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Three-dimentional reconstruction 
of underwater side-scan sonar images based 
on shape-from-shading and monocular depth 
fusion
Yakun Ju1*  , Jingchun Zhou2, Shitong Zhou3, Hao Xie4, Cong Zhang4, Jun Xiao4, Cuixin Yang4 and 

Jianyuan Sun5 

Abstract 

Modern marine research requires high-precision three-dimensional (3D) underwater data. Underwater environ-

ments experience severe visible light attenuation, which leads to inferior imaging compared with air. In contrast, 

sound waves are less affected underwater; hence side-scan sonar is used for underwater 3D reconstruction. Typically, 

the shape-from-shading algorithm (SfS) is widely used to reconstruct surface normal or heights from side-scan sonar 

images. However, this approach has challenges because of global information loss and noise. To address these issues, 

this study introduces a surface-normal fusion method. Specifically, we propose a frequency separation SfS algorithm 

using a discrete cosine transform, which provides a surface-normal map with less noise. We then fuse the surface-nor-

mal map with a novel depth estimation network to achieve high-precision 3D reconstruction of underwater side-scan 

sonar images. We conducted experiments on synthetic, NYU-depth-v2, and real side-scan sonar datasets to demon-

strate the effectiveness of the proposed method.

Keywords Side-scan sonar, Shape-from-shading, Underwater 3D reconstruction, Depth estimation

1 Introduction

Recently, ocean exploration and utilization of oceanic 

resources and energy have gained significance worldwide 

(Zhou et  al. 2023a, b). Modern marine research has an 

urgent requirement for high-precision three-dimensional 

(3D) underwater data (Fan et  al. 2017). Underwater 3D 

reconstruction primarily relies on two key technologies: 

optical and acoustic imaging. Underwater visibility is sub-

stantially limited due to the attenuation of visible light, 

decreasing the effectiveness of optical imaging underwa-

ter compared with air.

In contrast, acoustic imaging has found extensive 

applications in underwater measurements, seabed 

operations, underwater archaeology, underwater navi-

gation, and various other fields because of its minimal 

underwater attenuation and long-distance propagation 

capabilities. Side-scan sonar technology has been widely 

used for seabed terrain and object reconstruction. This 

method operates by emitting sound pulse waves to the 

left and right sides through sound wave transducer 

arrays located on either side of the device (Key 2000). 

When these emitted sound waves encounter water or 

objects on the seabed, they scatter in both directions, 

generating echoes. These echoes are captured by the 
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sonar and subsequently converted into electrical sig-

nals through a series of processes. The intensity of the 

echoes is displayed on the sonogram corresponding to 

variations in brightness within the pixels of the side-scan 

sonar image. Stronger echoes are represented by higher 

gray values in the sonar image. Figure  1 illustrates the 

’StarFish’ side-scan sonar and the captured sonar image.

The imaging model of sonar is similar to optical reflec-

tion, and researchers often simplify the sonar imaging 

model by approximating it to the Lambertian model 

(Durá et  al. 2004; Coiras et  al. 2007). The Lambertian 

model assumes that the object’s surface exhibits diffuse 

reflection characteristics, where the reflection intensity 

depends solely on the angle between the incident light 

and the surface’s normal direction, independent of the 

reflection direction (Ju et  al. 2021, 2023c). Shape-from-

shading (SfS) algorithm (Horn 1970) can be applied 

to deduce the object’s 3D shape using the Lambertian 

reflection model. In other words, by knowing the gray-

scale variations within a single image, these methods cal-

culate the object’s surface normal using the Lambertian 

model and subsequently derive its surface height. How-

ever, this approach has challenges because of the global 

information loss and noise.

To address the above challenges, we explored the fol-

lowing aspects.

(1) High-low frequency separation SfS: Traditional 

SfS algorithms (Horn 1970; Ikeuchi and Horn 1981; 

Frankot and Chellappa 1988) tend to overly empha-

size reconstructing high-frequency details while 

overlooking the low-frequency information of the 

overall scene. To overcome these limitations, we 

employ the discrete cosine transform (DCT) (Ahmed 

et  al. 1974) to split the sonar images into high- and 

low-frequency components. The low-frequency 

image is then reconstructed using the SfS algorithm, 

whereas the high-frequency image contains too 

much noise and is discarded. Our proposed high-

low frequency separation SfS method enhances the 

reconstruction accuracy of traditional SfS methods.

(2) Depth estimation network with dilated convo-

lution and attention mechanism: We also propose a 

monocular depth estimation network that combines 

the attention mechanism (Vaswani et  al. 2017) with 

dilated convolution (Yu et  al. 2017). The proposed 

network introduces a multiscale attention mecha-

nism within the connection between the encoder and 

decoder. This enables the extraction of detailed features 

in the scene, ultimately improving depth estimation.

(3) Normal-depth fusion algorithm: We introduce 

a normal-depth fusion algorithm to fuse the surface 

normal maps obtained from (1) and the depth maps 

obtained from (2). The depth map produced using the 

depth estimation algorithm places a stronger emphasis 

on global depth changes, which contrasts with the focus 

of SfS. By combining these two methods, we address 

each other’s limitations, resulting in a 3D reconstruc-

tion that effectively balances global and local details.

We conducted experiments on synthetic (Gwon et  al. 

2017), NYU-depth-v2 (Silberman et al. 2012), and real side-

scan sonar datasets to demonstrate the effectiveness of the 

proposed normal-depth fusion method. The remainder 

of this paper is organized as follows: Section  2 discusses 

related works. Section  3 presents the proposed method. 

The experimental results are presented in Section 4.

2  Related work

2.1  Shape-from-Shading (SfS)

SfS proposed by Horn (1970) is a classic algorithm used 

for monocular image-based 3D reconstruction. The SfS 

algorithm operates by deducing the 3D shape of the tar-

get, relying on the assumption of the Lambertian model. 

In contrast to photometric stereo methods like Ju et  al. 

(2020a, 2022, 2023a, b); Liu et al. (2022), SfS uses a sin-

gle image as input, making it capable of addressing sur-

face reconstruction in dynamic scenes with non-rigid 

Fig. 1 a Side-scan sonar ’StarFish’ from BlueView company. b Schematic of the side-scan sonar scanning range. c Example of the captured sonar 

image
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objects. SfS can be categorized into three types based on 

the reconstruction process: cost function minimization, 

propagation, and local methods.

Cost function minimization methods are commonly 

used to address the Lambert reflection reconstruc-

tion problem by iteratively adjusting the cost function 

(Ikeuchi and Horn 1981). This problem involves deter-

mining the surface normal direction in the x- and 

y-axes, given the grayscale of the input image. Various 

constraints have been introduced to effectively solve 

this problem. For example, Brooks and Horn (1985) 

introduced two fundamental constraints: photomet-

ric consistency and smoothness. Photometric consist-

ency ensures that the grayscale of the inverted 3D object 

reconstruction matches that of the input image. Smooth-

ness constraints maintain a gradual and natural transi-

tion along the edges of the reconstructed surface. Frankot 

and Chellappa (1988) introduced integrability constraints 

to ensure that the reconstructed surface is integrable and 

accurately represents the real scene. For specific tasks, 

such as side-scan sonar imaging, Zheng and Chellapa 

(1991) proposed a multiresolution 3D reconstruction 

method that uses a coarse-to-fine structure.

Propagation methods involve calculating other points 

along characteristic splines based on the depth and nor-

mal direction of a known point. Horn (1970) started from 

a singular point and propagated along the surface curve 

of the surrounding spherical neighborhood. The propa-

gation direction follows the change in surface gradi-

ent. Rouy and Tourin (1992) introduced an SfS method 

based on the Hamilton-Jacobi-Bellman equation (Bell-

man 1966) and the viscous solution theory. They applied 

dynamic programming to establish the relationship 

between the viscous solution and optimal control, ena-

bling the retrieval of a unique solution for SfS. Kimmel 

and Bruckstein (1995) employed multilayer contours 

initially defined by closed curves near singular points to 

reconstruct the object’s surface.

Local methods recover the shape information of the 

target by analyzing the image’s brightness and its first 

and second derivatives. Pentland (1984) assumes that 

the surface where each point in the image resides can be 

approximated as a local sphere. Lee and Rosenfeld (1985) 

leveraged this local spherical assumption to determine the 

inclination and declination of the object surface’s normal 

with respect to the base light source coordinate system by 

analyzing the first derivative of the image’s brightness.

2.2  Monocular depth estimation

Deep learning techniques have shown great capabil-

ity in many computer vision tasks (Ju et al. 2020b; Kong 

et  al. 2022;  Rao et  al. 2023; Xiao et  al. 2023; Yu et  al. 

2023; Zhang et al. 2023b). Monocular depth estimation, 

driven by deep neural networks (Wang et  al. 2020; 

Kong et al. 2021; Luo et al. 2021; Xiao et al. 2021; Zhang 

et  al. 2023a), has recently seen significant advance-

ments because of its potent feature learning capabili-

ties. Monocular depth learns the depth map of an object 

from a single input image. Eigen et al. (2014) first used a 

coarse-to-fine network for monocular depth estimation. 

In this approach, the former part of the network learns 

the global depth of the scene, while the latter optimizes 

the local details of the target shape. Li et al. (2015) intro-

duced a dual-process framework based on the VGG-16 

model. These two processes estimate the depth and gra-

dient values of the object, respectively. Chen et al. (2016) 

developed a multiscale network to predict the depth 

value of each pixel by learning the relative depth of the 

scene. The network employs the relative depth error as 

the loss function. Recently, Lee et  al. (2019) proposed a 

multiscale planar guidance layer as a replacement. This 

layer adopts local planar assumptions to directly obtain 

the original resolution feature map. Gan et  al. (2018) 

employed a transformation layer to reflect the positional 

relationships between images and estimate the relative 

depth information between different objects in the scene 

through the position changes in adjacent images. Jung 

et  al. (2017) employed generative adversarial networks 

(GANs) for single-image depth value prediction. The 

generator combines GlobalNet to extract global features 

and RefinementNet to estimate local details.

3  Proposed method

In this section, we present the proposed normal-depth 

fusion method for underwater side-scan sonar image 3D 

reconstruction. Figure 2 shows the overview framework. 

The proposed method can be divided into three parts: 

high-low frequency separation SfS method (Section 3.1), 

local planar guidance monocular depth estimation net-

work (Section  3.2), and normal-depth fusion algorithm 

(Section 3.3).

3.1  High-low frequency separation SfS method

First, we propose an improved SfS surface reconstruction 

method for underwater side-scan sonar images. Tradi-

tional SfS techniques have demonstrated good capability 

in reconstructing high-frequency details; however, they 

face issues related to ambiguous global height changes 

within a scene. To address this limitation, we introduce 

a high-low frequency separation method for 3D recon-

struction from input images. In this approach, the low-

frequency component is reconstructed using the SfS 

algorithm, whereas the high-frequency image contains 

too much noise and is discarded. The proposed high-low 

frequency separation SfS method enhances the recon-

struction accuracy of traditional SfS methods. Figure  3 
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shows the framework of the proposed high and low-fre-

quency separation SfS method.

In the context of side-scan sonar imaging, which is simi-

lar to the optical imaging model, the propagation of sound 

waves can be obstructed by tall targets (Deb and Suny 

2014). This obstruction forms sound shadows behind the 

obstructing targets. If these sound shadows are not properly 

accounted for in the SfS algorithm, they can be incorrectly 

interpreted as depressions, thus impacting the accuracy 

of the target shape reconstruction. As shown in Fig. 3, we 

first remove the shadow areas in the input sonar images. 

Inspired by Deb and Suny (2014), we first transform the red-

green-blue (RGB) colorspace sonar image into the YCbCr 

colorspace. The Y channel corresponds to the brightness 

information of the image, while the Cb and Cr channels rep-

resent the color information. To identify shaded areas, we 

calculate the mean value of the Y channel and examine indi-

vidual pixels within the image. Pixels with brightness values 

lower than the mean are then labeled as shadow areas.

We compute the means of the Y, Cb, and Cr chan-

nels, along with the standard deviation of the Y channel, 

separately for the shadowed and non-shadowed regions 

Fig. 2 The overall structure of the proposed underwater side-scan sonar image 3D reconstruction method

Fig. 3 Framework of the proposed high-low frequency separation SfS method. We first remove the shadow of the input sonar image and use 

the DCT (Ahmed et al. 1974) to split the sonar images into high- and low-frequency components. The output of SfS (Brooks and Horn 1985) using 

the low-frequency component, with less noise, obviously outperforms the results of the original sonar image
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within the image. We denote the means of the three 

channels for the shadowed area as µSY  , µSCb , µSCr , and 

for the non-shadowed area as µY  , µCb , µCr , with the 

ratio of the standard deviation of the Y channel as � . In 

this context, the coefficients αy , αb , and αr for shadow 

removal can be defined as follow:

In this case, for a pixel in the YCbCr image with the 

value [Y, Cb, Cr], its value after shadow removal is 

denoted as [ Y ′ , Cb′ , Cr′ ] can be formulated as follows:

After removing the shadows in sonar images, we employ 

DCT (Ahmed et  al. 1974) to separate the high- and low-

frequency components of the sonar image. DCT is a 

commonly used data image compression technique that 

converts images from spatial to frequency distribution. We 

apply a mask operation to the transformed image, zero-

ing out coefficients smaller than a specific threshold. This 

process results in compressed low-frequency image coef-

ficients. We then calculate the high-frequency coefficients 

by subtracting the compressed image coefficients from 

the original coefficients. The low-frequency coefficients 

capture the grayscale variations in the image, whereas the 

high-frequency coefficients represent the edges and texture 

details of the target shape. We perform an inverse DCT on 

the low- and high-frequency coefficients to obtain different 

images for the high- and low-frequency components.

Finally, we employ a cost function minimization SfS 

method (Brooks and Horn 1985) to reconstruct the sur-

face normal of the image. Figure 3 shows that since noise 

primarily exists in the high-frequency component, the 

proposed high-low frequency separation SfS method sig-

nificantly improves the accuracy of the results by reduc-

ing noise, compared with the results of Brooks and Horn 

(1985) via the original sonar image.

3.2  Depth estimation network with dilated convolution 

and attention mechanism

In this section, we propose a novel monocular depth 

estimation network based on an encoder-decoder 

(1)αy = µY − � × µSY ,

(2)αb = µCb − � × µSCb,

(3)αr = µCr − � × µSCr .

(4)Y ′
= αy + � × Y ,

(5)Cb
′
= αb + � × Cb,

(6)Cr
′
= αr + � × Cr.

architecture to estimate the depth information of the 

captured sonar image. The encoder part extracts dense 

features and fundamental contextual information from 

the input image via a ResNet-101 module (He et al. 2016). 

It captures contextual information at multiple scales 

using convolution kernels with different expansion rates 

(dilated convolution) (Yu et  al. 2017). In contrast, the 

decoder employs a local planar guidance module (Lee 

et al. 2019) to replace nearest neighbor upsampling, ena-

bling the network to efficiently restore the feature map 

to its original resolution. The decoder incorporates an 

attention mechanism (Vaswani et  al. 2017) for differen-

tial connections, allowing the predicted depth map to be 

specific to objects while maintaining the original predic-

tion accuracy. This refinement enhances the edges and 

local details, catering to subsequent high-precision 3D 

reconstruction requirements. Figure 4 shows the detailed 

structure of the proposed depth estimation network.

Figure  4 shows that our proposed depth estimation 

network follows an encoding-decoding scheme. The 

overall process involves reducing the input feature reso-

lution to p
8
 and restoring the depth map to the original 

resolution p for dense depth prediction. First, a dense 

feature extractor, which includes a backbone network like 

ResNet-101 (He et al. 2016), is used to downsample the 

original monocular input image to p
8
 resolution (where 

p represents the input image resolution). Subsequently, 

multi-scale dilated convolutional layers are employed 

with an attention mechanism to extract contextual infor-

mation. The expansion rates r used are 3, 6, 12, and 24. 

Each scale’s dilated convolution layer is combined with 

an attention module. During the decoding phase, local 

planar guidance layers (Lee et al. 2019) are used for layer-

by-layer upsampling of the multi-scale feature maps, pro-

gressing from p
8
 resolution to p, finally restoring them to 

the original image resolution. Finally, a 1 × 1 convolution 

operation is applied to obtain the final high-resolution 

depth map d, which is a single-channel output.

The proposed depth estimation network is optimized 

using the following loss function:

where Ldepth is the loss function on the depth map 

domain, and Lgradient is the gradient constraint on the 

gradient of the depth map with a weight w empirically 

set to 0.1. Specifically, we define the Ldepth and Lgradient 

as follows:

and

(7)L = Ldepth + wLgradient,

(8)Ldepth =
1

T

T

i

(di − d̃i),
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where di and d̃i represent a pixel on the ground truth and 

the estimated depth map with the position index i, T 

stands for the number of total pixels. ∂di
∂x

 and ∂di
∂y  represent 

the gradient of di on x and y directions, respectively.

3.3  Normal-depth fusion algorithm

In this section, we combine the surface normal map 

obtained from the high-low frequency separation SfS 

(Section 3.1) with the depth map obtained from the depth 

estimation network (Section 3.2). This fusion allows us to 

leverage the benefits of detailed and global results.

(9)

Lgradient =
1

T

T∑

i

[(
∂di

∂x
−

∂d̃i

∂x
)2 + (

∂di

∂y
−

∂d̃i

∂y
)2],

We capitalize on the strengths of SfS and depth estima-

tion to jointly optimize the final height map. The main 

aim is to accurately compute the global scene height while 

preserving the local intricacies of the object’s shape. This 

involves using the object’s surface normal vector obtained 

from SfS to guide our target surface normal vector and 

utilizing the depth map obtained from depth estimation 

to guide the target’s height map. Additionally, we intro-

duce supplementary surface normal gradient constraints 

to ensure a smooth transition in the object’s surface nor-

mal vector. These three components are combined to for-

mulate the final fusion energy function as follows:

where Df  denotes the target depth map after surface opti-

mization, De represents the depth obtained from depth 

estimation, ns denotes the surface normal vector obtained 

(10)

∫∫

(x,y)
m

(

Df − De

)2
+ (1 − m)

(

(

nf − ns
)2

+
(

nfx + nfy
)2

)

dxdy =

∫∫

(x,y)
Fdxdy,

Fig. 4 Detailed structure of the proposed depth estimation network
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using the light and dark shape recovery algorithm, nf  

denotes the target surface normal, and nfx and nfy denote 

the gradients of the target surface normal vector in the x 

and y directions, respectively. The variable m represents 

the weight proportion of each component. The surface 

normal vector can be expressed in terms of height gradi-

ent as follows:

which can be solved using the Euler-Lagrange (E-L) 

equation. The E-L equation for Eq. (11) can be expressed 

as follows:

where each part can be expressed via differential 

representation:

(11)

(

pf , qf ,−1
)

=

(

nx

nz
,
ny

nz
,−1

)

=

(

∂Df

∂x
,
∂Df

∂y
,−1

)

s.t. nf

=

(

nx, ny, nz
)

,

(12)
m

(

Df − De

)

− (1 − m)

(

∂2Df

∂x2
+

∂2Df

∂y2
+

∂3Df

∂x3
+

∂3Df

∂y3
−

∂2Ds

∂x2
−

∂2Ds

∂y2

)

= 0,

(13)

∂2D(x, y)

∂x2
≈ �2D(x) = D(x + 1, y) − 2D(x, y) + D(x − 1, y),

(14)

∂2D(x, y)

∂y2
≈ �2D(y) = D(x, y + 1) − 2D(x, y) + D(x, y − 1),

(15)
∂3D(x, y)

∂x3
≈ �2D(x + 1) − �2D(x),

Eqs. (13), (14), (15), and (16) can be used to solve the 

E-L equation, as follows:

where D̃ is:

where the iterative representation of Eq. (17) is given by:

where D̃n represents the result of the nth iteration. The 

result of the nth iteration can be used to obtain the result 

of the n+1 iteration. If the number of iterations exceeds 

the maximum threshold, or the absolute difference 

between the results of two consecutive iterations is less 

than the minimum threshold, the iteration can be termi-

nated, and the output obtained at that point is considered 

the final target result. Algorithm 1 summarizes the pro-

posed fusion method.

(16)
∂3D(x, y)

∂y3
≈ �2D(y + 1) − �2D(y).

(17)

Df =
1

m

[
(1 − m)D̃ + mDe − (1 − m)

(
∂2Ds

∂x2
+

∂2Ds

∂y2

)]
,

(18)
D̃ =D(x + 2, y + 1) + D(x, y + 1) + D(x + 1, y + 2)

+ D(x + 1, y) − 4D(x + 1, y + 1),

(19)Dn+1

f =
1

m

[
(1 − m)D̃n

+ mDe − (1 − m)

(
∂2Ds

∂x2
+

∂2Ds

∂y2

)]
,

Algorithm 1 The proposed fusion algorithm
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4  Experimental results

4.1  Implementation details

Our method is implemented using PyTorch. We used 

the Adam optimizer with default settings ( β1 = 0.9 and 

β2 = 0.999). The training was performed on a single RTX 

2080Ti graphics processing unit (GPU). Given the simi-

larity between the imaging model of side-scan sonar and 

optical images and the limited availability of side-scan 

sonar training datasets, we opted to use the NYU-depth-

v2 dataset for training. Specifically, we employed 30000 

samples with data augmentation (including rotation and 

cropping) for training and used 1000 samples from the 

NYU-depth-v2 dataset for validation. We also test the 

proposed method on the synthetic side-scan sonar data-

set (Gwon et al. 2017) and real side-scan sonar dataset1.

4.2  Evaluation metrics

To evaluate the performance of the proposed SfS 

method, we employ the Lambertian reflection model to 

invert the reconstructed height map into a reflection map 

corresponding to the object for quantitative comparison. 

This is because we do not have the ground-truth surface 

normal map of the side-scan sonar images. The evalua-

tion of the reconstruction quality is based on the correla-

tion coefficient r and signal-to-noise ratio SNR between 

the reflection image I ′ and the original grayscale image I. 

These metrics serve as indirect evaluation indices of the 

reconstruction effectiveness, which are given as follows:

where Ī ′ and Ī represent the average value of I ′ and I, 

respectively. The correlation coefficient r has a value 

between –1 and 1. When r is closer to 1, it indicates a 

stronger correlation between the reflection map and 

input image, suggesting a higher degree of similarity. This 

means a better reconstruction effect for the estimated 

height map. Additionally, a SNR indicates a higher pro-

portion of signal in the image, resulting in less noise and 

better image quality.

Furthermore, to assess the performance of the pro-

posed depth estimation network and fused output, we 

evaluate several widely used metrics, such as threshold 

metrics ( δ < 1.25 , δ < 1.25
2 , δ < 1.25

3 ), absolute relative 

(20)r =

∑N
y=1

∑M
x=1

(

I ′(x, y) − Ī ′
)

× (I(x, y) − Ī)
√

∑N
y=1

∑M
x=1

(

I ′(x, y) − Ī ′
)2

√

∑N
y=1

∑M
x=1(I(x, y) − Ī)2

,

Fig. 5 Reconstruction results of the proposed SfS method compared with those of the minimization method (Brooks and Horn 1985) and local 

method (Pentland 1984) on the NYU-depth-v2 dataset (Silberman et al. 2012)

1 https://www.edgetech.com/underwater-technology-gallery/
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error (AbsRel), root mean square error (RMSE), and 

log10 error. For these metrics, the smaller their values, 

the better the result.

4.3  Effectiveness of the proposed SfS method

To assess the performance of the proposed high-low 

frequency separation SfS method, we conducted a com-

parative evaluation against the minimization method 

(Brooks and Horn 1985) and local method (Pentland 

1984). We first test them on the NYU-depth-v2 test 

dataset (Silberman et al. 2012), with visualized results in 

Fig. 5 and quantitative results in Table 1. Then, we com-

pare the estimations on the real side-scan sonar dataset, 

with visualized results in Fig. 6 and quantitative results 

in Table 2.

Figure  5 shows noticeable distortions in the recon-

struction results of Brooks and Horn (1985) and Pent-

land (1984), with much noise. In contrast, the proposed 

method, which incorporates low-frequency height con-

straints, yields smoother reconstructions with fewer 

instances of missing height information. In the case of 

distant-view scenes, minimization and local methods are 

simply replaced with holes, which evidently fails to meet 

scene reconstruction requirements.

As presented in Table  1, the proposed high-low fre-

quency separation SfS outperforms the minimization and 

local methods across all metrics with different samples. A 

Table 1 Quantitative comparisons using the metrics r and SNR on the NYU-depth-v2 dataset (Silberman et al. 2012)

Method Close-view Medium-view Distant-view

r SNR r SNR r SNR

Ours 0.0131 0.7833 0.0551 0.7736 0.0351 0.8524

Minimization method (Brooks and Horn 
1985)

0.0022 0.7060 0.0095 0.6333 0.0015 0.8188

Local method (Pentland 1984) 0.0020 0.6805 0.0094 0.6157 0.0015 0.7686

Fig. 6 Reconstruction results of the proposed SfS method compared with those of the minimization method (Brooks and Horn 1985) and local 

method (Pentland 1984) on the real side-scan sonar dataset
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higher r and SNR of the proposed method demonstrates 

that our reconstructed height map retains richer local 

details and less noise, demonstrating the effectiveness of 

the proposed SfS method.

We conducted comparative experiments on the real 

side-scan sonar dataset to further evaluate the proposed 

method. As shown in Fig.  6, traditional SfS methods 

(Pentland 1984;  Brooks and Horn 1985) show height 

maps with more noise and less smoothness. In con-

trast, the height map reconstructed using our method 

suppresses the impact of high-frequency noise on the 

reconstruction quality due to the addition of low-fre-

quency height constraint information. For example, in 

the scene of view3, the height map reconstructed using 

our method delicately represents the undulations of 

the seafloor ripple topography, resulting in gentler ter-

rain features. In contrast, traditional methods produce 

rougher ripple topography with larger undulations. The 

quantitative comparison demonstrates the effectiveness 

of the proposed method in handling the real side-scan 

sonar dataset.

4.4  Effectiveness of the proposed depth estimation 

network

In this experiment, we assess the effectiveness of the 

proposed depth estimation network incorporating 

dilated convolution and an attention mechanism. We 

conducted our initial evaluation on the NYU-depth-v2 

Table 2 Quantitative comparisons using the metrics r and SNR on the real side-scan sonar dataset

Method View1 View2 View3

r SNR r SNR r SNR

Ours 0.0716 0.9162 0.1077 0.8520 0.1391 0.8298

Minimization method (Brooks and Horn 
1985)

0.0542 0.6325 0.0677 0.8281 0.0620 0.8352

Local method (Pentland 1984) 0.0512 0.5938 0.0602 0.7657 0.0593 0.8062

Fig. 7 Ablation study of attention module (Vaswani et al. 2017) in our depth estimation network. The orange boxes represent the regions 

with detailed structures
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dataset (Silberman et al. 2012). Figure 7 shows an abla-

tion experiment to assess the efficacy of the incorporated 

attention module (Vaswani et al. 2017). Subsequently, we 

conducted a comparative analysis with recent state-of-

the-art (SOTA) depth estimation networks on the NYU-

depth-v2 test set, with results summarized in Table  3. 

Finally, we validate the proposed method using a syn-

thetic side-scan sonar dataset (Gwon et al. 2017) and a 

real side-scan sonar dataset, as shown in Figs.  8 and 9. 

Since we know the ground truth in the synthetic side-

scan sonar dataset, we further quantitatively compare 

them in Table 3.

Figure  7 shows that our network with the atten-

tion module accurately predicts global depth, offering 

superior performance in predicting object boundaries 

and scene details compared with the network without 

the attention mechanism. Furthermore, we compare 

our methods with nine recent networks (as listed in 

Table  3) using the NYU-depth-v2 test set. The results 

demonstrate that the proposed depth estimation 

network achieves the best or second-best performance 

across six evaluation metrics.

We further validate the depth estimation performance 

of the proposed method on the side-scan sonar dataset 

(Fig.  8 and Table  4). As shown in Fig.  8, the compari-

son clearly demonstrates that our network accurately 

captures the global scene depth while presenting local 

details more intricately. The proposed network excels in 

rendering small objects with precision. In contrast, the 

depth maps obtained from BTS (Lee et al. 2019) suffer 

from information loss in edge details, making it chal-

lenging to distinguish objects. Song (Song et  al. 2021) 

also exhibits numerous depth estimation errors and 

missing information. Our depth map closely resembles 

actual depth, delivering superior performance. As pre-

sented in Table  4, the proposed method outperforms 

SOTA methods.

Figure  9 shows the qualitative evaluation of the pro-

posed depth estimation network using real side-scan 

sonar images. As demonstrated in the second image, our 

method reveals finer details, highlighting the pipeline 

Table 3 Quantitative comparisons on the NYU-depth-v2 test set

Method δ < 1.25↑ δ < 1.25
2↑ δ < 1.25

3↑ AbsRel↓ RMSE↓ log10 ↓

Eigen (Eigen et al. 2014) 0.769 0.950 0.988 0.158 0.641 -

Laina (Laina et al. 2016) 0.811 0.953 0.988 0.127 0.573 0.055

Xu (Xu et al. 2017) 0.811 0.954 0.987 0.121 0.586 0.052

Lee (Lee et al. 2018) 0.815 0.963 0.991 0.139 0.572 -

SC-DepthV2 (Bian et al. 2021) 0.820 0.956 - 0.138 0.532 0.059

Qi (Qi et al. 2018) 0.834 0.960 0.990 0.128 0.532 0.059

Yin (Yin et al. 2019) 0.875 0.976 0.994 0.108 0.416 0.048

BTS (Lee et al. 2019) 0.882 0.978 0.994 0.110 0.396 0.047

Song (Song et al. 2021) 0.895 0.983 0.996 0.105 0.384 0.044

Ours 0.881 0.985 0.995 0.109 0.381 0.046

Fig. 8 Visualized examples on the synthetic side-scan sonar dataset (Gwon et al. 2017), compared with BTS (Lee et al. 2019) and Song (Song et al. 

2021)
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structure. The third and fourth images reveal significant 

depth information loss and blurry estimations in the BTS 

(Lee et al. 2019) and Song (Song et al. 2021) methods. In 

contrast, our method incorporates the attention mecha-

nism (Vaswani et  al. 2017) between the encoder and 

decoder, allowing the network to emphasize vital image 

features and prioritize local scene details. In the decoding 

phase, we replace the traditional deconvolution network 

with the integration of local plane guidance layers (Lee 

et  al. 2019), enhancing the performance in estimating 

depth map details.

4.5  Effectiveness of the proposed normal-depth fusion 

algorithm

To evaluate the performance of our fusion method (Sec-

tion 3.3), we compare it with the standalone SfS method 

(Section 3.1) and the independent depth estimation net-

work (Section 3.2). Figure 10 and Table 4 show the results 

on the NYU-depth-v2 dataset, whereas Fig. 11 shows the 

results on real side-scan sonar images.

Figure  10 shows that the proposed SfS method can 

effectively capture the details but may yield inaccurate 

depth predictions for objects hidden in shadows and 

affected by noise. The depth map generated by the depth 

estimation algorithm accurately depicts global depth 

trends but lacks fine details. In contrast, the fusion algo-

rithm produces a depth map that combines the correct 

global depth with rich details from the SfS algorithm. It 

particularly excels in preserving edge details. Table 4 also 

demonstrates the improved performance of the proposed 

fusion algorithm. In summary, our fusion algorithm is 

superior in 3D reconstruction compared with the single 

SfS method and depth estimation network.

We also assess the proposed fused algorithm on the 

real side-scan sonar dataset. To assess the applicability of 

the fusion method in various side-scan sonar image sce-

narios, we conducted comparative experiments involv-

ing the reconstruction of underwater aircraft wreckage, 

underwater structures, and seabed terrain with distinct 

characteristics (Fig. 11).

Fig. 9 Qualitative results on the real side-scan sonar dataset, compared with BTS (Lee et al. 2019) and Song (Song et al. 2021)
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Fig. 10 Visualized fused results on the NYU-depth-v2 dataset (Silberman et al. 2012)

Table 4 Quantitative comparisons of the fused method on the NYU-depth-v2 dataset (Silberman et al. 2012)

Method δ < 1.25↑ δ < 1.25
2↑ δ < 1.25

3↑ AbsRel↓ RMSE↓ log10 ↓

Only depth 0.881 0.985 0.995 0.109 0.381 0.046

Fused method 0.883 0.985 0.995 0.107 0.379 0.045

Fig. 11 Visualized fused results on the real side-scan sonar images
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In the underwater aircraft wreckage view, the height 

map obtained using the SfS algorithm exhibits relatively 

pronounced fluctuations. In contrast, the fused height 

map exhibits smoother variations on the seafloor, with 

reduced disruptions caused by shadows in the image. 

Additionally, in the underwater structure view, the pri-

mary subject in the image appears to be a metal struc-

ture, resulting in high-brightness reflection. In this case, 

the normal map obtained using the SfS method effec-

tively captures the contour details of the object. However, 

in the reconstructed height map, the edges of the target 

exhibit excessive jaggedness, which is associated with 

uneven brightness distribution in the image. The height 

map obtained using the final fusion algorithm success-

fully mitigates the excessive noise observed in the SfS 

algorithm. Moreover, fusion with the depth map results 

in a smoother and more natural overall height transition. 

Finally, in the seabed terrain view, the proposed SfS algo-

rithm successfully captures the undulations of the sea-

floor terrain; however, the resulting 3D terrain appears 

excessively rough, lacking smoothness. The depth esti-

mation process also encounters issues because it incor-

rectly estimates the depth in the latter part of the shadow. 

Although the height map exhibits smoother character-

istics during the reconstruction fusion process, it still 

contains incorrect height estimates, particularly in the 

upper-left portion. We argue that if the depth estimation 

process can accurately estimate the depth of the image, 

the overall reconstruction quality should surpass that of 

the SfS algorithm.

5  Conclusions

In this study, we presented a novel 3D reconstruction 

approach for underwater side-scan sonar images. Our 

method addresses the issues of noise and errors in global 

information encountered in traditional methods. We first 

proposed an SfS method that separates high- and low-

frequency components in side-scan sonar images using 

DCT. This technique helps mitigate the problem of noise 

in traditional SfS methods. We developed a monocular 

depth estimation network incorporating dilated con-

volution and an attention mechanism. This network 

accurately estimates the depth map of sonar images, 

providing global information that complements the SfS 

results. Finally, we designed a fusion algorithm to com-

bine the surface normal and depth maps obtained using 

our methods. The fused 3D height map provides more 

accurate results with less noise and precise global struc-

tural information. The experimental results on various 

datasets validate the effectiveness of the proposed high-

low frequency separation SfS method, depth estimation 

network, and fusion algorithm.
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