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Abstract 

The recognition that climate change is occurring at an unprecedented rate means that there is increased urgency in understanding 
how organisms can adapt to a changing environment. Wild great tit (Parus major) populations represent an attractive ecological model 
system to understand the genomics of climate adaptation. They are widely distributed across Eurasia and they have been docu-
mented to respond to climate change. We performed a Bayesian genome-environment analysis, by combining local climate data with 
single nucleotide polymorphisms genotype data from 20 European populations (broadly spanning the species’ continental range). We 
found 36 genes putatively linked to adaptation to climate. Following an enrichment analysis of biological process Gene Ontology (GO) 
terms, we identified over-represented terms and pathways among the candidate genes. Because many different genes and GO terms 
are associated with climate variables, it seems likely that climate adaptation is polygenic and genetically complex. Our findings also 
suggest that geographical climate adaptation has been occurring since great tits left their Southern European refugia at the end of 
the last ice age. Finally, we show that substantial climate-associated genetic variation remains, which will be essential for adaptation 
to future changes.

Keywords: climate adaptation, great tit HapMap project, signatures of selection, genome-environment association (GEA), GO term 
enrichment, climate change

Introduction

Terrestrial ecosystems face an unprecedented rate of climate 

change in the coming decades. A 1.5°C global surface temper-

ature warming (above pre-industrial levels), caused by human 

activities and emissions of greenhouse gases and aerosol path-

ways, is likely by 2040 (IPCC, 2022). Likely impacts on climate 

include an increase in the number of regions with raised hot 

and cold temperature extremes per season and changes to the 

intensity, frequency, and duration of extreme weather events, 

such as heatwaves, drought, and flooding (Eyring et al., 2016). 

Further consequences of climate change that threaten popula-

tions include forest fires, extreme weather events, the spread of 

invasive species, pests and disease, and the decreased function-

ing of ecosystem services. Hence, an urgent issue is understand-

ing how organisms respond to the changing environment (IPCC, 

2022; Root et al., 2003). How a species’ physiology and behavior 

tolerate changes to the local environment will determine its fit-

ness and survival, and therefore the need to respond to climate 

change (Cheviron & Brumfield, 2012; Khaliq et al., 2014). Sessile 

plants, low-dispersal insects, and some unique or threatened ver-

tebrates, e.g., small island populations, are especially vulnerable 

to local extinction if their response is insufficient (Khaliq et al., 

2014; Parmesan & Yohe, 2003), although a failure to adapt to cli-

mate change is expected to be consequential in any population.

Where populations are able to respond to climate change, 

they can do so in three possible ways: (1) Populations may shift 

range to more suitable conditions. For example, poleward distri-

bution shifts in response to anthropogenic climate warming are 

observed in many plants, birds, and butterflies (Chen et al., 2011; 

Devictor et al., 2012; Hickling et al., 2006; Parmesan et al., 1999; 

Sunday et al., 2012). (2) Through plasticity of key phenotypic 

traits, such as behavior and the timing (phenology) of repro-

duction and migration (Parmesan, 2006). (3) By evolving to the 

new conditions, i.e., adaptation via selection favoring particular 

alleles that have some form of fitness advantage. However, the 

evolution of climate adaptation due to specific genomic regions/

genes might not be fast enough to match climate change, espe-

cially if multiple climatic variables are changing simultaneously 

and/or generation times are long. The evolutionary potential to 

adapt has consequences for population persistence (Khaliq et 

al., 2014; Parmesan, 2006). Furthermore, options (2) and (3) are 

not necessarily mutually exclusive, as both processes can occur, 
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and plasticity itself may be heritable (i.e., an evolvable trait). 

Understanding the role of plastic vs. microevolutionary changes 

in response to climate change requires further investigation in 

many taxa, including birds (Charmantier & Gienapp, 2014), the 

focus of this study. Here we explore associations between genetic 

variation putatively under selection and climatic variables, 

in order to better understand microevolutionary responses to 

climate.

There are two distinct approaches for using genomic data 

to identify adaptive genetic variation and signatures of natu-

ral selection. First, molecular quantitative genetics approaches 

using phenotypic information. For example, linkage mapping or 

genome-wide association studies can be used to identify quan-

titative trait loci linked to phenotypes involved in adaptation 

(Santure & Garant, 2018). Where phenotypic data are lacking, a 

second approach, population genomics, uses genomic informa-

tion (but no phenotypic measurement) to identify signatures of 

adaptive genetic variation and then attempts to relate genome 

regions under selection to evolutionary processes and environ-

mental variation (Rellstab et al., 2015). Population genomics 

attempts to find regions of the genome that are more highly 

differentiated between populations than is expected from neu-

tral processes—i.e., to find “outlier loci,” that are inferred to be 

involved in local adaptation (Butlin, 2010; Luikart et al., 2003). 

Outlier locus approaches have been used extensively to reveal 

signatures of local adaptation, e.g., to different host plants in 

walking-stick insects (Nosil et al., 2012), to different shoreline 

environments in marine snails (Butlin, 2010), and to different 

predator regimes in three-spine sticklebacks (Mazzarella et al., 

2016). In birds, outlier loci associated with adaptation to liv-

ing at high altitudes in Tibetan ground tits (Qu et al., 2013), to 

different forest habitats in blue tits (Perrier et al., 2020), and 

to urban landscapes in great tits (Salmón et al., 2021) have 

been found. An extension of the outlier locus approach is to 

use genome-environment association (GEA) methods to iden-

tify loci whose divergence is correlated with an environmen-

tal covariate of interest. GEA analyses are more challenging to 

implement than outlier loci analyses because they require: (i) 

multiple populations, (ii) a measure of the environmental vari-

able of interest, and (iii) confidence that the environmental var-

iable is the agent of selection. For comparisons of genome-scan 

methods, see Gautier (2015), Forester et al. (2018), and Booker 

et al. (2023).

Terrestrial species with populations that occupy a wide diver-

sity of habitats/climatic conditions, but where gene flow persists, 

provide ideal systems to investigate the genomic responses to past 

(e.g., since the last ice age 10,000–15,000 years ago) and more recent 

(e.g., post-industrialization) climate changes (Rellstab et al., 2015). 

Ongoing gene flow is useful because the resulting relatively low 

differentiation across the genome makes regions responsible for 

adaptation more likely to stand out as outliers (Luikart et al., 2003). 

The aim of this article is to look for evidence across the genome 

of climate adaptation in a well-studied, model wild vertebrate spe-

cies, the great tit Parus major. Previous genome-wide “outlier locus” 

analyses in great tits have not considered whether allele frequencies 

covary with environmental variables (Bosse et al., 2017; Spurgin et 

al., 2019), and so the agents of selection could not be identified.

The great tit is a well-suited species to understanding the 

genomics of climate adaptation because: (i) they occupy a wide 

range of environments and climates across Eurasia, with range 

edges extending into Eastern Russia, Fenno-Scandinavia, and 

North Africa (Gosler et al., 2020). (ii) As cavity breeders they 

readily use nest boxes, which has allowed long-term monitor-

ing of wild populations, e.g., in Wytham Woods, UK (Lack, 1964) 

and Hoge Veluwe, NL (Van Balen, 1973). (iii) They are generally 

non-migratory, although some migration is observed in north-

ern populations (Kvist et al., 1999), so populations should be well 

adapted to their local environment. Dispersal distances are usu-

ally short, but long-distance dispersal of some individuals facil-

itates gene flow among subpopulations, meaning there is only 

minor population differentiation, with F
ST

 typically around 0.01 

(Laine et al., 2016; Lemoine et al., 2016; Spurgin et al., 2019; van 

Bers et al., 2012). The current distribution has likely spread after 

the last ice age from a single restricted refugium in southeastern 

Europe (Spurgin et al., 2019).

Great tits are sensitive to climate change, with warmer 

spring temperatures causing earlier egg-laying across Europe 

(Charmantier et al., 2008; Cole et al., 2021; Visser et al., 1998, 

2021). The timing of breeding is especially important in the tri-

trophic food web (oak bud burst-winter moth caterpillar-great 

tit), to ensure peak food resources to raise chicks (Burgess et 

al., 2018; Hinks et al., 2015; Perrins, 1970; Visser et al., 1998). 

An optimal phenology is critical for population persistence 

(Vedder et al., 2013 but see Reed et al., 2013). Great tits, and 

passerines more generally, may have sufficient phenotypic plas-

ticity in egg lay date to track environmental changes, enabling 

them to cope with recent rapid rates of spring warming in the 

U.K. (Phillimore et al., 2016), although this plastic response is 

complex (Ramakers et al., 2018). If limits to phenotypic plas-

ticity prevent an ongoing response to global climate change 

across parts of the distribution of Parus major, then evolution-

ary changes will be necessary to enable future population resil-

ience and survival.

Rich genomic resources are available for genetic research of 

great tits. It was only the second passerine to have a high-quality 

reference genome sequenced and annotated (Laine et al., 2016); a 

genetic linkage map has been made (van Oers et al., 2014); DNA 

samples are available from multiple populations; a high-density 

~500K single nucleotide polymorphism (SNP) chip has been pro-

duced (Kim et al., 2018); and the SNP chip has been used to gen-

otype individuals from approximately 40 wild populations (Kim 

et al., 2018; Salmón et al., 2021; Spurgin et al., 2019). Samples 

for the cross-population analyses were contributed by the Great 

Tit HapMap Consortium, a group of researchers conducting field 

studies of great tits across much of the species’ range. The con-

sortium was established with the aim of characterizing inter-

population genetic variation and hopefully identifying genes 

associated with local adaptation. Great tit populations have 

low F
ST

 across the genome, which means any outlier loci should 

stand out against a low background of differentiation. In addi-

tion, regions of the genome under natural selection have already 

been identified using outlier locus approaches (Bosse et al., 2017). 

Responses to selection appear to be greatest in populations at the 

range edges and are perhaps associated with morphology, plum-

age color, and stress response (Spurgin et al., 2019).

Here we address the question: What regions of the genome 

have enabled a wild bird species to adapt to different climate 

conditions? We first describe a genome-environment analysis 

(GEA) to identify genes that are associated with climate adapta-

tion and show signatures of selection. We note, however, that an 

association with climate is not definitive evidence of adaptation 

to climate. Next, we use a Gene Ontology (GO) term enrichment 

analysis to identify over-represented biological functions among 

the genes with climate-associated SNPs.
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Materials and methods

The great tit HapMap project field data and 
genotyping
Members of the great tit HapMap project consortium (Spurgin et 

al., 2019) provided blood samples from wild European great tit 

populations that are the focus of ongoing ecological studies. A 

total of 838 great tits from 29 locations in Europe were sampled 

across 22 countries, encompassing much of the species range. In 

most cases, the DNA was extracted using ammonium acetate/

high salt extraction protocols (Kim et al., 2018), although a small 

number of samples were sent as extracted DNA. A custom-devel-

oped Affymetrix® great tit 650K SNP chip (Kim et al., 2018) was 

used to genotype the samples at Edinburgh Genomics, UK.

Data filtering and QC
Following filtering approaches described elsewhere (Bosse et al., 

2017; Spurgin et al., 2019), the data set contained a total of 647 

great tits from 29 populations, typed at 483,888 SNPs. Filtering 

was applied in PLINK v1.90 (Chang et al., 2015) with parameter 

thresholds: --maf (minor allele frequency) 0.01, --geno (propor-

tion of individuals typed at an SNP) 0.8, --not-chr 35 (remove 

markers from “chromosome” 35), and --rel-cutoff (relatedness 

cutoff) 0.25. This removed SNPs that were almost lacking in var-

iation, that had high rates of missing data, or that were assigned 

to an unknown chromosome (chr 35 is a collection of scaffolds 

on unknown chromosomes in our Plink files). Only males were 

included for the Z chromosome, as females are hemizygous. 

In addition, populations with less than 15 individuals were 

excluded. The HapMap dataset is known to include some samples 

of close relatives, such as trios of parents and chicks. Having close 

relatives causes much higher amounts of population structure, 

which can give misleading results in population genetic analy-

ses. Pairwise-relatedness was estimated in PLINK and the dataset 

filtered, to exclude one member of a pair when the relatedness 

was greater than 0.25. This step ensured only one individual per 

trio was used. After passing quality control, 479,590 SNPs and 535 

samples were retained from 20 populations across Europe (Figure 

1; Supplementary Table S1).

Climate data collection and principal component 
analysis
The WorldClim v2 data set provides good spatial resolution cli-

mate data across Europe (interpolated from monthly averaged 

weather station records 1970–2000) (Fick & Hijmans, 2017). 

Twenty-two variables (19 bioclimate variables, solar radiation, 

wind speed, and water vapor pressure) were extracted for the 20 

population locations (Supplementary Table S2). The complexity 

of the dataset was reduced by a principal component analysis 

(PCA), using the FactoMineR package v2.4 (Lê et al., 2008), run in 

R version 3.6.1. Downstream analyses used the first four princi-

pal components (PCs) for each location, scaled to mean = 0, SD = 

1. Temperature and precipitation have been demonstrated to be 

associated with constraints on great tit growth rate (Eeva et al., 

2020; Rodriguez & Barba, 2016). More generally, a review of cli-

matic effects on nestling growth and development in birds (Sauve 

et al., 2021) has highlighted solar radiation, wind speed, and water 

vapor pressure as additional variables that might affect juvenile 

traits. Clearly, early life development is sensitive to climate effects 

(via, for example, changes in food availability and parental care), 

with potentially long-lasting effects on adult phenotypes and fit-

ness. Thus, we decided to use all 22 available climatic variables, 

rather than a priori choose some and reject others.

Genome-environment analysis: Detecting loci 
potentially involved in adaptation to climate
To identify climate-associated SNPs, we used BayPass 2.1 

(Gautier, 2015), a software package that has been used to iden-

tify climate-associated loci in similar studies of Arabidopsis 

thaliana (Frachon et al., 2018), barley (Contreras-Moreira et al., 

2019), and Mediterranean cattle breeds (Flori et al., 2019). We 

elected to use BayPass over redundancy analysis as it controls 

for population structure, can handle missing genotype data, 

and is regarded as quite conservative in declaring an SNP as 

an outlier (Forester et al., 2018). We used BayPass in a two-step 

process, using default parameters unless stated otherwise. 

First, we ran the core model to calculate XtX, a differentia-

tion statistic for each SNP. The core model also estimates the 

covariance in allele frequencies (in the form of a matrix Ω) that 

arises as a result of population structure; thus, demographic 

effects that can otherwise cause false positives are accounted 

for. For further details of XtX, see Coop et al. (2010) and Günther 

& Coop (2013). The significance of the observed XtX statistics 

was obtained by generating a null XtX distribution from pseu-

do-observed data (POD) simulated with 400K SNPs. Variants 

identified as highly differentiated “outlier” SNPs at a 1% signif-

icance threshold were regarded as being loci putatively under 

selection. Note that at this stage, no associations with climatic 

variables have been tested for.

Second, for all 479,520 SNPs, the default auxiliary (AUX) 

model with scaled covariance matrix and climate covariates was 

run independently three times (with different starting seeds) 

for the four PCs (analyzed jointly in each run). Associations 

between each SNP and each climate PC were judged from Bayes 

factors (expressed in deciban units, dB) under an Markov Chain 

Monte Carlo (MCMC) sampling method (BFmc); evidence for a 

SNP being associated with climate adaptation was judged by 

Jeffreys’ rule (Jeffreys, 1961): 10 < BFmc ≤ 15 “strong evidence”; 

15 < BFmc ≤ 20 “very strong evidence”; and BFmc > 20 “deci-

sive evidence.” The evidence was evaluated by comparing the 

observed associations with a null distribution generated from 

POD simulated using the Ω generated in the core model, i.e., to 

realistically simulate the true demographic history. A variant 

was evaluated on the strength of evidence threshold across all 

three runs, i.e., a variant would only be considered as provid-

ing “decisive” evidence for association with a climate variable 

if it scored >20 for all three runs. The best potential candidate 

loci for climate adaptation were classified as SNPs that were 

identified as being both associated with climate (from the AUX 

analysis) and as an “outlier” variant under selection (from the 

core analysis).

Annotation of candidate loci for climate 
adaptation
All SNPs were annotated using the great tit reference genome 

(GCF_001522545.3_Parus_major1.1_genome.gff) converted to bed 

file with bedops (Neph et al., 2012), with the closest gene iden-

tified using bedtools closest sub-command (Quinlan, 2014). This 

process annotated the gene the SNP was located in or the nearest 

gene within 2.5 kbp in either direction from the SNP. SNPs were 

regarded as unannotated if no gene was found within 2.5 kbp. An 

annotation window of 5 kb was chosen because in great tits link-

age disequilibrium falls to almost baseline levels within 10 kbp 

or less (Spurgin et al., 2019). Of the 479,590 variants considered, 

278,861 variants were annotated and assigned to 14,529 unique 

genes (i.e., most genes have more than one annotated SNP).
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Gene Ontology (GO) term enrichment analysis
Testing for GO term enrichment among potential climate 
adaptation loci

A GO term (Ashburner et al., 2000; The Gene Ontology 

Consortium, 2021) analysis on gene scores was performed (sepa-

rately for each of PC1–PC4), to look for GO terms enriched among 

the genes with climate-associated SNPs against the background 

annotated gene universe for all of the SNPs on the chip. For the 

14,529 genes containing SNPs, or with SNPs within 2.5 kbp, 8,867 

great tit GO terms were retrieved from Ensembl (Ensembl Genes 

109, Parus major_1.1), using the biomaRt package v3.8 (Durinck et 

al., 2005, 2009). To avoid over-rewarding genes with many SNPs, 

we took an approach similar to one described elsewhere (Dickson 

et al., 2020). For each gene, the number of SNPs in the gene or 

within 2.5 kbp of it was counted. Next, the maximum BayPass 

BF statistic of any SNP in that gene was determined. Then, all 

genes with that number of SNPs were ranked by max(BF), and a “p 

value” was determined by dividing the rank by the total number 

of genes with that number of SNPs. For example, if there were 

100 genes with eight SNPs, then the gene with the greatest max-

(BF) was given a value of 1/100 = 0.01, the gene with the second 

greatest max(BF) was given a value of 2/100 = 0.02, etc. Relatively 

few genes had a very large number of SNPs (427 genes had 100 

or more SNPs), so binning was performed for genes with 100–149 

SNPs, 150–199 SNPs, 200–299 SNPs, 300–499 SNPs, and ≥ 500 SNPs. 

In total, 14,529 genes were included in the analysis. Note that 

previous approaches calculated the mean test statistic across all 

SNPs within a gene (Dickson, 2020), rather than using the maxi-

mum value observed at any SNP. Here, the maximum is appropri-

ate, because linkage disequilibrium declines rapidly in great tits, 

meaning even true outlier loci are not expected to have a signal 

that extends across the gene.

Figure 1. The 20 great tit population locations. Further details of each population are provided in Supplementary Table S1. Map tiles by Stamen 
Design (https://stamen.com), under CC BY 3.0. Contains data by OpenStreetMap (http://openstreetmap.org/copyright), under ODbL.
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Significance testing for GO term enrichment was per-

formed with the topGO v2.36.0 (Alexa & Rahnenführer, 2020) 

Bioconductor (Release 3.9) package in R. The data container used 

as input for topGO held the following information: (i) the gene 

universe, functionally annotated with GO terms, (ii) the gene 

score “p value” for climate association, (iii) the gene-to-GO ter-

m(s) mapping, and (iv) the GO hierarchy to account for structure 

among GO terms, provided by the GO.db package v3.8.2 (Carlson, 

2019). The ontology parameter was set to investigate biological 

processes, molecular functions, or cellular components individu-

ally. The node size pruned GO terms with less than 10 annotated 

genes. The default weight01 algorithm (based on the elim and 

weight methods, Alexa et al., 2006) and Kolmogorov–Smirnov (KS) 

test statistic were implemented. For each enrichment test, the p 

values computed by the default “weight01” method were unad-

justed for multiple testing. Multiple testing correcting procedures 

may be invalid because of the nonindependence of the GO term 

hierarchy (the p value of a GO term is conditioned on the neigh-

boring terms) and with the annotation of multiple GO terms to 

one gene (Skarman et al., 2009).

Results

Climate data PCA
The climate data set of 22 variables was reduced in dimensional-

ity to four PCs (Supplementary Figure S1) which captured 92.4% 

of the variance (38.7%, 33.2%, 14.5%, and 6.0%, respectively). 

Hence, the reported results will focus primarily on PC1 and PC2, 

with PC3 and PC4 results available in the supplementary mate-

rial. The key contributing variables to the four climate variables 

were identified as follows: temperature across the year (PC1), pre-

cipitation in the driest and warmest periods (PC2), precipitation 

in the wettest months (PC3), and wind speed, precipitation sea-

sonality, and daily temperature range (PC4). Further details are 

provided in Supplementary Figures S2–S4.

Whole-genome scan: Detecting loci potentially 
involved in adaptation to climate
A summary of the covariance matrix, Ω, of SNP allele frequen-

cies is plotted in the supplementary material (Supplementary 

Figure S5). In general, the population genetic structure is similar 

to that described in Spurgin et al. (2019), with the Corsica pop-

ulation standing out as the most differentiated from all other 

populations.

Identification of outlier loci under selection
The population differentiation analysis using XtX statistics, 

simulated XtX values of 400,000 neutral SNPs, to infer a 1% 

XtXPOD
400,000

 significance threshold of 25.88. Across the three runs 

of the core model, which gave similar results, a total of 4,823 var-

iants were identified as XtX outliers (Supplementary Figure S6). 

These SNPs were situated in or near 1,535 unique genes, which 

between them had 2,730 annotations (GO terms). The number of 

genes and annotations is not expected to be the same because 

some genes have multiple annotations, and some annotations are 

associated with multiple genes.

Genome-environment analysis (GEA): 
Identification of genes putatively involved with 
climate adaptation
At the decisive evidence level (BF ≥ 20 dB), 37 and 67 variants 

were associated with PC1 and PC2, respectively (Supplementary 

Table S3). A total of 18 (PC1) and 32 (PC2) SNPs were found in 

annotated genes, of which 6 and 18 SNPs—more than expected 

by chance (binomial test, p < 2.2 × 10−16 for PC1 and PC2, respec-

tively)—were also outliers in the core model (Figure 2). Details of 

each identified and annotated SNP are reported for all four cli-

mate PCs in the supplementary material (Supplementary Table 

S4, Supplementary Figures S7 and S8). Allele frequencies in each 

population at the strongest candidate SNPs potentially involved 

in climate adaptation are included in Supplementary Figure S9 

(PC1) and Supplementary Figure S10 (PC2).

Gene Ontology (GO) term enrichment analysis
Biological process GO term enrichment—PC1

A total of 4,428 GO terms found in 7,674 annotated genes were 

associated with biological processes. A total of 41 biological pro-

cess GO terms were significantly (p < .01) enriched within genes 

associated with PC1. The most enriched GO term (GO:0061178) 

is involved in insulin secretion in the cellular response to glu-

cose (Supplementary Table S5, Data file_PC1.csv). There was one 

candidate gene, CLTRN, that is potentially associated with cli-

mate adaptation (see Supplementary Table S7) with an SNP that 

is significant for both the BF and XtX BayPass statistics and has 

enriched GO terms (regulation of biological quality GO:0065008 

and regulation of transporter activity GO:0032409).

Biological process GO term enrichment—PC2

For PC2, 29 biological process GO terms were significantly (p < 

.01) enriched. The two most enriched GO terms were involved 

in plasma lipid clearance (GO:0034381) and eating behavior 

(GO:0042755), see Supplementary Table S6, Data File GOtoGene_

PC2.txt.

The enriched GO term ATP biosynthetic process (GO:0006754) 

was notable for being an annotation of genes with the SNPs that 

were significantly associated with both PC1 and PC2. Details for 

PCs 3 and 4, 28 and 23 significantly (p < .01) enriched biological 

process GO terms were identified (Supplementary Tables S9 and 

S10, files GotoGene_PC3.txt and GotoGene_PC4.txt). Biological 

process GO terms over-represented across any two or more of the 

PCs are provided in Supplementary Table S8.

Molecular function GO term enrichment test

For PC1–PC4, respectively, 12, 8, 14, and 3 out of 740 molec-

ular function GO terms were significantly (p < .01) enriched 

(Supplementary Tables S11–S14).

Cellular component GO term enrichment test

For PC1–PC4, respectively, 11, 11, 6, and 6 out of 505 cellular com-

ponent GO terms were identified as significantly (p < .01) enriched 

(Supplementary Tables S15–S18).

Discussion

We report numerous genes and pathways in wild populations 

of great tits that are associated with a wide range of climate 

variables. The genes are spread across the genome, and there 

is a segregating genetic variation within populations in these 

regions. There are no individual regions of the genome that 

appear to have undergone dramatic changes, such that popu-

lations experiencing the most extreme climatic conditions are 

fixed for putative positively selected alleles or haplotypes. Taken 

together, these observations suggest that local adaptation to past 

and present climate conditions is genetically complex, and has 
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occurred, at least partially, through microevolutionary change. 

Given the polygenic nature of climate adaptation, individual 

loci have probably had small phenotypic effects. The data indi-

cate that there remains substantial genetic variation associated 

with climate adaptation within populations. However, despite the 

weak genome-wide genetic structure across great tit populations, 

putative climate-adaptation regions do show some between-pop-

ulation differentiation. Given the considerable number of genes 

and pathways involved, climate adaptation loci are likely to be a 

large mutational target (Bay et al., 2018). That, and the presence 

of within- and between-population genetic variation in loci that 

possibly cause adaptation means there is the potential for great 

tits to adapt to future climate changes.

This is the first study to specifically look for genes associated 

with climate adaptation in this species. However, in the same 

wild great tit populations, Spurgin et al. (2019) reported selection 

acting on genes thought to be associated with variation in mor-

phology, stress response, and coloration, with adaptation possibly 

strongest at the range edges of the species’ distribution. The gene 

CALM2 (biological function: calcium ion binding) was identified as 

a locus under selection in Spurgin et al. (2019) and in this study 

(here, it was associated with PC3 and PC4). Furthermore, CALM2 

has been reported as a candidate gene for desert adaptation in 

sheep (Yang et al., 2016); in sheep, it is involved in renal epithe-

lial cell processes of water regulation and natriuresis (sodium 

excretion to stabilize blood pressure). Spurgin et al. (2019) found 

CALM2 to be under-selection in the English and Spanish popula-

tions. Here it was identified as the strongest candidate gene (i.e., 

greatest BF) for adaptation to variables influencing PC3 (associ-

ated with rain) and PC4 (associated with wind speed, rain sea-

sonality, and daily temperature range) (Supplementary Table S4). 

Thus, this locus might be under selection in response to climatic 

conditions. However, none of the other outlier variants in Spurgin 

et al. (2019) were co-identified in this study, suggesting that sig-

natures of selection at those loci result from adaptation to other 

selective pressures.

Similarly, a recent study identified loci under divergent selec-

tion between Wytham Woods (UK) and two Dutch great tit pop-

ulations (Bosse et al., 2017). The highly significant outlier regions 

contained 28 annotated candidate genes involved in skeletal 

development, morphogenesis, and palate development. These 

loci were suggested to be involved in the adaptive evolution of 

longer bills in UK populations, most notably at the COL4A5 gene. 

In our study, two of the best candidate genes potentially associ-

ated with climate adaptation found were also among significant 

outliers in the Bosse et al. (2017) study; two SNPs were identified 

in/near SRBD1 (biological function: mRNA binding) associated 

with PC2, while eight SNPs were identified in/near TRPS1 (biolog-

ical function: cranioskeletal development) associated with PC3. 

Climate may affect what food sources are available, and that in 

turn may affect the selection of beak and/or skull shape for for-

aging performance. For example, in Darwin’s finches, a severe El 

Figure 2. Manhattan plot of annotated genes associated with climate adaptation for (A) PC1 and (B) PC2 at the decisive evidence threshold (BFmc > 
20). For all annotated variants, the minimum BFmc score across the three runs is shown. The strong (BFmc > 10), very strong (BFmc > 15), and decisive 
evidence thresholds are indicated by dashed lines. SNPs highlighted orange (at threshold BFmc > 10) were also found to be under selection in the 
outlier locus analyses that did not consider climatic data.
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Nino event led to a scarcity of large seeds, which favored selection 

on small beak sizes and led to an evolutionary change (Grant & 

Grant, 1993). Thus, climate adaptation may be the explanation 

for signatures of selection at these two loci, but more generally, 

there is not much overlap between the potential climate adapta-

tion loci reported here, and previous attempts to find genes under 

selection in these populations. Of course, that may be because 

this study explores populations experiencing a much wider range 

of climatic variation. Incorporating other possible agents of selec-

tion into GEA models could enhance our understanding of what 

is shaping genomic variation at other highly differentiated loci.

A key question is whether the same suite of genes are involved 

in adaptation to climate in different species. We directly com-

pared the set of genes found to be “decisively” associated with 

climate in great tit, with 12 positively selected heat-stress-ad-

aptation genes identified from a similar analysis in chicken 

populations experiencing desert and monsoon island climates 

(Tian et al., 2020). In our study, nine of the 12 genes had an SNP 

within 2.5kbp, but none were associated with climate adaptation. 

However, two of the genes (ADCY1 and VPS13C) were identified in 

the pathways of enriched biological process GO terms (for PC1–4 

and PC4, respectively) associated with climate adaptation in great 

tits (Supplementary Table S19). Adaptation to heat stress has pre-

viously been demonstrated in genes linked to the arachidonic 

acid metabolism pathway in chickens (Tian et al., 2020), with 

CYP2J21 and CYP2J23 upregulated in pectoral muscles of heat-

stress-treated broiler chickens, with oxidative stress recorded in 

the pectoral muscle (Liu et al., 2022). Two of those arachidonic 

acid metabolism genes (DRD3 and TNFRSF11A) are annotated 

with one of the GO terms (GO:0065008 “regulation of biologi-

cal quality”) that were was associated with PC1 in this study 

(Supplementary Table S19). Caizergues et al. (2022) identified a 

significant change in methylation linked to the DRD3 gene in 

urban populations of great tit compared to forest environments. 

Extreme heating events in urban areas may lead to heat stress 

for nestlings and adults (Sumasgutner et al., 2023). Heat stress 

adaptation has previously been linked with convergent evolution 

of four genes (PLA2G12b, GRP17, TNFRSF11A, and OC90) between 

mammals and chickens (Tian et al., 2020). Of these genes, only 

OC90 was co-identified in this GEA study, where it was associated 

with climate (PC4). There were no SNPs within 2.5kbp of GRP17. In 

our analyses, PC2 is the PC most influenced by climate variables 

that are associated with extreme heat (Supplementary Figure S2). 

There is no overlap between genes associated with PC2 and the 

heat-stress-associated genes in the studies described earlier.

There is little overlap between the “decisive” candidate climate 

adaptation genes found here to those found in similar studies of 

more distantly related (i.e., non-avian) taxa such as Drosophila 

(Bogaerts-Márquez et al., 2021) and cattle (Flori et al., 2019). An 

exception is the gene BTBD7, which is involved in protein ubiq-

uitination, and was identified as a climate adaptation locus in 

Drosophila (Bogaerts-Márquez et al., 2021). Here, BTBD7 is associ-

ated with PC3 (Supplementary Table S20). Avian cells respond to 

temperature-induced heat stress, via stimulated protein ubiquit-

ination (Pritchett et al., 2023). Similarly, there is some evidence of 

overlap of the climate-associated enriched GO terms identified 

here with those in cattle (Flori et al., 2019); these GO terms are 

associated with cellular signaling and nervous system function.

For both PC1 and PC2, the most strongly over-represented GO 

terms were not terms where we could find evidence of climate 

adaptation in other species. For PC1, the top-ranked GO term 

was “regulation of insulin secretion.” This term may potentially 

be linked to climate-related effects on diet and hormones. For 

example, cold temperatures are thought to prime the glucose 

stress response in tree swallows (Ryan et al., 2023). For climate 

PC2, the top-ranked GO term is “plasma lipoprotein particle clear-

ance” (involved in the release of cholesterol). Climate variation 

may influence changes in food availability and nestling growth 

(Keller & Noordwijk, 1994). Furthermore, poor nutrition in great 

tit embryos and early life stage may constrain development and 

adult health and fitness (Toledo et al., 2016). Thus, it is possible 

that variations in genes involved in pathways that affect plasma 

lipoproteins have provided an adaptive response to harmful cli-

matic effects on nutrition.

Overall, the patterns suggest that climate adaptation gene 

discovery studies have identified different candidate genes that 

might be involved in adaptation, but that these candidates have 

some shared gene pathways for biological processes. There may 

be so little overlap because of the very different investigated 

taxa (invertebrates, domesticated livestock, and birds), and also 

because of the very different physiological routes to climate adap-

tation (e.g., morphology, behavior, physiology, neuro-endocrine, 

biochemical, metabolism, cellular, and molecular responses). In 

addition, different genes with related functions may enable adap-

tation to similar environments. Finally, when conducting GEA 

studies, it is necessary to be mindful that some “hits” might be 

false positives, which are not expected to overlap between dif-

ferent independent studies. One take-home message from this 

article is that identifying individual loci that are definitively asso-

ciated with climate adaptation is challenging. The combination of 

multiple climate-related variables driving selection, a polygenic 

genetic architecture of the (unknown) traits under selection, a 

lack of good candidates from other systems, and an absence of 

selected loci going to fixation in specific populations all contrib-

ute to making gene discovery difficult.

Best practice for the confirmation of candidate genes from 

genome-environment analysis should ideally include an experi-

mental verification, for example, by functional genomics or gene 

expression studies (Rellstab et al., 2015). While beyond the scope 

of this study, such an approach is feasible in wild great tit pop-

ulations, for example, by rearing and selective breeding of wild-

caught individuals in aviaries where environmental conditions 

can be controlled. For example, Gienapp et al. (2019) selected for 

differences in lay date in aviary birds, and then looked at the fit-

ness of early and late layers when they were moved as eggs to 

nest boxes in the forest.

Methods to reliably forecast how populations may adapt to 

climate change (changes in allele frequencies) and how climate 

adaptation genes may be maintained across populations (pop-

ulation differentiation), will require testing of how observable 

(and possibly repeatable) the genetic effects described here are. 

Ongoing monitoring of allele frequencies in the study popula-

tions, in tandem with an increase in the number of individuals 

genotyped per population would improve power, as would the 

inclusion of data from additional populations. For those popu-

lations where climate change has been documented and sam-

ples are available over many years, it may be possible to look for 

associations between genotypes at climate-related SNPs and var-

iation in fitness traits. In particular, it could be asked whether 

any selection at these SNPs varies temporally, in a way predicted 

by within-population changes in climatic conditions (PC1–4). The 

identity and location of sites under selection could be improved 

with whole genome sequencing (which is now becoming much 

closer in cost to SNP chip genotyping). To validate the candidate 
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genes that have possibly enabled climate adaptation, and to date 

the timing of adaptive changes, it should be possible to investi-

gate the genomes of museum samples, and formally test whether 

signatures of selection can be identified in the same genes over 

the last few hundred years of climate change (Clark et al., 2023).

Finally, it is possible that identifying adaptive genomic varia-

tion to climate variation may aid our understanding of the cli-

matic drivers of population declines and genomic vulnerabilities. 

In summary, we found evidence that great tits have adapted over 

historical times to different climates through numerous evolu-

tionary changes and that the process is complicated, caused by 

the selection at many different genes, probably driven by many 

different climatic variables. Most of the genes reported here have 

not previously been reported to be associated with climate adap-

tation. Given that many of the SNPs tagging regions responsible 

for adaptation are still segregating within populations, it seems 

likely that there remains substantial genetic variation within and 

between populations that can help further adaptation to future 

climate changes.
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