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Abstract

Brain oscillations are believed to be involved in the different operations necessary to manip-

ulate information during working memory tasks. We propose a mechanistic role for the

observed inhibition effect of the alpha rhythm based on its interference with the theta

rhythm. Using the Lisman-Idiart model for multi-item working memory, we show that the

interaction between these two oscillations is capable of creating a long lasting destructive

interference that prevents the cyclic reactivation of neuronal ensembles and, as a conse-

quence, memory maintenance. Additionally, to ensure robustness we propose a modular

version of the model and implement oscillations as traveling waves. Using this model, we

show that the interactions between theta and gamma determine the allocation of multiple

memories in distinct modules, while the interference between theta and alpha disrupts the

maintenance of the information already stored in them. The effect of alpha in erasing or

blocking storage is robust and seems fairly independent of frequency, as long as it stays

within the alpha range. This model helps us to understand why the alpha and theta oscilla-

tions, which have close frequency bands, could have opposite roles in working memory.

Introduction

Working memory is a putative memory system that incorporates many short-term informa-

tion storage subsystems [1, 2], and serves as an interface between perception, long term mem-

ory and action [3]. In doing so, it contributes to higher cognitive functions such as reasoning,

planning, decision-making and language comprehension [4].

Comprehensive models for a working memory system include specific components, or sub-

systems, to deal with different kinds of information and processes [2, 5, 6]. In particular, for

the short-term storage devices that compose the working memory system, most of the pro-

posed models agree that some sort of persistent activity of the neurons involved in storing the

information is necessary, but disagree on the underlying physiological mechanism. These

models can be divided in roughly two categories: those that favor network mechanisms (e.g.

instantaneous attractors due to short-term synaptic changes and continuous attractors or

bump models) and models that favor single cell phenomena.
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In the last category is the model proposed by Lisman and Idiart [7]. According to this

model, incoming information of a sequence of items to be memorized causes the ordered acti-

vation of item specific neural ensembles. The firing of these cells changes their intrinsic mem-

brane properties producing a transitory excitability which peaks on a time scale of

approximately 120ms after firing. In the absence of external inputs, these labeled cells can be

reactivated by a nonspecific (non-informative) oscillatory input, provided that their period

corresponds to the characteristic time of transient excitability. Therefore, they should be in the

theta range. Another specific requirement of the model is feedback inhibition that prevents the

synchronization of the different ensembles, so that the individual items are held active in time

multiplexed fashion. A prediction of this model is a phase-amplitude coupling between the

slow oscillations in the theta range representing the maintenance signal and the fast oscilla-

tions in the gamma range representing the firing of the stored memories. Subsequent studies

have explored the theta-gamma mechanism in different models [8, 9] (see [10] for a review).

Another oscillation that has been associated with an active role in cognitive processes,

including working memory, is the alpha oscillation, which was the first rhythm observed in

humans almost a century ago [11]. Increases in alpha power were related to inhibited activity

of areas during working memory maintenance tasks (see [12] for a review). During working

memory scanning tasks, where subjects need to hold for a brief period of time several items in

memory which are later tested, an increase in alpha power was observed during the retention

period while a decrease was observed during the retrieval of information [13–15]. An increase

in alpha power related to the number of stored items was also observed [13–15].

A few theories have been used to describe possible roles for the alpha oscillation. The inhibi-

tion-timing hypothesis proposes that the peaks of alpha constrains time-windows of opportuni-

ties for the firing of neurons [16], with the increase of alpha power leading to a decrease of the

windows size. The gating by inhibition hypothesis supposes that alpha can select the most rele-

vant information to be processed through the blocking of irrelevant information routes [17].

The oscillatory selection hypothesis suggests that the information selection could be accom-

plished by an entrainment between sensory stimulus and brain oscillations [18]. In general,

the main functional role addressed for alpha oscillations relates to the inhibition of irrelevant

information.

Dippopa et. al. [19, 20] proposed a computational model where brain oscillations act as

functional operators of a working memory network, in other words, applying external oscil-

latory currents to the network allows it to store, maintain, prevent upload and erase informa-

tion. In the model, oscillations in the beta-gamma range allow the upload of information,

oscillations in the alpha range are responsible for erasing the content and preventing new con-

tent from being uploaded to the network, while oscillations in the theta range block upload but

maintain the current content. However, in their current version of the model the issue of mul-

tiple item memory as well as the role of the oscillations phases are not fully explored.

Inspired by Dippopa et. al. [19], in this article we theoretically explore the possibility that

oscillations in different frequency bands can play different roles in storage in a model with the

characteristics of the Lisman-Idiart short-term memory model [7]. More specifically, we want

to explore whether increasing alpha power at the external oscillatory input can disrupt the

multiple-item maintenance in the model therefore acting as a gating signal to erase and block

memory storage.

The Lisman-Idiart model hinges on three essential elements: neural short-term excitability,

concurrent external oscillation, and feedback inhibition. This paper, similar to the work of

Dipoppa and Gutkin, [19], fits into the category of theory-based models outlined by Bassett

et al. [21]. In other words, we test our hypothesis exploring the potentiality of simple neural

models, combining these elements without committing to specific biophysical mechanisms.
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As for the network, we consider a modular version where the oscillations, responsible for the

maintenance of the activity, sweep the network probing the modules as a traveling wave.

In the following sections we introduce the theta-alpha interference effect and the modular

network model, discuss the results and present some conclusion. The mathematical descrip-

tions of the neural models and the technical details about the computational experiments are

left to the end in the Materials and Methods section.

Themodel

Here we present the modular version of the Lisman-Idiart theta-gamma model. The idea is to

use space to improve the robustness of the model to noise as well as to enrich the possibilities

of memory storage and manipulation. For simplicity we consider that the modules are distrib-

uted in a linear fashion (see Fig 1). In each module a short-term theta-gamma memory model

is implemented as a network of excitatory neurons and inhibitory interneurons, that can per-

form multiple information storage through the cyclic reactivation of spatial firing patterns due

to the combination of depolarizing currents after an action potential (ADP) and the excitatory

drive by an unspecific oscillatory input on the theta-alpha frequency range (6–12Hz). For

most of the analysis, we utilize a current-based integrate-and-fire neural model (IF-Model)

with an artificial resettable afterspike depolarization (ADP), as initially proposed by Lisman

and Idiart [7]. Additionally, as a proof of concept, we employ a more biophysically realistic

model proposed by Rodriguez et al. [22] for L5 PFC pyramidal neurons, where the ADP is

explained in terms of intrinsic calcium dynamics (high-threshold calcium currents and cal-

cium-activated nonspecific cation current) in a Hodgkin-Huxley conductance based model

(HH-Model). See Materials and methods.

In addition we consider that the oscillatory inputs are traveling waves in such a way that

each module receives an oscillation with a slightly different phase. The evidence of travelling

waves in the brain dates back almost to the first human EEG recording (see [23]), but its

Fig 1. Modular working memory network. The modules are arranged linearly, each one composed by excitatory principal neurons (red circles) and
inhibitory interneurons (blue circles). The informational inputs reach all modules synchronously while the unspecific oscillatory inputs (Osc1 andOsc2)
are traveling waves and therefore, at a given time, the modules have oscillations with different phases. When in storage mode (maintain) a spatial firing
pattern is reactivated for each module, producing the cyclic phenomena observed in the rasterplot of Fig 3.

https://doi.org/10.1371/journal.pone.0296217.g001
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importance has been recently highlighted by experimental work demonstrating that theta

propagates in the hippocampus [24–26], and theta and alpha propagate in the neocortex [27].

For a theoretical review see [28].

As in the original Lisman-Idiart Model, each module is capable of coding a number of over-

lapping firing patterns. But the modular version allows different items to be simultaneously

stored in distinct modules that are scanned periodically by the travelling wave. It combines

spatial and temporal properties such that the change in the oscillatory frequency input allows a

much richer repertoire of operations for manipulating the information held in working

memory.

Dipoppa et al [19] proposed four essential operations for a short-term memory model:

load, maintain, block and erase. In this paper we show how each one of these operations can

be performed in the context of our model, with the exception of the block operation that is not

implemented independently but associated with the erase operation.

In other words, we consider that a network is blocked when it cannot hold information.

The theta frequency will be responsible for allowing the load and maintain operations to take

place and the alpha oscillations will perform the block/erase operations by interfering with the

theta oscillations.

Results

Fig 2 illustrates the basic mechanism governing memory maintenance using both the IF-Mo-

del and the more intricate HH-Model. Both neuron models receive a sequence of three inputs:

Fig 2. Memory maintenance. The model’s memory behavior can be illustrated as follows: a neuron receives an informational input (square pulse)
triggering firing, followed by a subthreshold network oscillation that, on its own, doesn’t induce firing. If the amplitude of the network oscillation is too
low the memory is not maintained. In (A), the neuron is an IF-model with stereotyped ADP, and in (C), it is the HH-model [22] with realistic calcium
ADP and AHP. Panels (B) and (D) depict the impact of the oscillation phases due to the modularity of the network for both neuron models.

https://doi.org/10.1371/journal.pone.0296217.g002
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an informational input sufficient to trigger firing, a subthreshold oscillation capable of sustain-

ing firing in neurons that received the informational input but insufficient to cause firing on

its own, and an oscillation unable to maintain firing. We observe that the more realistic neuron

models, grounded in experimentally observed currents, replicates the behavior exhibited by

the simpler model, Fig 2a. We employed the original set of parameters from Rodriguez et al.

[22] for calcium currents (CaL, CAN) and calcium dynamics (Ca2), along with the parameters

from Golomb and Amitai [29] for spike currents (Na, K), all without requiring further adjust-

ments (refer to Materials and Methods). By supplying sufficient initial external current to acti-

vate after-depolarization (ADP), the HH-Model can be driven by an 8Hz oscillatory

subthreshold current (see Fig 2c), demonstrating bistability through firing once per cycle dur-

ing the oscillatory phase. The HH-Model proposed by Rodriguez et al. [22] exhibits an addi-

tional after-hyperpolarization (AHP) current, absent in our IF-Model. The significance of the

AHP current lies in its ability to replicate spike irregularities observed in experimental data

[22], this is less relevant in the context of the analysis conducted in this paper where the neu-

rons are reactivated in a much lower frequency. Fig 2b and 2d demonstrate how firing can be

temporally segregated in both models if the neurons are driven by oscillations with different

phases.

Having established, at a qualitative level, the compatibility between the IF-Model and the

HH-Model concerning the fundamental mechanism behind our memory model, we now

restrict our analysis to the IF-Model. This choice is motivated by its fewer parameters, facilitat-

ing a clearer interpretation of the system. Fig 3 illustrates the load operation, that allocates

exactly one piece of information per module, when sequential stimuli are fed to the network.

On the top we have the input currents of the four stimuli. The currents are Gaussian shaped to

Fig 3. Sequential allocation of items in different modules.On top: four Gaussian stimuli colored and labeled red for A, purple for B, blue for C and
green for D. Middle: rasterplot of modules M1, M2, M3 andM4 during two cycles. The excitatory neurons are shown with a red gradient discriminating
neurons that codes different stimuli (A-D). Inhibitory neurons are shown in blue. Shaded grey areas indicate the time windows of max neuronal
excitability due to the theta wave of (>0.9 max). Bottom: cumulative frequency of the firing of neurons for each module (line style) and each stimulus
(color). Label on the right, where a 2 [A,B,C,D]. Parameters used: ψosc = 0.9 rad/module, fγ = 50 Hz, fθ = 8 Hz, ϕi = 0.8 rad.

https://doi.org/10.1371/journal.pone.0296217.g003
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account for small asynchronies from the upstream inputs. The activities in each module are

represented below with raster plots. The excitatory neurons are shown with a red gradient dis-

criminating neurons that code different stimuli (A-D). Inhibitory neurons are shown in blue.

On the bottom, the cumulative frequency for the firing of neurons representing each stimulus

for each module are shown. The color code distinguishes each stimulus and the line style dis-

tinguishes the modules. Shaded areas represent the peaks of the traveling wave across the

network.

In order to better understand the properties of the model after the introduction of the mod-

ular structure, we address the question of if there is an optimal delay between stimuli (or an

optimal presentation frequency) for the correct allocation of items into different modules. We

imagine four items (A through D) being presented to be held in memory at a rate fγ. This is

translated in terms of a sequence of Gaussian input currents to the network (Fig 3 top). The

Gaussian shapes of the inputs account for a certain degree of asynchrony in the upstream net-

work representing the items and as a whole the input resembles a bout of gamma oscillations

of frequency fγ (Fig 4a). The informational inputs are fed synchronously to all modules of the

network, but they reach each of the modules on a different phase of the unspecific oscillatory

input due its propagation speed (vosc). The phase difference between consecutive modules is

ψosc = 2πfoscd/vosc where d is the physical distance between the center of two consecutive mod-

ules and fosc is the oscillatory frequency, and we make the simplifying assumption that all neu-

rons in a given module are under the same phase. We define the input phase ϕp,m of the pth

item in the modulem as the phase difference between the positive peak of the oscillation in

that module and the item input time

�p;m ¼ �i � ðp� 1Þ�g þ ðm� 1Þcosc

Fig 4. Memory allocation on different modules. A) Definition of fγ, ψosc and ϕi. Four different stimulus are given equally to all four modules, with a
given fγ frequency, modeled as independent Gaussian currents. ψosc is the phase difference of the external oscillation of two sequential modules. ϕi is the
phase difference, in module M1, between the oscillations peak and the first input. B) Map of the f Best

g
for a given set of ϕi and ψosc when the oscillation is

in the theta range fθ = 8Hz. Blank area represents the condition where the four stimulus were not correctly allocated to the four modules. C) f Best
g

dependency on ψosc for three values of ϕi. Shaded areas show the upper and lower values of fγ that loaded A,B,C and D in M1,M2,M3 andM4. D) ψosc x
ϕimap of the working memory parameter Os using the f

Best
g

during the first three cycles including stimulation (left to right). Three rasterplot samples are

shown below in blue, red and green for three different conditions. The map is the mean of 50 repetitions.

https://doi.org/10.1371/journal.pone.0296217.g004
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where ψγ = 2πfoscd/fγ and ϕi is the input phase of the first item in the first module (see Fig 4a).

The input phase is positive if the stimulus anticipates the peak. Therefore, to evaluate the suc-

cess of the load operation in different circumstances, three parameters are available: the pre-

sentation frequency of the items fγ, the phase difference between modules ψosc and the input

phase of the first item in the first module ϕi.

We consider that the load operation is successful if items presented in a sequence are dis-

tributed in an orderly fashion among the different modules preserving sequence information.

The easiest of possible orders is to have each item stored in a different module (Fig 3) so that

the first item is represented in the first module, the second in the second, and so forth. The

success of the load operation, therefore, depends on an optimal temporal match between the

timings of the item inputs and the windows of opportunity defined by the positive phases of

the oscillatory drive in each of the different modules. This involves adjusting the fγ, ψosc and ϕi
parameters. We devised a criterion that optimizes fγ given a choice of ψosc and ϕi. Fig 4b shows

a map where the color indicates the optimal values of f Best
g

, and where the blank area is the con-

dition where the four stimuli are never allocated correctly (see Materials and methods). Fig 4c

has the same information of Fig 4b, but represented as different curves of (f Best
g

� cosc) for each

ϕi condition. In Fig 4d we take the f Best
g

for each set of (ψosc, ϕi) and display the multi-item

working memory parameter Os for the three initial cycles including the stimulation (left to

right), showing a well defined region for a good working memory performance, exemplified

by a rasterplot sample of three different conditions (blue, red and green). Os is a parameter

defined to account for synchronization within modules and asynchronization between mod-

ules using only the statistical properties of the neuronal firing in order to evaluate the perfor-

mance of the multi-item working memory storage (between 0 and 1). S1 Fig shows Fig 4c

curve for all ϕi conditions and S2 Fig shows Fig 4b and 4c using and alpha oscillation (12 Hz)

instead of theta (8Hz).

The next issue is how well the network maintains information stored through time. In the

Lisman-Idiart model for multi-item working memory, the combination of the oscillatory cur-

rent in theta frequency and the membrane after-depolarization current creates a state of neu-

ronal cyclic reactivation (Fig 5a), therefore neurons activated by a stimulus will be perpetually

reactivated.

We consider that the maintenance operation is successfully accomplished if three require-

ments are met: i) all the neurons representing an item are firing with a good degree of syn-

chrony during memory maintenance ii) each item is stored in a different module so neurons

from different items fire asynchronously, iii) memory is reactivated in the first cycle of the

unspecific oscillation. Using these criteria, we devised an order parameter (Os(z)) that mea-

sures the quality of the memory load and maintenance at a given cycle (z) (See Materials and

methods). Higher values of Os(z) indicate better storage. Fig 5b shows that the four items cor-

rectly allocated are stably maintained through time by four different modules.

While the power of theta oscillations is correlated with the maintenance of working mem-

ory, the power of alpha is thought to actively inhibit irrelevant information on the same tasks.

We propose that a possible mechanism for this inhibitory effect is the interference between

existing oscillations in the alpha and theta range in the same network. We call it Oscillatory

Interference Hypothesis. We consider that the combination of alpha and theta frequencies pro-

duces a beat, and the cyclic reactivation of the firing patters proposed in Lisman-Idiart ends up

impaired and canceled, resulting in an erase operation on the working memory buffer (Fig

6a). In order to measure the correlation between the probability of alpha erasing the stored

memories and three different parameters of the system (Aα, α onset and fα), we first calculate

the average value of Os(z) parameter for the three cycles after alpha onset (z = 10, 20 and 30),
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then binarized using the values of Os< 0.5 as memory successfully erased (Perase = 1) and Os>

0.5 memory not erased (Perase = 0) and plotted logistic regression fitting curves. Fig 5b shows

that the inhibitory role of alpha was independent of the amplitude and the initial onset, but

dependent on the specific frequency within the alpha band.

Discussion

We proposed an adaptation of the Lisman-Idiart model where the neurons are structured in

spatial modules and the oscillations are traveling waves. The main reasons for these are (i) to

increase the robustness of the model and (ii) to test the gating effect of different external oscil-

latory inputs. The original model segregated memories through fast-response inhibition, with

sequential delays of the firing reactivations [7]. As a result it was unstable to noise and prone

to synchronization of neurons belonging to different items. It is important to note that under-

lying the concept of a multiplexing network, as proposed here, is Singer’s Binding by Syn-

chrony hypothesis [30]. This hypothesis posits that the integral representation of an item is

achieved through the synchronization of neural ensembles encoding its characteristics. For

instance, the simultaneous representation in short-term memory of a blue circle and a red

square is achieved through the specific synchronization of neurons corresponding to the accu-

rate combination of shapes and colors. In simpler terms, blue neurons should synchronize

with circle neurons, while red neurons should synchronize with square neurons. Conse-

quently, synchronizing the ensembles of both items is damaging as it eliminates phase infor-

mation, making it impossible to know the color associated with each shape.

With the introduction of network modularity and the oscillatory inputs as traveling waves

the model becomes more robust. Recent evidence suggest that oscillations in the hippocampus

and neocortex are indeed traveling waves [25–27]. There is also overwhelming experimental

evidence that the brain has a modular architecture, where neurons connect together forming

micro local networks. The new version of the model, therefore, introduces not only phase but

Fig 5. Memory maintenance. A) Basic mechanism for maintenance at the neuronal level: the sum of the oscillatory
theta input and the intrinsic afterdepolarization current is sufficient for a cyclic reactivation of the neurons once
stimulated. B) Four items, one allocated to each module, are stably maintained in time for several theta cycles. The y-
axis accounts for the fraction of active neurons of each item that during each cycle (na(z)/Na, a 2 [A,B,C,D]) and the
Os(z) parameter.

https://doi.org/10.1371/journal.pone.0296217.g005
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also space as part of the code. Since lists of items can come in any order we also assume that

the modules have enough capacity to represent many items and that a specific item can be rep-

resented in different modules. This also solves the problem of storing similar items with over-

lapping neural representations since they will be active in different modules during multi-item

storage.

In the simulated experiments we show that even if four stimuli are given equally to four

modules, the excitatory dynamic created by a theta traveling wave allows the correct allocation

of one memory item in each module. The optimal frequency to load a sequence of items is

related to the speed of the traveling wave, that binds the theta and the gamma oscillations. This

frequency is approximately the one in which the gamma period matches the difference in time

between the phases of theta oscillations of two sequential modules being smaller as the global

inhibition increases. In our model, the stimulus presentation should be interpreted as pre-

sented to the neural circuit and not the individual, being preprocessed by other brain regions

and temporally compressed before being sent to the working memory system. Recent studies

investigating theta and alpha oscillations as traveling waves indicate a phase difference of 2π

rad/cm in the rat hippocampus [24], 0.1rad/cm in the human hippocampus [25] and 0.3

− 1.25rad/cm in the human neocortex [27], suggesting that our model would fit better on a

human neocortical surface circuit, with a spatial scale of centimeters in and between modules.

Our model indicates that there is a wide range of parameter allowing the theta and gamma

oscillations to create the multi-item working memory storage. The blank area of the map of

Fig 3b represents a more complex condition where more than one item is coded on the same

module or the same item is coded by two different modules. Since every module has all the fea-

tures of the Lisman-Idiart model, they could operate as local short-term buffers in case there is

no interaction between modules. Regarding evidence about the role of the direction of propa-

gation of the travelling waves in working memory [27], one possibility is that the coherence of

the propagation of the travelling waves could recruit more or less modules, turning on the spa-

tial features or maintaining just the local ones.

We use the same maintenance mechanism proposed on the Lisman-Idiart model, where

stimulated neurons present afterdepolarization currents and the sum with the oscillatory theta

input allows a cyclic reactivation. So, the same neurons once stimulated will fire again on each

theta cycle. The same patterns activated by the stimuli A,B,C and D are repeated on each cycle

for the modules M1, M2, M3 and M4.

The Oscillatory Interference Hypothesis showed to be a plausible mechanism for the block-

ing role of the alpha oscillations. Considering a condition where the alpha and theta oscilla-

tions compete for power (similar amplitudes). Alpha was able to disrupt the working memory

performance in the model independently of its amplitude (Fig 6b, left panel). The effect also

was relatively insensitive to the phase during the onset of alpha (Fig 6b, middle panel). As for

the frequency values there is a sharp transition where, for a theta’ 8Hz, values of alpha fre-

quency above 10Hz effectively erased the working memory buffer (Fig 6b, right panel). The

measures taken used the combination of three cycles to ensure the time needed for the system

to show long lasting and stable behaviour.

In our model alpha disrupts working memory by interfering with theta. The result is a beat

profile that produces a long lasting period of low amplitude oscillations (Fig 7). Using a condi-

tion where both alpha and theta are synchronized at phase = 0 during alpha onset, it is possible

to determine which values of alpha (and higher frequency bands) could produce a beat where

the valley coincides with the peak of the ADP (IADP> 0.85AADP). Fig 7 top colored curves

shows two of the four beatings (red and green) with minimums (t1min and t2min coinciding with

ADP’s peak (ADP shown as the bottom curve, peak in bold) for theta = 8Hz. The analytical
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curve for the τmin is computed as half of the inverse of the beat frequency (see Materials and

methods) and is showed as dashed gray line. The min and max alpha frequency that coincides

with the ADP’s peak is shown closed to the ADP’s curve in black (10.4 Hz and 15.5 Hz, mean

value 12.95 Hz). For other values of fθ, the inserted plot shows the dependence between the

average value for alpha (f mean
a

¼ fmaxa �fmina

2
) and theta frequency. This could explain the alpha fre-

quency dependency found during our simulations.

Concerning the potential physiological validity of the derived properties within the IF-Mo-

del discussed here, we take initial steps towards a more realistic neural implementation. We

showed that, at the fundamental level of memory maintenance, both the IF-Model and the

more realistic HH-Model proposed by Rodriguez et al. [22] exhibit similar behavior. The

intrinsic currents responsible for the HH-Model’s after-spike depolarization (CaL, CAN) pro-

duce an effect akin to the IF-Model’s more stereotyped ADP current. Both exhibit an asym-

metric shape, characterized by a faster rise than decay, with amplitudes falling within the range

of approximately 2.5 to 15mV. While Rodriguez et al. characterizes the ADP phenomenon as

Fig 6. Memory erasing.A) Simulation’s protocol: Load—Information is loaded in the network; Maintain—Information is maintained by reactivation
for four oscillatory cycles; Erase—The onset of alpha oscillations occurs and storage measures are made on the next three cycles. B) Multi-item working
memory performance measured by theOs parameter during the first three theta cycles (1’,2’ and 3’) after the onset of alpha. The plots show dependency
with the amplitude of alpha, the onset theta phase and the alpha frequency. Thick red lines shows the binned mean, where the markers are the bin’s
center and the shadowed area is the standard deviation.

https://doi.org/10.1371/journal.pone.0296217.g006

PLOS ONE Alpha oscillations in working memory

PLOSONE | https://doi.org/10.1371/journal.pone.0296217 February 8, 2024 10 / 21

https://doi.org/10.1371/journal.pone.0296217.g006
https://doi.org/10.1371/journal.pone.0296217


an after-burst depolarization, we consider every depolarization that emerges after each spike

(See Fig 2). However, much exploration is needed within the broader parameter space of the

HH-Model.

Conclusion

In this paper, we discussed a possible mechanism behind the effect that oscillations in the

alpha range appear to have in cognitive tasks that demand that subjects disregard parts of the

external stimuli. We do it in the light of the theta-gamma model proposed by Lisman-Idiart.

In this model memory maintenance depends on two factors. The first is an intrinsic excitabil-

ity caused by recent activity that tags neurons associated with a given memory. The second is

an oscillatory input, in the theta range, that is sub-threshold for neurons that are not part of

the memory but can drive the tagged neurons back to activity keeping them in oscillatory per-

sistent activity, since there is a resonance effect between the time course of the excitability and

the oscillatory input. According to the logic of the model, memory erasure could be accom-

plished by either eliminating the neural intrinsic response to firing or by disrupting the oscil-

latory input that refreshes the memory. We propose that an efficient way to disrupt the

oscillation is by gating to the circuit an oscillation in the alpha range that will be superimposed

over the existing theta oscillation causing amplitude modulations with the exact time scale to

prevent the tagged neurons from refreshing their excitability. Although the same effect could

be easily accomplished by reducing the power of the theta oscillations, in this paper we sub-

scribe to the view that oscillations are natural attractors for the biological neural networks and

preventing them may be more energetically costly than just combining them [31]. In future

work we aim to explore the interplay between oscillations and item similarity in long-term

memory. This interaction has the potential to mitigate the impact of noise in the model. Noise

disrupts firing patterns, causing neurons that should be firing together to desynchronize and

synchronizing those that should not. Recurrent connections play a vital role in counteracting

these tendencies, thereby preserving the integrity of neural ensembles that collectively repre-

sent the same memory. Once the parameter intervals for the basic IF-Model are established, a

Fig 7. Alpha inhibitory mechanism.A) Beat, in red, produced by an theta (8Hz) and alpha oscillation (10 Hz), dashed black lines, starting
synchronized with phase = 0. B) Values of alpha (and higher frequency bands) could produce a beat where the valley coincides with the next

two theta peaks, for theta = 8Hz. C) Mean possible alpha (�f a ¼ f max
a

� f min
a

)for other values of fθ.

https://doi.org/10.1371/journal.pone.0296217.g007
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pivotal next step is to find equivalent parameter intervals in more realistic neural models, such

as the one proposed by Rodriguez et al. [22], and subsequently compare them with physiologi-

cally realistic parameters.

Materials and Methods

Network

We consider a network composed by N neurons, of which Nex are principal excitatory and

Ninh are inhibitory interneurons. The network is divided inM spatial modules, with Na/M neu-

rons of each type, a = ex, inh. The neural connectivity depends on the modules the neurons

belong to, as well as the oscillatory inputs, with sequential oscillatory phase-differences pro-

ducing the effect of a travelling wave. The stimulus input and the output occur simultaneously

for all modules.

Connections

The network has the connectivity matrix presented in the S3 Fig, where the synaptic strengths

are randomly generated by an uniform distribution between 0 andWtype that depends on the

kind of connection.

Wab � Uð0;WtypeÞ ð1Þ

whereWab is the connection from the presynaptic neuron to the postsynaptic neuron and U(0,

Wtype) is a uniformly distributed random number between 0 andWtype.Wtype can be Global

(WEI,WIE) or Modular (WEE,WEI,WIE).

Integrate-and-fire neuron model

The neurons are modeled as current based integrate and fire, given by the equation

tm
dV

dt
¼ �ðV � VrÞ þ

X

i

Ii ð2Þ

where V is the membrane potential, Vr is the resting potential, τm is the membrane time con-

stant and the last term is the sum over the i input currents. The potential is reset to a hyperpo-

larized value Vreset after passing the firing threshold of Vthreshold, and stays unable to fire again

for refractory time of trefractory.

The total post-synaptic input received by the neuron “i” due to the firing of other neurons

“j” in a given time “t” is

I
ps
i ðtÞ ¼

X

N

j¼1

Wij

X

njðtÞ

s¼1

Pðt � tðsÞj Þ ð3Þ

whereWij is the synaptic weight, nj(t) is the number of spikes fired by the jth neuron up to

time t, and tðsÞj are the spike times, and the individual input P is

PðtÞ ¼ HðtÞe�t=tpsp ð4Þ

whereH represent a Heaviside function. The principal excitatory neurons have an afterdepo-

larization potential that is reset for each new spike.

IADPi ðtÞ ¼ AADP
t � t∗i
tADP

� �

e�ðt�t∗
i
Þ=tADPþ1 Hðt � t∗i Þ ð5Þ
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where t∗i < t is the last spike of cell i before time t. The informational stimulus are modeled as

Gaussian pulses

I
inf
i ðtÞ ¼ Ainf di2A e

�ðt�tAÞ2=ð2s2g Þ ð6Þ

where Ainf is the input amplitude, tA the average time the stimulus was presented to the net-

work and δi 2 A indicates that only neurons linked to the information pattern A receive the

inputs. The oscillatory inputs are given by the sinusoidal function

Iosci ðtÞ ¼ Aosc sinð2pfosct þ ðmi � 1ÞcoscÞ ð7Þ

where Aosc is the amplitude, fosc is the frequency, ψosc is a phase-shift creating a travelling wave

effect andmi = 1, 2, . . .,M is the module index of the ith neuron. The oscillatory power is mod-

eled as all external oscillations come from the same source, meaning that the total power is a

constrain condition for the system.

Noise

We consider only additive noise and introduce it in the simulations as a variability in the firing

threshold for each neuron

Vthreshold;i ¼ �50þ Zi ð8Þ

where

Zi � Nðmnoise; snoiseÞ

is a normally distributed random variable with mean μnoise and standard deviation σnoise that is

drawn independently for each neuron after each new spike. This is a strategy to decrease simu-

lation time, valid for the IF-Model in the regime of low-frequency spiking (< 10Hz). Within

this range, pure white noise added to the threshold is equivalent to more complete treatment

of noise as long as its correlation decay time is significantly shorter than the theta oscillation

period.

Neurophysiological realistic neuron model

Neuronal model adapted from L5 PFC pyramidal neurons from Rodriguez et al. [22]. Neurons

are Hodgkin-Huxley neurons described by

C
dV

dt
¼ �ðIL þ INa þ IK þ ICaL þ ICAN þ IAHPÞ þ IInj ð9Þ

The Leak current IL is written as

IL ¼ gLðV � VLÞ ð10Þ

The sodium current INa is defined by

INaðV; hÞ ¼ gNam
3

1ðVÞhðV � VNaÞ ð11Þ
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with

dh

dt
¼ ½h1ðVÞ � h�=thðVÞ

m1ðVÞ ¼ f1þ exp½�ðV � ymÞ=sm�g
�1

h1ðVÞ ¼ f1þ exp½�ðV � yhÞ=sh�g
�1

thðVÞ ¼ 0:37þ 2:78 ∗ f1þ exp½�ðV � yhtÞ=sht�g
�1

ð12Þ

The potassium current IK is defined by

IKðV; nÞ ¼ gKn
4ðV � VKÞ ð13Þ

with

dn

dt
¼ ½n1ðVÞ � n�=tnðVÞ

n1ðVÞ ¼ f1þ exp½�ðV � ynÞ=sn�g
�1

tnðVÞ ¼ 0:37þ 1:85 ∗ f1þ exp½�ðV � yntÞ=snt�g
�1

ð14Þ

The high-threshold calcium current ICaL is determined by the following equations

ICaL ¼ �gCaLx
2

CaLðV � VCaLÞ ð15Þ

with the activation variable xCaL satisfying

dxCaL
dt

¼ x1CaLðVÞ � xCaL
tCaLðVÞ

tCaLðVÞ ¼ 10
aCaLþbCaLV

x1CaLðVÞ ¼ f1þ exp½�ðV � V
1=2;CaL=KCaL�g

�1

ð16Þ

The calcium-activated nonspecific cation current ICAN has the following equation

ICAN ¼ �gCAN xCAN ðV � VCANÞ ð17Þ

with the activation xCAN depending on the intracellular calcium concentrations as

dxCAN
dt

¼ x1CANðCaÞ � xCAN
tCANðCaÞ

tCANðCaÞ ¼ 1

aCAN ∗ Caþ bCAN

x1CANðCaÞ ¼ aCAN ∗ Ca
aCAN ∗ Caþ bCAN

:

ð18Þ

The hyperpolarizing current IAHP is described by

IAHP ¼ �gAHP x
2

AHP ðV � VAHPÞ ð19Þ
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where de activation xAHP follows

dxAHP
dt

¼ x1AHPðCaÞ � xAHP
tAHPðCaÞ

tAHPðCaÞ ¼ 1

aAHP ∗ Caþ bAHP

x1AHP ¼ aAHP ∗ Ca
aAHP ∗ Caþ bAHP

:

ð20Þ

The calcium concentration dynamics is described by

dCa

dt
¼ � 1

2F

Surf

Vol
ICaL þ

Ca
0
� Ca
tCa

ð21Þ

where

Surf

Vol
¼ r�1

1
1� r1

r
0

þ r2
1

3r2
0

� ��1

ð22Þ

The injection current is modeled in three modes as

Iinj ¼
Aevent if 20ms < t < 220ms

Adelayosc sinð2pf delayosc t þ c
delay

osc Þ if 220ms <¼ t < 1220ms

ðAdelayosc =2Þ sinð2pf delayosc t þ c
delay

osc Þ if 1220ms <¼ t

8

>

<

>

:

The parameters used are summarized in Table 2.

Metrics for loading performance

In order to evaluate the best frequency of stimuli presentation fγ, for loading information into

the network given the parameters (ψosc, ϕi), we simulated the loading cycle (zero cycle) of our

network varying fγ between 100Hz and 33.33Hz. We then counted the number of activated

cells for each item for each module na,m where a 2 [A, B, C, D] andm 2 [M1,M2,M3,M4].

We consider that, in a first approximation, a frequency is suitable for loading if the order of

the stimuli is preserved in the modules. In other words, if the first item is the winner (the most

active) in the first module, the second item is the winner in the second module, and so on.

Mathematically a binary loading suitability can be written as

‘ðf jgÞ ¼
Y

i

Y

j 6¼i
H½ni;iðf Þ � g ni;jðf Þ� ð23Þ

whereH[�] is the Heaviside function, the level g> 1 is a parameter that controls how bigger

the winners must be (for instance, g = 2 indicates that the winner has to be at least twice the

runner up), and the indexes i, j are numerical indexes representing items and modules consid-

ered here in equal number. We assume that the most suitable frequency (the best fγ) for load-

ing information for a given (ψosc, ϕi) as the average

f Best
g

ðcy; �ijgÞ ¼
P

f ‘ðf jgÞf
P

f ‘ðf jgÞ
: ð24Þ

When ∑f ℓ(f|g) = 0 there is no suitable frequency, at level g, and the result is represented by a

blank in Fig 4b.
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Metrics for performance maintenance

We developed an order parameter that can account for the storage properties of the system.

These are: neurons from a given stored item need to be synchronized, while stay asynchronized

with neurons from other items. So, for the zth reactivation cycle and a stored item A, the measure

for the synchronization within a memory item is

O
Syn
A ðzÞ ¼ nAðzÞ

NA
1�

ffiffiffi

2

p sAðzÞ
Dt

� �bs
" #

þ

ð25Þ

where nA(z) is the number of active neurons in the ensemble that represents item A at the zth

cycle,NA is the total number of neurons in the ensemble that represents item A, σA(z) is the stan-

dard-deviation of the firing times of the nA(z) neurons, Δt is the time between the reactivation of

two sequential items, βs is a control parameter that punishes the standard-deviation increase.

The measure for asynchronization between two memory items A and B, in the zth cycle is

O
Asyn
AB ðzÞ ¼ �

jhtAðzÞi � htBðzÞij
Dt

� �

ð26Þ

where

htAðzÞi ¼
1

nAðzÞ
X

i

tA;iðzÞ

with tA,i(z) the firing times for the individual neurons representing item A and

�ðxÞ ¼
0 if x ¼ 0

xba if x 2 ð0; 1Þ
1 if x � 1

8

>

<

>

:

where βa a parameter controlling ϕ’s non linearity.

Our order parameter, therefore, it the multiplicative combination of the average over items

of both measures, in a given cycle z,

OsðzÞ ¼
1

M

X

A

O
Syn
A ðzÞ

" #

2

MðM � 1Þ
X

A;B>A

O
Asyn
AB ðzÞ

" #

: ð27Þ

Metrics for erasing performance

In order to assess alpha’s capacity of disrupting the stored memories, we performed 1200 sim-

ulations randomly varying three alpha parameters: α amplitude (Aα, between 0.35 and 0.65

max), α onset (between 0 and 2π rad of θ ongoing oscillatory phase) and α frequency (fα,

between 8 and 13Hz). To evaluate alpha’s disrupting performance, we first calculate the aver-

age value of Os(z) parameter for the three cycles after alpha onset (z = 10, 20 and 30), then binar-

ized using the values of Os< 0.5 as memory successfully erased (Perase = 1) and Os> 0.5

memory not erased (Perase = 0) and plotted logistic regression fitting curves.

Analytical τmin curve

We computed the analytical τmin curve presented on Fig 6 as the half of the inverse of the beat

frequency, which represents half of the beating period or the time to achieve the beating
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minimum.

tmin ¼
1

2fbeat
¼ 1

2

1

j fa � fy j
ð28Þ

Simulations and data analysis

We used Euler’s method with step size dt = 0.01 ms for solving numerically the neurons differ-

ential equations. The simulations were written in C programming language and data analysis

and graphic production were made with Python.

Table 1. Overview of parameters. Top: fixed parameters held constant throughout the simulations. Bottom: variable
parameters uses more than one value or a range of values.

Fixed Parameters

Network N = 500

Nex = 400

Ninh = 100

M = 4

Neurons τme = 15 ms

τmi = 2 ms

τADP = 140 ms

AADP = 7 mV

Vrest = -60 mV

Vthresh = -50 mV

Vreset = -70 mV

Tref = 3 ms

Psp current τps.e = 1 ms

τps.i = 10 ms

Global Synaptic Weights WEI = 1.12

WIE = -0.112

Modular Synaptic Weights WEE = 0.70

WEI = 4.5

WIE =-0.8

Os Parameter βs = 1

βa = 1

Δt = 20 ms

Others σnoise = 0.5 mV

μnoise = 0 mV

σγ = 4 ms

dt = 0.01 ms

Variable Parameters

Oscillations fθ = 4–8 Hz

fα = 8–13 Hz

Aθ = 0.35–0.65 max

Aα = 0.35–0.65 max

ψosc = 0—1.2 rad/module

ϕi = 0.0—0.8 rad

fγ = 1000—33.33 Hz

https://doi.org/10.1371/journal.pone.0296217.t001
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Table 2. Parameters for the neural HH-Model from [22].

Membrane Equation C = 1μF/cm2

Leak Current(IL) gL = 0.05mS/cm2

VL = −70mV

Sodium Current (INa) gNa = 24mS/cm2

VNa = 55mV

θm = −30mV

σm = 9.5mV

θh = −53mV

σh = −7mV

θht = −40.5mV

σht = −6mV

Potassium Current (IK) gK = 3mS/cm2

VK = −90mV

θn = −30mV

σn = 10mV

θnt = −27mV

σnt = −15mV

High-threshold Calcium Current(ICaL) �gCaL ¼ 0:0045mS=cm2

VCal = 150mV

V1/2,CaL = −12mV

KCaL = 7mV

αCaL = 0.6

βCaL = −0.02mV−1

Calcium-activated Nonspecific Cation Current(ICAN) �gCAN ¼ 0:025mS=cm2

VCAN = 30mV

αCAN = 0.0056μM−1ms−1

βCAN = 0.0125ms−1

Afterhyperpolarizing Current (IAHP) �gAHP ¼ 0:2mS=cm2

VAHP = −90mV

αAHP = 0.05μM−1ms−1

βAHP = 0.2ms−1

Calcium Dynamics (Ca) F = 96500C/mol

r0 = 4μm

r1 = 0.025μm

Ca0 = 0.1μM

τCa = 100ms

Injetion Current (IInj) Aevent = 0.65

Adelayosc ¼ 0:55

f delayosc ¼ 8Hz

c
delay

osc ¼ 0rad

Euler’s Time Step 0.01ms

https://doi.org/10.1371/journal.pone.0296217.t002
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Parameters

Parameters are shown in Tables 1 and 2.

Supporting information

S1 Fig. Complementary f Best
g

curves. A) f Best
g

vs ψosc for the complete set of ϕi. B) Mean

between ϕi conditions.

(TIF)

S2 Fig. Load operation using alpha. Load operation using alpha 12 Hz instead of theta 8 Hz.

Similar plot as Fig 3B and 3C.

(TIF)

S3 Fig. Connectivity specification. A) List of excitatory and inhibitory connections. B)

Scheme of Global and Modular connections. C) Connectivity matrix for the network. The y-

axis represent the presynaptic neurons and the x-axis the postsynaptic neurons. The excitatory

and inhibitory neurons are grouped together for convenience.

(TIF)
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