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The GlueX experiment at Jefferson Lab studies photoproduction of mesons using linearly polarized 8.5 GeV

photons impinging on a hydrogen target which is contained within a detector with near-complete coverage for

charged and neutral particles. We present measurements of spin-density matrix elements for the photoproduction

of the vector meson ρ(770). The statistical precision achieved exceeds that of previous experiments for polarized

photoproduction in this energy range by orders of magnitude. We confirm a high degree of s-channel helicity

conservation at small squared four-momentum transfer t and are able to extract the t dependence of natural-

and unnatural-parity exchange contributions to the production process in detail. We confirm the dominance of

natural-parity exchange over the full t range. We also find that helicity amplitudes in which the helicity of the

incident photon and the photoproduced ρ(770) differ by two units are negligible for −t < 0.5 GeV2/c2.

DOI: 10.1103/PhysRevC.108.055204

I. INTRODUCTION

The photoproduction of ρ(770) mesons off the proton is
one of the photoproduction processes in which the spin state
of the incident photon is conserved in the produced vector
meson. The reaction can be described by the vector-meson-
dominance model [1] where the incident photon fluctuates
into a vector meson [e.g., ρ(770)] which then interacts with
the target nucleon. At beam energies well above 10 GeV,
the process is expected to proceed through diffractive scat-
tering with s-channel helicity conservation [2–4] (SCHC). In
order to describe this process, both the differential cross sec-
tion for ρ(770) photoproduction and the spin-density matrix
elements (SDMEs) need to be measured. While the differen-
tial cross sections were extensively measured elsewhere [5],
the SDMEs quantify the transfer of the photon spin state to
that of the vector meson, and most can only be accessed
using a polarized photon beam. A detailed description of
the SDMEs, and their connection to photoproduction, can
be found in Ref. [6]. More recently, Tabakin and colleagues
revisited the topic of vector-meson SDMEs in several different
frameworks [7–9]. With a beam of linearly polarized photons,
nine real elements of the complex-valued spin-density matrix
can be measured, and, in the case of SCHC, all but two of
these should be zero when measured in the helicity system
(see Sec. V A).

The first measurements of SDMEs in the photoproduc-

tion of ρ(770) mesons with linearly polarized photons in the

1.4 to 3.3 GeV energy range came from DESY [10]. Their

measurements of the beam asymmetry suggested nearly pure

diffractive photoproduction over the entire energy range. A

later measurement from Cornell using 3.5 GeV linearly po-

larized photons also reported on the beam asymmetry, but

saw some deviation from diffractive behavior [11]. Several

measurements from the Stanford Linear Accelerator Center

(SLAC) with linearly polarized photons of energy 2.8 and

4.7 GeV [12,13] and later including 9.3 GeV photons [14] re-

ported detailed SDMEs as well as agreement with SCHC and

dominance of natural-parity exchange (NPE) in the produc-

tion process (see Appendix A for a discussion of SCHC and

NPE). Subsequent experiments at CERN with unpolarized 20

to 70 GeV photons measured the three unpolarized SDMEs

[15]. Finally, measurements with the Hybrid Bubble Chamber

facility at SLAC measured the ρ(770) SDMEs with 20 GeV

linearly polarized photons [16]. While of limited statistical

precision, all previous measurements are consistent with a

dominance of natural-parity exchange and show that SCHC

is valid at least over a limited range in momentum transfer t

(see Appendix A).

The Joint Physics Analysis Center (JPAC) recently de-

veloped a model based on Regge theory amplitudes to

describe the photoproduction of light vector mesons [17].

JPAC fitted this model to the SLAC results and other cross sec-

tion measurements, and produced theoretical predictions for

the spin-density matrix elements at 8.5 GeV. According to the

prediction, the dominant contributions to the photoproduction

of the ρ(770) meson at this beam energy stem from Pomeron

and f2(1270) exchanges. The analytical form of this model

uses an expansion in
√−t/(m0c), where m0 is the mass of

the vector meson. Since it only takes into account the leading

terms of this expansion, we limit the comparison with our data

to −t < m2
0c2 ≈ 0.5 GeV2/c2 even though our results cover a

larger range in t .

Sections II, III, and IV describe the experimental setup

and data collection, the selection of ρ(770) production events

from the data and the determination of the detector’s accep-

tance. Section V sets out the details of the analysis: it shows

how the spin-density matrix elements are obtained from the

angular distribution of the ρ(770)’s decay products, and de-

scribes the fit method and the measurements’ uncertainties.

Section VI presents and discusses the results. In Appendix A

we discuss s-channel helicity conservation and its implica-

tions for spin-density matrix elements of vector-meson states

produced by natural-parity exchange. The measurements pre-

sented in this article supersede preliminary GlueX results [18].
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II. THE GlueX EXPERIMENT

The GlueX experiment [19] at the Thomas Jefferson Na-

tional Accelerator Facility is part of a global effort to study

the spectrum of hadrons. A primary electron beam with an

energy of up to 12 GeV is used to produce a secondary

photon beam which impinges on a liquid-hydrogen target. The

scattered electrons tag the energy of the beam photons. A high

beam intensity provides a sufficiently large reaction rate to

study rare processes. The GlueX detector has been specifically

designed to map the light-quark meson spectrum up to masses

of approximately 3 GeV/c2 with full acceptance for all decay

modes. A 2 T superconducting solenoid houses the target, a

start counter [20], central [21] and forward drift chambers

[22], and a barrel calorimeter [23]. A forward calorimeter

completes the forward photon acceptance and a time-of-flight

counter provides particle identification capability.

The key feature of GlueX is its capability to use a polarized

photon beam. Linear polarization of the photons is achieved

by coherent bremsstrahlung of the primary electron beam

on a thin diamond radiator. With a collimator reducing the

contribution from the incoherent bremsstrahlung spectrum, a

degree of linear polarization of up to 35% is achieved in the

coherent peak at 8.8 GeV. In order to cancel apparatus effects,

data are collected with the polarization plane in four different

orientations, rotated about the beam direction in steps of 45◦.

The degree of polarization is measured using the triplet pro-

duction effect [24]. As the primary electron beam helicity is

flipped pseudorandomly multiple times per second, the circu-

larly polarized component of the photon beam is averaged out.

The photon beam polarization imposes constraints on the

properties of the production process. It may be used as a

filter to enhance particular resonances or as an additional

input to multidimensional amplitude analyses. To this end,

the photoproduction mechanism must be understood in great

detail. Only very limited data from previous experiments

are available at these energies. GlueX has already measured

beam-asymmetry observables for the production of several

pseudoscalar mesons: γ p → π0 p [25], γ p → ηp and γ p →
η′(958)p [26], γ p → K+�0 [27], and γ p → π−�++(1232)

[28]. In addition to the beam-asymmetry measurements, we

have also reported SDMEs for the photoproduction of the

�(1520) [29]. As an extension of this program, the following

analysis studies the production process for the ρ(770) vector

meson.

The first phase of the GlueX experiment, consisting of

three run periods, recorded a total integrated luminosity in the

coherent peak of about 125 pb−1. Only the data from the first

of those run periods (about 17% of the full data set) are used

to produce the results discussed here.

III. DESCRIPTION OF DATA SET

We study the reaction γ p → ρ(770)p, where the ρ(770)

meson decays predominantly into the π+π− final state [30].

We select exclusive events by completely reconstructing the

final state π+π− p with all particle trajectories originating

from the same vertex. A seven-constraint kinematic fit is per-

formed on each event, which enforces energy and momentum

FIG. 1. The squared missing mass distribution from the reaction

γ p → π+π−Xmiss p calculated using the values of momentum and

energy of the final-state particles before they are constrained by the

kinematic fit.

conservation for the reaction γ p → π+π− p as well as a com-

mon vertex for all particles. We accept only events where the

kinematic fit converges with χ2/ndf < 5.0, which removes

backgrounds originating from misidentified charged tracks

and nonexclusive events. The final event selection is applied

for all figures in this section. Figure 1 shows the squared

missing mass from the assumed reaction γ p → π+π−Xmiss p

calculated using the values of momentum and energy of the

final-state particles before they are constrained by the kine-

matic fit. The observed peak very close to zero implies that

there are no massive missing particles.

The π+π− p final state measured by the GlueX detector is

matched to the initial state photon via its energy and timing.

Due to the large incoming photon flux and limited resolution,

accidental coincidences can fulfill the matching requirement

and contaminate the event sample. The primary electron beam

is produced with a 250 MHz time structure, which translates

into photon beam bunches that are 4 ns apart. We estimate

the accidental background by intentionally selecting events

from neighboring beam bunches. In this analysis, we select

four beam bunches on each side of the prompt signal peak as

side band regions and weight those events by − 1
8

to achieve

similar statistical precision for signal and background. About

20% of the events are statistically subtracted from the signal

sample with this method.

Due to the requirement for a successfully reconstructed

proton track, the distribution of the squared four-momentum

transfer t shows a depletion at zero (see Fig. 2). Since the

acceptance is very low in this region, we discard all events

with −t below 0.1 GeV2/c2. Above −t = 1 GeV2/c2, the

slope of the distribution has changed visibly, which indicates

a deviation from a simple t-channel process. To avoid effects

from potential target excitation, we limit the analysis to the

region below this value of −t .

We separate the ρ(770) meson signal from the continuous

π+π− spectrum by selecting the invariant mass of the dipion

system to be between 0.60 and 0.88 GeV/c2. This selection

suppresses non-π+π− background to an almost negligible
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FIG. 2. The distribution of the squared four-momentum transfer

−t . The dashed vertical lines indicate the range analyzed.

amount, but is not able to distinguish the ρ(770) resonance

from contributions from nonresonant π+π− production. A

phenomenological fit to the invariant mass distribution is used

to estimate the fraction of nonresonant production to be less

than 1% of the total. As this fraction is strongly t-dependent

and approaches 10% above t = 1 GeV2/c2, this analysis is

limited to t < 1 GeV2/c2. It is well known that the inter-

ference between the ρ(770) resonance and the underlying

nonresonant background can shift the apparent mass of the

vector meson [31]. We observe the ρ(770) peak in the π+π−

mass distribution (see Fig. 3) about 18 MeV/c2 below the

Particle Data Group (PDG) average for the mass of the photo-

produced neutral ρ(770), which is 769.2 ± 0.9 MeV/c2 [30].

A simulation of possible background channels indicates

that the contribution of final states other than exclusive π+π−

FIG. 3. The invariant mass distribution of the produced π+π−

system. The small differences between data and simulation are due

to nonresonant background under the ρ(770) and interference with

the decay ω(782) → π+π−; neither of these are present in the sim-

ulation. For further analysis, the simulated events are reweighted in

order to match the mass distribution of the measured data exactly.

production is negligible, at less than 1 in 1000. This study

also shows that the decay ω(782) → π+π− constitutes an

irreducible background component. As the decay is sup-

pressed by G parity, it only amounts to approximately 0.4%

of the data sample. This agrees with the estimation from

known cross sections and branching fractions [30] and has no

measurable impact on the presented results.

In total, we obtain data samples with nearly 9 × 106 ρ(770)

candidate events for each of the four orientations of the

beam-photon polarization. We extract the spin-density matrix

elements in 18 bins of −t between 0.1 and 1.0 GeV2/c2. We

use a logarithmic function to determine the bin boundaries so

that the number of events in each bin is approximately equal.

IV. SIMULATION OF DETECTOR ACCEPTANCE

To extract the spin-density matrix elements of the ρ(770)
from the measured angular distribution of its decay products,
we must correct for acceptance effects. The acceptance of the
GlueX detector has been simulated based on a GEANT4 [32]
detector model, with a subsequent smearing step to reproduce
the resolution effects of the individual detector subsystems.
Detailed comparisons between the simulation and measure-
ments have been reported elsewhere [19].

We simulate a signal sample that reproduces the produc-
tion kinematics of the measured process, but has an isotropic
distribution in the decay angles. To describe the process
γ p → π+π− p, we assume an exponential distribution of the
squared four-momentum transfer, i.e., proportional to ebt with
the slope parameter b = 6 (GeV/c)−2. This simplified model
does not reproduce the experimentally observed t distribution
exactly (see Fig. 2), but serves as a good approximation when
binning finely in t . We model the shape of the π+π− invariant
mass distribution in the range between 0.60 and 0.88 GeV/c2

using a relativistic P-wave Breit-Wigner [33] function with an
orbital angular momentum barrier factor F that is parameter-
ized according to Ref. [34]:

BW(m) =
√

m0Ŵ0

m2 − m2
0 − im0Ŵ(m, L)

(1)

withŴ(m, L) = Ŵ0

q

m

m0

q0

[
F (q, L)

F (q0, L)

]2

. (2)

Here, q signifies the breakup momentum of the pions and
q0 is the breakup momentum at the nominal resonance
mass m0. The reconstructed mass distribution from the
Monte Carlo simulation approximates the experimentally
measured one with the parameters m0 = 757 MeV/c2 and
Ŵ0 = 146 MeV/c2 (see Fig. 3). In a second step, the simulated
sample is re-weighted in order to match the mass distribution
of the measured data exactly.

V. ANALYSIS METHOD

We use an unbinned extended-maximum-likelihood fit to

extract the spin-density matrix elements from the measured

distribution. This method is widely used in amplitude analysis

and has the advantage that neither the data nor the acceptance

corrections have to be divided into regions of angular phase

space.
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FIG. 4. Definition of the angles used to describe vector-meson photoproduction. The hadronic production plane and the ρ(770) decay plane

are shown in red and blue, respectively. The photon polarization vector Pγ is indicated in green. Diagram (a) is in the center-of-mass frame of

the reaction with the z axis along the direction of the ρ(770) meson; (b) is boosted into the rest frame of the ρ(770) meson, i.e., the helicity

system.

A. Spin-density matrix elements

We characterize the photoproduction of vector mesons by

an amplitude T , which connects the spin-density matrix ρ(γ )

for the initial photon beam to the spin-density matrix ρ(V ) of

the produced vector meson. Following Schilling et al. [6], we

write

ρ(V ) = T ρ(γ ) T ∗. (3)

We can incorporate the photon polarization into the descrip-

tion of the vector-meson density matrix. The spin-density

matrix for the photon can be written as

ρ(γ ) = 1
2

I + 1
2

Pγ · σ, (4)

where I is the identity matrix, σ are the Pauli matrices and the

vector Pγ is given as

Pγ = Pγ (− cos 2,− sin 2, 0), (5)

where Pγ is the degree of linear polarization (between 0 and

1) and  is the angle between the polarization vector of the

photon and the production plane of the vector meson. In the

case of circularly polarized photons,

Pγ = Pγ (0, 0, λγ ), (6)

where Pγ is again the degree of polarization, and λγ = ±1

corresponds to the helicity of the photon. If we now consider

the three components of the photon polarization (components

1 and 2 for linear polarization and component 3 for circular

polarization), we can write the vector-meson density matrix

as the sum

ρ(V ) = ρ0 +
3

∑

α=1

Pα
γ ρα, (7)

where the ρα parametrize the dependence of the total density

matrix on the photon polarization. Since we use a linearly

polarized photon beam, we will ignore the contribution from

circularly polarized photons in the remaining text by setting

ρ3 = 0.

The spin-density matrix elements ρk
i j in Eq. (7) describe the

angular dependence of the cross section. The number density

n of produced events in the experiment is proportional to the

normalized angular distribution W , i.e.,

n(ϑ, ϕ,) ∝ W (ϑ, ϕ,). (8)

Here, W is a function of the two decay angles ϑ and ϕ, defined

in the helicity system of the vector meson (see Fig. 4), and

, the direction of the photon polarization with respect to

the hadronic production plane as determined in the center-of-

mass frame of the reaction. Together with the independently

measured degree of polarization Pγ , the angular distribution

for vector-meson production with a linearly polarized photon

beam can be written as follows:

W (cos ϑ, ϕ,)

= W 0(cos ϑ, ϕ) − Pγ cos(2)W 1(cos ϑ, ϕ)

− Pγ sin(2)W 2(cos ϑ, ϕ). (9)

For the case of the vector meson decaying to two spinless

particles, such as ρ(770) → π+π−, the decay distributions

W i(cos ϑ, ϕ) in Eq. (9) are given by

W 0(cos ϑ, ϕ)

= 3

4π

(
1

2

(

1 − ρ0
00

)

+ 1

2

(

3ρ0
00 − 1

)

cos2 ϑ

−
√

2 Re ρ0
10 sin 2ϑ cos ϕ − ρ0

1−1 sin2 ϑ cos 2ϕ

)

, (10)

W 1(cos ϑ, ϕ)

= 3

4π

(

ρ1
11 sin2 ϑ + ρ1

00 cos2 ϑ

−
√

2 Re ρ1
10 sin 2ϑ cos ϕ − ρ1

1−1 sin2 ϑ cos 2ϕ
)

, (11)

W 2(cos ϑ, ϕ)

= 3

4π

(√
2 Im ρ2

10 sin 2ϑ sin ϕ + Im ρ2
1−1 sin2 ϑ sin 2ϕ

)

.

(12)
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B. Unbinned extended maximum likelihood fit

The agreement between the measured event distribution

and the acceptance-weighted model given in Eqs. (8) to (12) is

optimized by varying the spin-density matrix elements ρ i
jk and

an external normalization factor K as fit parameters. For this

purpose, the extended likelihood function is maximized by a

numerical algorithm. For the construction of this likelihood

function, the probability for an event i characterized by ϑi,

ϕi and i to be observed by the experiment with acceptance

η(ϑ, ϕ,) is defined by

Pi = n(ϑi, ϕi,i )η(ϑi, ϕi,i )
∫

d cos ϑdϕd n(ϑ, ϕ,)η(ϑ, ϕ,)
. (13)

The total number of observed events N in an experiment of

fixed duration follows the Poisson distribution with an expec-

tation value N̄ . The extended likelihood function

L = e−N̄ N̄N

N!

N
∏

i=1

Pi (14)

takes this variation into account. The expectation value N̄ is

identical to the integral in the denominator of Eq. (13):

N̄ =
∫

d cos ϑ dϕ d n(ϑ, ϕ,)η(ϑ, ϕ,). (15)

Hence, the likelihood function simplifies to

L = e−N̄

N!

N
∏

i=1

n(ϑi, ϕi,i )η(ϑi, ϕi,i ). (16)

As large sums are computationally easier to handle than

large products, we maximize the logarithm of the likelihood

function

lnL =
N

∑

i=1

ln n(ϑi, ϕi,i ) +
N

∑

i=1

ln η(ϑi, ϕi,i ) − ln N!

︸ ︷︷ ︸

const

−
∫

d cos ϑdϕ d n(ϑ, ϕ,)η(ϑ, ϕ,) (17)

in order to find the model parameters that match best the

observed angular distribution n(ϑ, ϕ,). The constant terms

� ln η and ln N! do not depend on the fit parameters and can

therefore be omitted from the fit. The recorded data sample

only appears in the first sum, where events from neighboring

beam bunches enter with negative weights to subtract back-

ground from accidental beam coincidences. The so-called

normalization integral that contains the experimental accep-

tance is evaluated using the large phase-space Monte Carlo

sample introduced in Sec. IV. This allows us to separate the

normalization factor from the SDME fit parameters:
∫

d cos ϑ dϕ d n(ϑ, ϕ,)η(ϑ, ϕ,)

= K

∫

d cos ϑ dϕ d W (ϑ, ϕ,)η(ϑ, ϕ,)

︸ ︷︷ ︸

I

. (18)

The normalization integral I is approximated by summing

over all generated phase-space events Nacc
MC that pass the recon-

struction and selection criteria after the detector simulation:

I ≈ 8π2

NMC

Nacc
MC∑

j=1

W (ϑ j, ϕ j, j ), (19)

where NMC is the total number of generated Monte Carlo

events. The factor 8π2 is the integration volume.
The extended likelihood function is maximized by choos-

ing the SDMEs as well as the normalization coefficient K

such that n(ϑ, ϕ,) matches the measured data best. This for-
malism has been implemented using the AMPTOOLS software
framework [35]. In contrast to conventional mass-independent
amplitude analyses, the normalization integral depends on the
fitted parameters, i.e., the SDMEs, and has to be recalculated
at every iteration of the fit, with significant computational
cost. For this reason, it was essential to use graphical pro-
cessing units for the numerical evaluation of the large sums
in Eqs. (17) and (19), which can contain up to 106 summands
in this analysis.

C. Fit evaluation

For converged fits, we can evaluate the quality of the model
with the expectation value N̄ in Eq. (15). Using the numerical
approximation of the normalization integral in Eq. (19),

N̄ ≈ 8π2

NMC

Nacc
MC∑

j=1

KW (ϑ j, ϕ j, j ), (20)

we see that an individual MC event with the phase-space
coordinates (ϑi, ϕi,i ) contributes with a weight

wi = 8π2

NMC

KW (ϑi, ϕi,i ) (21)

to the data sample. Events rejected by the reconstruction and
kinematic selection have zero weight. The acceptance of the
apparatus is therefore taken into account by construction. By
applying these weights to the phase-space MC events, we
obtain weighted MC samples that we can use to compare any
kinematic distribution of the fitted model with the data. If the
distributions of the angles that the model depends upon agree
within statistical uncertainties, this would be a confirmation
that the SDME model is sufficient to describe the data. The
distributions in other kinematic variables can be used to assess
how realistically the simulation reproduces detector effects.

Figure 5 shows such a comparison for the combined fit
of four orientations in one example bin at around −t ≈
0.2 GeV2/c2. The distributions in the angles cos ϑ , ϕ, , and
 − ϕ are very well reproduced. A small asymmetry between
ϕ = 0 and ϕ = ±π indicates the possible interference with
a ππ S-wave component, which is not included in the de-
scription of the system with vector-meson spin-density matrix
elements.

D. Discussion of uncertainties

We evaluate the statistical uncertainties with the Bootstrap-
ping technique [36]. The analysis is repeated many times, each
time using a different random sample of the same number of
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FIG. 5. Evaluation of the fit by comparison of measured distributions (black) to phase-space simulation weighted with fit results (shaded

green). The smaller contribution from the subtracted accidental background is shown in red. Panel (a) shows the comparison for the cosine of

the helicity angle ϑ and (b) compares the distribution of the helicity angle ϕ. Panel (c) compares the azimuthal angle  of the polarization

vector with respect to the production plane in the center-of-mass frame and (d) shows the distribution of the difference between  and ϕ.

events selected from the original data, where some events are
included more than once and others are omitted. We draw 200
such samples and perform fits in the same way as for the real
sample, keeping the starting values fixed at the nominal result.
The distributions for the nine spin-density matrix elements
from the 200 fits can be well approximated by Gaussian func-
tions, and their standard deviations serve as a measure of the
statistical uncertainties.

A study of many possible sources for systematic uncertain-

ties indicates that the only significant contributions arise from

the beam polarization measurement and the selection of the

signal sample. In particular, it is evident that the fitting pro-

cedure does not introduce any bias into the measured SDMEs

and that there is no significant dependence of the SDMEs on

the beam energy within the range studied.

The largest contribution to the systematic uncertainty orig-

inates from the external measurement of the beam-photon

polarization. The 1.5% systematic uncertainty inherent in the

design and the operation of the triplet polarimeter instrument

[24] is combined with the statistical uncertainty of the number

of detected triplet events to give a total uncertainty of 2.1%.

This overall normalization uncertainty is fully correlated for

all bins in t . It is added in quadrature to the final uncertainties

for the SDMEs ρ1
i j and ρ2

i j , shown in Fig. 6, whose extraction

is dependent on the polarization.

Small contributions to the systematic uncertainties are also

caused by the selection of the signal sample, and they may

have different magnitudes for each SDME and in each bin in

t . To assess them, the requirements such as the convergence

criterion of the kinematic fit or the suppression of possible

background from excited baryons are varied such that the

total event sample size does not change by more than 10%.

The standard deviation for each type of variation is used as a

measure of its systematic effect. If significant, the deviations

are included in the quadratic sum, which we quote as the

total systematic uncertainty for each data point individually.

On average, the event selection adds about 2 × 10−3 to the

absolute value of the systematic uncertainty.

VI. RESULTS

A. Spin-density matrix elements

The analysis is performed in 18 independent bins in −t be-

tween 0.1 and 1.0 GeV2/c2. The SDMEs obtained are shown

in Fig. 6, together with the earlier results from SLAC [14], the

predictions from s-channel helicity conservation with natural

parity exchange, and from the JPAC model [17]. We report the

measured SDMEs at the mean value for each t bin and display

the standard deviation of the distribution in t within the bin by

horizontal error bars. The vertical error bars correspond to the

statistical and systematic uncertainties added in quadrature.

The numerical values for the data shown in Fig. 6 are listed in

Appendix B and can be found in Ref. [37].
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FIG. 6. Spin-density matrix elements for the photoproduction of ρ(770) in the helicity system. Our results are shown in red; the error

bars display the statistical and systematic uncertainties added in quadrature. The systematic uncertainties for the polarized SDMEs ρ1
i j and ρ2

i j

contain an overall relative polarization uncertainty of 2.1% which is fully correlated for all values of t . The earlier results from SLAC [14] are

shown in green. The horizontal black lines show the values for s-channel helicity conservation with natural parity exchange (SCHC + NPE),

while the blue dashed curves show Regge theory predictions from JPAC with shaded, one-standard-deviation uncertainty bands [17].

In the limit of −t → 0, our results are consistent with the

SCHC + NPE model (see Appendix A). Deviations from this

description are predicted by Regge theory [17] and originate

from the interplay of leading natural parity exchanges (P ,

f2, and a2) and unnatural exchanges (e.g., π ) and their dif-

ferent dependencies on the squared four-momentum transfer

t . Our measurements follow the prediction qualitatively up

to the point where the prediction loses its validity at around

−t ≈ 0.5 GeV2/c2. We are able to extract the SDMEs with

high precision up to −t = 1 GeV2/c2, and we will discuss

the observed deviation from the SCHC + NPE model and

the Regge theory prediction in more detail in the following

sections.

B. Parity-exchange components

The spin-density matrix can be separated into the com-

ponents ρ
N,U
ik

arising from natural [P = (−1)J ] or unnatural

[P = −(−1)J ] parity exchanges in the t channel, respectively.

The interference term between both production mechanisms

vanishes in the limit of high energy [6]. We use the results

from Fig. 6 to calculate the linear combinations

ρ
N,U
ik

= 1
2

[

ρ0
ik ∓ (−1)iρ1

−ik

]

. (22)

Figure 7 illustrates the clean separation. All unnatural compo-

nents are significantly smaller than their natural counterparts.

This means that the deviation from the pure SCHC + NPE
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FIG. 7. The spin-density matrix elements for ρ(770) photoproduction for natural- (top row) and unnatural-parity exchange (bottom row).

See comments in Fig. 6 caption for details.

model is mainly driven by natural-parity exchange processes,

which supports an earlier observation [14].

To leading order, the asymmetry between natural- and

unnatural-exchange cross sections can be reduced to one

single observable, the parity asymmetry Pσ [6], which is

defined as

Pσ = σ N − σU

σ N + σU
= 2ρ1

1−1 − ρ1
00. (23)

In Fig. 8, we compare our measured Pσ values with

previous measurements and the Regge model. For −t below

0.2 GeV2/c2, the results are consistent with unity, which again

indicates pure natural-parity exchange. The deviation grows

towards larger values of −t and is predicted by Regge theory.

FIG. 8. Parity asymmetry Pσ for ρ(770) photoproduction. See

comments in Fig. 6 caption for details.

C. Relations between SDMEs

The spin-density matrix for vector mesons can be written

in the center-of-mass frame helicity representation [6] as

ρ(V )λV λ′
V

= 1

N

∑

λN ′λγ λN λ′
γ

TλV λN ′ ,λγ λN
ρ(γ )λγ λ′

γ
T ∗

λ′
V λN ′ ,λ′

γ λN
,

(24)

where the λx represent the helicities of the incoming (N) and

outgoing (N ′) nucleons, the photon (γ ), and the vector meson

(V ), and T is the production amplitude. The term N is a

normalization factor given as

N = 1

2

∑

λV λN ′ λγ λN

∣
∣TλV λN ′ ,λγ λN

∣
∣
2
, (25)

which for a given center-of-mass momentum k of the in-

coming photon is related to the unpolarized differential cross

section as

dσ

d�
= 1

2

(
2π

k

)2

N . (26)

The ρα from Eq. (7) are related to the amplitudes T by

ρ0
λV λ′

V
(V ) = 1

2N

∑

λN ′ λγ λN

TλV λN ′ ,λγ λN
T ∗

λ′
V λN ′ ,λγ λN

, (27)

ρ1
λV λ′

V
(V ) = 1

2N

∑

λN ′ λγ λN

TλV λN ′ ,−λγ λN
T ∗

λ′
V λN ′ ,λγ λN

, (28)

ρ2
λV λ′

V
(V ) = i

2N

∑

λN ′ λγ λN

λγ TλV λN ′ ,−λγ λN
T ∗

λ′
V λN ′ ,λγ λN

. (29)

Thus, the SDMEs are formed from helicity amplitudes that

connect the vector-meson helicity λV to the photon helicity
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λγ . In the helicity system, s-channel helicity conserva-

tion implies that the two helicities are equal λV = λγ (see

Appendix A). When SCHC is true, then of the nine mea-

sured SDMEs only ρ1
1−1 and Im ρ2

1−1 are nonzero, and ρ1
1−1 =

− Im ρ2
1−1. If, in addition to SCHC, the production mechanism

is described by the exchange of a particle with natural parity

in the t channel, then ρ1
1−1 = 1

2
. If a particle with unnatural

parity is exchanged, then ρ1
1−1 = − 1

2
. As seen in Fig. 6, SCHC

+ NPE is only valid near −t = 0.

Going beyond the case where λV = λγ , there could also be

amplitudes in which the helicity changes by one or even two

units. While the former are very likely to occur, we would

expect that the latter are suppressed. If we assume that the

amplitudes with λV = λγ ± 2 are zero, additional relations

between SDMEs should hold:

Im ρ2
1−1 = −ρ1

1−1, (30)

Im ρ2
10 = − Re ρ1

10, (31)

Re ρ0
10 = ± Re ρ1

10. (32)

To prove Eq. (30), we expand Eqs. (28) and (29) as follows:

ρ1
1−1 = 1

2N

∑

λN λN ′

[

T+1λN ′ ;+1λN
T ∗

−1λN ′ ;−1λN
︸ ︷︷ ︸

λγ =−1

+ T+1λN ′ ;−1λN
T ∗

−1λN ′ ;+1λN
︸ ︷︷ ︸

λγ =+1

]

, (33)

ρ2
1−1 = i

2N

∑

λN λN ′

[

(−1) T+1λN ′ ;+1λN
T ∗

−1λN ′ ;−1λN
︸ ︷︷ ︸

λγ =−1

+ (+1) T+1λN ′ ;−1λN
T ∗

−1λN ′ ;+1λN
︸ ︷︷ ︸

λγ =+1

]

. (34)

If we define the first sum in both equations as A, and the

second as B, then we have

ρ1
1−1 = A + B, (35)

ρ2
1−1 = −iA + iB. (36)

Looking more closely at the A and B amplitudes, A only

includes terms where the photon helicity and the vector-meson

helicity are the same, i.e., λγ = λV , while B only contains

terms where the photon helicity and the vector-meson helicity

differ by 2, which we assume to vanish. Taking B = 0 we have

ρ1
1−1 = A, (37)

ρ2
1−1 = −iA, (38)

which yields Eq. (30). Figure 9 shows ρ1
1−1 + Im ρ2

1−1 as a

function of −t , for both the GlueX data and the older SLAC

data [14]. The sum is consistent with zero for −t values up to

about 0.5 GeV2/c2 and becomes slightly positive above that.

The JPAC model [17] agrees with this prediction over its range

of validity. This suggests that amplitudes with λV = λγ ± 2

may start to become relevant for values of −t larger than

0.5 GeV2/c2.

FIG. 9. The sum of ρ1
1−1 and Im ρ2

1−1 for ρ(770) photoproduction

as a function of −t . See comments in Fig. 6 caption for details.

To derive Eq. (31), we perform an expansion similar to the

one above:

ρ1
10 = 1

2N

∑

λN λN ′

[

T+1λN ′ ;+1λN
T ∗

0λN ′ ;−1λN
︸ ︷︷ ︸

λγ =−1

+ T+1λN ′ ;−1λN
T ∗

0λN ′ ;+1λN
︸ ︷︷ ︸

λγ =+1

]

, (39)

ρ2
10 = i

2N

∑

λN λN ′

[

(−1) T+1λN ′ ;+1λN
T ∗

0λN ′ ;−1λN
︸ ︷︷ ︸

λγ =−1

+ (+1) T+1λN ′ ;−1λN
T ∗

0λN ′ ;+1λN
︸ ︷︷ ︸

λγ =+1

]

. (40)

If we define the first sum in both equations as C, and the

second as D, then we have

ρ1
10 = C + D, (41)

ρ2
10 = −iC + iD. (42)

C is an interference term between an amplitude where the

photon helicity and the vector-meson helicity are the same,

i.e., λγ = λV , and an amplitude where these helicities differ

by 1. Amplitude D is an interference term between an ampli-

tude where the photon helicity and the vector-meson helicity

differ by 1 and an amplitude where they differ by 2. Setting

the amplitudes that have �λ = 2 to zero gives D = 0, and

consequently yields Eq. (31). Figure 10 shows the sum of

Re ρ1
10 and Im ρ2

10 as a function of −t , both for the GlueX data

and for the older SLAC data [14]. Comparisons are also made

to the JPAC model [17]. For the GlueX data, the relationship

in Eq. (31) appears to be valid for −t below 0.3 GeV2/c2,

where the JPAC model also confirms the relationship. For

the GlueX data above −t of 0.5 GeV2/c2, the sum becomes

slightly negative and agrees with the previous observation
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FIG. 10. The sum of Re ρ0
10 and Im ρ2

10 for ρ(770) photoproduc-

tion as a function of −t . See comments in Fig. 6 caption for details.

that amplitudes with λV = λγ ± 2 may be nonzero for larger

values of −t .

To explain Eq. (32), we write Eq. (27) as

ρ0
10 = 1

2N

∑

λN λN ′

[

T+1λN ′ ;−1λN
T ∗

0λN ′ ;−1λN
︸ ︷︷ ︸

λγ =−1

+ T+1λN ′ ;+1λN
T ∗

0λN ′ ;+1λN
︸ ︷︷ ︸

λγ =+1

]

. (43)

The first term in Eq. (43) describes the interference between

an amplitude with �λ = 1 and one with �λ = 2, the latter of

which we take to be zero. The second term differs from the

first term in Eq. (39) through the difference between the am-

plitudes T ∗
0λN ′ ;−1λN

and T ∗
0λN ′ ;+1λN

. These amplitudes connect

photons of helicity λγ = ∓1 to a vector meson of helicity

λV = 0 and only differ by Clebsch-Gordan coefficients that

have the same magnitude. For a production mechanism de-

scribed by a single process, the two amplitudes should be

equal in magnitude but could have opposite signs. Taking

D = 0 and assuming there is a single diagram, then we can

write

ρ0
10 = ±C. (44)

Together with Eq. (39), this yields Eq. (32). Figure 11 shows

the sum of Re ρ0
10 and Re ρ1

10 as a function of −t both for the

GlueX data and for the older SLAC data [14]. Comparisons

are also made to the JPAC model [17]. The GlueX data are

consistent with the sum being zero over the full range of

−t . This suggests that the λV = λγ ± 2 amplitudes are not

important in this case, and that the production mechanism is

dominated by a single process, or a series of processes that all

contribute with the same sign. The JPAC model also agrees

with this prediction.

FIG. 11. The sum of Re ρ0
10 and Re ρ1

10 for ρ(770) photoproduc-

tion as a function of −t . See comments in Fig. 6 caption for details.

VII. CONCLUSIONS

We report measurements of the spin-density matrix ele-

ments of the π+π− system in the mass range of the vector

meson ρ(770) (0.60 to 0.88 GeV/c2) photoproduced off the

proton with the GlueX experiment at Jefferson Lab. Using

a linearly polarized photon beam with energy between 8.2

and 8.8 GeV and polarization close to 35%, we reach a sta-

tistical precision which surpasses previous measurements by

orders of magnitude. The uncertainties on the measurement

are dominated by systematic uncertainties, which are studied

in detail. Using the full GlueX data set would increase the size

of the signal sample fivefold, but would likely not improve the

precision of the results further.

Our results agree well with a prediction by the JPAC

collaboration, which was previously fitted to far inferior

data. This comparison demonstrates impressively that the de-

scription of the production mechanism via a combination of

different Regge exchanges is valid at this energy. In particular,

the photoproduction of the ρ(770) meson is sensitive to the

interplay between Pomeron and f2/a2 exchanges.

The decomposition of the spin-density matrix elements

shows that natural-parity exchanges dominate the produc-

tion process and that the contribution from unnatural-parity

exchanges is small for the analyzed range in squared

four-momentum transfer, 0.1 < −t < 1.0 GeV2/c2. This ob-

servation is consistent with the prediction from Regge theory,

and the measurements will be used to improve the theoretical

description of the reaction. Based on assumptions about the

production process, we predict several relations between the

SDMEs and show that these relations are fulfilled by our

measurements. In particular, the results strongly suggest that

ρ(770) photoproduction at these energies is dominated by

a single production mechanism and that contributions from

processes where the helicities of the vector meson and the

photon differ by two units are negligible.

In this paper, we describe the π+π− system with the

spin-density matrix elements for a pure ρ(770) meson, but
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the precision of the data allows us to observe effects that go

beyond this simplified picture. The interference with an under-

lying S-wave production of the dipion system likely influences

the SDMEs within the studied mass range. In the future, we

plan to study this mass dependence by separating the spin

contributions into their individual amplitudes. The formalism

outlined in [38] will serve as the basis for this investigation.
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APPENDIX A: DISCUSSION OF s-CHANNEL HELICITY

CONSERVATION

In the photoproduction of vector mesons such as the

ρ(770), ω(782), and φ(1020), the spin of the produced meson

is related to the spin of the initial photon through a helicity

amplitude T . The spin states are typically represented as den-

sity matrices ρ(V ) and ρ(γ ), where the relation between the

two (following Schilling et al. [6]) is given by Eq. (3). This

relation can be expressed in the center-of-mass frame helicity

representation [39] as in Eq. (24), which we repeat here:

ρλV λ′
V

(V ) = 1

N

∑

λN ′ λγ λN λ′
γ

TλV λN ′ ,λγ λN
ρλγ λ′

γ
T ∗

λ′
V λN ′ ,λ′

γ λN
. (A1)

This expression relates an initial photon with helicity λγ =
±1 to a final-state vector meson with helicity λV = 0 or λV =
±1. The normalization factor N is given by Eq. (25), and

N and N ′ represent the initial- and final-state nucleons. For

the SDMEs of interest, we can write Eq. (A1) as a sum over

the photon and initial and final-state nucleons as in Eqs. (27),

(28), and (29) [which are reproduced here as Eqs. (A2), (A3),

and (A4) for convenience], where the TλV λN ′ ,λγ λN
are the he-

licity amplitudes. The ρ0
i j elements are related to unpolarized

photons while ρ1
i j and ρ2

i j are correspond to linear polarization:

ρ0
λV λ′

V
(V ) = 1

2N

∑

λN ′ λγ λN

TλV λN ′ ,λγ λN
T ∗

λ′
V λN ′ ,λγ λN

, (A2)

ρ1
λV λ′

V
(V ) = 1

2N

∑

λN ′ λγ λN

TλV λN ′ ,−λγ λN
T ∗

λ′
V λN ′ ,λγ λN

, (A3)

ρ2
λV λ′

V
(V ) = i

2N

∑

λN ′ λγ λN

λγ TλV λN ′ ,−λγ λN
T ∗

λ′
V λN ′ ,λγ λN

. (A4)

For s-channel helicity conservation, the only nonzero am-

plitudes have λV = λγ . All amplitudes involving a change of

helicity, i.e., λV 
= λγ , are zero. Thus, the only SDMEs which

have nonzero1 values are ρ0
11, ρ1

1−1, and ρ2
1−1 (generally, one

does not independently report ρ0
11 as it is related to ρ0

00 through

the fact that the trace of ρ0 is 1, i.e., 2ρ0
11 + ρ0

00 = 1, where

ρ0
00 = 0 under SCHC):

ρ0
11 = 1

2N

∑

λN λN ′

[

T+1λN ′ ;−1λN
T ∗

+1λN ′ ;−1λN
︸ ︷︷ ︸

λγ =−1

(A5)

+ T+1λN ′ ;+1λN
T ∗

+1λN ′ ;+1λN
︸ ︷︷ ︸

λγ =+1

]

, (A6)

ρ1
1−1 = 1

2N

∑

λN λN ′

[

T+1λ′
N ;+1λN

T ∗
−1λN ′ ;−1λN

︸ ︷︷ ︸

λγ =−1

(A7)

+ T+1λN ′ ;−1λN
T ∗

−1λN ′ ;+1λN
︸ ︷︷ ︸

λγ =+1

]

, (A8)

ρ2
1−1 = i

2N

∑

λN λN ′

[

−T+1λN ′ ;1λN
T ∗

−1λN ′ ;−1λN
︸ ︷︷ ︸

λγ =−1

(A9)

+ T+1λN ′ ;−1λN
T ∗

−1λN ′ ;+1λN
︸ ︷︷ ︸

λγ =+1

]

. (A10)

These equations can be simplified to

ρ0
11 = 1

2N

[

T+−T ∗
+− + T++T ∗

++
]

, (A11)

ρ1
1−1 = 1

2N

[

T++T ∗
−− + T+−T ∗

−+
]

, (A12)

ρ2
1−1 = i

2N

[

−T++T ∗
−− + T−+T ∗

−+
]

, (A13)

where the sum over λNλ′
N is assumed, and where we simplify

the notation of the transition amplitudes by putting λV as the

first subscript and λγ as the second.

1The SDME elements ρ0
−1−1, ρ1

−11, and ρ2
−11 are also nonzero,

but they are related to ρ0
11, ρ1

1−1, and ρ2
1−1, respectively, via parity

conservation. For this reason, we do not list them as independent

elements.
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TABLE I. Spin-density matrix elements for the photoproduction of ρ(770) in the helicity system. The first uncertainty is statistical, the

second systematic. The systematic uncertainties for the polarized SDMEs ρ1
i j and ρ2

i j contain an overall relative normalization uncertainty of

2.1% which is fully correlated for all values of t .

−tmin −tmax −t −tRMS ρ0
00 Re ρ0

10 ρ0
1−1 ρ1

11 ρ1
00 Re ρ1

10 ρ1
1−1 Im ρ2

10 Im ρ2
1−1

0.100 0.114 0.107 0.004 0.0008 0.0171 −0.0100 −0.0098 −0.0101 −0.0252 0.4895 0.0200 −0.4897

±0.0003 ±0.0005 ±0.0007 ±0.0020 ±0.0010 ±0.0020 ±0.0024 ±0.0014 ±0.0023

±0.0045 ±0.0066 ±0.0116 ±0.0016 ±0.0025 ±0.0012 ±0.0103 ±0.0010 ±0.0104

0.114 0.129 0.121 0.004 0.0025 0.0209 −0.0194 −0.0163 −0.0043 −0.0242 0.4914 0.0205 −0.4904

±0.0003 ±0.0004 ±0.0006 ±0.0018 ±0.0012 ±0.0017 ±0.0025 ±0.0013 ±0.0022

±0.0042 ±0.0030 ±0.0038 ±0.0015 ±0.0026 ±0.0014 ±0.0105 ±0.0012 ±0.0103

0.129 0.147 0.138 0.005 0.0030 0.0244 −0.0264 −0.0182 −0.0108 −0.0257 0.4886 0.0257 −0.4896

±0.0003 ±0.0004 ±0.0006 ±0.0017 ±0.0010 ±0.0017 ±0.0022 ±0.0011 ±0.0021

±0.0044 ±0.0023 ±0.0032 ±0.0018 ±0.0052 ±0.0015 ±0.0104 ±0.0011 ±0.0103

0.147 0.167 0.157 0.006 0.0047 0.0283 −0.0344 −0.0246 −0.0061 −0.0294 0.4862 0.0287 −0.4879

±0.0002 ±0.0004 ±0.0005 ±0.0017 ±0.0010 ±0.0016 ±0.0023 ±0.0012 ±0.0020

±0.0022 ±0.0011 ±0.0009 ±0.0018 ±0.0055 ±0.0023 ±0.0103 ±0.0010 ±0.0103

0.167 0.190 0.178 0.007 0.0058 0.0295 −0.0353 −0.0232 −0.0087 −0.0278 0.4805 0.0290 −0.4819

±0.0003 ±0.0003 ±0.0006 ±0.0016 ±0.0010 ±0.0017 ±0.0020 ±0.0011 ±0.0022

±0.0025 ±0.0008 ±0.0008 ±0.0026 ±0.0051 ±0.0034 ±0.0103 ±0.0011 ±0.0101

0.190 0.215 0.203 0.007 0.0075 0.0318 −0.0398 −0.0294 −0.0082 −0.0362 0.4850 0.0271 −0.4771

±0.0003 ±0.0004 ±0.0005 ±0.0016 ±0.0012 ±0.0013 ±0.0021 ±0.0011 ±0.0021

±0.0013 ±0.0013 ±0.0007 ±0.0011 ±0.0010 ±0.0013 ±0.0102 ±0.0007 ±0.0101

0.215 0.245 0.230 0.008 0.0088 0.0349 −0.0441 −0.0302 −0.0105 −0.0386 0.4798 0.0308 −0.4773

±0.0003 ±0.0003 ±0.0006 ±0.0017 ±0.0011 ±0.0015 ±0.0022 ±0.0011 ±0.0018

±0.0012 ±0.0015 ±0.0009 ±0.0011 ±0.0012 ±0.0013 ±0.0101 ±0.0008 ±0.0101

0.245 0.278 0.262 0.010 0.0112 0.0375 −0.0488 −0.0375 −0.0100 −0.0391 0.4772 0.0356 −0.4710

±0.0003 ±0.0004 ±0.0006 ±0.0017 ±0.0013 ±0.0016 ±0.0025 ±0.0013 ±0.0021

±0.0032 ±0.0017 ±0.0007 ±0.0032 ±0.0042 ±0.0024 ±0.0101 ±0.0009 ±0.0099

0.278 0.316 0.297 0.011 0.0132 0.0405 −0.0543 −0.0391 −0.0093 −0.0396 0.4701 0.0359 −0.4663

±0.0004 ±0.0004 ±0.0006 ±0.0019 ±0.0014 ±0.0015 ±0.0023 ±0.0011 ±0.0022

±0.0045 ±0.0006 ±0.0005 ±0.0013 ±0.0039 ±0.0027 ±0.0099 ±0.0022 ±0.0099

0.316 0.360 0.338 0.012 0.0176 0.0433 −0.0570 −0.0419 −0.0171 −0.0464 0.4674 0.0379 −0.4662

±0.0004 ±0.0004 ±0.0006 ±0.0019 ±0.0015 ±0.0016 ±0.0029 ±0.0013 ±0.0021

±0.0024 ±0.0010 ±0.0011 ±0.0015 ±0.0043 ±0.0017 ±0.0098 ±0.0015 ±0.0098

0.360 0.409 0.384 0.014 0.0220 0.0459 −0.0622 −0.0464 −0.0208 −0.0449 0.4624 0.0378 −0.4631

±0.0004 ±0.0004 ±0.0008 ±0.0022 ±0.0017 ±0.0017 ±0.0031 ±0.0014 ±0.0027

±0.0014 ±0.0017 ±0.0012 ±0.0014 ±0.0025 ±0.0010 ±0.0097 ±0.0011 ±0.0097

0.409 0.464 0.436 0.016 0.0297 0.0476 −0.0658 −0.0557 −0.0251 −0.0507 0.4592 0.0366 −0.4513

±0.0005 ±0.0005 ±0.0008 ±0.0026 ±0.0020 ±0.0020 ±0.0036 ±0.0017 ±0.0024

±0.0016 ±0.0015 ±0.0011 ±0.0018 ±0.0033 ±0.0016 ±0.0098 ±0.0012 ±0.0095

0.464 0.527 0.496 0.018 0.0379 0.0480 −0.0647 −0.0507 −0.0293 −0.0519 0.4575 0.0356 −0.4417

±0.0006 ±0.0005 ±0.0008 ±0.0029 ±0.0029 ±0.0020 ±0.0042 ±0.0019 ±0.0033

±0.0022 ±0.0019 ±0.0013 ±0.0017 ±0.0037 ±0.0015 ±0.0097 ±0.0014 ±0.0093

0.527 0.599 0.564 0.021 0.0528 0.0460 −0.0617 −0.0421 −0.0426 −0.0574 0.4593 0.0323 −0.4389

±0.0007 ±0.0006 ±0.0011 ±0.0031 ±0.0035 ±0.0027 ±0.0043 ±0.0021 ±0.0038

±0.0020 ±0.0017 ±0.0015 ±0.0014 ±0.0036 ±0.0022 ±0.0098 ±0.0008 ±0.0093

0.599 0.681 0.640 0.024 0.0681 0.0378 −0.0427 −0.0334 −0.0469 −0.0424 0.4500 0.0274 −0.4221

±0.0009 ±0.0008 ±0.0013 ±0.0034 ±0.0043 ±0.0032 ±0.0048 ±0.0025 ±0.0043

±0.0037 ±0.0018 ±0.0006 ±0.0020 ±0.0023 ±0.0013 ±0.0095 ±0.0015 ±0.0092

0.681 0.774 0.728 0.027 0.0873 0.0257 −0.0211 −0.0203 −0.0496 −0.0360 0.4365 0.0179 −0.4119

±0.0012 ±0.0009 ±0.0015 ±0.0046 ±0.0048 ±0.0029 ±0.0074 ±0.0034 ±0.0052

±0.0051 ±0.0014 ±0.0015 ±0.0015 ±0.0037 ±0.0015 ±0.0094 ±0.0015 ±0.0088

0.774 0.880 0.827 0.030 0.1067 0.0059 0.0080 0.0064 −0.0577 −0.0189 0.4140 −0.0139 −0.3910

±0.0017 ±0.0010 ±0.0020 ±0.0048 ±0.0059 ±0.0041 ±0.0069 ±0.0042 ±0.0064

±0.0052 ±0.0020 ±0.0014 ±0.0025 ±0.0054 ±0.0017 ±0.0091 ±0.0016 ±0.0084

0.880 1.000 0.940 0.034 0.1170 −0.0135 0.0345 0.0388 −0.0361 0.0164 0.4251 −0.0297 −0.3863

±0.0024 ±0.0012 ±0.0019 ±0.0062 ±0.0078 ±0.0045 ±0.0098 ±0.0049 ±0.0078

±0.0065 ±0.0016 ±0.0007 ±0.0026 ±0.0074 ±0.0017 ±0.0091 ±0.0012 ±0.0082
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Now, noting that only the T++ and T−− are nonzero, we

have

ρ0
11 = 1

2N
T++T ∗

++, (A14)

ρ1
1−1 = 1

2N
T++T ∗

−−, (A15)

ρ2
1−1 = −i

2N
T++T ∗

−−. (A16)

From this, we immediately see that SCHC implies that ρ1
1−1 =

− Im ρ2
1−1. We also know that only ρ0 has a nonzero trace, i.e.,

1 = ρ0
11 + ρ0

00 + ρ0
−1−1. (A17)

However, we have established that ρ0
00 = 0 and symmetry

gives that ρ0
−1−1 = ρ0

11. Thus, we have ρ0
11 = 1

2
. Similarly,

ρ0
−1−1 = 1

2
. Expanding ρ0

−1−1 as in Eqs. (A5) and (A11), we

find

ρ0
−1−1 = 1

2N
T−−T ∗

−−, (A18)

hence, we have

T++T ∗
++ = T−−T ∗

−−. (A19)

From this we have that

1

2N
T++T ∗

++ = 1

2
, (A20)

or the amplitude T++ can be expressed in complex polar form

as

1√
2N

T++ = 1√
2

eiφ+ , (A21)

where φ+ is some phase associated with the amplitude. Sim-

ilarly the amplitude T−− can be expressed in complex polar

form as

1√
2N

T−− = 1√
2

eiφ− , (A22)

where φ− is the phase associated with T−−. Combining

Eqs. (A21) and (A22), SCHC predicts

ρ0
11 = 1

2
, (A23)

ρ1
1−1 = 1

2
cos (φ+ − φ−), (A24)

Im ρ2
1−1 = − 1

2
cos (φ+ − φ−). (A25)

Thus, the magnitudes and signs of ρ1
1−1 and Im ρ2

1−1 depend

on the phase difference �φ = φ+ − φ−. In Sec. VI B we

discussed the parity asymmetry Pσ as given in Eq. (23). For

pure natural parity exchange, Pσ = 1, while for pure unnat-

ural parity exchange, Pσ = −1. In the case of pure natural

parity exchange, we have �φ = 0 so ρ1
1−1 = 1

2
and Im ρ2

1−1 =
− 1

2
. In the case of pure unnatural parity exchange, �φ = π

so ρ1
1−1 = − 1

2
and Im ρ2

1−1 = 1
2
. Throughout this article, we

refer to s-channel helicity conservation plus natural parity ex-

change, “SCHC + NPE”; this assumption implies the case of

�φ = 0 and implies the following predictions for the nonzero

SDMEs:

ρ0
11 = + 1

2
, (A26)

ρ1
1−1 = + 1

2
, (A27)

Im ρ2
1−1 = − 1

2
. (A28)

APPENDIX B: NUMERICAL RESULTS

All numerical results for the SDMEs and their statistical

and systematic uncertainties are listed in Table I. The system-

atic uncertainties for the polarized SDMEs ρ1
i j and ρ2

i j contain

an overall relative normalization uncertainty of 2.1% which is

fully correlated for all values of t . Numerical data can also be

downloaded from HEPData [37].
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