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1. Introduction 

The technologies that are most commonly used to additively-manufacture polymers and concrete make use of an 

extrusion process where the objects are built layer-by-layer by depositing filaments of the parent material. One of the 

key features of 3D-printing is that this technology allows objects with intricate designs to be manufactured at a 

relatively low cost, with this being done by reaching a remarkable level of accuracy in terms of both shape and 
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Abstract 

The present paper reviews the work we did in recent years (Ahmed and Susmel, 2018, 2019; Alanzi et al., 2022) – to use the 

Theory of Critical Distances to model the detrimental effect of manufacturing defects and voids in 3D-printed concrete/polymers 

subjected to static loading. The validity and robustness of the proposed approach is assessed against a large number of 

experimental results that were generated by testing 3D-printed specimens of both concrete and polylactide (PLA) containing 

manufacturing defects/voids. The sound agreement between experiments and predictive model makes it evident that the Theory 

of Critical Distances (TCD) is not only a reliable design approach, but also a powerful tool suitable for guiding and informing 

effectively the additive manufacturing process. 

 (https://creativecommons.org/licenses/by-nc-nd/4.0) 
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dimensions. However, the specific features and the intrinsic technological limitations of additive manufacturing 

result not only in particular material mico-/meso-structural features, but also in defects that are introduced during 

fabrication. Both material morphology and manufacturing flaws do affect the overall mechanical behaviour and 

strength of additively manufactured objects. 

In this setting, this paper summarises and reviews the work we have done over the last 5 years - Ahmed and 

Susmel (2018, 2019); Alanzi et al. (2022) - to model via the Theory of Critical Distances the detrimental effect of 

manufacturing flaws and voids on the static strength of filament-based 3D-printed concrete and polymers. 

 

Nomenclature 

a crack length 

aeq equivalent crack length 

dV size of the manufacturing voids 

B, W, S concrete specimens’ dimensions 

F shape factor 

KIc plane strain fracture toughness 

L critical distance 

Oxy system of coordinates 

r,  polar coordinates 

eff effective stress estimated according to the Theory of Critical Distances 

f nominal gross stress resulting in the static breakage of cracked materials 

g nominal gross stress 

x, y  local normal stresses 

xy local shear stress 

FS flexural strength 

UTS ultimate tensile strength 

2. The Theory of Critical Distances and the short/long crack problem 

As far as brittle materials are concerned, the Theory of Critical Distances (TCD) postulates that failure takes place 

when a distance-dependent effective stress, denoted as σeff, exceeds the material's ultimate tensile strength, σUTS 

(Taylor, 2007). As a result, the threshold condition for Mode I static loading can be expressed as follows: 𝜎𝜎��� � 𝜎𝜎���   (1) 

As outlined in Taylor (2007), the effective stress can be computed through various methodologies, which include 

the Point, Line, Area, and Volume Methods. Notably, it has been observed that these different formalizations of the 

TCD yield comparable estimations. For brevity, this discussion will focus solely on the Point Method (PM) and the 

Line Method (LM), where the corresponding effective stresses can be computed as follows (see Fig. 1): 𝜎𝜎��� � 𝜎𝜎����� � 0, 𝑟𝑟 � � 2 �   (2) 𝜎𝜎��� � ��� � 𝜎𝜎��� � 0, 𝑟𝑟�𝑑𝑑𝑟𝑟���    (3) 

In definitions (2) and (3), critical distance L is a material property that is estimated via the plane strain fracture 

toughness, KIc, and the tensile strength, UTS, as follows (Whitney, Nuismer, 1974; Taylor, 2007): � � �� � ���������   (4) 
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To apply the TCD to model the transition from the short- to the long-crack regime, let's examine a scenario 

involving a uniaxially loaded infinite plate containing a centrally located through-thickness crack with a semi-length 

equal to a (Fig. 1a). In accordance with the work of Westergaard (1939), the linear-elastic stress distribution along 

the crack's bisector (where θ=0 in Fig. 1a) can be approximated using the following equation: 𝜎𝜎��� � 0, 𝑟𝑟� � ������ ������   (5) 

If stress y is determined from Eq. (5) at a distance r from the crack tip equal to L/2 and the failure condition is 

expressed according to Eq. (1), the PM can be used to model the transition from the short- to the long-crack regime 

as via the following relationship (Taylor, 1999): 

𝜎𝜎� � 𝜎𝜎����1 � � �������   (6) 

where f is the value of the nominal stress, g, resulting in the static breakage. 

 

(a) 

 

(b) 

Fig. 1. (a) uniaxially loaded plate containing a central through-thickness crack; (b) normalised Kitagawa-Takahashi diagram and transition from 

the short- to the long-crack region modelled according to the PM and LM. 

Similarly, through the process of averaging σy, as determined by Eq. (8), along a linear segment with a length of 

2L, the LM effective stress can directly be calculated as: 

𝜎𝜎��� � ��� � ������ ������ 𝑑𝑑𝑟𝑟��� � 𝜎𝜎������    (7) 

thus, according to failure condition (1), the transition from the short- to the long-crack regime can directly be 

modelled as (Taylor, 1999): 

𝜎𝜎� � 𝜎𝜎���� ����   (8) 
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The results calculated from Eq. (6) and Eq. (8) can be displayed together in a normalized Kitagawa-Takashi 

diagram that plots the f to UTS ratio vs. the ratio between equivalent length F2a and critical distance L. In this 

setting, F is the shape factor (Anderson, 1995) estimated according to Linear Elastic Fracture Mechanics (LEFM). 

The normalized Kitagawa-Takashi diagram presented in Fig. 1b shows that both the PM applied according to Eq. (6) 

and the LM applied according to (8) demonstrate equivalent capabilities in modelling the plain material static 

strength on the left-hand side and, on the right-hand side, the nominal strength of a cracked plate as estimated 

through LEFM. To conclude, it is worth pointing out that, in the transition region, the LM is seen to be slightly more 

conservative than the PM (see Fig. 1b). 

3. Theory of Critical Distances and polylactide (PLA) printed with different in-fill levels 

Consider the plain strip of additively manufactured (AM) PLA shown in Fig. 2a. This strip is assumed to be 

fabricated by using a fused deposition modeling 3D printer where the in-fill level is set below 100%. An infill 

density lower than 100% results in internal manufacturing voids having equivalent size equal to dV (as defined in 

Fig. 2a). This plain strip is assumed to be loaded in tension, where the applied fictitious stress is denoted as σf (i.e., 

the material is assumed to be in an incipient failure condition). 

 

Fig. 2. Object 3D-printed with an in-fill level lower than 100% (a) and equivalent homogenised cracked material (b). 

Now, imagine an infinite plate, as depicted in Fig. 2b, made of a continuum, homogeneous, isotropic, linear-

elastic material. The ultimate tensile strength, σUTS, and fracture toughness, KIc, for this material are hypothesized to 

be determined experimentally by testing 100% in-fill specimens of the same AM material used to fabricate the strip 

in Fig. 2a. The infinite plate in Fig. 2b also contains a central through-thickness crack with a semi-length of aeq. The 

length of this crack is adjusted so that the plate in Fig. 2b fails when the applied nominal remote stress equals the 
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fictitious failure stress, σf, that would lead to the failure of the AM plain strip of Fig. 2a. Consequently, the plate with 

the central through-thickness crack of Fig. 2b is also considered to be in the incipient failure condition. It is 

important to note that, since the component seen in Fig. 2b is schematized as an infinite plate containing a central 

through-thickness crack, the corresponding LEFM shape factor is invariably to unity, regardless of the crack's semi-

length, aeq. 

Based on the hypotheses formed above, LEFM postulates that the cracked plate seen in Fig. 2b fails when the 

associated stress intensity factor equals the material's fracture toughness. As a result, the failure condition for the 

homogenized equivalent cracked material can be expressed as follows: 𝐾𝐾�� � 𝜎𝜎��𝜋𝜋𝜋𝜋��   (9) 

Assume now that there is a univocal link between semi-length aeq (Fig. 2b) and the size, dV, of the manufacturing 

voids (Fig. 7a), i.e. (Ahmed, Susmel, 2019): 𝜋𝜋�� � ��𝑑𝑑��   (10) 

where f(dV) is a transformation function able to turning the 3D-printed plain strip depicted in Fig. 2a into the 

equivalent cracked material as sketched in Fig. 2b. 

Consider now the PM and the LM formalised to assess the case of a through-thickness crack in an infinite plate 

loaded in tension – see Eq. (6) and Eq. (8). If the generic semi-crack length is replaced with the equivalent semi-

crack length, it is straightforward to obtain (Ahmed, Susmel, 2019): 

𝜎𝜎� � 𝜎𝜎����1 � � ����������� � 𝜎𝜎����1 � � ���������������  (11) 

𝜎𝜎� � 𝜎𝜎���� ������ � 𝜎𝜎���� ��������   (12) 

In the above relationships UTS is to be determined by testing specimens manufactured by setting the in-fill level 

equal to 100%. In a similar way, L in Eq. (11) and (12) is calculated via definition (4) where the used values for UTS 

and KIc are those associated with an in-fill level of 100%. 

To formalise transformation function (10), the hypothesis can be formed that the link between aeq and dV can be 

described successfully by using a simple linear relationship so that (Ahmed, Susmel, 2019): 𝜋𝜋�� � ��𝑑𝑑�� � �� ∙ 𝑑𝑑�   (13) 

In relationship (13), kt is a dimensionless transformation constant that can be determined experimentally from the 

strength of specimens manufactured with an in-fill level lower than 100%. 

In order to check the accuracy of Eqs (11) and (12), a large number of dog-bone specimens were tested under 

quasi-static tensile loading. The specimens used in this study were fabricated, through an Ultimaker 2 Extended+ 3D 

printer, by employing a 2.85mm diameter white filaments of New Verbatim PLA. The manufacturing parameters 

adhered to the following specifications: a nozzle size of 0.4 mm, nozzle temperature set to 240°C, build-plate 

temperature maintained at 60°C, a printing speed of 30 mm/s, a layer height of 0.1 mm, and a shell thickness of 0.4 

mm. The specimens were all manufactured flat on the build-plate by setting the angle, p, between printing direction 

and samples’ longitudinal axis equal to 0, 30, and 45. In-fill levels between 10%-100% were used to investigate 

the detrimental effect of the internal manufacturing voids. The thickness of both the shell and the internal walls in 

the specimens containing internal manufacturing voids was set equal to 0.4 mm. The material ultimate tensile 

strength and fracture toughness for an in-fill level equal to 100% were determined to be equal to 42.9 MPa and to 3.7 

MPa m1/2, respectively, resulting in a critical distance value, L, equal to 2.4 mm. For a detailed description of these 

experimental results, the reader is referred to the papers by Ahmed and Susmel (2018, 2019). 
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In order to apply Eqs (11) and (12), the results from the specimens additively manufactured with an in-fill level 

equal to 80% were used to estimate kt in Eq. (13). This calibration process resulted in a kt value equal to 35.5 for the 

PM and to 33.1 for the LM. 

The Kitagawa–Takahashi diagrams of Fig. 3 summarise the overall accuracy that was obtained by using the PM 

and the LM in the form of Eqs (11) and (12) to estimate the static strength of the plain specimens of AM PLA having 

in-fill level lower than 100%. These charts suggest that the use of the proposed approach yields a remarkable level of 

accuracy down to an in-fill density of 30%. However, when the fill density decreases to 20% and 10%, the resulting 

estimates noticeably deviate from the anticipated trend. This observation aligns with expectations, as 3D-printed 

objects tend to exhibit lattice-like characteristics when the mesh of their internal walls becomes coarse. 

Consequently, using the concept of an equivalent homogenized material to simulate the mechanical behaviour and 

strength of 3D-printed objects with very low fill densities is no longer justifiable. This effectively establishes the 

lower limit for the applicability of the proposed methodology in practical scenarios. 

 

  

Fig. 3. Accuracy of the PM and LM in estimating the static strength of PLA 3D-printed with different in-fill levels (Ahmed, Susmel, 2019). 

4. Theory of Critical Distances and and 3D-printed concrete containing defect 

The concrete mix used to manufacture the specimens included 52.5N CEM I Portland Cement, fly ash, silica 

fume, sand, water, a superplasticizer based on polycarboxylate ester, and a retarder based on amino tris (methylene 

phosphonic acid). The specimens being tested were 3D-printed using an ABB IRR 6640 6-axis robot, with concrete 

extrusion occurring at rates of 200, 225, and 250 mm/s through a 10 mm diameter nozzle. The manufacturing 

process was optimised to achieve a layer height of 6 mm with a pump flow rate of 0.72 L/min. 

Following 3D printing, the slabs were covered for 24 hours and subsequently cured for 28 days. The higher print 

speeds of 225 and 250 mm/s were intentionally used to introduce manufacturing defects due to volume mismatch. 

After post-manufacturing curing, the concrete slabs were saw-cut to create rectangular beams with varying width, 

W, within the range of 44-53 mm and thickness, B, within the range of 34-56 mm (see Fig. 4). The beams were cut 

in a way that their printing direction was either parallel (θp=0°) or perpendicular (θp=90°) to the longitudinal axis of 

the specimen. 

The specimens were tested using a three-point bending setup (Fig. 4) under a displacement rate set at 33.3 N/sec. 

The span, S, between the lower rollers was adjusted to either 60 mm, 80 mm, or 100 mm. 
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In addition to un-notched samples (Fig. 4a), three other configurations were considered as follows. 

1. Specimens with crack-like notches varying in depth, a, from 2 to 27 mm, which were created using a circular 

tip blade with a thickness of 2.6 mm (Fig. 4b). 

2. Specimens to investigate the impact of the surface roughness resulting from the filament deposition process, 

where the valleys of the surface texture were treated as cracks. The depth, a, of these equivalent cracks ranged from 

1.2 mm to 3.5 mm, depending on the maximum valley depth below the filament peaks in the vicinity of the failure 

location (Fig. 4c). 

3. A final set of specimens was manufactured to introduce 3D printing-induced flaws primarily on the side 

undergoing tensile stress during testing (Fig. 4d). These defects were considered interconnected, resulting in an 

equivalent crack with a length, a, defined as shown in Fig. 4d. 

For a comprehensive description of the experimental results obtained following the outlined experimental 

procedure, readers are directed to a recent publication by Alanazi et al. (2022). 

 

 

Fig. 4. 3D-printed specimens tested under three-point bending: plain specimen (a); specimen containing a saw-cut crack-like sharp notch (b); 

specimen weakened by surface roughness (c); specimen weakened by manufacturing defects (d) – (Alanazi et al., 2022). 

All tested specimens were modelled numerically using Finite Element (FE) code ANSYS® to determine the 

corresponding linear-elastic stress distributions. The samples were modelled as single edge notched bend beams with 

notch tip radius equal to zero. Any specimen was modelled by using the actual geometrical dimensions, with the 

crack length, a, for the various cases being defined as summarised in Fig. 4. The stress analysis was conducted using 

two-dimensional elements with thickness (i.e., PLANE183). The mesh density in the zero-radius notch tip region 

was progressively increased to ensure convergence in calculating the stress intensity factor. The linear-elastic stress 

fields derived from these FE models were used not only to calculate the stress intensity factors but also to determine 

the shape factors following the standard procedure recommended by Anderson (1995). 

Based on the experimental results obtained, the plain material's flexural strength, σFS, and plane strain fracture 

toughness, KIc, were estimated to be 13.7 MPa and 1.2 MPaꞏm1/2, respectively. With σFS and KIc determined for the 

investigated 3D-printed concrete, Eq. (4) was employed to compute the critical distance value (where σUTS was 

directly replaced with σFS). This straightforward calculation yielded a critical distance, L, of 2.4 mm. 
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These material constants, in combination with the experimental results, were then utilized to construct the 

Kitagawa–Takahashi diagram depicted in Fig. 5. This diagram provides a concise representation of the overall 

accuracy of the TCD used in the form of both the PM, Eq. (6), and the LM, Eq. (5). The diagram of Fig. 5 

demonstrates that, in the presence of 3D-printed concrete as well, the application of the TCD resulted in a 

remarkable level of accuracy, which remained consistent regardless of the specific type of local stress raiser being 

considered. 

5. Conclusions 

The TCD is seen to be successful in modelling the detrimental effect of manufacturing defects and voids in 

filament-based 3D-printed concrete/polymers subjected to static loading. This result is certainly remarkable since it 

demonstrates that the same theoretical formulation can directly be used to assess effectively the detrimental effect of 

local stress concentrators in two additively manufactured materials that are different in terms of constitutive 

components, microstructural features, and mechanical behaviour. 

 

 

Fig. 5. Accuracy of the PM and LM in estimating the static strength of 3D-printed concrete (Alanazi et al., 2022). 
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