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Abstract

Aim: Climate change and habitat loss or degradation are some of the greatest threats 

that	species	face	today,	often	resulting	in	range	shifts.	Species	traits	have	been	dis-
cussed as important predictors of range shifts, with the identification of general 

trends	 being	 of	 great	 interest	 to	 conservation	 efforts.	However,	 studies	 reviewing	
relationships between traits and range shifts have questioned the existence of such 

generalized trends, due to mixed results and weak correlations, as well as analytical 

shortcomings. The aim of this study was to test this relationship empirically, using 

analytical approaches that account for common sources of bias when assessing range 

trends.

Location: Tanzania,	East	Africa.
Time period: 1980–1999 and 2000–2020.

Major taxa studied: 57	savannah	specialist	birds	found	in	Tanzania,	belonging	to	26	
families and 11 orders.

Methods: We	applied	recently	developed	 integrated	spatio-	temporal	species	distri-
bution	models	 in	R-	INLA,	combining	citizen	science	and	bird	Atlas	data	to	estimate	
ranges of species, quantify range shifts, and test the predictive power of traditional 

trait	groups,	as	well	as	exposure-	related	and	sensitivity	traits.	We	based	our	study	on	
40 years	of	bird	observations	in	East	African	savannahs,	a	biome	that	has	experienced	
increasing	 climatic	 and	 non-	climatic	 pressures	 over	 recent	 decades.	We	 correlated	
patterns of change with species traits using linear regression models.

Results: We	 find	 indications	 of	 relationships	 identified	 by	 previous	 research,	 but	
low average explanatory power of traits from an ecological perspective, confirming 

the	lack	of	meaningful	general	associations.	However,	our	analysis	finds	compelling	
species- specific results.

Main conclusions: We	highlight	the	importance	of	individual	assessments	while	dem-

onstrating the usefulness of our analytical approach for analyses of range shifts.
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1  |  INTRODUC TION

Climate change is posing an increasing threat to the survival of many 

species and is expected to result in the loss of species at the local or 

global level (Panetta et al., 2018; Urban, 2015;	Wiens,	2016). Non- 

climatic factors, such as anthropogenic land use change, are further 

threatening species through degradation of habitat, changes in land 

cover,	and	fragmentation	(Haddad	et	al.,	2015;	Horváth	et	al.,	2019; 

van	 Strien	 et	 al.,	 2019). Populations of species can persist de-

spite these changes if they show plastic or evolutionary change 

(Hoffmann	&	Sgro,	2011),	or	simply	move	to	other	locations.	While	
micro- evolutionary adaptation to climate change can occur over rel-

atively short periods of time, recent examples are mainly of species 

with	short	life	cycles,	such	as	fruit	flies	(Balanyá	et	al.,	2006) or field 

mustard	(Franks	et	al.,	2007). There is increasing evidence for micro- 

evolutionary adaptation in taxa with longer life cycles, such as birds 

(Karell et al., 2011), but the effectiveness of this mitigation is un-

clear. One of the best- documented responses is range shifts where 

species distributions change to track suitable environments. There 

is mounting evidence for range shifts across taxa, at a global scale, 

accelerated by anthropogenic climate change (Chen et al., 2011; 

Colwell et al., 2008;	Davis	&	Shaw,	2001;	Parmesan	&	Yohe,	2003; 

Pörtner et al., 2022). Under future climate change scenarios, these 

range shifts are projected to continue (Thuiller, 2004;	Williams	&	
Blois, 2018).	Where	 species	 are	 unable	 to	 emigrate	 the	 outcome	
can be drastic, with the first climate- driven mammalian extinction 

recently documented (Gynther et al., 2016). Conversely, some spe-

cies that redistribute effectively may benefit from environmental 

changes (Tayleur et al., 2016), establishing populations in new areas. 

Considerable unexplained variation in species range shifts as a con-

sequence of climate change has been recorded, with authors pro-

posing non- climatic variables such as species interactions or traits 

as	 possible	 explanations	 (McCain	 &	 Garfinkel,	 2021;	 Williams	 &	
Blois, 2018).	Accurately	quantifying	range	shifts	and	identifying	the	
underlying drivers are crucial steps towards gaining a better under-

standing of the causes of such variation, ultimately enabling us to 

identify the most vulnerable species and inform conservation ef-

forts	(Foden	et	al.,	2019).

The vulnerability of species to external pressures affects their 

ability	to	adapt	to	environmental	change.	Such	vulnerability	is	char-
acterized by the intersection of exposure and sensitivity to change, 

and adaptive capacity (Dawson et al., 2011;	 Foden	 et	 al.,	 2019). 

Exposure is typically defined as the amount of historic or future 

change in an environmental variable experienced across a species' 

observed	range	(Foden	et	al.,	2019).	At	the	species	 level,	 it	can	be	
quantified	 relative	 to	a	 species	 trait	 (e.g.	habitat	 suitability:	Alabia	
et al., 2018; Gardali et al., 2012, drought threshold and climate suit-

ability:	Aubin	et	al.,	2018).	Sensitivity	describes	the	degree	to	which	

species might be impacted by environmental change and is consid-

ered	intrinsic	to	the	species	(Foden	et	al.,	2019). It is commonly es-

timated	 through	a	 species'	physiological	 traits	 (Foden	et	al.,	2013; 

Gardali et al., 2012).	Adaptive	capacity	 is	generally	defined	as	 the	
ability of a species to cope with the negative impacts of environmen-

tal change (Bateman et al., 2020; Thurman et al., 2020).	Such	adapta-
tion includes dispersal ability, and a species exhibiting high adaptive 

capacity may colonize newly suitable habitat more effectively when 

experiencing environmental pressures than a species with low adap-

tive capacity. Range shifts are generally expected to occur where 

sensitivity and exposure overlap (Purvis et al., 2005). One species 

may be able to persist in areas where it is heavily exposed to a cer-

tain change because it is not particularly sensitive to it, while an-

other species may be highly sensitive to the pressure, but lacks the 

ability to disperse to a different location, leading to a negative range 

shift, or range contraction. In cases where exposure and sensitivity 

are both high and dispersal ability is also high, the species may shift 

its	range	into	new	areas,	where	they	are	suitable.	Species	vulnera-
bilities and resulting range shifts are therefore closely tied to spe-

cies	traits,	that	is,	the	physiology,	behaviour,	and	life	history	(Foden	
et al., 2013; Pearson et al., 2014; Triviño et al., 2013).	As	traits	are,	
by definition, the only way by which species interact with the envi-

ronment, it is ultimately necessary that they explain vulnerability to 

climate change, and many vulnerability assessments are generated 

partially	or	wholly	from	species	trait	information	(Foden	et	al.,	2019).

There has long been an interest in identifying coherent group-

ings of traits associated with species range shifts across a wider tax-

onomic range (Lavergne et al., 2004; Van Der Veken et al., 2007). 

Such	a	generalization	would	be	a	powerful	 tool	 for	predicting	 the	
effects of future environmental change across many species, while 

also helping to identify the most vulnerable species based on 

their	known	traits	 (Aubin	et	al.,	2018; Garcia et al., 2014; Pearson 

et al., 2014). In an effort to establish standardized and comparable 

trait groupings, Estrada et al. (2016) developed a traits framework, 

identifying broad categories of traits that might explain observed 

range	 shifts.	 Among	 these	 categories,	 they	 highlighted	 ecological	
generalization and movement ability as being the most important 

predictors (Estrada et al., 2016). Ecological generalization refers 

to the ability of a species to use a variety of resources in the envi-

ronment (Estrada et al., 2016), which can be expressed by a broad 

behavioural lifestyle (e.g. locomotory niche while foraging), wide 

trophic niche, or ability to tolerate a wide range of climatic variables 

or	habitat	structures.	Species	that	are	strongly	represented	 in	this	
trait group would be expected to show lower sensitivity to environ-

mental change, as well as a higher adaptive capacity, leading to col-

onization	of	new	habitats	and	therefore	larger	range	shifts	(Angert	
et al., 2011;	 Buckley	 &	 Kingsolver,	 2012; Estrada et al., 2016). 

Movement ability refers to the ability to travel beyond the natal 

K E Y W O R D S
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region (Estrada et al., 2016). In birds, higher movement ability may 

be associated with larger body size and longer wings, or high mi-

gratory ability, providing physiological prerequisites for covering 

longer	distances,	 and	 thereby	enabling	 larger	 range	 shifts	 (Angert	
et al., 2011;	 Buckley	&	Kingsolver,	2012). Conversely, high migra-

tory ability may lead to higher fidelity to established migration sites 

and therefore fewer range expansions (Bensch, 1999), while a larger 

body size can be associated with reduced reproductive potential 

(Saether,	 1988), potentially hindering establishment in new areas 

and	therefore	range	expansions	(MacLean	&	Beissinger,	2017). The 

increasing availability of trait databases spanning whole taxonomic 

groups,	 such	 as	AVONET	 for	 birds	 (Tobias	 et	 al.,	2022), has facil-

itated testing the relationships between such trait categories and 

range shifts empirically. Meta- analyses of studies linking traditional 

traits with range shifts found considerable conflicting evidence for 

trait effects between taxonomic groups, for most traits catego-

ries	 considered,	 and	 weak	 predictive	 power	 overall	 (Beissinger	 &	
Riddell, 2021;	MacLean	 &	 Beissinger,	 2017). Moreover, validation 

of climate risk assessment methods shows trait- based methods to 

have	poor	predictive	ability	(Wheatley	et	al.,	2017). This led to the 

conclusion that traits might be surprisingly poor predictors of range 

shifts and not suitable contributions to climate change vulnerability 

assessments, unless analytical shortcomings were tested and ad-

dressed	(Beissinger	&	Riddell,	2021).

To further investigate the predictive power of traits, Beissinger 

and Riddell (2021) called for better inclusion of exposure- related 

traits in analyses of range shifts. Traditional trait groups considered 

predictors of range shifts, such as ecological generalization and 

movement ability, tend to correspond to the adaptive capacity or 

sensitivity of species, and might therefore not be sufficiently ex-

plaining trends. Exposure- related traits should in theory capture 

the positive relationship between species exposure and range shifts 

(Beissinger	 &	 Riddell,	 2021). Proposed exposure- related traits in-

clude morphologies that influence heat transfer, such as the plum-

age	colouration	of	birds	 (Beissinger	&	Riddell,	2021). In addition, a 

more direct measure of sensitivity to different environmental pres-

sures	may	be	an	 informative	trait	group.	Species	sensitivity	defini-
tions	have	been	criticized	as	being	ambiguous	(Fortini	&	Dye,	2017). 

Correlative	species	distribution	models	(SDMs)	may	present	a	solu-

tion	to	this	problem.	Since	they	quantify	the	probability	of	presence	
under different environmental conditions, they reflect a species' re-

lationship with the environment more directly, and sensitivity may 

simply be quantified as the degree of influence of environmental 

variables on a species' occurrence.

Studies	 have	 discussed	 issues	 in	 quantifying	 species	 ranges	
as	 a	 potential	 weakness	 of	 analyses	 of	 range	 shifts	 (Beissinger	 &	
Riddell, 2021;	 Şekercioğlu	 et	 al.,	 2008;	 Yalcin	 &	 Leroux,	 2017). 

Indeed, empirical studies are difficult due to the nature of observa-

tion data used to quantify range shifts. Common issues include lack 

of available data, non- standard survey protocols and observer bias, 

autocorrelation issues due to the spatial nature of the data, and im-

perfect	detection	(Araújo	et	al.,	2019; Beale et al., 2010; Beissinger 

&	 Riddell,	 2021;	 Faisal	 et	 al.,	 2010). The increasing availability of 

citizen	 science	 observations	 has	 helped	 fill	 data	 gaps	 (Feldman	
et al., 2021), but these data are often collected in different formats 

and	come	with	a	variety	of	sampling	biases	to	account	for	(Isaac	&	
Pocock, 2015; Zhang, 2020), making it challenging to include them 

in	 analyses.	 In	 recent	 years,	 SDMs	have	gained	popularity,	 due	 to	
their ability to overcome many of the issues in estimating species 

ranges	(Franklin,	2023; Kéry et al., 2013). The extension to spatio- 

temporal	 SDMs	has	 shown	promising	 results	 for	 estimating	 range	
shifts, representing the probability of transitions between time pe-

riods, taking into account spatial and temporal changes in sampling 

effort (Beale et al., 2013; Bled et al., 2013; Grattarola et al., 2023). 

The recent development of the Integrated Nested Laplace 

Approximation	 (INLA)	method	 and	 its	 associated	 R-	INLA	 package	
(Bakka et al., 2018;	Lindgren	&	Rue,	2015) has made it possible to 

develop	and	run	complex	Bayesian	SDMs	with	drastically	 reduced	
computation times, but similar accuracy, compared to other meth-

ods (Blangiardo et al., 2013), while accounting for common issues 

like spatial clumping and sparse data (Redding et al., 2017).	R-	INLA	
is	continuously	being	developed,	with	the	addition	of	the	Stochastic	
Partial	Differential	Equation	(SPDE)	allowing	efficient	modelling	of	
spatial autocorrelation (Lindgren et al., 2011), further enabling ro-

bust	assessment	of	range	shifts.	The	recent	development	of	an	INLA	
framework for data integration allows combining different data 

sources of species occurrence, potentially improving predictions 

for species with poor data availability (Grattarola et al., 2023; Isaac 

et al., 2020; Morera- Pujol et al., 2023;	Sadykova	et	al.,	2017).

At	the	core	of	these	SDMs	is	the	estimation	of	the	species'	niche	
shape. These models correlate observed occurrences of species with 

environmental factors, determining conditions favouring or inhibit-

ing	their	presence.	However,	species	distributions	may	be	influenced	
more by dispersal constraints, like geographical barriers, than phys-

iological	 limits.	This	 leads	SDMs	to	often	reflect	the	realized	niche	
rather	 than	 the	 fundamental	 niche	 (Franklin,	2023).	 For	more	 ac-
curate	 predictions	 under	 future	 climate	 scenarios,	 SDMs	 strive	 to	
approximate the fundamental niche (Booth, 2017; Peterson, 2001). 

To	enhance	this	estimation,	efforts	include	expanding	SDMs	beyond	
single regions or time frames, incorporating broader environmental 

conditions	through	methods	like	adding	paleontological	data	(Jones	
et al., 2019) or observations of species in new habitats (Beaumont 

et al., 2009; Gallien et al., 2012). The availability of global climate 

data products and observation data reaching back decades provides 

an	additional	avenue:	SDMs	that	include	a	temporal	structure,	that	
is, model species distributions within multiple time slices, can help 

move closer to characterizing the fundamental niche, relating spe-

cies observations to changing environments over time, and hence a 

wider range of environmental conditions (Myers et al., 2015).

The aim of this study was to apply recently developed integrated 

spatio-	temporal	 SDMs	 in	 R-	INLA	 to	 estimate	 ranges	 of	 species,	
quantify range shifts, and test the predictive power of traditional 

trait groups, as well as sensitivity traits and an exposure- related 

trait. In terms of range shifts, we focused on changes in range size, 

a	 key	 dimension	 of	 distribution	 change	 (Yalcin	&	 Leroux,	 2017). 

We	 based	 our	 study	 on	 40 years	 of	 bird	 observations	 in	 East	
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African	 savannahs.	 Increasing	 anthropogenic	 pressure	 in	 the	
form of inappropriate grazing regimes has led to accelerated con-

version	 to	bare	ground	 in	 the	 region	 (Hill	&	Guerschman,	2020), 

resulting	 in	 a	 drastic	 change	 in	 habitat	 structure.	 Additionally,	
rainfall has become more intense on individual days (Dunning 

et al., 2018; Ongoma et al., 2018;	 Shongwe	 et	 al.,	 2011), while 

the number of dry days and frequency and duration of droughts 

has increased (Gebrechorkos et al., 2019a;	 Gebremeskel	 Haile	
et al., 2019; Nicholson, 2017;	 Vizy	 &	 Cook,	 2012). Under cur-

rent climate change scenarios, these trends are predicted to be-

come	more	 extreme	 (Finney	 et	 al.,	2020; Li et al., 2021; Ogega 

et al., 2020).	 Savannah	birds	 are	known	 to	be	 sensitive	 to	 these	
changes (e.g. Beale et al., 2013;	Dean	&	Milton,	2001). Previous 

studies have identified bare ground as one of the key predictors of 

savannah bird ranges since reproductive behaviour as well as for-

aging	strategies	are	commonly	tied	to	the	grass	structure	(Fisher	
&	Davis,	2010;	 Schaub	 et	 al.,	2010). Rainfall has been shown to 

directly influence savannah bird populations, due to its ties to 

food availability and grassland productivity (Dean, 1997;	Dean	&	
Milton, 2001; Lloyd, 1999). Due to a long- running bird observa-

tion	program,	the	Tanzania	Bird	Atlas,	observations	are	available	
for four decades, providing enough time to observe meaningful 

range shifts, as well as pronounced environmental changes. Based 

on	Tanzania	Bird	Atlas	data,	Beale	et	al.	(2013) provided empirical 

evidence that Tanzanian savannah birds have shifted their ranges 

over the last four decades, due to a combination of climate and 

habitat	change,	making	them	an	ideal	study	group.	Here,	we	tested	
the following hypotheses: (1) range shifts are positively associ-

ated with ecological generalization; (2) range shifts are positively 

correlated with movement ability; (3) range shifts are positively 

correlated with exposure- related traits; and (4) range shifts are 

positively correlated with sensitivity traits.

2  |  METHODS

We	estimated	range	shifts	using	spatio-	temporal	models	in	the	R-	
INLA	package	that	integrated	citizen	science	and	bird	Atlas	data,	
and	accounted	for	sampling	effort	and	autocorrelation.	We	derived	
species- specific occurrence–environment relationships, informed 

by	the	observed	temporal	change	of	distributions.	We	correlated	
traits, derived from trait databases and model outputs, with ob-

served range shifts, using robust regression models. Figure 1 

provides an overview of the main analytical steps included in the 

data	analysis.	A	full	description	of	the	spatio-	temporal	integrated	
model is provided in the supplementary information file of this 

document.

2.1  |  Bird data

We	obtained	bird	observation	data	from	the	Tanzania	Bird	Atlas,	
as well as citizen science data from the Cornell Laboratory of 

Ornithology	citizen	science	database	eBird	(Sullivan	et	al.,	2009). 

The	Atlas	dataset	 contains	over	1	million	bird	observations,	 col-
lected by volunteer and professional ornithologists since the 

1960s.	 It	 consists	 of	 systematically	 gathered	 records,	 summa-
rized into quarter- degree squares (approximately 50 × 50 km	 at	
the	equator).	Due	to	the	systematic	nature	of	sampling,	the	Atlas	
dataset provides broad geographic coverage of Tanzania (Beale 

et al., 2013). Observer effort and spatial and temporal coverage are 

variable but contained in the metadata. eBird is a steadily growing 

resource for citizen science bird observations, increasingly used in 

scientific studies. Data were retrieved in May 2021 for Tanzania 

and	filtered	following	best	practices	(Strimas-	Mackey	et	al.,	2023). 

This included filtering the eBird records to retain only complete 

checklists, defined as containing all species seen on a given outing, 

as well as only those records that were reviewed and approved by 

a	volunteer	reviewer.	We	included	only	those	records	that	had	as-
sociated effort and only included observations that spanned less 

than	15 km,	 lasted	between	5	 and	360 min,	 and	 involved	30	ob-

servers or fewer, due to declining detection rates in larger groups 

(Strimas-	Mackey	et	al.,	2023). Because of the unstructured nature 

of eBird records, spatial coverage of Tanzania is considerably re-

duced	 compared	 to	 the	 Atlas	 data,	 and	 observations	 are	 biased	
spatially, for example, towards roads (Zhang, 2020). To account 

for spatial variation, we only included records that contained as-

sociated	GPS	locations.	Both	Atlas	and	eBird	records	were	filtered	
to those records that fall inside the Tanzania country boundary, 

using the ‘gIntersection’ function in the R package ‘rgeos' (Bivand 

et al., 2017).	We	chose	to	focus	on	savannah	specialists,	since	they	
are, in this region, the most likely group to show detectable re-

sponses to climate change (for a discussion, see Beale et al., 2013), 

while	also	being	well	represented	in	both	Atlas	and	eBird	data.	We	
based	our	choice	of	species	on	a	published	 list	of	137	Tanzanian	
savannah specialist birds (Beale et al., 2013).	Following	the	initial	
filtering steps described above, we retained 91 species that were 

represented	in	both	the	Tanzania	Bird	Atlas	and	eBird	datasets,	as	
candidates	for	the	SDMs.

2.2  |  Environmental covariates

Several	 environmental	 covariates	 were	 included	 in	 the	 models,	
accessed and processed through Google Earth Engine (Gorelick 

et al., 2017). To reflect climatic variables, we chose factors that are 

known to affect grassland bird demographics. These included vari-

ables	related	to	rainfall	(annual	rainfall	[Sicacha-	Parada	et	al.,	2021], 

median annual dry spell duration as the number of continuous days 

with	less	than	1 mm	of	rainfall	[Brawn	et	al.,	2016]), and annual maxi-

mum	temperature.	We	derived	 rainfall	data	 from	the	CHIRPS	ver-
sion	2	dataset	(Funk	et	al.,	2015) and calculated the dryspell duration 

using the Google Earth Engine cloud computing platform (Gorelick 

et al., 2017).	We	accessed	temperature	data	from	the	‘Climatologies	
at	high	resolution	for	the	earth's	land	surface	areas’	(CHELSA)	version	
2.1 data product (Karger et al., 2017). To reflect habitat alteration, we 
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included a measure of bare ground cover, derived from Landsat im-

ages	using	a	machine	learning	algorithm	(Wiethase	et	al.,	2023).	As	a	
measure of anthropogenic pressure, we included a human footprint 

layer, which quantifies the amount of anthropogenic alteration of 

habitats (Venter et al., 2016). These environmental variables also re-

flected the recent environmental change experienced in the region, 

which include changes to dry spell duration and rainfall (Liebmann 

et al., 2017;	Lyon	&	DeWitt,	2012),	increasing	bare	ground	(Wiethase	
et al., 2023), increasing maximum temperatures (Daron, 2014), and 

growing populations leading to increasing agriculture conversion and 

urbanization (Bullock et al., 2021).	All	covariates	were	re-	projected	
to the lowest resolution layer available, resulting in a pixel resolution 

of	approximately	5 km.	For	a	detailed	overview	of	the	covariates	and	
data	sources,	see	Supplementary	Table S1.

F I G U R E  1 Overview	of	the	main	analytical	steps	conducted	in	the	analysis.	R-	INLA:	R	package	for	implementing	the	integrated	nested	
Laplace	approximation.	TZ	Atlas:	Tanzania	Bird	Atlas.	Colour	schemes	correspond	to	methodological	groups.	Blue:	Species	distribution	
model	components	and	inputs.	Yellow:	Species	distribution	model	and	outputs.	Orange:	Traits	derived	from	literature.	Green:	Trait–range	
shift analysis and output.
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2.3 | Estimating species ranges

We	estimated	ranges	at	approximately	28 km	resolution	using	sepa-
rate integrated distribution models for each species. This coarser 

resolution allowed us to run the distribution models at greater compu-

tational efficiency while closely matching the resolution used in similar 

studies	(Adde	et	al.,	2021; Morera- Pujol et al., 2023).	We	followed	the	
integrated	SDM	approach	outlined	in	Isaac	et	al.	(2020), which allowed 

us	to	integrate	the	eBird	and	Atlas	data	in	a	single	model,	despite	their	
differences in sampling structure (Isaac et al., 2020). In short, model- 

based data integration retains the structure of each dataset, while also 

accounting for weaknesses, such as sampling bias. This is achieved 

by	specifying	separate	observation	models	for	each	dataset.	As	part	
of the data integration process, environmental covariate layers cor-

responding	 to	 observation	 data	 are	 sampled	 at	 point	 locations.	We	
retained	the	5 km	resolution	of	covariates	during	this	process	rather	
than aggregating to a coarser resolution, to sample the corresponding 

covariate layers with greater precision.

The	model	was	implemented	in	a	Bayesian	framework	in	the	‘INLA’	
package version 23.04.24 (Bakka et al., 2018;	Lindgren	&	Rue,	2015) 

using R version 4.2.3 (R Core Team, 2021).	 INLA	 is	 an	 alternative	
to Markov chain Monte Carlo methods (MCMC) for approximate 

Bayesian inference, with similar accuracy but higher computational 

speed	(De	Smedt	et	al.,	2015), at the cost of limited flexibility, as it is 

restricted	 to	 latent	Gaussian	models.	We	modelled	 the	 true	 species	
distribution as a Log- Gaussian Cox Process (Møller et al., 1998) with 

an intensity function that defined the expected intensity at a given 

location, given the environmental covariates and a Gaussian random 

field. The Gaussian random field aimed to account for spatial autocor-

relation	and	unexplained	effects,	and	was	estimated	using	the	SPDE	
for computational efficiency (Lindgren et al., 2011).	For	each	species,	
we included a shared random field for both data sources and a random 

field for eBird data alone, which accounted for unexplained variation 

in sampling effort unique to the eBird data (e.g. increased sampling 

along	 road	 networks).	We	 modelled	 the	 intensity	 using	 a	 binomial	
model	with	a	complementary	log–log	(cloglog)	link	function	(see	Adde	
et al., 2021).	We	included	separate	effort	variables	for	each	bird	data-
set.	For	eBird	data,	this	was	the	checklist	duration,	automatically	re-

corded	by	the	eBird	application	in	minutes.	For	Atlas	data,	this	was	the	
number of unique days any birds had been reported from a cell within 

the survey periods. During the model call, we specified the ‘Laplace’ 

strategy for approximations and default integration strategy.

We	modelled	 the	 relationship	 between	 environmental	 covariates	
and bird occurrence in a non- linear fashion using penalized regression 

splines (Beale et al., 2014), in accordance with the expectation of spe-

cies	existing	 in	niche	spaces.	We	avoided	smoothing	approaches	that	
fit regression curves closely to the data (e.g. random walk models in 

INLA),	following	the	sentiment	that	such	smoothing	can	quickly	lead	to	
biologically	implausible	effects	in	SDMs	(Hofner	et	al.,	2011). This ap-

proach reflected our prior expectation that the probability of presence 

relates to environmental variables in an approximately monomodal way, 

representing	a	single	continuous	niche	space.	We	fitted	the	relationship	
with restricted flexibility by using a small set of regression splines, based 

on thin- plate regression spline basis functions (adapted from steps pro-

vided in Crainiceanu et al., 2005).	We	selected	control	points	 for	 the	
regression splines based on the density distribution of covariate values 

covering the whole study area. In addition to the environmental fixed 

effects, we included the scaled coordinates as linear fixed effects in the 

model. This ensured that the spatial random effect fitted well in the 

case of species with very peripheral distributions (Beale et al., 2014).

Bird observation data and covariates were grouped into two time 

periods (time period 1: 1980–1999, time period 2: 2000–2020), and 

a	temporal	first-	order	autoregressive	process	(AR1)	was	integrated	
into	the	model	structure.	In	AR1	models,	the	probability	of	presence	
in one time period is influenced by the probability of presence in 

the previous period. This overall model structure allowed us to es-

timate ranges at the two time periods while keeping the species- 

covariate relationships fixed, thereby reflecting the assumption that 

fundamental environmental limits of birds did not evolve during the 

time period (Radchuk et al., 2019).	Simultaneously,	this	allowed	us	to	
better estimate the species occurrence–environment relationship, 

as this was influenced by the species ranges in two separate time 

periods, taking into account movement over time.

To derive pixel- level estimates closely related to the probability of 

presence produced by occupancy models, we projected posterior in-

tensity estimates onto the study area under the assumption of constant 

high sampling effort (95 percentile value of overall sampling effort in 

the study), and we back- transformed these estimates to the probabil-

ity scale. The pixel- level values therefore represented the probability of 

presence given that sampling effort is high. Our approach diverges from 

traditional occupancy models in a critical aspect. Under our framework, 

assuming an infinitely high sampling effort theoretically leads to a prob-

ability of presence of one (i.e. absolute certainty of presence) across all 

areas. In contrast, traditional occupancy models distinguish between the 

likelihood of presence and sampling effort, allowing for the possibility 

of	absence	regardless	of	sampling	intensity.	For	the	sake	of	readability	
and simplicity, we use the term ‘probability of presence’ to describe our 

estimates	from	here	on	out.	We	removed	the	estimates	of	the	separate	
eBird	random	field	from	our	final	score.	Fixing	high	sampling	effort	and	
removing the eBird- specific random field allowed the underlying eco-

logical process to be visualized without variations in observation inten-

sity due to effort. Due to the nature of the model, projected ranges are 

sensitive	to	the	choice	of	the	sampling	effort	constant.	We	conducted	
a sensitivity analysis, to test our assumption that this relationship with 

constant sampling effort should be linear and with no bearing on the 

ranking	of	species.	For	this,	we	refitted	models	using	55,	65,	75,	and	95	
percentile values for effort, checked linearity of the resulting range sizes 

using R- squared values, and calculated the change in the relative ranking 

of species by range size across the different effort quantile values.

2.4  |  Mesh specification, prior choice, and 
model evaluation

In	 INLA,	 the	 SPDE	 method	 for	 approximating	 the	 spatial	 ran-

dom field achieves computational efficiency by utilizing a 
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computational mesh, that is, a surface of triangles covering the 

study area (Lindgren et al., 2011;	 Lindgren	 &	 Rue,	 2015). The 

specification of the spatial resolution of the mesh, that is, the 

triangle size, has to be considered carefully, as growing research 

highlights the potential effect of this parameter on model re-

sults (Dambly et al., 2023; Righetto et al., 2020). In the absence 

of well- established guidelines on choosing the optimal mesh size, 

we initially followed rules of thumb, that is, basing first values for 

the mesh size on the estimated spatial range of model predictions 

(Bakka, 2017).	 Following	 this,	 we	 opted	 to	 model	 bird	 distribu-

tions using a range of different mesh size specifications close to 

these initial values, for each of the study species, with triangle 

sizes	 of	 0.55°,	 0.75°,	 1°,	 1.45°,	 and	 1.65°	 (approximately	 61,	 84,	
111,	 161,	 and	183 km).	 Two	hyperparameters,	 namely	 range	 and	
marginal variance (sigma), exert control over the spatial fields. 

The range determines the smoothness of the spatial field, that 

is, the distance between the high and low points, while the vari-

ance dictates the amplitude of these peaks and troughs. In the 

Bayesian framework, prior values must be assigned to these hy-

perparameters.	We	adopted	the	Penalized	Complexity	(PC)	priors	
framework, which is a technique that provides easy- to- interpret 

and	modifiable	priors	(Simpson	et	al.,	2017). PC priors are weakly 

informative, which allows the data to mainly dictate the posterior 

for	each	hyperparameter.	For	each	combination	of	a	species	and	
mesh resolution, we chose a separate set of priors for either the 

shared	or	eBird	random	field.	We	chose	the	range	and	sigma	pri-
ors relative to the spatial extent of the presence records of each 

individual	 species,	 as	0.5,	0.7,	or	0.9	 times	 the	 spatial	 extent,	 to	
test	the	effect	of	prior	choice	on	model	results.	We	set	the	prob-

ability that the range is below the chosen value, and the sigma is 

above the chosen value, to 50%. This combination of PC priors 

and mesh resolutions resulted in a sensitivity analysis containing 

15	different	model	configurations	per	species,	for	a	total	of	1365	
models. To evaluate the performance of each model, we calculated 

the logged negative sum of the conditional predictive ordinate 

scores (log- CPO), a recommended procedure for choosing the op-

timal mesh resolution (Righetto et al., 2020), where a lower score 

corresponds	to	the	better	fitting	model.	Additionally,	we	checked	
model outputs for visible convergence issues (e.g. regions with 

probability scores of 1 only and no spatial smoothness, or effect 

plots with abrupt drops to zero or 1 on the y- axis), and derived the 

spatial range of the random field estimated by the model (where 

a range much larger than the total study area indicates poor esti-

mation	of	the	spatial	effect).	For	each	species,	candidate	models	
were those that passed visual convergence checks and showed 

successful estimation of the spatial effect, and the final model was 

chosen	based	on	 the	 lowest	 log-	CPO	 score.	 For	 a	 final	measure	
of model fit, we extracted model predictions at the bird obser-

vation	points	 (eBird	and	Atlas)	using	the	 ‘extract’	 function	 in	the	
package	 ‘terra’	 (Hijmans	 et	 al.,	2023).	We	 then	 compared	model	
predictions with observed presence and absence data separately 

for each time period, and calculated the area under the receiver 

operating	 characteristic	 (ROC)	 curve	 (AUC),	 as	 well	 as	 sensitiv-

ity (proportion of correctly predicted presences) and specificity 

(proportion of correctly predicted absences) using the package 

‘pROC’ (Robin et al., 2011)	 in	 R.	While	AUC	 can	 be	 problematic	
when generating pseudo- absences with presence- only data (Lobo 

et al., 2008;	Shabani	et	al.,	2016), issues are reduced for detection/

non- detection data as used in this study.

In addition to the PC priors, we specified Gaussian fixed effect 

priors, equally for all species. These parameters describe the slope 

of the relationship between the covariate and occurrence on the link 

function of the response, and are applied to the fixed effects of the 

model.	We	chose	Gaussian	priors	on	the	fixed	effects	with	0	mean	
and precision of 1, suitable as a vague prior given the complemen-

tary log–log link function used here.

2.5  |  Species traits

We	 included	 traits	 broadly	 falling	 under	 the	 categories	 set	 out	 in	
Estrada et al. (2016), as well as an exposure- related trait and sen-

sitivity (Estrada et al., 2016). Table 1 gives an overview of the traits 

and associated data sources. The sensitivity traits were quantified 

from	the	SDM	estimates	based	on	variance	partitioning,	broadly	fol-
lowing Beale et al. (2014). This was the percentage of variation in 

presence probability explained by any of the environmental covari-

ates	alone.	Sensitivity	was	therefore	quantified	in	line	with	the	IPCC	
definition, as the degree to which a species is affected by or sus-

ceptible to environmental change (IPCC, 2007). Due to the fact that 

both sensitivity and range shift scores were derived from the same 

distribution models, an important consideration is the potential for 

the two variables to be inherently correlated with each other, that 

is, with larger range shifts coinciding with higher sensitivities. If this 

were the case, we would expect to find consistent and statistically 

clear positive correlations between range shifts and sensitivity, an 

outcome that our analysis tested implicitly. Model- derived environ-

mental niche breadth was quantified based on the estimated niche 

shape, as the range of values associated with a probability of pres-

ence above 50%. This quantification relied on the assumption of a 

single	environmental	niche.	Where	effect	plots	showed	a	probability	
of presence above 50% at low as well as high environmental values, 

this	therefore	indicated	issues	in	estimating	the	niche	shape.	Since	in	
those	cases,	the	SDM	still	identified	high	presence	associations	with	
low and high environmental values regardless of the niche shape, we 

set	the	niche	breadth	to	the	maximum.	Acknowledging	that	this	 is	
an imperfect solution, we quantified the extent of the issue and its 

effect	on	the	final	regression	analysis.	We	expected	the	relationship	
between body mass and range shifts to be non- linear, meaning that a 

hypothetical difference of 5 grams of body mass should play a larger 

role	 for	small	 species	 than	for	 large	species	 (up	to	8 kg	body	mass	
in	this	study).	Hence,	we	transformed	mass	measurements	using	a	
natural	log.	All	continuous	traits	were	centred	and	scaled	to	a	mean	
of zero and standard deviation of one.
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2.6  |  Quantifying range shifts

We	 analysed	 the	 effect	 of	 traits	 on	 three	measures	 of	 range	 shifts	
for each species: Total range change, and two transition scores (ex-

pansion, contraction). Due to the nature of the model (projections 

under an assumption of high constant sampling effort), these transi-

tion	scores	represented	the	change	in	estimated	intensity.	We	calcu-

lated the measures of range shifts based on the pixel- level probability 

of presence in time period 1 (P(presence)1980−1999) or time period 2 

(P(presence)2000−2020), using the sum of probabilities (presence or 

transitions) over all pixels i to derive a single measure that related to 

geographical	area	(total	range	size	or	range	expanded/contracted).	We	
calculated the total range change as the range size in time period 2 

divided by the range size in time period 1, log- transformed to scale 

proportional increases the same as proportional decreases (1):

We	calculated	the	pixel-	level	probability	of	range	contraction	as	
the probability of absence in time period 2 multiplied by the prob-

ability of presence in time period 1, and calculated the sum over all 

pixels i to derive the expected total range lost (2):

We	calculated	the	pixel-	level	probability	of	range	expansion	as	
the probability of absence in time period 1 multiplied by the prob-

ability of presence in time period 2, and calculated the sum over all 

pixels i to derive the expected total range gained (3):

Importantly, we normalized the transition metrics by a sto-

chastic uncertainty score. It necessarily follows from the transition 

calculations above that in places where little to no change occurred, 

pixel- level contraction and expansion probabilities were highest 

if the probability of presence was 0.5 in both time periods (e.g. 

(1 − 0.5) × 0.5	 is	 larger	 than	 (1 − 0.1)	× 0.1	 or	 (1 − 0.9)	× 0.9).	 Initial	
testing revealed that such areas of high sustained stochasticity can 

inflate transition scores if not accounted for, producing misleading 

transition	 metrics.	We	 therefore	 defined	 a	 stochastic	 uncertainty	
score, as the binomial variance in time period 1 (1980–1999) (4). 

Where	the	probability	of	presence	was	closest	to	0.5	in	both	time	
periods (i.e. contraction or expansion scores were inflated due to 

high stochasticity), this uncertainty score was equal to the transi-

tion metrics, allowing effective normalization by division. The sum 

of the uncertainty score over all pixels i represents the area of high 

stochastic uncertainty (4):

The normalized transition scores represented the ecologically 

meaningful area gained or lost, beyond stochastic noise. Like the 

total range change metric, these scores were log- transformed. 

Henceforth,	they	are	referred	to	as	‘Meaningful	contraction’	(5)	and	
‘Meaningful	expansion’	(6).	On	the	linear	scale,	a	score	of	1	indicated	
that changes were exactly as expected by chance (area gained or lost 

equal to the area of high uncertainty), and a value of 2 indicated that 

there were twice as many expansions or contractions as expected by 

chance.	A	score	of	0.5	indicated	that	50%	fewer	transitions	occurred	
than expected by chance.

(1)Total range change = log

�
∑

i
P(presence)2000−2020,i

∑

i
P(presence)1980−1999,i

�

(2)Range lost =
∑

i

((

1 − P(presence)2000−2020,i
)

× P(presence)1980−1999,i
)

(3)Range gained =
∑

i

((

1 − P(presence)1980−1999,i
)

× P(presence)2000−2020,i
)

(4)
Stochastic uncertainty score=
∑

i

((

1−P(presence)1980−1999,i
)

×P(presence)1980−1999,i
)

(5)Meaningful contraction = log

�

Range lost

Stochastic uncertainty score

)

(6)Meaningful expansion = log

�

Range colonised

Stochastic uncertainty score

)

TA B L E  1 Overview	of	the	traits	included	in	the	analysis	of	range	shifts.

Mechanism Trait Description Source

Ecological generalization Locomotory niche while 

foraging

Aerial,	Terrestrial,	Insessorial,	Generalist AVONET

Trophic group Omnivore,	Herbivore,	Carnivore AVONET

Niche specialization Niche breadtha Model- derived

Movement	ability/Site	fidelity Migratory ability Low,	Medium,	High AVONET

Hand-	wing	index (100	*	Kipp's	distance)/Wing	length AVONET

Body mass Species	average	(gram) AVONET

Exposure- related Mean dorsal reflectance 300–700 nm Cooney et al. (2022)

Sensitivity Sensitivity	to	environmenta Variation of presence probability explained Model- derived

Note:	Sensitivity	and	niche	breadth	were	derived	from	the	integrated	species	distribution	model	and	corresponded	to	the	environmental	covariates	
included in the model formula (highest temperature, annual rainfall, longest dry spell duration, bare ground cover, human footprint). Niche breadth 

was calculated as the range of covariate values where P(presence) >0.5, while sensitivity was calculated as the percentage of model variation 

explained by the covariate. Mean dorsal reflectance was adapted from data published by Cooney et al. (2022).	All	other	traits	were	derived	from	
the	AVONET	database	(Tobias	et	al.,	2022). ‘Kipp's distance’ describes the distance between the tip of the first secondary feather and the tip of the 

longest primary feather.
aHottest	temperature,	annual	rainfall,	longest	dry	spell,	bare	ground	cover,	human	footprint.
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2.7  |  Trait–range shift relationship

For	a	statistical	test	of	the	trait–range	shift	relationship,	we	built	addi-
tive	linear	Bayesian	regression	models	with	default	priors	in	the	R-	INLA	
package	 (R	version	4.3.1,	R-	INLA	version	23.09.09).	We	chose	 robust	
regression models over more traditional methods since they effectively 

reduce the weight of outliers through a t- distributed error structure 

(Wang	et	al.,	2018). In essence, this was chosen to help capture broad 

underlying trends, decreasing the potential influence of outlier species. 

We	fitted	separate	regression	models	with	each	of	the	three	measures	of	
range shifts as a response, and the species traits as explanatory variables. 

In the regression dataset, each row represented range shift metrics and 

associated	traits	for	an	individual	species	in	the	study.	Since	higher	sen-

sitivity	generally	coincides	with	smaller	niches	(Rinnan	&	Lawler,	2019), 

likely leading to a correlation between the two, we fitted separate mod-

els containing either sensitivity and all other traits as independent vari-

ables, or niche breadth and all other traits. This specification of model 

formulas	led	to	a	total	of	six	separate	linear	models.	We	conducted	cross-	
validation model checking to evaluate the goodness of fit of the models. 

For	each	model,	this	was	based	on	the	probability	integral	transform	(PIT)	
values,	a	recommended	method	of	Bayesian	model	criticism	(Ferkingstad	
et al., 2017).	For	a	well-	fitting	model,	we	expected	uniformity	in	the	dis-
tribution of PIT values, translating into a good match between observa-

tions and model predictions (Gneiting et al., 2007;	Wang	et	al.,	2018).	We	
fitted posterior model estimates to the observation data using posterior 

marginals of linear combinations. This allowed us to conduct a final visual 

inspection for outliers that might be driving results despite the robust 

regression	approach.	Where	such	outliers	were	identified,	we	compared	
model	results	with	and	without	the	outlier	included.	We	evaluated	the	
statistical importance of traits based on the distance of posterior esti-

mates	from	zero,	taking	into	account	95%	credible	intervals.	Where	cred-

ible intervals did not overlap zero and were narrow, trait effects were 

considered especially well supported by the model. Due to the potential 

influence	of	 phylogenetic	 relatedness	 on	 results	 (Angert	 et	 al.,	2011), 

we first retrieved taxonomic information for our study species from the 

National Center for Biotechnology Information (NCBI) database using 

the	‘taxize’	package	in	R	(Chamberlain	&	Szöcs,	2013).	We	then	refitted	
the linear models specifying a random intercept term of family nested in 

order	as	an	‘iid’	model	with	default	priors	(Faraway,	2016) and checked 

the influence on model results.

3  |  RESULTS

Of	the	initial	list	of	91	savannah	birds	that	we	built	SDMs	for,	79	spe-
cies were well supported based on the aforementioned model evalu-

ation steps. Twelve species were excluded from further analysis since 

either none of the models converged or models failed to produce any 

estimates that passed evaluation steps. Expert review of the model out-

put	confirmed	plausible	predicted	ranges	for	all	79	species,	reflecting	
expert knowledge of distributions and geographical boundaries. The 

average	model	AUC	was	82.3%,	suggesting	the	model	output	reflected	
the	observation	data	well.	Average	dorsal	reflectance	values	were	not	

available for a set of 22 species, and we excluded these species from the 

regression	analysis.	The	trait	category	of	‘Trophic	level:	Scavenger’	con-

tained	only	one	species	(White-	backed	vulture,	Gyps africanus) and was 

therefore removed from the analysis. The final dataset contained a total 

of	57	species	belonging	to	26	families	and	11	orders	(Supplementary	
Table S2).	Supplementary	Table S2 provides an overview of the number 

of detections for each species and observation dataset, and supplemen-

tary table 3 provides an overview of the sample sizes for each trait cat-

egory.	As	expected,	we	found	that	range	size	estimates	were	sensitive	
to the choice of the effort constant. Testing revealed that range size es-

timates increased with effort in a highly linear way, with little change to 

the	relative	species	ranks	for	most	species	(Supplementary	Figure S1). 

We	found	only	very	minor	effects	of	including	a	random	effect	of	phy-
logeny	in	the	linear	models	(Supplementary	Figure S2), and the results 

presented here are based on the simpler models without random in-

tercepts.	We	found	cases	of	improperly	estimated	niche	shapes	in	11	
of	the	57	species.	However,	this	was	predominantly	found	for	human	
footprint niche breadth (8 cases), followed by niche breadth of dry spell 

duration (3 cases) and rainfall (1 case). Re- running the models with the 

11 species excluded revealed that the relevant model estimates were 

not	affected	(Supplementary	Figure S3).

Kori bustard (Ardeotis kori) showed one of the largest range 

contractions,	disappearing	from	its	Western	range	(Figure 2a, 30% 

greater	 contraction	 than	expected	by	chance).	Among	 the	 species	
with the highest meaningful expansion scores was the Von der 

Decken's hornbill (Tockus deckeni), showing a westward range ex-

tension into miombo woodland areas (Figure 2a, range gained 220% 

greater than expected by chance).

Total range changes varied between species and were predom-

inantly positive (Figure 2b), meaning that most species increased 

their range relative to the initial range size. In the case of the bare- 

eyed thrush (Turdus tephronotus), this expansion was as high as 

3.9 times larger than what would be expected by chance. Overall, 

meaningful contractions rarely exceeded what was expected by 

chance and were often lower than expected chance transitions. 

For	a	number	of	species,	 including	Kori	bustard,	both	contractions	
and expansions were considerably higher than total range changes 

(Figure 2b). In those cases, large range losses in one region coincided 

with	 large	 gains	 in	 another	 (Kori	 bustard	 expanding	 its	 Southern	
range, Figure 2a), highlighting the importance of considering more 

than total range change alone.

3.1  |  Ecological generalization

We	found	a	statistically	significant	increase	in	total	range	change	in	gen-

eralist foraging species (Figure 4a), driven by fewer contractions and 

more expansions (Figure 3).	However,	 the	 statistical	 significance	was	
barely conserved between models including niche breadth or sensitivity 

covariates (the group ‘generalist’ contained only three species), indicat-

ing a poor statistical signal and limited interpretability (Figure 3). There 

was no clear association between any range shift metric and trophic 

levels, as well as most measures of niche breadth (Figure 3).	Hottest	
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F I G U R E  2 Overview	of	range	shifts	observed	in	the	study.	(a)	Raw	presence	and	absence	data	and	posterior	median	probability	of	
presence estimates, for example, species in the study. Red points/squares on the raw observations plots show raw species detections, 

while	black	points/squares	show	nondetections.	Points	represent	eBird	data	records,	and	squares	represent	Bird	Atlas	records.	The	colour	
gradient in the model estimates plots shows the probability of presence as estimated by the model, with more yellow colours signifying a 

higher probability of presence. Dark blue and dark purple colour outlines highlight the amount of range shifts corresponding to the example 

species. Dark blue: Kori bustard (Ardeotis kori); dark purple: Von der Decken's hornbill (Tockus deckeni). (b) Relative change factor for 

range shifts of individual species between the time periods of 1980–1999 and 2000–2020, separated into total range change, meaningful 

contraction	scores,	and	meaningful	expansion	scores.	Values	on	the	y-	axis	are	presented	on	the	linear	scale.	A	relative	change	factor	of	1	
corresponds to no meaningful change for contractions or expansions (area lost or gained equal to area of chance transitions), and no change 

for	total	range	change	(range	in	1980–1999	equal	to	range	in	2000–2020).	A	relative	change	factor	of	2	corresponds	to	a	doubling	of	area,	
and a factor of 0.5 to a halving of area.
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    |  11 of 20WIETHASE et al.

temperature niche breadth showed a statistically significant positive 

correlation with contractions and a negative correlation with expansions 

(Figure 3b,c).	However,	this	effect	was	small,	with	an	11.9%	increase	in	
contractions for a 10 Celsius increase in niche breadth (Figure 4b).

3.2  |  Movement ability

We	 found	 no	 clear	 associations	 between	 migratory	 ability,	 body	
mass or hand- wing index, and any range shift metric (Figure 3).

F I G U R E  3 Parameter	estimates	and	their	95%	credible	intervals	for	INLA	model	results	predicting	three	measures	of	range	shifts:	Total	
range	change,	meaningful	contraction	scores,	and	meaningful	expansion	scores.	Figure	(a–c)	are	derived	from	models	including	human	
footprint, longest dry spell duration, hottest temperature, annual rainfall, and bare ground cover as niche breadth scores (highlighted in 

orange).	Figure	(d–f)	are	derived	from	models	including	that	same	set	of	variables	as	sensitivity	scores	(highlighted	in	blue).	Parameters	with	
credible intervals that do not overlap zero, or credible intervals of other factor levels for categorical variables, may be considered strong 

effects	in	the	Bayesian	models,	and	are	highlighted	in	green.	For	categorical	parameters,	this	signifies	that	a	trait	level	within	a	category	is	
statistically different from the reference level. The reference levels are ‘Migratory ability: Low’, ‘Locomotory niche: Insessorial, and ‘Trophic 

level: Carnivore’.
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3.3  |  Exposure- related trait

Dorsal reflectance tended to be negatively associated with total range 

change, driven by fewer meaningful expansions, and more meaningful 

contractions (Figure 3).	However,	effect	sizes	were	small,	with	a	1.8%	
decrease in expansions for a 0.01 increase in plumage reflectance 

(Figure 4c). The correlation with total range change and contractions 

was statistically significant only for models including niche breadth co-

variates, indicating limited interpretability.

3.4  |  Sensitivity

We	found	no	statistically	significant	relationships	between	any	spe-

cies sensitivities and range shift metrics (Figure 3d–f).

3.5  |  Individual species associations

Individual species showed strong associations, as remarkable range 

change	values	coupled	with	remarkable	trait	values.	Some	individual	

species showed a strong association between range shifts and sen-

sitivity, with bare- eyed thrush (T. tephronotus) exhibiting a dry spell 

duration sensitivity of 0.25 (25% of model variation explained by dry 

spell duration) that coincided with a large expansion score of 3.9 times 

larger	than	expected	by	chance.	Sensitivity	to	bare	ground	cover	ex-
plained roughly 11% of variation in the distribution model of the horus 

swift (Apus horus). This was associated with an expansion roughly 21% 

larger than what would be expected by chance alone. Narrow niche 

breadth coincided with large declines in individual species. Chestnut- 

bellied sandgrouse (Pterocles exustus) showed one of the largest de-

clines in the study, losing about 25% more of its range than expected 

by chance, while also exhibiting one of the narrowest niche breadths 

for	human	footprint.	We	observed	similar	declines	in	Kori	bustard	(A. 

kori), also associated with a relatively narrow human footprint niche.

4  |  DISCUSSION

We	succeeded	in	creating	plausible	species-	specific	range	shift	esti-
mates of high agreement with observation data, taking into account 

sampling bias and unobserved effects, and reflecting known trends 

F I G U R E  4 Selected	effect	plots	showing	the	correlations	between	covariates	and	different	measures	of	range	shifts.	All	effect	plots	
can	be	accessed	in	the	supplementary	material	(Supplementary	Figures S4–S9). Boxplots represent categorical covariates, while scatter 

plots represent continuous variables. Numbers on x- axis labels represent sample sizes for levels of categorical variables. Values on the 

y-	axis	are	presented	on	the	linear	scale.	A	score	of	1	indicates	that	changes	are	exactly	as	expected	by	chance	(area	gained	or	lost	equal	to	
the area of high uncertainty transitions), and a value of 2 indicates that there are twice as many meaningful expansions or contractions as 

expected	by	chance.	A	score	of	0.5	indicates	that	50%	fewer	transitions	occurred	than	expected	by	chance.	Black	points	are	drawn	on	the	
raw data provided to the models, red dashed lines, as well as red points with red error bars are posterior model estimates derived from linear 

combinations. The rug plots visualize the density of the data points. ΔX is the change along units on the x- axis that corresponds with a ΔY 

change of units on the y- axis. (a) Correlation between primary lifestyle and total range change. (b) Correlation between hottest temperature 

niche breadth and meaningful contraction scores. (c) Correlation between avergae dorsal reflectance and meaningful extinction scores.
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(e.g.	range	contraction	of	the	kori	bustard	 in	East	Africa,	Senyatso	
et al., 2013). Our sensitivity analysis of effort used in model predic-

tions supported the validity of our approximation of the probability 

of	presence	as	derived	in	occupancy	models.	Furthermore,	the	lack	
of strong positive correlations between sensitivity traits and range 

shifts asserted that results were not driven by circularity between 

model- derived traits and range estimates. Our model of trait–range 

shift relationships indicated some trends similar to previous stud-

ies	 (e.g.	 Beissinger	 &	 Riddell,	 2021; Yang et al., 2020).	 However,	
despite considering a wide range of species traits, effects were 

small overall, even where statistically significant. This questions the 

ecological significance of these effects, adding to growing research 

identifying a lack of broad, generalizing trends between most traits 

and	range	shifts	across	multiple	taxa	(Angert	et	al.,	2011; Beissinger 

&	Riddell,	2021;	Buckley	&	Kingsolver,	2012;	Howard	et	al.,	2023; 

MacLean	&	Beissinger,	2017;	Reif	&	Flousek,	2012).

We	 found	 that	 savannah	 birds	 primarily	 showed	 positive	 total	
range changes, meaning that most species had larger ranges in the 

later time period, compared to the initial range. This change was 

generally a function of higher expansion rates. Tanzania has had 

a higher- than- average deforestation rate compared to the rest of 

Sub-	Saharan	Africa,	with	an	estimated	0.9%	annual	decline	 in	 for-
est	cover	since	1995	(Nzunda	&	Midtgaard,	2019). If some of these 

forests were converted into habitat suitable for colonization by sa-

vannah bird species, this might help explain the high rates of expan-

sions.	However,	patterns	of	change	are	complex,	often	resulting	in	
increased cultivated land, and the rate of grassland loss being nine 

times	higher	than	that	of	deforestation	(Nzunda	&	Midtgaard,	2019). 

Additionally,	 Tanzania	 has	 experienced	 increasing	 bush	 encroach-

ment,	further	modifying	habitat	structure	(Selemani,	2018). Overall, 

the core species ranges appeared to be surprisingly stable, with most 

birds showing fewer contractions than what would be expected by 

chance. This might be especially surprising given the aforemen-

tioned rapid changes in Tanzanian grasslands over the past decades. 

More research is needed to link these patterns of land cover change 

to individual trends and habitat preferences of species, which are 

frequently unknown.

Contrary to our first hypothesis, we did not find broad, statis-

tically clear positive associations between range shifts and most 

traits reflecting ecological generalization in this study (i.e. tro-

phic level, most niche breadth metrics), and effect sizes tended to 

be small. The finding of significantly higher total range changes 

in generalist foraging species (although this result did not hold 

where accounting for phylogenetic relationships between species; 

Supplementary	Figure S2) is in line with previous research (MacLean 

&	Beissinger,	2017).	As	generalist	species	can	exploit	a	wider	range	
of food sources, they are thought to be more successful at coloniz-

ing new habitats, and although ambiguous, evidence of this relation-

ship	exists	in	the	literature	(MacLean	&	Beissinger,	2017). The lack 

of an effect of niche breadth regarding rainfall suggests that stud-

ies of range shifts might not necessarily be more informed by the 

addition of hygric niches, as suggested in the literature (Beissinger 

&	Riddell,	2021).	However,	due	to	the	taxonomic	and	geographical	

restrictions of this study, there is a need for additional work to con-

firm this. The finding of more contractions and fewer expansions 

with wider hot temperature niches is surprising: as species with a 

wider niche breadth have the potential to tolerate more extreme hot 

temperatures, and the frequency of extreme heat days has increased 

in	East	Africa	(Das	et	al.,	2023), one might expect an opposite trend. 

However,	 maximum	 temperatures	may	 simply	 not	 have	 increased	
enough yet in the area (although they are projected to increase in 

the future, Das et al., 2023) to impact species ranges in a way that 

leads to detectable associations with niche breadth, and given the 

small	effect	size,	interpretability	is	limited.	Alternatively,	since	spe-

cies range responses can lag behind climatic change, not enough 

time might have passed for species to shift their ranges in response 

to	 temperature	 (Howard	 et	 al.,	 2023). The range shifts observed 

in this study might have been caused by factors affecting species 

survival	 faster	 than	 climate,	 such	 as	 land	 cover	 change	 (Faurby	&	
Araujo,	2018;	Sirami	et	al.,	2008).

The results of this study tended to disprove our second hypoth-

esis	 regarding	movement	 ability.	 Although	 previous	 studies	 found	
stronger migratory behaviour to be commonly associated with fewer 

range shifts in birds, attributed to their higher level of site fidelity 

to	their	home	range	(MacLean	&	Beissinger,	2017), no such pattern 

emerged	in	our	results.	Although	a	small	effect,	HWI	tended	to	be	
negatively associated with range expansions. Previous work has 

identified	HWI	as	being	strongly	positively	correlated	with	dispersal	
ability	across	many	bird	taxa	(Arango	et	al.,	2022), meaning we would 

have	expected	to	see	more	expansions	as	HWI	increases.	However,	
this effect may be confounded by the reproductive strategies of 

smaller	birds	with	lower	HWI.	As	they	tend	to	exhibit	higher	repro-

ductive	rates	and	shorter	generation	times	(Saether,	1988), smaller 

birds might colonize new areas more successfully, resulting in more 

range	expansions	(MacLean	&	Beissinger,	2017). In fact, if we con-

sider	HWI	as	approximately	proportional	to	body	size,	the	negative	
correlation with range shifts found here is in agreement with multi-

ple	studies	using	birds	(Beissinger	&	Riddell,	2021; Brommer, 2008; 

Yang et al., 2020).

Contrary to our third hypothesis, our results indicated that spe-

cies with higher dorsal reflectance (i.e. lighter- coloured birds) tended 

to show lower total range changes, driven by fewer expansions, and 

more range contractions. Theory suggests that lighter- coloured 

birds should be better able to cope with higher heat loads, due to 

increased reflectivity (Medina et al., 2018). In a recent study on the 

Iberian	Peninsula,	including	96	bird	species,	researchers	found	that	
lighter birds were less geographically restricted from occupying hot-

ter	areas,	having	a	wider	thermal	niche	(Galván	et	al.,	2018). Virtually 

all	 of	 East	 Africa	 has	 seen	 an	 increase	 in	maximum	 temperatures	
of nearly 2°C (Gebrechorkos et al., 2019b), so it is surprising to see 

an indication of lower total range changes in lighter- coloured birds. 

However,	as	with	the	other	trait	effects,	the	degree	of	the	correla-
tion was small, limiting interpretability. If we assume a mechanistic 

relationship between dorsal reflectance and range change, our re-

sults suggest that the recent increase in temperatures is not yet high 

enough in Tanzanian savannahs to lead to a strong positive signal, 
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limiting	 new	expansions	 of	 thermally	 restricted	 species.	However,	
it has been hypothesized that thermoregulatory behaviour is more 

important	than	plumage	reflectance	alone	(Stuart-	Fox	et	al.,	2017), 

further calling into question the assumed positive relationship be-

tween reflectance and range shifts.

Our results indicated that relationships between range shifts 

and sensitivity traits were surprisingly weak, contrary to our fourth 

hypothesis. The human footprint is increasing globally at an acceler-

ated	pace,	particularly	in	areas	of	high	biodiversity,	and	East	Africa	is	
no exception (Venter et al., 2016). Reflective of human- made struc-

tures like urban areas, roads, agricultural land, and other forms of 

developed land, this metric represents the most significant habitat 

alteration, virtually erasing natural features where human activities 

are most intense. Thus, the human footprint layer includes factors 

known to lead to habitat fragmentation on a landscape scale, such 

as	 road	networks	and	 increasing	agriculture.	While	a	 recent	 study	
found that this kind of fragmentation has been shown to adversely 

affect	 the	 local	 survival	 of	 savannah	 bird	 species	 (Herkert,	1994), 

we found surprisingly weak relationships between range shifts and 

sensitivity	to	human	footprint.	A	reason	for	this	could	be	that	such	
areas may not have expanded sufficiently to cause widespread con-

tractions	 in	 sensitive	 bird	 species.	 A	 recent	 study	 found	 that	 the	
amount of anthropogenic infrastructure more generally negatively 

impacted	 bird	 functional	 diversity	 in	 an	 African	 savannah	 in	 and	
around	the	Kruger	National	Park,	South	Africa	 (Lerm	et	al.,	2023). 

Continued monitoring of those species most sensitive to human 

footprint is therefore recommended, as simply not enough time may 

have passed since the landscape changed to cause a reduction in 

range. It is perhaps surprising that, on average, no strong associa-

tions	with	 sensitivity	 to	bare	 ground	emerged.	However,	 previous	
research found that, while land degradation such as an increase in 

bare ground was an important predictor of savannah bird ranges in 

Tanzania, this relationship likely occurred at fine spatial scales (Beale 

et al., 2013). By integrating eBird point data of higher spatial reso-

lution, our study went towards analysing these finer scale patterns, 

although	we	allowed	eBird	resolutions	of	up	to	15 km,	a	necessary	
condition to include a reasonable number of records. Overall, we 

summarized range changes over a fairly large spatial and temporal 

scale, and while this allowed us to investigate broad relationships, it 

is unlikely to reflect fine- scale relationships between land degrada-

tion and species ranges.

Although	we	were	unable	to	identify	meaningful	general	relation-

ships across species between traits and range changes, it is import-

ant to note that some individual species showed strong associations 

between range shifts and traits, potentially indicative of ecological 

trends.	 Horus	 swift,	 for	 example,	 showed	 large	 range	 expansions	
coupled	with	high	sensitivity	to	bare	ground.	As	this	is	a	species	that	
relies	on	sandy	riverbanks	for	nesting	(Piot	&	Bacuez,	2021), it might 

have benefited from the trend of increasing bare ground in the re-

gion	 (Piot	&	Bacuez,	2021), providing the conditions for additional 

breeding grounds. In the Von der Decken's hornbill, the large range 

increase was associated with relatively low sensitivity to tempera-

ture and length of dry days, potentially indicating mitigating traits 

underlying the expansion. The large decline coupled with a narrow 

human footprint niche in the chestnut- bellied sandgrouse, on the 

other hand, might highlight the species' challenge to persist under 

recent	 anthropogenic	 changes	 in	 Tanzania.	 As	 the	 species	 is	 both	
reliant on grassland and is being hunted, the decline might be in-

dicative of the increased fragmentation and hunting pressure as-

sociated with increasing human pressure (Thiollay, 2006).	Similarly,	
the large decline in kori bustard coincided with a relatively narrow 

human footprint niche, with the species known to be threatened by 

hunting and habitat change (Mmassy, 2017). Despite the absence 

of broad trends, these individual associations provide meaningful 

insights into species–environment relationships and could inform 

vulnerability assessments and conservation efforts. Under the pro-

jection	of	increasing	environmental	change	in	East	Africa	(Dunning	
et al., 2018; Moore et al., 2012), these individual assessments will 

become more important in the region.

Our study demonstrates the potential of a spatio- temporally 

structured,	integrated	model	in	R-	INLA	to	estimate	range	changes	
of species. The spatial random effects definition allowed us to 

capture dataset- specific observation bias, reducing the impact 

of common issues associated with citizen science records (Isaac 

&	 Pocock,	 2015).	 Additionally,	 it	 accounted	 for	 unexplained	 ef-
fects that weren't included in the model, hence reducing spatial 

autocorrelation issues commonly associated with species distri-

bution models (Beale et al., 2010, 2014;	 Beale	&	 Lennon,	2012; 

Faisal	et	al.,	2010).	While	this	is	a	powerful	method	for	accounting	
for bias, model results are, to an extent, sensitive to sample size 

(Simmonds	 et	 al.,	2020). Our citizen science data source, eBird, 

has experienced a rapid increase in popularity, leading to an in-

crease	 in	data	 availability	 (Sullivan	et	 al.,	2014).	While	users	 are	
able to submit observations retrospectively, such observations are 

outweighed by the constant inflow of new checklist submissions, 

leading to uneven sample sizes and effort between the two time 

periods in our study. This might potentially lead to false coloniza-

tion estimates if absences in the earlier time period are due to the 

species	having	been	missed.	However,	 the	coverage	of	 the	Atlas	
grid surveys is extensive, leaving very few gaps across the study 

area, and the additional temporal autoregressive process included 

in the model structure helps alleviate any unevenness: where spe-

cies	were	reported	through	eBird	or	Atlas	records	in	the	later	time	
period, 2000–2020, the model assigned a probability of presence 

in the same places in 1980–1999, as a function of environmental 

conditions.	A	different	case	of	inflated	colonization	estimates	may	
be presented through increased taxonomic awareness of species, 

and more reliable species identification through the availability 

of improved field guides. It is unlikely, however, that this source 

of	 bias	 would	 affect	 overall	 multi-	taxa	 results.	 Finally,	 it	 should	
be noted that the lack of strong statistical associations might, to 

some degree, be a result of low statistical power in the analysis. 

While	 the	 relationship	with	 continuous	 traits	was	 supported	 by	
the full set of species, some levels of the categorical traits were 

represented by a small number of species, leading to low statistical 

precision. This warrants more investigation of these categorical 
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traits, supported by higher statistical power. The hypotheses in 

our study, however, were driven by sets of traits containing both 

categorical and continuous variables (e.g. movement ability as mi-

gratory	ability,	but	also	HWI	and	body	mass),	reducing	the	effect	
of statistical power on the validity of inferences made in this study.

The set of traits included in this study was extensive, building 

on a trait framework designed to encompass the most important 

predictors of range shifts, and adding additional traits related to 

sensitivity and exposure, both important traits determining a spe-

cies	range	(Foden	et	al.,	2019).	Species	sensitivity	has	traditionally	
been challenging to assess, with definitions being criticized for being 

arbitrary	and	ambiguous	(Fortini	&	Dye,	2017). Our sensitivity mea-

sures directly quantified the degree to which a species' probability of 

presence is determined by different conditions in the environment. 

It is a potentially less ambiguous measure of sensitivity, arising from 

the	 realized	 species	distribution.	Such	 range-	specific	metrics	have	
previously been proposed in the context of vulnerability assess-

ments of species, for example, in the form of ‘Range exposure’ (Rose 

et al., 2023). Our quantification of sensitivity may be a valuable con-

tribution	to	future	studies.	However,	the	aforementioned	potential	
for circularity issues has to be considered, and since this sensitivity 

metric is only based on the realized niche, it likely paints an incom-

plete picture. Past studies included additional traits not considered 

in our analysis, for example, related to reproductive behaviour or ad-

ditional physiological features (Estrada et al., 2016).	However,	many	
of these will strongly covary with the traits included in our study. 

Body mass, for example, correlates with clutch size and annual fe-

cundity (Bohning- Gaese et al., 2000).	 Similarly,	our	model-	derived	
sensitivity might reflect adaptive behaviour such as hiding in shade 

during the hottest hours of the day: a higher degree of successful 

adaptive behaviour would likely be correlated with lower sensitivity. 

Hence,	our	set	of	traits	likely	reflected	other	species'	characteristics	
not explicitly included. Due to the lack of meaningful average asso-

ciations between range shifts and any trait considered in our study, 

additional traits not explicitly included likely would not diverge 

markedly	 from	 this	pattern.	However,	more	 research	 is	needed	 to	
confirm this, and to test how transferable these results are to other 

taxonomic groups, such as plants where the synthesized associations 

between traits and range shifts appear less contradictory (Beissinger 

&	Riddell,	2021;	Stahl	et	al.,	2014).

Individual studies exist that found some traits to be predictive 

of range shifts across multiple bird species, such as an example for 

birds in China (Yang et al., 2020) and Europe (Estrada et al., 2018). 

Importantly though, the methodologies applied in these examples to 

assess range shifts diverged markedly from our study. In the case of 

Yang et al. (2020), range shifts were quantified on a simple binomial 

scale (1 or 0), significantly reducing nuance in the analysis. In the case 

of Estrada et al. (2018), range shifts were based on climate suitabil-

ity models rather than observation data, which suffer from many of 

the methodological challenges we aimed to overcome in this study, 

such as unaccounted spatial autocorrelation or non- climatic effects 

(Beale et al., 2014; Gaspard et al., 2019). Notably, a recent publica-

tion on range shifts in European birds found directly contradictory 

results,	 with	 most	 traits	 having	 poor	 predictive	 power	 (Howard	
et al., 2023). This is indicative of the wider trend of inconsistent and 

weak results concerning the trait–range shift relationship identified 

in comprehensive reviews and meta- analyses, leading some authors 

to discourage the use of traits in conservation planning unless an-

alytical	 shortcomings	were	 addressed	 (Beissinger	&	Riddell,	2021; 

Buckley	&	Kingsolver,	2012;	MacLean	&	Beissinger,	2017). Multiple 

possible reasons for this weak predictive ability of traits have been 

proposed (see Beissinger and Riddell (2021)	 for	 an	overview).	We	
believe that this study provides empirical evidence that analytical 

issues are an insufficient explanation of this trend.

5  |  CONCLUSION

The lack of trends across species between traits and range shifts 

identified in this study calls into question the usefulness of traits 

when analysing range shifts over higher taxonomic levels. The novel 

analytical techniques we used accounted for shortcomings identified 

in previous assessments of range shifts and further corroborated 

this	 result.	While	 acknowledging	 the	 taxonomic	 and	 geographical	
restrictions of our study, we suggest that research into the effect of 

environmental change on range shifts of taxonomic groups may not 

necessarily	benefit	from	the	inclusion	of	traits.	However,	where	in-

dividual species are considered, traits can provide important insights 

into the drivers of observed distribution changes.
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