Under this approach, the 
estimated mean curve is approximated as: 

Log Nf =C0 + C1 log(σi − C2) (5) 
In this case, C0 and C1 are as defined previously while C2 is a fatigue 

limit term. Other examples of non – linear considerations are defined by 
Refs. [14,15,31]: 
Log Nf =C0(log σi)

n1 + C1(log σi)
n2 (6) 

Generally, a simple non-linear approach is defined as: 
Log Nf =C0 +C1(log σi) + C2(log σi)

2 (7)  

where C0, C1 and C2 are empirical constants that define the fatigue life 
[12,32]. Non-linear schematisations are not the focus of this paper. 
However, it is worth acknowledging the effects that the constants in 
equation (7) have on the shape of a fatigue curve. Specifically, C0 de-
fines a position on the ordinate axis, resulting in a parabola that either 
opens upwards or opens downwards. The shape of the parabola is 
determined by the sign of C2. A positive C2 causes the parabola to opens 
upwards, with C0 determining the minimum point on the estimated 
curve. Conversely, a negative C2, positions C0 as the maximum point on 
the estimated mean curve. For very small values of log σi, the second 
term does not significantly impact on the shape of the curve. However, 
C1 translates the turning point of the parabolic mean curve depending 
on its magnitude and direction. The translation is diagonal while 
ensuring that curve includes the point C0. A positive C1 translates the 
turning point onto the third quadrant, while a negative C1 will translate 
the turning point onto the fourth quadrant. 

It is also important to acknowledge the significance of the bilinear 
and hyperbolic models proposed in Refs. [7,8] for ultra-high-cycle re-
gimes, particularly when dealing with large data sets. These models 
provide valuable insights and are based on non-linear considerations. 
However, a comprehensive discussion of these non-linear aspects is 
beyond the scope of this paper. 

3.1.2. Essential statistical assumptions in addition to linearity 
Log normal distribution: fatigue life is normally distributed or log- 

normally distributed in the log – log space for any stress levels σi. 
This is achieved by assessing whether the probability plot in the log – log 
space departs from the mean S–N curve follows a linear trend. In this 
paper, it is assumed that, at each stress level, the fatigue life has a normal 
distribution around the mean life. 

Statistical Independence: fatigue life of any single sample is considered 
independent of the fatigue lives of other samples or data points. This 
independence can be verified by examining the residuals of logNf in the 
datasets to ensure there are no recurrent patterns. If any noticeable 
patterns emerge the data is grouped accordingly and an analysis of 
variance (ANOVA) is conducted on the data. 

Homogeneity and standard deviation: it is assumed that, at each stress 
level, the variance and standard deviation of fatigue life are constant. 
This assumption is verified by examining the plots of residuals from the 
mean curve with logσ. To assess statistical homogeneity, Bartlett’s test is 
applied if the fatigue life is normally distributed at each stress level; 
otherwise, Levene’s test is used [12,20,26]. It is important to note that 
while these tests were relevant, they are not the primary focus of this 
paper and are not included in this review. 

3.2. Fitting the S–N mean curve and confidence interval 

Having asserted the above essential assumptions, the first aspect 
considered in this paper is to determine which approach among the 
various linear models will be used to fit a mean S–N curve onto an 
experimental fatigue data set. The linear regression method is employed, 
and the statistical approaches selected for this study uses the same 
method for the mean curve. This regression analysis uses the least 
squares approximation [14,16,32] to determine the parameters of the 
mean curve by minimizing the sum of the squares of the differences 
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between the observed dependent variable (fatigue life) and the output of 
the linear function of the independent variable (stress levels). Conse-
quently, estimates of the slope and intercept are generated. This is 
possible by applying a log − log plot of the data with the assumption of a 
log-normal distribution of fatigue life at each stress level. The estimated 
mean curve has a 50% probability of survival, (i.e. Ps = 50%) and the 
function that defines the equation of the regression curve defined in 
equation (1) has an error band defined as [1,32]: 
log Nf =Co + C1 log σi + ξ (8)  

where ξ is the unknown random measurement error connected with the 
estimation of fatigue life. The maximum likelihood method can also be 
used to determine the parameters Co and C1 because of its good statis-
tical properties [33,34]. However, the main disadvantage is that the 
likelihood equations need to be derived for each specific distribution, 
which can be cumbersome. To simplify this process, the least squares 
approach is used to estimate the parameters in the mean curve [14,15, 
35]. Thus Co and C1 are estimated at the mean points of the dataset as: 

C1 =

∑n

i=1

[log (σi) − log σi][log (Ni) − log Ni]

∑n

i=1

[log (σi) − log σi]
2

(9)  

C0 = log Ni − C1log σi (10) 
in which n is the sample set and i = 1,2..n. log σi is the mean of log 

stress levels and log Nfi is the mean of the log of fatigue life. By taking the 
natural logs in equation (2) and comparing with equation (8), the in-
verse slope k, whose value is of great significance in fatigue analysis and 
design, and in the least squares estimation is defined as: 
k = − C1 (11) 

By substituting the inverse slope in equation (8) and assuming 
negligible error in estimating the parameters of the mean curve, the 
equation for the mean S–N curve can be written as: 
log Nf =Co − klog σi (12) 

According to this schematisation the endurance limit σ0,50%, at the 
corresponding reference number of cycles NA, can be determined as, 

σ0,50% =

[
10C0

NA

]1
k

(13) 

Having estimated the parameters in the mean S–N curve, what fol-
lows is an estimate of the amount of uncertainty associated with the 
mean curve otherwise known as the confidence interval. 

3.2.1. Confidence level of the estimators C0 and C1 and the mean S–N 
curve 

The parameters defining the mean S–N curve C0 and C1 are estimates 
and have associated confidence intervals. This confidence level defines 
the probability that each parameter will fall within a specified range of 
values. With a 95% confidence level, it is expected that 95% of the time 
the suggested parameter will exist within this limit. 

Assuming that all the arguments described in section 3.1 are true, 
and the estimators of C0 and C1 are normally distributed irrespective of 
the sample size, a t-distribution is used to determine the confidence 
interval for these parameters [5,15,22]. The confidence interval for C0 is 
defined as [5,15]: 

C0 − tps

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n
+

log σi
2

∑n

i=1

(log σi − log σi )
2

√√√√√ ≤ C0 ≤C0

+ tps

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n
+

log σi
2

∑n

i=1

(log σi − log σi )
2

√√√√√ (14)  

where tp is the critical value of the t-distribution patterning to a prob-
ability of survival PS and s is the unbiased estimator of the standard 
deviation of fatigue life defined by equation (15) [20,26,29,30] where 
logNi is the log of observed live at the stress level. 

s2 =

∑n

i=1

(
logNfi − log Nf

)2

n − 2
(15) 

Similarly, C1 will lie within the limits defined by, 

C1 −
tps

∑n

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
log σi − log σi

√ ≤C1 ≤ C1 +
tps

∑n

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
log σi − log σi

√ (16) 

These estimations remain valid under the condition that the life 
estimation of a random sample is independent and all the previously 
defined assumptions hold true, with the additional requirement that 
there are no runouts in the fatigue data set. 

3.2.2. Confidence level of the mean S–N curve 
Based on the assumptions defined in section 3.1, the confidence in-

terval for the mean curve is defined by 

Log Nf =C0 +C1 log σi ±
̅̅̅̅̅̅̅̅
2Fp

√
s

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n
+

(log σi − log σi )
2

∑n

i=1

(log σi − log σi )
2

√√√√√ (17) 

The confidence interval uses a constant Fp, known as the critical 
value of the F – distribution (otherwise called the Snedecor distribution), 
which is read from statistical tables as in Refs. [5,14,15,27]. In addition, 
the actual mean S–N curve is only an approximation of the best straight 
line representing the dataset in the interval of the stress levels used 
during testing [5], with estimators defined with a confidence level of 
95%. Consequently, confidence levels for the entire mean S–N curve 
with a confidence greater than 95% are not recommended for this mean 
curve and this method is not recommended to extrapolate the S–N curve 
beyond the test interval. 

The curves generated using equation (17) are hyperbolas which are 
closest to the mean curve at the mean points as illustrated in Fig. 3. 

Fig. 3. Hyperbolic curves showing the confidence interval of the mean curve 
and the associated data points. 
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These hyperbolic curves are of little interest to design engineers and will 
be transformed to parallel lines that provide the confidence interval 
along any stress level [5,12,32] and are used to generate the scatter 
band. The length of the perpendicular bisector at the mean point to the 
mean S–N curve determines the position of the parallel curves and this is 
half the size of the confidence interval. The endurance limit σ0,P% at NA 
cycles to failure of the mean curve characterised by a probability of 
survival Ps = P% is estimated as: 

σ0,P% =

[
10(C0−KD(ASTM)s)

NA

]1

/
k (18) 

KD(ASTM) is the scatter factor and is defined as: 

KD(ASTM) =

̅̅̅̅̅̅̅̅
2Fp

n

√
(19) 

The critical value Fp, of the F – distribution is dependent on the 
probability of survival. In a similar way, the endurance limit σ0,(1−P)%, at 
NA cycles to failure of the line delimiting the calculated scatter band, 
with a probability of survival Ps = (1 − P)% is defined as: 

σ0,(1−P)% =

[
10(C0+KD(ASTM)s)

NA

]1

/
k (20) 

These parallel lines, equidistant from the mean S–N curve define the 
region for the confidence interval of the mean S–N curve. 

Before proceeding to address the second challenge of generating 
fatigue design curves and their associated scatter bands, it is necessary to 
examine the wide range of available approaches that are applicable in 
the industry. 

3.3. Other methods of constructing fatigue design curves 

To begin with, assume that the approaches considered here would 
generate the mean curve based on the assumptions defined in section 3.1 
and also use the linear considerations and method described in section 
3.2 irrespective of the linear model applied [15]. 

State of the art methods across the industry generally approach the 
fatigue design problem by using scatter factors which are dependent on 
their statistical considerations and in-service application of the compo-
nent. According to Ref. [14], most engineering approaches prefer the 
2-sigma or 3-sigma design curves in which the mean S–N curve is shifted 
two to three standard deviations to generate the design curve. However, 
this approach fails to attest for the statistical distribution of fatigue life. 
The general equation to construct the design [14,24] curve is defined by: 
Log Nf ,D =Log Nf − KDs (21)  

where Log Nf ,D is the natural logarithm of the estimated design life, KD is 
a scatter function that is dependent on the probability of survival and 
sample size n, and s is the standard error of the estimated life Nf [14,27]. 
The different approaches all use different considerations to determine 
the scatter factor, which is dependent on the industry and application. 

3.3.1. Lower 2-sigma or 3-sigma design curves 
This design curve is determined by subtracting 2 or 3 times the 

standard deviation from the fitted mean curve. Following from equation 
(21), KD = 2 or KD = 3 [14]. Similarly, Ref. [13] suggests that the scatter 
factor KD is to be determined by choosing a suitable probability of sur-
vival. However, this method does not address the confidence level 
problem associated with the parameters of the mean S–N curve. Because 
of this limitation therefore, this method will not be considered beyond 
this point. 

3.3.2. One dimensional tolerance limit 
For a one–sided tolerance limit of a normal distribution where only 

one variable is involved, KD will depend on the probability of survival P 

and the confidence level γ [1,13] and is defined by: 

KD(one−sided−T) = kγ,(n−2)

̅̅̅̅̅̅̅̅̅̅̅
1 +

1

n

√
(22)  

where kγ,(n−2) is the tolerance limit factor for a confidence level γ and n −

2 degrees of freedom. KD(one−sided−T) represents the scatter factor gener-
ated using the one-sided tolerance limit approach [15]. 

This method is applicable when all samples are replicated at each 
stress level [15] with the fatigue life having a normal distribution. More 
so, the one-sided tolerance limit is valid if the assumptions in generating 
the mean curve are tested and verified. As much as this approach is 
efficient for very complex cases, the assumption of log-normal distri-
bution and uniformity of variance must be verified and confirmed before 
application. In case the distribution is not log-normally distributed [13, 
15], a different approach is recommended [27]. Because the log-normal 
distribution assumption is not considered by this approach, this reduces 
the scope for which it is applicable. More so, when applied to a two 
dimensional case, this method fails to acurately estimate the uncertainty 
in the two parameters involved [13]. This method is also quite difficult 
to implement and its conservativeness may not be very useful for all 
applications. Tolerance limits are more sensitive to slight deviations 
from the assumed normality compared to prediction limits [15,26]. In 
addition, the use of tolerance limits does not necessarily correspond with 
earlier practice and hence may not be compatible with present design 
rules. This therefore suggests that it is not always suitable to base the 
design curve on tolerance limits. Despite the above, tolerance limits still 
constitute an essential tool in studying the responsiveness of a design 
curve in relation to the population. Hence, tolerance limits should be 
used to justify our design curves only for small sample populations. 
Because of these limitations, this approach will not be considered for 
analysis in this paper. 

3.3.3. Owen Lower Tolerance Limit 
This approach guaratees a confidence limit γ at any given stress or 

strain level and the scatter factor KD(OWEN) = K(x;V) in which the 
function V(p, γ, n,m.x) is such that p is the probability of survival, γ is the 
confidence limit, n is the dimension of the stress level vector and m is the 
number of undetermined parameters in the mean curve [13,14,36]. 
KD(OWEN) values are read from tables in Refs. [14,37]. They depend on 
the sample sizes, reliability levels, and confidence levels. According to 
this approach, the design curve is: 
Log Nf ,D = Log Nf − KD(OWEN)s (23) 

The Owen lower tolerance limit method assures the same confidence 
level at any stress level and predicts intervals that agree with other 
approaches. However, this is very applicable in non-linear approaches, 
and is also dependent on the distribution at each stress level and the total 
specimen number [13]. Because this review paper assumes a homoge-
neity of standard deviation, this approach will not be included in the 
review process considered in this paper. 

3.3.4. The simultaneous Tolerance Limit 
According to the simultaneous tolerance limit approach, the scatter 

factor KD(Sim) is as defined in equation (25) and χn−22,α/2 is the α/2 
quantile of the χn−22 distribution. 

KD(Sim) =
̅̅̅̅̅̅̅̅
2Fp

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n
+

(
log

(
σa,i

)
− log σa,i

)2

∑n

i=1

(
log

(
σa,i

)
i − log σa,i

)2

√√√√√√ + N(P)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
n − 2

χn−2
2,α/2

)√

(24) 
The simultaneous tolerance limit guarantees that 100γ percent of the 

time, the probability of failure is always less than 1 − P for all stress 
levels at the same time [13]. Similar to the Owen Lower Tolerance Limit, 
this approach will not be reviewed in this paper because it is good for 
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very complex data distributions at different stress levels and its 
complexity in application compared to very simple linear models. 

3.3.5. Parallel Tolerance Interval (PTI) for P–S–N surface, Bowden and 
Graybill approach 

The scatter factor KD(PTI) under the parallel tolerance approach is 
defined in as: 

KD(PTI) =C∗ + zp

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
1

n
+

(n − 2)

χ2
(n−2),(1−γ2)

]√√√√ (25) 

The parameter C∗ is dependent on the variance between the 
maximum and the minimum stress level, the probability of survival and 
the Bowden and Graybill’s factor which depends on the probability of 
survival and is read from statistical tables as in Ref. [32]. zp is the 
standard normal deviate such that the probability of survival is always 
enclosed within ±zp. More so, (1 − γ2) becomes the upper confidence 
limit of the standard deviation that needs the γ2 point of the chi-square 
distribution with (n − 2) degrees of freedom. This method depends on 
the statistical Bowden and Graybill’s factors and these factors and their 
application has not been observed anywhere else in the literature. Thus, 
the approach will not be considered beyond this section. 

3.3.6. TWI approach 
The TWI uses an approach that employs the mean curve from the 

experimental data to compare with a predetermined target curve [28], 
which depends on the material and application. In this case, the target 
curve has predefined curve parameters and is always a factor above the 
standard design curve. For fatigue data with an inverse slope similar to 
the target curves, the design curve is constructed by simply comparing 
the intercepts. The intercept of the test design curve C0D is defined in 
equation (25) where C0 is the intercept of the mean standard curve in 
which SMF is the stress modification factor of the test data relative to the 
standard S–N curve patterning to the required level of confidence. This 
approach is limited to data with inverse slopes similar to those of 
standard curves, hence was not reviewed in this paper. 
C0D =C0 − 2s − C1LogSMF (26)  

3.3.7. The ASME Boiler and Pressure Vessel code 
According to this model the design curve for the fatigue mean curve 

is generated by using a scatter factor of 20 in the direction of the stresses 
[13]. Although this produces results that are very conservative, this 
approach takes into account some of the parameters that influence fa-
tigue behaviour, such as the size, the environment, the surface finish, 
and the scatter of data [24,36]. This is particularly accurate for very high 
pressure service environments for low cycle fatigue. This approach is 
very useful for critical design and perculiar to pass pressure applications. 
Because of this reduced scope of application, this approach will not be 
considered in this review paper. 

4. The design curves (scatter factors) according to the ASTM, IIW 
and Linear regression method 

Having determined the mean curve that is common to all the ap-
proaches and also explored some of the approaches that are used in the 
industry, this section will explain how the standardised methods sug-
gested by the ASTM, the IIW and the Linear Regression Method are used 
to construct the design curve based on a probability of survival, and the 
associated scatter bands using their respective scatter factors. In 
particular, the ASTM method uses prediction limits to determine a 
design curve and scatter band. 

4.1. ASTM scatter factor approach of prediction limit approach 

According to Ref. [5], the ASTM method assumes the considerations 

described in section 3.1 for censored data. In this standard, the S–N 
relationships are approximated by log − log plots in the MCF regime 
where it is linear. ASTM standard reiterates the variance be defined as: 

s2 =

∑n

i=1

(
Log Nf − Log Ni

)2

n − 2
(27)  

wherein the term (n − 2) in the denominator is the adjusted degrees of 
freedom patterning to C0 and C1 and enables the variance to be unbi-
ased. In cases where the data is fitted to standard curves with pre-
determined parameters, for instances in approaches where C1 = 3,5, ..,
the degrees of freedom in this case is adjusted to n− 1. The prediction 
limits for which the lower limit is the design curve is defined as [5,15,22, 
29]: 

Log Nf ,D =C0 +C1 log σi ±
̅̅̅̅̅̅̅̅
2Fp

√
s

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 +

1

n
+

(log σi − log σi )
2

∑n

i=1

(log σi − log σi )
2

√√√√√ (28)  

KD(ASTM) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2Fp

(
1 +

1

n

)√
(29) 

Following on from equations (28) and (29) the reference stress at the 
reference cycle is as defined in equation (13). The prediction limit at this 
point, based on a probability of survival, is established. Subsequently, 
the endurance limit σ0,P%, with a probability of survival P%, is deter-
mined using the equation [5,15,24]: 

σ0,P%(ASTM) =

[
10(C0−KD(ASTM)s)

NA

]1
k

(30) 

Similarly, the endurance limit in error at (1 − P) delimiting the in-
terval generated by the design curve can be calculated using the 
equation: 

σ0,(1−P)%(ASTM) =

[
10(C0+KD(ASTM)s)

NA

]1
k

(31) 

The scatter band τσ , according to the ASTM is calculated as: 

τσ(ASTM) =
σ0,(1−P)%(ASTM)

σ0,P%(ASTM)

(32)  

4.2. IIW scatter factor approach and scatter band 

The IIW also takes into consideration the assumptions explained in 
section 3.1. The mean curve is generated using the same procedure as 
defined using estimates detailed in section 3.2 [26]. Accordingly, the 
scatter factor used to calculate the scatter band with a 95% confidence 
level uses a student t–distribution and is defined as: 

Log Nf ,D =C0 +C1 log σi ± t s

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 +

1

n
+

(log σi − log σi )
2

∑n

i=1

(log σi − log σi )2

√√√√√ (33)  

C0 and C1 are constants as described in section 3.2. t is the corresponding 
percentage point of the student’s t-distribution with of degrees of 
freedom equal to n − 2 and s2 is the best guess of the variance around the 
mean curve as defined in equation (27). 

For a large sample sizes, the IIW method approximates the term 1/n in 
equation (33) to zero, in accordance with Gurney and Maddox as re-
ported in Ref. [26]. Consequently, this term in the prediction equation is 
ignored for a sample size of 20 or more, which only accounts for a 2% 
error in the estimation of the width of the scatter band [20,26]. For a 
sample set less than 10, the term under the square root sign assumes the 
value of one, and the degrees of freedom is adjusted to f = n − 1 as 
summarised in a Table 2. For n ≤ 10, consider the extreme case under 
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this condition where n = 1. This means that 1n = 1 and the point variance 
of each of the data is always less than one. Therefore, the term under the 
square root sign in equation (33) can be approximated to 1 without great 
loss in the size of the scatter band [26]. Similarly for n ≥ 20, the extreme 
case corresponds to n = ∞, for which 1/n ≈ 0. The degrees of freedom is 
adjusted which reduces the size of the corresponding scatter band by a 
very negligible amount. The scatter factor KD(IIW), according to the IIW 
is calculated as: 

KD(IIW) = t

̅̅̅̅̅̅̅̅̅̅̅
1 +

1

n

√
(34) 

Similarly to the other approaches under review, the endurance level 
σ0,P%(IIW) for a probability of survival P is defined as in equation (35), 
while the endurance limit in error at the reference cycle σ0,(1−P)%(IIW) is 
defined in equation (37). 

σ0,P%(IIW) =

[
10(C0−KD(IIW)s)

NA

]1
k

(35) 

and 

σ0,(1−P)%(IIW) =

[
10(C0+KD(IIW)s)

NA

]1
k

(36) 

Therefore, the scatter band generated according to the IIW is defined 
as, 

τσ(IIW) =
σ0,(1−P)%(IIW)

σ0,P%(IIW)

(37)  

4.3. The Linear Regression scatter factor approach and scatter band 

According to the linear regression schematisation, the predicted 
mean curve follows the assumptions defined in section 3.1 [6,29,38]. 
The estimated constants C0 and C1 are also estimated using the method 
described in section 3.2. The endurance limit can be found by computing 

σ0 using equation (13). However, the variance is calculated as: 

s2 =

∑n

i=1

(
Log Nf − Log Ni

)2

n − 1
(38) 

The unbiased condition is achieved by reducing the degrees of 
freedom by 1, i.e. f = n − 1 [1,38]. Subsequently the reference stress 
level at NA cycles to failure for different probabilities can be computed 
using the standard deviation, reference stress level at P50% and another 
empirical constant, q, which is read from standard statistical tables for 
normal or log-normal distributions found in Refs. [5,29,37,38] and is 
dependent on the desired probability of survival, confidence level and 
sample set. In this case the endurance limit is defined as: 

σ0,P%(LM) = σ0

[
NA

10log (NA )+qs

]1
k

(39) 

This has been established by using the well-known Wöhler rela-
tionship which considers that for a material with a fatigue limit and a 
known value of the inverse slope k, this equation is always true. Alter-
natively, materials without a defined fatigue limit, the endurance limit is 
determined and equation (41) holds true whenever Nf ≤ NKP, where NKP 
is the fatigue life at the knee point. 
σkNf = σ0

kN0 = σA
kNA = constant (40)  

σk1 Nf = σKP
k1 NKP (41) 

σi is the stress level corresponding to the fatigue life Nf at that point. 
Thus, the delimiting endurance limit is defined as: 

σ0,(1−P)%(LM) = σ0

[
NA

10log (NA )−qs

]1
k

(42) 

Similarly, the scatter band according to this approach can be written 
as: 

τσ(LM) =
σ0,(1−P)%(LM)

σ0,P%(LM)

(43)  

5. Application of the scatter factors and scatter bands 

Setting out to explore the various approaches is achieved by applying 
them to both theoretical data sets and experimental fatigue data sets 
sourced from the literature. By analysing these diverse data sets un-
covered patterns that will justify the application of each approach. 

5.1. Application of the scatter factors and scatter bands on theoretical 
data 

This section was intended to explore the impacts of the variation in 
fatigue data to the aforementioned approaches described in section 4. 
Particularly, the effects of varied statistical characteristics that define 
the scatter band. To achieve this, the authors have generated some 
theoretical data sets with defined parameters, by continuous correction 
and improvement until the desired statistical properties were achieved. 
The complexity in generating experimental data sets with desired sta-
tistical characteristics, and the cost and time involved have been the 
motivation in applying this approach. Moreover, it cannot be deter-
mined a priori if a set of specimens will generate data sets with pre-
determined statistical characteristics. The inverse slopes chosen ranged 
from 30 to 3, which are common with plain and notched metals, and the 
spreads will vary from a base standard deviation to about three times the 
base standard deviations. The impact of percentage replication and de-
grees of freedom will also be investigated. 

5.1.1. Variation of scatter band with change in slope 
Consider fatigue data generated such that the inverse slope increases 

Table 2 
Table of values of Fp according to STP 313 (4) as quoted in [11].  

Degrees of freedom, n2 Degrees of freedom n1 

1 2 3 4 
1 161.45 199.50 215.71 224.58 

4052.2 4999.5 5403.3 5624.6 
2 18.513 19.000 19.164 19.247 

8.503 99.000 99.166 99.249 
3 10.128 9.5521 9.2766 9.1172 

34.116 30.817 29.457 28.710 
4 7.7086 6.9443 6.5914 6.3883 

21.198 18.000 16.694 15.977 
5 6.6079 5.7861 5.1922 5.1922 

16.258 13.274 12.060 11.392 
6 5.9874 5.1433 4.7571 4.5337 

13.745 10.925 9.7795 9.1483 
7 5.5914 4.7374 4.3468 4.1203 

12.246 9.5466 8.4513 7.8467 
8 5.3177 4.4590 4.0662 3.8378 

11.259 8.6491 7.5910 7.0060 
9 5.1174 4.2565 3.8626 3.6331 

10.561 8.0215 6.9919 6.4221 
10 4.9646 4.1028 3.7083 3.4780 

10.044 7.5594 6.5523 5.9943 
11 4.8443 3.9823 3.5874 3.3567 

9.6460 7.2057 6.2167 5.6683 
12 4.7472 3.8853 3.4903 3.2592 

9.3302 6.9266 5.9526 5.4119 
13 4.6672 3.8056 3.4105 3.1791 

9.0738 6.7010 5.7394 5.2053 
14 4.6001 3.7389 3.3439 3.1122 

8.8616 6.5149 5.5639 5.0354 
15 4.5431 3.6823 3.2874 3.0556 

8.6831 6.3589 5.4170 4.8932  

E. Kufoin and L. Susmel                                                                                                                                                                                                                       



Probabilistic Engineering Mechanics 75 (2024) 103589

9

as summarised in Table 4 such that each data set has the same level of 
spread in the direction of fatigue life. The replication level (see Table 1) 
of 75% is constant throughout which is a necessary requirement for 
experimental data to be used for design [12,27,32]. The mean curves 
produced by pairing each series column with the corresponding Nf 
(cycles) is shown in Fig. 4, as well as the design curves determined using 
the scatter factors described in the approaches previously. 

The data for the various slopes have been randomly generated such 
that the resulting curve always lies within the same stress range and life 
range. Since these curves have not been systematically generated using 
reference points, the analysis will be limited only by how the scatter 
band changes with the various approaches. 

According to the data summarised in Table 4, as the inverse slope 
increased, the size of the scatter bands for each approach reduces. 
Additionally, for very large values of inverse slope, it is observed that the 
size of the scatter bands converges to similar sizes. This convergence is 
illustrated in Fig. 5. Hence it is concluded that for fatigue data with 
equal variances in the direction of the fatigue life, the design curves 
described by the ASTM, IIW, and LRM approaches agree for high values 
of inverse slopes. 

5.1.2. Change of scatter band with spread 
The spread of statistical data shows how extreme values in a data set 

occur. The spread can be varied by either altering the range in the stress 
level, determining the variance, standard deviation, and/or determining 
the absolute deviations of the inter-quartile range. Table 5 shows data 
with increasing spread from one base standard deviation to three times 
the base standard deviations at each of the stress levels. This was the 
weighted spread with a replication level of 75%. Each graph is generated 
by considering the first column of Table 5, with each of the data series 
columns. The mean curves and the design curves are illustrated in Fig. 6. 

The relationship between the weighted spread and the variance of 
the entire data set was not always straightforward. Increasing the 
weighted spread from one standard deviation to multiple standard de-
viations does not necessarily affect the overall variance. However, it has 
an impact on the endurance stresses of the design curves, causing them 
to decrease. This is reflected in the drop height of the design curves 
compared to the mean curve. It is noteworthy that the approach rec-
ommended by the ASTM is particularly influenced by an increase in the 
spread of fatigue data. 

An increase in the design curve will generate a similar size in the 
error of probability of survival, in this case 95%. This is because the 
prediction limits are always symmetrical about the mean curve. 
Consequently, as the spread of fatigue data increases, the prediction 
limits also increase, as depicted in Fig. 7. The scatter bands expand with 

the increasing spread, and notably, the ASTM approach exhibits a more 
conservative stance compared to other approaches. 

Within the same stress range, as the spread of the fatigue data in-
creases in multiples of the variance, the endurance limit reduces and 
hence the design stress level also reduces. Thus, the scatter bands 
generated also increased as seen in Fig. 7. When considering a range of 
two standard deviations, the scatter bands produced by the ASTM, IIW, 
and LRM approaches exhibited similarity. However, as the spread of 
data increases beyond this range, the approaches start to diverge, 
showing differences of up to 50%. In such cases, the ASTM approach is 
more conservative in its predictions compared to the other approaches. 

5.1.3. Impact of replication levels on approaches 
Consider for example the data summarised in Table 6. The levels of 

replication and application is summarised in Table 1. The replication 
level is calculated as [5,28]: 

Rep %= 100
[
1 −

nσ

n

]
(44)  

where nσ is the number of stress levels and n is the total number of 
specimens. From this, the number of stress levels can be determined a 
priori based on the replication percentage, the number of specimens 
available and the approach used. The replication levels considered in 
these virtual data sets have been carefully selected such that the various 
replications levels summarised in Table 1 are analysed. The stress levels 
range has been kept constant as well as the overall spread of the fatigue 
life at s ≅ 0.18. The only varied parameter in this case is the stress level 
and the number of specimens at the stress level. The various scatter 
bands generated using the approaches in this study have been sum-
marised in Fig. 9. Clearly, the scatter bands remain constant as the 
percentage replication increases as illustrated by the graph in Fig. 8. 

5.1.4. Impact of sample size on approaches 
Table 1 details the various sample sizes in fatigue experiments in 

relation to the purpose for which the data is intended for. Accordingly, 
this sets a minimum sample set of six specimens with at least four stress 
levels such that there is always the presence of replicate data. Attention 
will be limited in this case to data for preliminary studies requiring just 
about 6–12 data points. Consider the data in Table 7 in which each set of 
data has the same sample standard deviation of about 0.9 and with at 
least one pair of replicate data in the sample sets. The stress level range is 
also constant and the only varying parameter is the degrees of freedom. 

Table 3 
Calculating the size of scatter band which is dependent on sample size as rec-
ommended by the IIW.  

Calculating estimate in error with small 
sample set 

Calculating estimate in error with large 
sample set 

n ≤ 10 n ≥ 2o ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 +

1
n +

(X − Xm)2
∑n

i=1[Xi − Xm]2

√
= 1 1

n = 0⇒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 +

(X − Xm)2
∑n

i=1 [Xi − Xm]2

√

Y(x) = Ŷ(X)− t ∗ s 
Y(x) = Ŷ(X)− t ∗ s ∗
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 +

(X − Xm)2
∑n

i=1[Xi − Xm]2

√

Y(x) = C0 + C1.Xm ± t .s.
Y(x) = C0 + C1.Xm ± t .s.
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 +

(X − Xm)2
∑n

i=1[Xi − Xm]2

√

s =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1[Yi − Y(xi)]2

n − 2

√

s =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1[Yi − Y(xi)]2

n − 1

√

Table 4 
Theoretical data such that the inverse slope increases. Each series in σ (MPa) is 
paired with column Nf (cycles).  

σ (MPa) Nf (Cycles) 
Series 1 Series 2 Series 3 Series 4 
300 300 300 300 7301 
300 300 300 300 1245 
300 300 300 300 1685 
300 300 300 300 4505 
250 275 280 290 6498 
250 275 280 290 12560 
250 275 280 290 4510 
250 275 280 290 6500 
200 250 260 280 8250 
200 250 260 280 16040 
200 250 260 280 14456 
200 250 260 280 11000 
150 225 240 270 88001 
150 225 240 270 94000 
150 225 240 270 95254 
150 225 240 270 89580 
100 200 240 260 128100 
100 200 240 260 121023 
100 200 220 260 128600 
100 200 240 260 127210  
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The graphs summarised in Fig. 10 illustrates how the scatter band 
changes as the degrees of freedom increases. It is evident that the size of 
the scatter band considering each of the approaches changes to the same 

Fig. 4. Mean curves, design curves with the design stress levels for increasing inverse slopes values at a probability of survival of 95% for the data in Table 4 a) 
inverse slope 3.6, b) inverse slope 10, c) inverse slope 15.1 and d) inverse slope 28.3. 

Fig. 5. The change in scatter bands with increasing inverse slope.  

Table 5 
Theoretical data generated such that the variance is increasing, while percent-
age replication, sample set and inverse slope kept fairly constant. The stress level 
is paired with each data column in Nf (cycles).  

σ (MPa) Nf (cycles) 
Data 1 Data 2 Data 3 Data 4 

300 3650 1650 1650 1020 
300 3345 3345 3145 7145 
300 3685 11295 19995 24869 
300 10505 16505 20985 29985 
250 5498 3599 5599 3599 
250 11560 16750 22750 29120 
250 3510 3510 2310 2310 
250 5500 14500 20990 17990 
200 9250 6002 7002 3992 
200 17040 21004 32704 37804 
200 15456 20391 19654 18004 
200 12000 17014 18914 29914 
150 28060 31860 25860 22860 
150 20600 20851 20151 21171 
150 23754 23754 34954 45954 
150 27580 35892 44102 47292 
100 108100 118100 125700 129901 
100 101123 101123 100923 99923 
100 108600 108200 115801 129801 
100 107210 108980 108980 112780  
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extent and remains fairly constant as long as the stress range and stan-
dard deviation are kept constant. 

It should be noted that the analysis considered in this section has not 

been adjusted as summarised in Table 3. Because the impact of this on 
the size of the scatter band generated by the IIW method is not more than 
2% [26], this will have negligible effect on the size of the scatter band in 
comparison with the other approaches. 

Table 8 summarises the impacts of the statistical characteristics of 
fatigue data sets on the sizes of the scatter bands generated using the 
aforementioned approaches. The spread and the inverse slope are the 
deterministic parameters that greatly impact the fatigue design curve 
using the standardised approaches described in this study. 

5.2. Verification of approaches using fatigue data sets from literature 

The approaches were also tested on real fatigue data sets from the 
literature. Though it is a challenge to find fatigue data sets that have 
statistical characteristics that change in defined patterns, it is essential 
to see how these approaches are impacted by the varied statistical 
properties of experimental fatigue data. Table 9 summarises some of the 
fatigue data sets obtained from the literature that were used to compare 
these approaches. 

5.2.1. Impact on scatter band size with increasing inverse slope 
In as much as the variance and sample set is not constant, the sizes of 

the scatter band reduce and tend to arrive at a common size for high 
values of inverse slopes. At low values of inverse slope, the impact on the 
scatter band is rigorous, though this could be dependent on the other 

Fig. 6. Graphs representing data from Table 5 a) Mean and design curve for data 1, b) Mean curve and design curve for data 2, c) Mean curve and design curve for 
data 3, d) Mean curve and design curve for data 4. 

Fig. 7. Change of scatter band with increasing variance.  
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statistical properties that characterise the data set. The scatter band from 
the ASTM approach is always bigger while those from the IIW and LRM 
approaches are similar as illustrated in Fig. 11. 

5.2.2. Impact on scatter band with increasing variance 
As summarised in Table 9, the sizes of the scatter band for all data 

sets from literature fall in the range between 1 and 3. As the variance 
increases, the sizes of the scatter bands increase and the ratio of each 
scatter band to the other remains fairly constant. The ASTM remains the 
approach that produces the largest scatter band. Fig. 11 illustrates the 
scatter bands of the data summarised in Table 9. 

5.2.3. Impact of sample set and replication percentage on size of scatter 
band 

No noticeable effect was observed when the data set was increased. 
However, the sizes of the scatter bands were dependent on the slope and 
variance of the fatigue data sets. This same effect was observed with the 
percentage replication as both of these properties of fatigue data only 
increase the accuracy and reliability of the estimated statistical prop-
erties of the data set. 

The graphs in Fig. 12 compare the S–N curves in Refs. [39,40]. As the 
variance increases from 0.21 to about 0.42 the size of the scatter bands 
reduces. However, the inverse slope increases from 2.65 to 24.87 and 
the endurance limits also increase for these sets of fatigue data. It is 
difficult to attribute the change in the scatter bands to a change in any of 
the statistical properties because of their interdependence. This illus-
trates one of the challenges of using experimental data sets without 
defined patterns in the statistical properties to compare the impacts of 
the approaches reviewed in this paper. 

6. Discussion 

A sound understanding of the statistical behaviour of fatigue prop-
erties is essential for design in the industry. To estimate the probability 
of survivals of materials, a suitable probability distribution function that 
is well suited to the data set is essential. While Weibull two- and three- 
parameter, log-normal, extreme maximum value, and smallest extreme 
value are well established distributions extensively used with fatigue 
data sets, a priori knowledge of these distributions of the data is pre-
requisite. This might be tricky for use on new data sets for new materials 
and approaches described in this paper provide an alternative approach 
to design with less knowledge of which distribution fits the data well. 
However, some of the cutting-edge models, for example the 9 parame-
ters Weibull regression model [41], that can be estimated by maximum 
likelihood and also by non-linear regression analyses use a regression 
model that includes consideration of mean stress effects. 

Evidently, whenever a fatigue limit exists [42] the plots of fatigue life 
versus stress often exhibit curvature at lower stress levels. In addition to 
this, the variance of the fatigue life decreases as the number of stress 
levels increase. Ideally, the standard deviation should be modelled as a 
function of the stress levels for which an endurance limit can be esti-
mated at those stress levels [43]. This is the model behind the fatigue 
limit approach of constructing the design curves. This is quite straight 
forward compared to the approaches described herein where the fatigue 
limit may not be known in advance and is particularly useful when 
considering endurance limits rather than fatigue limits. However, the 
variability in design curves could be expected as a consequence of the 
fatigue limit being dependent on the material’s structural properties 
which may vary from specimen to specimen. This limits the accuracy of 
the design curves generated using this approach to the factors that 
determine the fatigue limit of the material in question. 

In as much as the Maximum Likelihood Estimate methodology is the 
preferred method of analysis of censored and uncensored data using the 

Table 6 
Variated replication level of theoretical fatigue data with constant variance, sample set and inverse slope.  

R = 20% R = 35% R = 55% R = 75% 
σ (MPa) Nf (cycles) σ (MPa) Nf (cycles) σ (MPa) Nf (cycles) σ (MPa) Nf (cycles) 
300 3650 300 3650 300 3650 300 3650 
290 3345 290 3345 300 3345 300 3345 
280 3685 280 3685 280 3685 300 3685 
270 10505 270 10505 280 10505 300 10505 
260 5498 260 5498 250 5498 250 5498 
250 11560 250 11560 250 11560 250 11560 
240 3510 240 3510 230 3510 250 3510 
230 5500 240 5500 230 5500 250 5500 
220 9250 220 9250 200 9250 200 9250 
210 17040 220 17040 200 17040 200 17040 
200 15456 200 15456 180 15456 200 15456 
190 12000 200 12000 180 12000 200 12000 
180 28060 180 28060 150 28060 150 28060 
180 20600 180 20600 150 20600 150 20600 
150 23754 150 23754 130 23754 150 23754 
150 27580 150 27580 130 27580 150 27580 
130 108100 130 108100 100 108100 100 108100 
130 101123 130 101123 100 101123 100 101123 
100 108600 100 108600 100 108600 100 108600 
100 107210 100 107210 100 107210 100 107210  

Fig. 8. Change in the size of scatter band with percentage replication.  
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staircase method to generate experimental results [34], this method still 
has some limitations and consequently, there does not exist a more 
preferred method to post process experimental fatigue censored data 
and the approach used by any organisation is a decision of choice. While 
some make use of safety factors, others choose a probabilistic approach 
to which this study owes its relevance. There are other cutting-edge 

approaches that use statistical considerations, some of which are the 
one-sided approximate Owen lower limit as well as the Weibull ap-
proaches which all agree with the approaches described in this study. 
Other organisations use software behind which the concepts are similar. 
This buttresses the fact that no method is more accurate than the other, 
however when cost, sustainability and critical application is put into 
perspective, some methods tend to be more favourable than others. 

The approaches have assumed the fatigue data to have a linear 
relationship and there exist quite a few linear models [15] which differ 
in their approach to estimate the parameters of the mean S–N curve. 
Linearity is not usually the case; however, fatigue tests are usually car-
ried out a stress levels where the S–N will be linear. This a priori 
knowledge is dependent on the researcher and may not be assessable for 
new materials. However, the linear relation consideration has enabled 
the impacts of distributions that are symmetrical or tend to approximate 
to symmetric distributions under particular considerations. 

Furthermore, fatigue data has been censored by ignoring runouts or 
suspended tests. This is the simplified approach to runouts and results in 
the mean curve being biased slightly in the long-life regime [15]. The 
ASTM method advises against censoring fatigue data, however, there is 
not much difference between the design curves with censored and un-
censored data. Though this is insignificant for low spreads, it becomes 
quite observant in situations with very low stress levels where the spread 
in fatigue life is very significant. If the runouts are treated as failures, as 

Fig. 9. Variated replication level of theoretical fatigue data with constant variance, sample set and inverse slope and spread. a) 20%, b) 35%, c) 55% and d) 75%.  

Table 7 
Theoretical fatigue data with varied degrees of freedom with constant per-
centage replication and variance.  

n = 6 n = 8 n = 12 
σ (MPa) Nf (cycles) σ (MPa) Nf (cycles) σ (MPa) Nf (cycles) 
290 4682 290 2912 290 1956 
270 56245 280 45258 280 17256 
250 123254 270 60254 270 36124 
230 358222 250 135246 260 49123 
210 1235452 230 452132 255 65123 
210 1352658 220 985254 250 85568   

210 1113256 240 92624   
210 1292583 230 109253     

220 852358     
215 1052581     
210 1088653     
210 1366875  
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mentioned in Ref. [15], the bias would increase further. In such a case, 
this will tilt the mean curve towards more conservativeness. Other 
methods consider runouts as failures if they occur at stress levels above 
the reference stress. Maximum likelihood procedures consider runouts 
as part of the data to be analysed while iterative least squares procedures 
are another option even though these approaches haven proven to be 
quite rigorous. 

The use of prediction limits as the fatigue design curve in the ASTM 
approach has shown that it is very conservative. The approach detailed 
by the IIW is less conservative and differs from the LRM approach by not 
more than 5%. The adjustment in the scatter bands as described by the 

IIW approach makes great use of the statistical characteristics of the data 
set when compared with the LRM approach. However, the LRM 
approach is very easy and straight forward to use even though it is less 
sensitive to outliers and is applicable for all data. The LRM approach is 
not restricted by the sample sets when compared with the other models 
especially the ASTM approach. 

More so, the LRM approach assumes data to be independent of each 
other. The fatigue life at high stress levels does not change at the same 
rate as at low stress levels. The fatigue life result for a stress level de-
termines the next stress level during testing up to the vicinity of the 
endurance limit, yet the variance of this fatigue life increases along the 
S–N curve in reality. 

7. Conclusions 

By considering the assumptions outlined in section 3.1, this paper 
undertakes a thorough comparison and evaluation of the fatigue 
assessment procedures recommended by the ASTM, IIW, and LRM. The 
results clearly indicate that all three approaches lead to the attainment 
of a safe design methodology. Building upon the detailed analysis con-
ducted in this study, which covers uniaxial S–N curves derived from both 
virtual fatigue data sets and some existing fatigue data sets from the 
literature, the following conclusions can be drawn. 

Fig. 10. Scatter bands and design stresses for varied magnitude of sample set a) n = 6, b) n = 8, and c) n = 12.  

Table 8 
Summary of the changes in size of scatter band with the characteristics of fatigue 
data.  

Parameter Impact on scatter bands 
1) Inverse slope  ➢ Scatter bands decrease with increase inverse slope  

➢ Scatter bands converge for inverse slopes ≥20. 
2) Spread (variance)  ➢ Scatter bands increases  

➢ For spread ≤ 2s, scatter bands are similar 
3) Replication  ➢ No change in size of scatter bands  

➢ Dependent on the spread at each stress amplitude 
4) Sample size  ➢ No change in the size of scatter bands.  

➢ Depends on the overall spread of the data.  
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• The IIW approach is the most non-conservative approach and would 
reduce any chance of overdesign when compared to the other ap-
proaches. This would be very applicable for sustainable components. 
The design curve in this case is dependent on the characteristics of 
the data, in particular the sample size and its spread. The use of a 
student’s t-distribution makes the case for application due to the 
inherent null hypothesis with future populations. The critical values 
for each probability can easily be calculated or read from statistical 
tables which are readily available in the literature.  

• Sensitivity of the design approach to the spread of the fatigue data 
was observed more in the ASTM approach. This method is therefore 
very conservative and would a substitute for approaches with very 
large factors of safety or in designing critical parts of components.  

• Fatigue data with very little spread will not be affected greatly by the 
approach used to calculate the design curve. However, if very large 
probabilities of survival are used for design, care should be taken on 
which approach is recommended.  

• The simplest to use approach is the linear regression method and the 
empirical constants corresponding to sample sizes are defined in the 
ASTM standards for fatigue distributions with assumed shapes. This 
approach is not limited by the sample size of the data set. 
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Table 9 
Summary of fatigue data sets from literature with sample set, variances and inverse slope parameters determined.  

Source Description (fig/table) Sample set, n Inverse slope, k Variance, s2 τσ(ASTM) τσ(IIW) τσ(LM)

[44] Fig. 1 5 22.01 0.26 1.30 1.19 1.22 
[44] Fig. 2 4 41.49 0.29 1.24 1.143 1.14 
[44] Fig. 3 5 24.87 0.42 1.46 1.28 1.33 
[44] Fig. 4 4 33.88 0.23 1.24 1.145 1.14 
[44] Fig. 9, Dry 6 17.82 0.09 1.09 1.06 1.07 
[44] Fig. 9, Aged 8 16.48 0.29 1.31 1.22 1.27 
[45] Fig. 11 16 16.22 0.16 1.14 1.10 1.12 
[46] Fig. 5 11 6.97 0.14 1.32 1.24 1.27 
[14] Tab 4.2 12 26.5 0.49 1.29 1.21 1.25 
[47] Fig. 5, Plain specimens 7 7.71 0.13 1.31 1.21 1.26 
[47] Fig. 5, Blunt U-notch 8 3.50 0.08 1.43 1.29 1.36 
[47] Fig. 5, Sharp U-notch 7 3.40 0.12 1.78 1.50 1.64 
[47] Fig. 5, Sharp V-notch 9 2.65 0.21 3.2 2.33 2.76 
[48] Fig. 2a), R = 0 6 7.25 0.31 2.22 1.73 1.92 
[48] Fig. 2b) 6 18.45 0.13 1.14 1.10 1.11 
[48] Fig. 3a), R = −1 6 9.85 0.34 1.89 1.55 1.69 
[40] Fig. 5, TMM 4 11.51 0.26 2.06 1.57 1.55 
[40] Fig. 5, Exp. 4 17.32 0.25 1.58 1.33 1.32 
[40] Fig. 6, Exp. 5 17.83 0.37 1.59 1.36 1.42 
[40] Fig. 6, TMM 5 3.69 0.003 1.02 1.01 1.01 
[38] Fig. 6c), R = 0.1 8 4.38 0.24 2.34 1.84 2.09 
[38] Fig. 6c), R = −1 6 6.45 0.24 2.00 1.61 1.77 
[38] Fig. 6e), R = −1 11 10.77 0.40 1.68 1.50 1.58  

Fig. 11. Trends in scatter band with increasing inverse slope of selected fatigue 
datasets from literature. 

Fig. 12. Comparing scatter bands of ASTM, IIW and LRM of fatigue data sets 
from literature with changing variance, inverse slope and sample set. 
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