This is a repository copy of Mapping the core of the Tarantula Nebula with VLT-MUSE - III. A template for metal-poor starburst regions in the visual and far-ultraviolet.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/209298/
Version: Published Version

Article:

Crowther, P.A. orcid.org/0000-0001-6000-6920 and Castro, N. orcid.org/0000-0003-0521473X (2024) Mapping the core of the Tarantula Nebula with VLT-MUSE - III. A template for metal-poor starburst regions in the visual and far-ultraviolet. Monthly Notices of the Royal Astronomical Society, 527 (3). pp. 9023-9047. ISSN 0035-8711
https://doi.org/10.1093/mnras/stad3698

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Mapping the core of the Tarantula Nebula with VLT-MUSE - III. A template for metal-poor starburst regions in the visual and far-ultraviolet

Paul A. Crowther ${ }^{\oplus 1 \star}$ and N. Castro ${ }^{\oplus_{2}}$
${ }^{1}$ Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK
${ }^{2}$ Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany

Accepted 2023 November 24. Received 2023 November 24; in original form 2023 September 19

Abstract

We present the integrated VLT-MUSE spectrum of the central $2 \times 2 \operatorname{arcmin}^{2}\left(30 \times 30 \mathrm{pc}^{2}\right)$ of NGC 2070, the dominant giant $\mathrm{H}_{\text {II }}$ region of the Tarantula Nebula in the Large Magellanic Cloud, together with an empirical far-ultraviolet spectrum constructed via LMC template stars from the ULLYSES survey and Hubble Tarantula Treasury Project UV photometry. NGC 2070 provides a unique opportunity to compare results from individual stellar populations (e.g. VLT FLAMES Tarantula Survey) in a metal-poor starburst region to the integrated results from the population synthesis tools Starburst99, Charlot \& Bruzual, and BPASS. The metallicity of NGC 2070 inferred from standard nebular strong line calibrations is $\sim 0.4 \pm 0.1$ dex lower than obtained from direct methods. The $\mathrm{H} \alpha$ inferred age of 4.2 Myr from Starburst 99 is close to the median age of OB stars within the region, although individual stars span a broad range of $1-7 \mathrm{Myr}$. The inferred stellar mass is close to that obtained for the rich star cluster R136 within NGC 2070, although this contributes only 21 per cent to the integrated far-UV continuum. He iI $\lambda 1640$ emission is dominated by classical WR stars and main sequence WNh + Of/WN stars. Around 18 per cent of the NGC 2070 far UV continuum flux arises from very massive stars with $\geq 100 \mathrm{M}_{\odot}$, including several very luminous Of supergiants. None of the predicted population synthesis models at low metallicities are able to successfully reproduce the far-UV spectrum of NGC 2070. We attribute issues to the treatment of mass-loss in very massive stars, the lack of contemporary empirical metal-poor templates, plus WR stars produced via binary evolution.

Key words: galaxies: clusters: individual: R136 - stars: massive - galaxies: Magellanic Clouds - ISM: HII regions: ultraviolet: stars - galaxies: starburst.

1 INTRODUCTION

The Tarantula Nebula (30 Doradus) in the Large Magellanic Cloud (LMC) is intrinsically the brightest star-forming region within the Local Group of galaxies (Crowther 2019). It has been the subject of numerous studies across the electromagnetic spectrum (Vacca et al. 1995; Sabbi et al. 2013; Crowther et al. 2022; Wong et al. 2022; Fahrion \& De Marchi 2023). Its low (half-solar) metallicity and high star formation intensity are more typical of knots starforming galaxies at $z \sim 2-3$ (Steidel et al. 2016; Johnson et al. 2017) than local systems, owing to its very rich stellar content (Schneider et al. 2018a). Indeed, 30 Doradus has nebular conditions that are reminiscent of Green Pea galaxies (Cardamone et al. 2009), which are local extreme emission-line galaxies, some of which are known to be Lyman continuum leakers (Micheva et al. 2017).

The Tarantula Nebula is host to hundreds of massive stars, including very massive stars (VMS) located in the central, dense star cluster R136 (Massey \& Hunter 1998; Crowther et al. 2010) and the extended giant H II region NGC 2070, the central ionized nebula within the Tarantula (Bestenlehner et al. 2014). Its proximity permits observation and analysis of individual massive OB and Wolf-Rayet

* E-mail: Paul.crowther@ sheffield.ac.uk
stars (Melnick 1985; Selman et al. 1999; Evans et al. 2011). Star formation in the Tarantula Nebula began at least $15-30 \mathrm{Myr}$ ago, as witnessed by the Hodge 301 cluster, with an upturn in its rate of star formation in the last 5-10 Myr (Schneider et al. 2018b). Star formation is still ongoing, as witnessed by clumps of molecular gas observed with the Atacama Large Millimeter Array (Wong et al. 2022).

The proximity of the LMC provides a unique opportunity to study a rich, intensively star-forming region individually, via its resolved stellar content (Doran et al. 2013), and collectively, via its integrated light via application of population synthesis models. If the LMC were located at a distance of 10 Mpc , R136, NGC 2070, and the Tarantula would subtend diameters of $0.04,0.8$, and 6 arcsec, respectively (Crowther 2019). Population synthesis models are widely employed to interpret far-ultraviolet (UV) spectroscopy of unresolved star clusters at Mpc distances (Chandar, Leitherer \& Tremonti 2004; James et al. 2014; Sirressi et al. 2022), local star-forming galaxies (Wofford, Leitherer \& Salzer 2013; Berg et al. 2022) plus those at $z>2$ observed with large groundbased telescopes (Steidel et al. 2016; Saxena et al. 2020) or James Webb Space Telescope (Carnall et al. 2023; Curtis-Lake et al. 2023).

Although the nebular properties of the entire 30 Doradus region has previously been studied (Kennicutt et al. 1995; Pellegrini, Baldwin \&

Figure 1. Left-hand panel: HST ACS/F658N image of the central region of 30 Doradus ($320 \times 320 \operatorname{arcsec}^{2}$) from HTTP (Sabbi et al. 2013) including MUSE field of view (black box). North is up, East to the left. Hodge 301 can be seen to the upper right. Right-hand panel: HST WFC3/F336W image of central region of NGC $2070\left(165 \times 165 \mathrm{arcsec}^{2}\right)$ from HTTP, with selected bright sources labelled. The white region to the lower right is not included in the F336W footprint.

Ferland 2010), here we focus on the central region of NGC 2070 observed with the Multi-unit Spectroscopic Explorer (MUSE) mounted at the Very Large Telescope (VLT), as part of its original Science Verification programme. Castro et al. (2018) introduce the data set and provide a stellar census and nebular kinematic properties, while Castro et al. (2021b) present a spectroscopic analysis of OB stars. This region is host to the central R136 star cluster, several WR stars, including the R140 complex, plus several cool supergiants such as Melnick 9.

Age estimates of OB stars within NGC 2070 (external to R136) range from 1 to 7 Myr , with a median age of 3.6 Myr (Schneider et al. 2018b). To date, only the central cluster R136 has been observed in the far-UV, both collectively (Heap, Ebbets \& Malumuth 1992) and individually (Crowther et al. 2016), the latter obtaining a cluster age of $\sim 1.5 \mathrm{Myr}$ (see also Brands et al. 2022). Several other luminous early-type stars within NGC 2070 have been observed in the far-UV with COS or STIS instruments aboard Hubble Space Telescope (HST), plus a large sample of far-UV template spectra of LMC OB stars have been obtained via the HST initiative ULLYSES (Roman-Duval et al. 2020; Crowther 2022). Consequently, we are able to construct an empirical integrated spectrum of the MUSE field of-view in the far-UV, for comparison with predictions from (theoretical) population synthesis models Starburst99 (Leitherer et al. 1999, 2014), Charlot \& Bruzual (Bruzual \& Charlot 2003; Plat et al. 2019), and BPASS (Eldridge et al. 2017; Stanway \& Eldridge 2018).

The present study completes the analysis of NGC 2070 MUSE Wide Field Mode (WFM) observations and is structured as follows. We provide a brief summary of visual MUSE observations of NGC 2070 and describe how the far-UV spectrum of NGC 2070 is constructed in Section 2. The integrated MUSE data set is analysed in Section 3, with an emphasis on nebular properties and optical WolfRayet bumps, with the far-UV spectrum compared to predictions from various population synthesis models in Section 4. A comparison
between individual and cumulative results is provided in Section 5, together with brief conclusions. Initial results for nebular, stellar, and integrated properties of the MUSE WFM data sets were presented in Crowther et al. (2017).

2 NGC 2070 SPECTROSCOPIC DATA SETS

2.1 Visual observations

MUSE is a wide-field, integral-field spectrograph providing intermediate resolution ($R \sim 2000$) spectroscopy from 4600 to $9350 \AA$ (Bacon et al. 2010). Four overlapping MUSE WFM pointings were obtained at the VLT in August 2014 via a Science Verification programme (PI: J. Melnick), providing a $2 \times 2 \operatorname{arcmin}^{2}\left(30 \times 30 \mathrm{pc}^{2}\right)$ mosaic which encompasses both the R136 star cluster and R140, an aggregate of WR stars to the north (Castro et al. 2018). The MUSE field of view is indicated on Hubble Tarantula Treasury Project ${ }^{1}$ (HTTP; Sabbi et al. 2013). About $320 \times 320 \operatorname{arcsec}^{2}$ ACS/F658N and 165×165 $\operatorname{arcsec}^{2}$ WFC3/F336W images in Fig. 1 in which selected bright sources are identified in the latter. A larger footprint, especially to the north, would be required to fully sample the bright nebulosity of NGC 2070, but MUSE field of view includes ~ 50 per cent of the far-UV continuum of the entire Tarantula. ${ }^{2}$

The MUSE spatial resolution spanned $0.7-1.1 \mathrm{arcsec}$, corresponding to a mean spatial resolution of $0.22 \pm 0.04 \mathrm{pc}$. Four exposures of 600 s for each pointing provided a continuum S / N exceeding 50 for 600 sources in the yellow. The integrated MUSE green-red spectrum of NGC 2070 is presented in Fig. 2, with nebular properties

[^0]

Figure 2. Integrated MUSE spectrum of NGC 2070, updated from Crowther et al. (2017), revealing a striking emission line spectrum, with nebular properties (e.g. high [O III] $\lambda 5007 / \mathrm{H} \beta$, low [N II] $\lambda 6584 / \mathrm{H} \alpha$) reminiscent of Green Pea galaxies (Cardamone et al. 2009). WR bumps are observed in the blue (upper inset, He II $\lambda 4686$ arising from primarily WN stars) and yellow (lower inset, C IV $\lambda \lambda 5801-12$ due to WC stars). Nebular lines in the insets include [Fe III] $\lambda 4658$, [Ar IV] $\lambda 4711$, [N II] $\lambda 5755$, and He I $\lambda 5876$.
reminiscent of Green Pea galaxies (Cardamone et al. 2009), plus WR bumps in the blue (upper inset), and red (lower inset). Recent MUSE Narrow Field Mode observations of the R136 cluster are presented in Castro et al. (2021a).

2.2 Far-ultraviolet observations

The combination of VLT/MUSE (Castro et al. 2018), VLT/FLAMES (Evans et al. 2011), and HST/STIS (Crowther et al. 2016) spectroscopy provide near complete spectral type census of bright earlytype stars in the Tarantula (Schneider et al. 2018a; Crowther 2019). This census permits us to construct an integrated far-UV spectrum of the region within the MUSE mosaic discussed in Section 2.1, by combining empirical data sets for a subset of stars (those with far-UV spectroscopy) with suitable templates for the remainder (those lacking far-UV spectroscopy at $R \geq 2000$). Empirical HST COS or STIS spectroscopy is available for a subset of individual UV-bright sources, which are rebinned to $R \sim 2000$. These are supplemented by Goddard High Resolution Spectroscopy (GHRS) G140L observations of the central $2 \times 2 \operatorname{arcsec}^{2}$ R136a cluster (Heap, Ebbets \& Malumuth 1992), also obtained at $R \sim 2000 .^{3}$ The cumulative far-UV spectrum was constructed used the Starlink spectroscopic package DIPSO (Howarth et al. 2004).

For the majority of sources, far-UV spectroscopy of LMC OB and WR templates from ULLYSES ${ }^{4}$ (Roman-Duval et al. 2020) are utilized (up to DR6), supplemented by COS and STIS data sets from GO programmes (GO 15629, Mahy; GO 16272, Shenar). Templates are anchored to estimates of $1500 \AA$ fluxes determined from F275W or F336W photometry from HTTP (Sabbi et al. 2016). Since HTTP photometry of 30 Doradus is incomplete, we also utilize WFC3/F336W photometry from De Marchi et al. (2011) or WFPC2/F336W photometry from Hunter et al. (1995). We provide details of templates in Tables A1 and A2. Gaps in spectra

[^1]

Figure 3. Relationship between $m_{\text {F275W }}$ (left) or $m_{\text {F336W }}$ (right) and far-UV flux, F_{1500}, for O stars in 30 Doradus (solid within MUSE field) with far-UV spectroscopy and HST/WFC3 photometry (Sabbi et al. 2013). The solid line is a linear fit to all observations.
arise from incomplete spectral coverage of templates (e.g. COS G130M + G160M).

We estimate $\lambda 1500$ fluxes of O and WR stars lacking far-UV spectroscopy from a calibration of F 275 W photometry anchored by O stars within 30 Doradus for which far-UV spectroscopy is available, as shown in the left-hand panel of Fig. 3, whose linear fit is
$\log F_{1500}=-0.4\left(m_{\text {F275W }}+20.20 \pm 0.08\right)$
F275W photometry is not available throughout the MUSE field of view, whereas F336W is available for all sources, for which a calibration is presented in the right-hand panel of Fig. 3, and a linear fit is
$\log F_{1500}=-0.4\left(m_{\mathrm{F} 336 \mathrm{~W}}+20.00 \pm 0.15\right)$.
Fluxes for individual stars in 30 Doradus used in the calibration are provided in Appendix C (Table C1). For B supergiants, $\lambda 1500$ fluxes are reduced by a scale factor of 0.85 ($\mathrm{B} 0.5 \pm 0.5$), 0.65 ($\mathrm{B} 1-3$), or 0.5 (B4-9) from a comparison between spherical non-LTE model atmospheres of far- to near-UV fluxes of O and B stars (Hillier \& Miller 1998). For B dwarfs, $\lambda 1500$ fluxes are reduced by a factor of $0.77(\mathrm{~B} 0.5 \pm 0.5)$ or $0.65(\mathrm{~B} 1.5 \pm 0.5)$ from a comparison between TLUSTY plane parallel non-LTE model atmospheres of O and B stars (Lanz \& Hubeny 2007). We also adjust the $\lambda \lambda 1160-1700$ slopes of templates according to their $m_{\mathrm{F} 336 \mathrm{~W}}-m_{\mathrm{F} 555 \mathrm{~W}}$ colours as discussed in Appendix C

We incorporate a total of 227 sources with spectral types and estimated fluxes $F_{1500} \geq 10^{-14} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}$ into our cumulative far-UV spectrum, which are listed in Table B1. Of these, 29 lie within the R136a $2 \times 2 \operatorname{arcsec}^{2}$ GHRS footprint, 13 possess HST COS (G130M + G160M or G140L) or STIS (E140M) spectroscopy, such that the remaining 185 require ULLYSES templates, several of which have known far-UV fluxes courtesy of HST/STIS G140L spectroscopy (Massey et al. 2005). Although R136a stars exterior to the GHRS footprint have been observed in the far-UV with HST/STIS G140L (Crowther et al. 2016), their slit loss corrections are uncertain, such that F_{1500} from GHRS is ~ 20 per cent higher than the sum of individual fluxes. Consequently, we adopt F_{1500} from calibrations for stars exterior to the GHRS aperture in common with (Crowther et al. 2016).

HSH95 17, alias \#9 from Kalari et al. (2022), is included in Table B1 despite an uncertain spectral type since it lies within the GHRS $2 \times 2 \operatorname{arcsec}^{2}$ footprint such that we do not require a bespoke UV template. Several other sources that would qualify on the basis of their far-UV fluxes are excluded due to unknown spectral types (e.g. HSH95 76, HSH95 87, and SMB 136), which is

Table 1. Summary of sources brighter than $F_{1500}=10^{-14} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}$ contributing to the far-UV continuum of the MUSE pointing, broken down by subtype (primary in binaries) and whether empirical UV spectroscopy or templates were utilized. The R136a GHRS spectrum comprises 3 WNh stars and 26 O stars [assuming HSH95-17 is an O star, Kalari et al. (2022)], each contributing ~ 40 per cent and 60 per cent of the far-UV flux of R136a. 20 sources are confirmed spectroscopic binaries, comprising 15 systems with an O-type primary, 3 with an Of/WN or WN5h primary, plus 1 each with a Wolf-Rayet or B-type primary. 180 additional faint sources with $5 \times 10^{-16} \leq$ $F_{1500}<1.0 \times 10^{-14} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}$ are incorporated via a B0 V template scaled to the sum of their far-UV fluxes.

Subtype	Empirical		Template		Total	
	N	F_{1500}	N	F_{1500}	N	F_{1500}
O	34	1.92×10^{-12}	159	7.44×10^{-12}	193	9.36×10^{-12}
$\mathrm{Of} / \mathrm{WN}+\mathrm{WNh}$	7	1.31×10^{-12}	5	0.46×10^{-12}	12	1.77×10^{-12}
B	0	\ldots	16	1.40×10^{-12}	16	1.40×10^{-12}
Wolf-Rayet	1	0.39×10^{-12}	5	0.67×10^{-12}	6	1.06×10^{-12}
Sum	42	3.62×10^{-12}	185	9.97×10^{-12}	227	13.59×10^{-12}
Sum + Faint	\cdots	\cdots	180	0.83×10^{-12}	407	14.42×10^{-12}

necessary to incorporate suitable UV templates. Their contribution to the cumulative far-UV flux is negligible (~ 1 per cent).

Twenty sources in Table B1 are confirmed spectroscopic binaries, although not all stars have been subject to spectroscopic monitoring, so the true binary frequency will be significantly higher. Confirmed multiple systems among the UV-brightest sources $\left(F_{1500} \geq 5 \times 10^{-14}\right.$ $\mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}$) include O-type binaries HSH95 39, HSH95 42 within R136a (Massey, Penny \& Vukovich 2002), Wolf-Rayet and O-type binaries R140b, c and d (Shenar et al. 2019; Walborn et al. 2014), plus colliding wind binaries R136c, Mk 33Na, Mk 34, and Mk 39 (Crowther et al. 2022).

The cumulative far-UV flux of the individual 227 sources is $1.36 \times 10^{-11} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}$. An additional 180 sources with known spectral types possess far-UV fluxes in the range 5×10^{-16} $\leq F_{1500}<1.0 \times 10^{-14} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}$. We account for these collectively via a B 0 V template scaled to their cumulative far-UV flux $\left(8.35 \times 10^{-13} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}\right)$, such that they contributes an additional ~ 6 percent to the total far-UV continuum. Table 1 provides a spectral subtype of the sources contributing to the farUV continuum. Stars possessing empirical far-UV spectroscopy contribute 25 per cent of the total. The dominant contribution arises from large numbers of O stars (65 per cent), although modest populations of very massive main-sequence WN (WNh) and transition Of/WN stars (12 per cent), B stars, primarily supergiants (10 percent), and classical WR stars (7 per cent) also make nonnegligible contributions.

Fig. 4 presents the cumulative far-UV spectrum of the MUSE field, including contributions from OB-type (pink), classical WR (blue) stars plus main sequence WNh and Of/WN stars (red). We have split relative contributions from O and WNh stars to the core of R136a by adjusting their combined HST STIS/G140L spectra from (Crowther et al. 2016) to the flux of the HST/GHRS spectrum. He II $\lambda 1640$ is unusually strong ($W_{\lambda}=4.7 \pm 0.2 \AA$) and broad fullwidth half maximum ($\mathrm{FWHM}=9.3 \pm 0.3 \AA$). Figs A1-A4 illustrate the contribution of empirical data sets and templates to the far-UV spectra of individual spectral types. All subtypes contribute to the strong C IV $\lambda 1550$ P Cygni profile, although it is apparent that He II $\lambda 1640$ emission is dominated by classical WR stars (56 per cent) plus WNh and Of/WN stars (31 per cent). All subtypes contribute to N V $\lambda 1240$, aside from B supergiants, although B supergiants and classical WR stars are the primary contributors to P Cygni SiIV $\lambda 1400$.

FUV limit 1e-14 MUSE 2x2arcmin

Figure 4. Cumulative far-UV spectrum of the central region of NGC 2070 (black) inferred from a combination of empirical (42 stars, 25 per cent of total), LMC templates (185 stars, 69 per cent of total) plus faint OB stars (180 stars, 6 per cent of total), highlighting contributions from OB stars (pink), Of/WN and WNh stars (red), and classical WR stars (blue). He II $\lambda 1640$ emission is dominated by classical WR stars (56 per cent) and very massive main sequence stars (31 per cent), with the remainder arising from Of supergiants (e.g. Mk 42, R136a5). Gaps in spectra arise from incomplete spectral coverage of templates (e.g. COS G130M + G160M).

FUV limit 1e-14 MUSE 2x2arcmin

Figure 5. Cumulative far-UV spectrum of the central region of NGC 2070 (black) together with the integrated STIS/G140L spectrum of the R136a cluster (red, $3.6 \times 3.6 \operatorname{arcsec}^{2}$) from Crowther et al. (2016) plus STIS/E140M spectrum of R140a (blue), the UV brightest source in the MUSE field, which is host to classical WN+WC stars. Gaps in spectra arise from incomplete spectral coverage of templates (e.g. COS G130M + G160M).

In Table B1, we have flagged ~ 18 VMS with initial masses in excess of $\sim 100 \mathrm{M}_{\odot}$ on the basis of spectroscopic results (Bestenlehner et al. 2014; Tehrani et al. 2019; Brands et al. 2022). The majority of these have WN5h, Of/WN or O2-4 If spectral types, exceptions include R136a7 (O3 III(f*)), R136a4 (O3 V), and VFTS 506 (ON2 V). In spite of their scarcity, 18 per cent of the NGC 2070 far-UV flux arises from VMS.

Fig. 5 compares the cumulative far-UV spectrum to the integrated STIS/G140L spectrum of R136a from Crowther et al. (2016), contributing 22 percent of the far-UV continuum flux, plus the

Table 2. Primary contributors to the integrated He II $\lambda 1640$ emission line (F_{1640} units of $10^{-12} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2}$) in the central $30 \times 30 \mathrm{pc}^{2}$ region of NGC 2070, including the cumulative line flux from the central cluster R136a which is dominated by WN5h stars R136a1, a2 and a3 (Crowther et al. 2016). Details of templates are provided in Table A2.

Source	Sp Type	F_{1640}	Obs	VMS
R136a	$3 \times$ WN5h+O4 If/WN8..+	13.	STIS/G140L	$8 \checkmark$
R140a	WC4+WN6 + ..	12.	STIS/E140M	\ldots
R140b	WN5(h) + O	9.	WN6 template	\ldots
R134	WN6(h)	6.5	WN6 template	\ldots
Mk 53	WN8(h)	2.2	WN7 template	\ldots
Mk 49	WN6(h)	2.1	WN6 template	\ldots
Mk 33Sb	WC5	2.1	WC4 template	\ldots
R136c	WN5h +	1.8	WN5h template	\ldots
Mk 34	WN5h + WN5h	1.6	WN5h template	\checkmark
Mk 39	O2.5 If/WN6 +	1.1	COS/G130M + G160M	$2 \checkmark$
Mk 42	O2 If*	0.8	STIS/E140M	\checkmark
Mk 35	O2 If/WN5	0.8	O2If/WN5 template	\checkmark
Mk 37a	O3.5 If/WN7	0.5	O3.5 If/WN7 template	\checkmark
Total		57.	\ldots	\checkmark

Figure 6. Integrated $I U E /$ SWP spectra of the central $3 \times 3 \operatorname{arcmin}^{2}$ (red) region of NGC 2070 from Vacca et al. (1995) together with our cumulative farUV spectrum for the central $2 \times 2 \operatorname{arcmin}^{2}$ (black) and $3 \times 3 \operatorname{arcmin}^{2}$ (blue) regions. N IV $\lambda 1718$ is prominent in the large aperture IUE data set despite its low $(R \sim 300)$ spectral resolution. IUE observations suggest 15 per cent higher far-UV flux levels owing to a combination of flux calibration differences or unresolved stars (primarily B-type) omitted from our study.

STIS/E140M spectrum of R140a (VFTS 507), the brightest individual source in the MUSE field (3 per cent of far-UV continuum flux), host to classical WN + WC stars. Neither of the WR stars within R140a are known to be binaries (Bartzakos, Moffat \& Niemela 2001; Shenar et al. 2019), although the complete stellar content of R140a remains uncertain. R136a possesses an extremely strong He II $\lambda 1640$ emission with respect to typical young star clusters, but the richness of the surrounding massive star population in NGC 2070 is such that it only contributes a quarter of the integrated emission line flux of He II $\lambda 1640$. Table 2 lists the primary contributors to F_{1640}, the majority of which originates from classical WR stars, notably R140a.

Vacca et al. (1995) have previously scanned NGC 2070 with IUE with the short wavelength camera (SWP), at low spectral resolution ($R \sim 300$) using the large $10 \times 20 \operatorname{arcsec}^{2}$ aperture, providing integrated spectra for the central $20 \times 20 \operatorname{arcsec}^{2}, 1 \times 1 \operatorname{arcmin}^{2}$, and $3 \times 3 \operatorname{arcmin}^{2}$ regions. Fig. 6 compares the integrated spectrum of the central $3 \times 3 \mathrm{arcmin}^{2}$ region (red) with our cumulative far-UV spectrum of the $2 \times 2 \operatorname{arcmin}^{2}$ MUSE region (black). The overall
shape of the spectra are similar, but the continuum flux of our far-UV spectrum is only ~ 80 per cent of the large IUE aperture. N IV $\lambda 1718$ is prominent in the large aperture IUE data set despite its low spectral resolution.

Table B2 lists additional stars with known spectral types brighter than $1.0 \times 10^{-14} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}$ within the large $3 \times 3 \operatorname{arcmin}^{2}$ IUE aperture. These increase the far-UV continuum flux by 1.7×10^{-12} $\operatorname{erg~s}{ }^{-1} \mathrm{~cm}^{-2} \AA^{-1}$, the majority of which is supplied by R135, R139, and R145. Owing to their relative isolation (Fig. 1), far-UV flux levels for these three bright stars are drawn from low-resolution IUE/SWP large aperture spectroscopy (Fitzpatrick \& Savage 1984).

The blue spectrum in Fig. 6 additionally incorporates all stars listed in Table B2, and reveals a difference of ~ 15 per cent in global far-UV flux levels between IUE and our approach using HST observations. The difference likely arises from the combination of absolute flux calibration and the omission of a diffuse far-UV background from unresolved stars in our study - recall 20 percent of the integrated far-UV continuum of the rich R136 cluster was from an intracluster background (Crowther et al. 2016). Collectively, B-type main sequence stars - lacking strong UV wind features - will dominate this population.

3 ANALYSIS OF INTEGRATED VISUAL SPECTROSCOPY

3.1 Nebular properties

As shown in Fig. 2, the integrated MUSE spectrum of NGC 2070 is dominated by nebular emission lines, plus broad, weak Wolf-Rayet features. Here we undertake an analysis of the nebular spectrum with a focus on the inferred metallicity and age/mass of the ionizing stellar population using commonly used spectral synthesis tools Starburst99 (version 7.0.1; Leitherer et al. 1999, 2014), Charlot \& Bruzual (Bruzual \& Charlot 2003; Plat et al. 2019, hereafter CB19) and BPASS (v.2.2.1, Eldridge et al. 2017; Stanway \& Eldridge 2018). A detailed study of the integrated 30 Doradus nebula has been undertaken by Pellegrini, Baldwin \& Ferland (2011) while Peimbert (2003) utilize VLT/UVES spectroscopy for a detailed chemical analysis.

Table 3 presents measured MUSE line fluxes, intensities, and luminosities (assuming 50 kpc), the former obtained using the elf suite within the Starlink package DIPSO (Howarth et al. 2004). Although 30 Doradus is known to have a non-standard dust extinction (De Marchi \& Panagia 2014; Maíz Apellániz et al. 2014; Brands et al. 2023), we shall adopt a standard LMC extinction law with $R_{\mathrm{V}}=3.1$ (Howarth 1983) for the nebular analysis. We obtain $c(H \beta)=0.54$ from $I(\mathrm{H} \alpha) / I(\mathrm{H} \beta)=2.86$ for Case B recombination theory for a standard $N_{e}=10^{2} \mathrm{~cm}^{-3}$ and $T_{e}=10^{4} \mathrm{~K}$ - these results are consistent with averages of resolved maps from Castro et al. (2018).
$L(\mathrm{H} \alpha)=1.37 \times 10^{39} \mathrm{erg} \mathrm{s}^{-1}$ equates to an ionizing output of $10^{51} \mathrm{ph} \mathrm{s}^{-1}$, corresponding to a star formation rate of $0.005 \mathrm{M}_{\odot} \mathrm{yr}^{-1}$ using standard conversions from Kennicutt (1998). Our MUSE data set of the central region of NGC $2070\left(30 \times 30 \mathrm{pc}^{2}\right)$ lies within the extended 30 Doradus region. Pellegrini, Baldwin \& Ferland (2010) have investigated a much larger $140 \times 80 \mathrm{pc}^{2}$ region and highlighted that 50 per cent of the integrated $\mathrm{H} \alpha$ emission originates from relatively low-surface brightness regions.

We used the temden routine in IRAF to determine the nebular density and temperature. We obtain $N_{e}=240 \pm 10 \mathrm{~cm}^{-3}$ from the standard [S II] 6717/6731 diagnostic, and $N_{e}=310_{-250}^{+220} \mathrm{~cm}^{-3}$ from the weak [Cl III] 5518/5538 diagnostic. Comparable results are obtained from the [Fe III] 4658/4986 ratio (Keenan et al. 2001). The

Table 3. Fluxes (F), intensities (I) and luminosities (L) of nebular emission lines and Wolf-Rayet (WR) bumps in the integrated MUSE spectrum of the $2 \times 2 \mathrm{arcmin}$ central region of NGC 2070. Case B recombination theory is adopted together with a standard LMC extinction law (Howarth 1983) and an adopted LMC distance of 50 kpc .

Line	F	I	L	Notes
	$10^{-11} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2}$	$10^{-10} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2}$	$10^{38} \mathrm{erg} \mathrm{s}^{-1}$	
N III 4634-41	0.71 ± 0.05	0.42 ± 0.04	0.13 ± 0.01	WR
[Fe III] 4658	0.31 ± 0.02	0.12 ± 0.01	0.04	
He il 4686	2.78 ± 0.06	1.18 ± 0.03	0.35 ± 0.01	WR
[Ar IV] 4711	0.32 ± 0.02	0.14 ± 0.01	0.04	
[Ar IV] 4740	0.10 ± 0.01	0.04 ± 0.01	0.01	
$\mathrm{H} \beta$	40.0 ± 0.1	15.9 ± 0.1	4.8 ± 0.1	
[O III] 4959	69.7 ± 0.2	26.8 ± 0.1	8.0 ± 0.1	
[Fe III] 4986	0.15 ± 0.01	0.06 ± 0.01	0.02	
[O III] 5007	213 ± 1	80.7 ± 0.4	24.1 ± 0.1	
He II 5412	0.07 ± 0.01	0.02	0.01	WR
[Cl III] 5518	0.22 ± 0.01	0.07 ± 0.01	0.02	
[Cl III] 5538	0.17 ± 0.01	0.06 ± 0.01	0.02	
[NiI$] 5755$	0.06 ± 0.01	0.02	0.01	
Civ 5801-12	1.53 ± 0.08	0.47 ± 0.02	0.14 ± 0.01	WR
He I 5876	6.21 ± 0.02	1.87 ± 0.01	0.56 ± 0.01	
[OI] 6300	0.46 ± 0.02	0.13 ± 0.01	0.04	
[S III] 6312	0.89 ± 0.03	0.24 ± 0.01	0.07 ± 0.01	
[NII$] 6548$	1.49 ± 0.07	0.39 ± 0.02	0.12 ± 0.01	
$\mathrm{H} \alpha$	176 ± 1	45.7 ± 0.3	13.7 ± 0.1	
[NII$] 6584$	4.48 ± 0.20	1.16 ± 0.05	0.35 ± 0.01	
He I 6678	2.10 ± 0.01	0.53 ± 0.01	0.16 ± 0.01	
[S II] 6717	3.74 ± 0.01	0.94 ± 0.01	0.28 ± 0.01	
[S II] 6731	3.12 ± 0.01	0.78 ± 0.01	0.23 ± 0.01	
He I 7065	1.88 ± 0.01	0.44 ± 0.01	0.13 ± 0.01	
[Ar III] 7135	7.33 ± 0.01	1.71 ± 0.01	0.51 ± 0.01	
[S III] 9069	21.3 ± 0.2	3.82 ± 0.04	1.14 ± 0.01	

usual [O III] 4363/5007 temperature diagnostic is not available for MUSE observations at $z=0$, so we use [N II] 5755/6584 to obtain $T_{e}=10,400_{-700}^{+900} \mathrm{~K}$ and $[\mathrm{S} \mathrm{III}] 6312 / 9069$ to obtain $T_{e}=8300_{-50}^{+70} \mathrm{~K}$. For reference, Peimbert (2003) obtained $N_{e}=415 \pm 35 \mathrm{~cm}^{-3}$ ([S II]) and $T_{e}=10800 \pm 300 \mathrm{~K}([\mathrm{~N} I \mathrm{II})$.

We are unable to determine the oxygen abundance from the use of auroral T_{e} diagnostics ($\lambda 4363$ [O III] is not available to MUSE at zero redshift). Instead, we rely on strong line calibrations (Maiolino \& Mannucci 2019), which are widely used for extragalactic $\mathrm{H}_{\text {II }}$ regions for which direct temperature determinations are not feasible. The calibration of the N 2 index (-1.59) by Marino et al. (2013) implies $12+\log (O / H)=8.01 \pm 0.32$, versus 7.90 ± 0.16 following Curti et al. (2017). The O3N2 index $(+2.3)$ lies beyond the calibrated range of Marino et al. (2013), with $12+\log (O / H)=8.10 \pm 0.21$ obtained from Curti et al. (2017), values typical of the presentday Small Magellanic Cloud (SMC) rather than the LMC (Pagel et al. 1978; Russell \& Dopita 1990). Use of the integrated 30 Dor nebular fluxes from Pellegrini, Baldwin \& Ferland (2010) provides N 2 and O 3 N 2 indices of -1.42 and 2.09 , indicating $12+\log (O / H)=$ 8.10 ± 0.16 or 8.19 ± 0.21, respectively, following the Curti et al. (2017) calibrations.

Contemporary baseline LMC abundances (Vink et al. 2023, Table 1), including $12+\log (O / H)=8.36$ correspond to a mass fraction of $Z=0.008$, although the directly determined gas phase oxygen abundance within 30 Doradus ranges from $12+\log (\mathrm{O} / \mathrm{H})$ $=8.26$ (Vermeij \& van der Hulst 2002) to 8.5 (Peimbert 2003). It is clear that standard strong line calibrations significantly underestimate the true oxygen content of NGC 2070, since these are sensitive to ionization parameter as well as abundance (Kewley \& Dopita 2002). Consequently, caution should be used when inferring metallicities of low-redshift star-forming galaxies from diagnostics within the MUSE spectral range (see Easeman et al. 2024). By way of a test, spectral synthesis calculations are made for both $Z=0.008$ (well
matched to NGC 2070) and $Z=0.002$ (significantly lower than NGC 2070, albeit inferred from strong line methods).

3.2 Population synthesis

In order to estimate the age and mass of the starburst region consistent with MUSE observations, we have employed several widely used population synthesis packages. Age estimates from $\mathrm{H} \alpha$ are relatively metallicity insensitive, but WR bumps and UV diagnostics are strongly metallicity-dependent. Starburst99 (v7.0.1, Leitherer et al. 1999,2014) involves a $1 \times 10^{5} \mathrm{M}_{\odot}$ burst of star formation, an initial mass function (IMF) from Kroupa (2008) with an upper mass limit of $120 \mathrm{M}_{\odot}$. Modern non-rotating and rotating Geneva evolutionary models at Solar ($\mathrm{Z}=0.014$ Ekström et al. 2012) and SMC ($Z=0.002$ Georgy et al. 2013) metallicities are available, ${ }^{5}$ with the full range of metallicities for historical models available with either standard (Schaller et al. 1992) or enhanced mass-loss (Meynet et al. 1994).

Starburst99 model atmospheres are obtained from either WMBasic (O, Pauldrach, Hoffmann \& Lennon 2001) or PoWR (WR, Gräfener, Koesterke \& Hamann 2002), with ionizing fluxes from Smith, Norris \& Crowther (2002) and Leitherer et al. (2010) and empirical UV spectral templates drawn from either the Milky Way or Magellanic Clouds (Robert, Leitherer \& Heckman 1993).

Observed rotational velocities (e.g. Ramírez-Agudelo et al. 2017; Sabín-Sanjulián et al. 2017) are intermediate between non-rotating and rapidly rotating models (40 per cent critical), and evidence points to a higher mass limit than $120 \mathrm{M}_{\odot}$ (Crowther et al. 2010; Brands et al. 2022).

We also make use of the latest CB19 grid of Charlot \& Bruzual models (Bruzual \& Charlot 2003; Plat et al. 2019), which employ non-rotating PARSEC stellar evolutionary tracks from Chen et al. (2015) calculated for a range of metallicities, synthetic hot luminous star templates from WM-Basic, TLUSTY (OB), and PoWR (WR) (Sánchez et al. 2022) with integrated populations drawn from either a Salpeter, Kroupa, or Chabrier IMF for stars up to $M_{\text {up }}=100,300$, or $600 \mathrm{M}_{\odot}$ (Sánchez et al. 2022).

Crucially, binary evolution is neglected in both Starburst99 and Charlot \& Bruzual models, despite observational evidence indicating a high fraction of close binaries amongst massive stars at the LMC metallicity (Sana et al. 2013). Therefore, we also consider BPASS (v2.2.1; Eldridge et al. 2017; Stanway \& Eldridge 2018) models incorporating binary evolution, a Kroupa IMF, and an upper mass limit of $M_{\text {up }}=100$ or $300 \mathrm{M}_{\odot}$. Stellar atmosphere models incorporated into BPASS that are relevant for young populations are WM-Basic (O), PoWR (WR), and ATLAS (B).

The $\mathrm{H} \alpha$ equivalent width is a sensitive indicator of age for a young star burst. We measure $W_{\lambda}(\mathrm{H} \alpha)=692 \pm 24 \AA$. We initially focus on $Z=0.002$ predictions from Starburst 99 on the basis of the strong line calibrations, so adopt contemporary non-rotating models from Georgy et al. (2013). We obtain an age of 4.2 Myr , such that the $\mathrm{H} \alpha$ luminosity (Table 3) corresponds to a stellar mass of $5.5 \times 10^{4} \mathrm{M}_{\odot}$. Broadly similar results are obtained for historical $\mathrm{Z}=0.008$ models (Meynet et al. 1994) aside from a higher mass of $8.5 \times 10^{4} \mathrm{M}_{\odot}$. Comparable results are obtained from the $\mathrm{H} \beta$ equivalent width, W_{λ} $(\mathrm{H} \beta)=97 \pm 1 \AA$. Revised ages accounting for underlying absorption in $\mathrm{H} \alpha-\beta$ are barely affected owing to the exceptionally strong Balmer emission.
${ }^{5} \mathrm{Z}=0.008$ models appropriate for the LMC have only recently become available (Eggenberger et al. 2021)

In reality the stellar population within NGC 2070 is not coeval see (Schneider et al. 2018b, their fig. 4) and (Castro et al. 2021b, their fig. 10). In particular, the ages of OB stars within 1.2 arcmin of R136 (broadly comparable to MUSE pointing) span 1-7 Myr from comparison with evolutionary predictions for LMC metallicity OB stars (Brott et al. 2011), excluding the R136 star cluster whose age is $\sim 1.5 \mathrm{Myr}$ (Crowther et al. 2016; Brands et al. 2022). Nevertheless, the median age of massive stars in NGC 2070 (3.6 Myr, Schneider et al. 2018b) is in good agreement with the age inferred from $\mathrm{H} \alpha$ using $\mathrm{Z}=0.002$ or $\mathrm{Z}=0.008$ metallicity models.

3.3 WR properties

The spectral resolution of MUSE prevents the detection of photospheric absorption lines, but the high S / N does reveal broad WR bumps (Fig. 2). The blue bump is dominated by broad He II $\lambda 4686$ (FWHM $\sim 25 \AA, W_{\lambda} \sim 6 \AA$), with no nebular component detected. Broad $\mathrm{N}_{\text {III }} \lambda \lambda 4634-41$ is also observed, suggesting a dominant late WN population, while the yellow WR bump is dominated by C IV $\lambda \lambda 5801-12$ (FWHM $\sim 80 \AA, W_{\lambda} \sim 4 \AA$) from WC stars. The high S/N of our MUSE integrated data set unusually also permits broad He II 5411 emission to be detected. Optical emission line fluxes from individual stars are provided in table 2 of Castro et al. (2018).

Both classical WR stars and main sequence VMSs (WN5h and Of/WN) are major contributors to He II $\lambda 4686$, with R136a contributing ~ 20 per cent of the total, whereas the blend of N III $\lambda \lambda 4634-41$ and C III $^{2} \lambda \lambda 4647-51$ and C IV $^{2} 25801-20$ are dominated by classical WR stars (primarily R140a). The presence of WR features in Starburst99, CB19, and BPASS synthetic spectroscopy provide independent age indicators (Schaerer \& Vacca 1998). We require a non-standard extinction law in order to reconcile the UV and optical spectrophotometry of NGC 2070 with predictions. We adopt an LMC law with $R_{\mathrm{V}}=4.5$ (De Marchi \& Panagia 2014; Maíz Apellániz et al. 2014; Brands et al. 2023) and obtain $E_{\mathrm{B}-\mathrm{v}}=0.3 \mathrm{mag}$ ($A_{\mathrm{V}}=1.35 \mathrm{mag}$) for spectral energy distribution comparisons in the top panel of Fig. 7. Masses inferred from Starburst99, CB19, and BPASS stellar continua are $7.7 \times 10^{4} \mathrm{M}_{\odot}, 6.5 \times 10^{4} \mathrm{M}_{\odot}$, and $11 \times 10^{4} \mathrm{M}_{\odot}$, respectively, in reasonable agreement with $L(\mathrm{H} \alpha)$ derived masses. The nebular continuum is not included in Fig. 7 since it has a negligible contribution to the far-UV and Paschen continua.
$\mathrm{Z}=0.002$ metallicity models predict extremely weak WR emission for all population synthesis models. Consequently, we adopt more realistic $Z=0.008$ models for age determinations based on WR stars, although different models have different time resolutions (e.g. 1 Myr intervals for BPASS). The peak strength of optical WR bumps occurs at 4.2,3, and 4 Myr for Starburst 99 , CP19, and BPASS models, respectively. Starburst 99 models at solar metallicity ($\mathrm{Z}=0.014$; Ekström et al. 2012) allow comparisons between peak WR ages associated with non-rotating ($4.5 \pm 0.5 \mathrm{Myr}$) and rotating ($5 \pm 2 \mathrm{Myr}$) models.

We compare the Starburst 99 synthetic spectrum associated with the 4.2 Myr age corresponding to the maximum WR population from the Meynet et al. (1994) evolutionary models in the central and bottom panels of Fig. 7, which coincide with the $\mathrm{H} \alpha$-inferred age. Both WR bumps are predicted, albeit significantly weaker than observed for the He II $\lambda 4686+\mathrm{N}_{\text {III }} \lambda \lambda 4634-41$ bump. It is clear that either the number of WR stars predicted from single star models at low metallicity or their line luminosities, or both, are underestimated (stronger emission is predicted for solar metallicity models). The synthetic spectrum also highlights strong photospheric absorption lines associated with Balmer lines.

Figure 7. Top panel: Comparison between dereddened ($E_{\mathrm{B}-\mathrm{V}}=0.3, R_{\mathrm{V}}=$ 4.5) integrated UV and MUSE spectrum of the central region of NGC 2070 (black) and the predicted 4.2 Myr Starburst99 spectra (red) based on $Z=0.008$ metallicity evolutionary models extending to $M_{\text {up }}=120 \mathrm{M}_{\odot}$ (Meynet et al. 1994), plus predicted 3.5 Myr CB 19 spectra (blue) based on $\mathrm{Z}=0.008$ metallicity evolutionary predictions (Chen et al. 2015) extending to $M_{\text {up }}=300$ M_{\odot} and predicted 4 Myr BPASS spectra (pink) also based on $Z=0.008$ predictions (Eldridge et al. 2017) for single stars extending to $M_{u p}=300 \mathrm{M}_{\odot}$. Central panel: Zoom including blue WR bump (He II $\lambda 4686$ and N III $\lambda \lambda 4634-$ 41. A weak bump is predicted in the Starburst 99 model, with improved agreement obtained from CB19 and BPASS models (similar WR emission is predicted for $M_{\mathrm{up}}=100 \mathrm{M}_{\odot}$). Bottom panel: Zoom including yellow WR bump (C IV $\lambda \lambda 5801-12$). The 4.2 Myr Starburst 99 model is a good match to the yellow bump, whereas this feature is too weak in CB19 and too strong in BPASS. Weak stellar He II $\lambda 5412$ is also observed in the MUSE data set. Emission lines not explicitly labelled are nebular (H β, [O III] $\lambda 4959$, 5007, Не I $\lambda 5876$).

In contrast, the 3.5 Myr CB 19 synthetic spectrum (blue) based on PARSEC evolutionary models at $\mathrm{Z}=0.008$ with $M_{\text {up }}=300$ M_{\odot} (Chen et al. 2015) provides a stronger He II $\lambda 4686$ emission in the central panel of Fig. 7, albeit too weak and with negligible N III $\lambda \lambda 4634-41$ and CIV $\lambda \lambda 5801-12$ emission in lower panel. This age is close to the median 3.6 Myr age of massive stars in NGC 2070 according to Schneider et al. (2018b). Comparable WR emission is predicted at this age for CB19 models with $M_{\text {up }}=100 \mathrm{M}_{\odot}$, since VMSs have somewhat shorter lifetimes.

For the BPASS single star models with $M_{\text {up }}=300 \mathrm{M}_{\odot}$, WR emission is most prominent at 4 Myr, with comparable C IV $\lambda \lambda 5801-12$
emission predicted (too strong), and a higher He II $\lambda 4686$ equivalent width, albeit comparable to predictions from CB19 models (central and bottom panels of Fig. 7). The $\mathrm{H} \alpha$ luminosity at this age for the $M_{\text {up }}=300 M_{\odot}$ model corresponds to a stellar mass of $\sim 6 \times 10^{4} \mathrm{M}_{\odot}$.

Alternatively, it is possible to empirically estimate WR populations if line luminosity calibrations are available (Schaerer \& Vacca 1998). Assuming the blue bump is dominated by WN stars, one obtains a population of ~ 20 WN6-8 stars (or 12 WN5-7h stars) based on the latest WR line luminosities at the LMC metallicity from Crowther et al. (2023). The yellow bump is dominated by WC stars, from which a population of $4 \mathrm{WC} 4-5$ stars is obtained. In reality, WC stars also contribute 15 percent to the blue bump via C III $\lambda 4650$ and He II $\lambda 4686$. Consequently the inferred number of WN stars is reduced to 17 WN6-8 stars (or 10 WN5-7h stars). These calibrations are within a factor of two of the known population (11 WN stars, 2 WC 4 including individual components of multiple WR systems R140a and Mk 34).

4 ANALYSIS OF INTEGRATED FAR-UV SPECTROSCOPY

In common with previous studies of young extragalactic stellar populations in the UV, we again utilize predictions of the emergent far-UV spectrum from the population synthesis tool Starburst99 (version 7.0.1; Leitherer et al. 1999, 2014), Charlot \& Bruzual (CB19, Bruzual \& Charlot 2003; Plat et al. 2019), and BPASS (v2.2.1, Eldridge et al. 2017; Stanway \& Eldridge 2018) once our empirical data set has been dereddened according to an LMC extinction law with $R_{\mathrm{V}}=4.5$ and $E_{\mathrm{B}-\mathrm{v}}=0.3 \mathrm{mag}$, as for the optical comparison. The $\lambda 1500$ luminosity of the NGC 2070 empirical data set corresponds to $\log L_{\mathrm{FUV}}=38.04 \mathrm{erg} \mathrm{s}^{-1}$.

Strong interstellar Ly α absorption impacts the observed N V $\lambda \lambda 1238-42$ profile (e.g. Wofford et al. 2023, their fig. 3). We have estimated $\log N(\mathrm{HI}) \mathrm{cm}^{-2}=21.75 \pm 0.05$ from Ly α fits to COS/G130M and STIS/E140M observations of individual stars within the MUSE field of view (Table C1). However, application to theoretical predictions leads to a suppressed continuum extending to $\sim 1300 \AA$, contrary to observations. This is because LMC templates, which dominate the cumulative far-UV spectrum, span a broad range of $N\left(\mathrm{H}_{\mathrm{I}}\right)$ column densities (Welty, Xue \& Wong 2012). Consequently, no corrections to Ly α have been applied, of relevance to detailed comparisons between observed and predicted $\mathrm{N} V \lambda \lambda 1238-42$ profiles.

Once again, although the optical strong line calibrations favour an unphysical SMC-like metallicity, we discuss both $Z=0.002$ and $\mathrm{Z}=0.008$ metallicity predictions in the far-UV in order to test predictions. We limit our discussion to single bursts, although in reality NGC 2070 and other far-UV observations involve a mixed population. Dual or multiple age populations are occasionally implemented for spectral fitting (e.g. Chisholm et al. 2019; Sirressi et al. 2022), but NGC 2070 comprises a star cluster embedded within an extended (spatially and temporally) star-forming region.

4.1 Starburst99

The primary age indicators in the far-UV are $\mathrm{N} v \lambda \lambda 1238-42, \mathrm{Si}$ IV $\lambda \lambda 1393-1402$, and C IV $\lambda \lambda 1548-51$ for metal-poor populations with Starburst99 since empirical LMC/SMC stellar libraries cutoff at $\lambda 1600$, preventing spectral comparisons for He II $\lambda 1640$, although predicted equivalent widths of several WR lines are available, including He II $\lambda 1640$. The maximum He II $\lambda 1640$ emission occurs at an age of 3.2 Myr for the $\mathrm{Z}=0.002$ (Georgy et al. 2013)

Figure 8. Comparison between dereddened ($E_{\mathrm{B}-\mathrm{v}}=0.3, R_{\mathrm{V}}=4.5$) cumulative far-UV spectrum of the central region of NGC 2070 (black) and the predicted Starburst99 spectrum based on $Z=0.002$ evolutionary models (Georgy et al. 2013) with LMC/SMC UV templates at 3.2 Myr (red). Far-UV luminosities for this age correspond to stellar masses of $5 \times 10^{4} \mathrm{M}_{\odot}$. The cutoff at $\lambda 1600$ is due to the use of empirical templates (predicted He II $\lambda 1640$ emission equivalent width is indicated).

Starburst 99 model. Fig. 8 provides a comparison between this model and dereddened NGC 2070 spectrum, revealing a good match to N v $\lambda \lambda 1238-42$, a weak P Cygni C Iv $\lambda \lambda 1548-51$ profile, and a somewhat too weak Si IV $\lambda \lambda 1393-1402$ wind signature. He II $\lambda 1640$ represents a major discrepancy, since the predicted emission of $W_{\lambda}=0.01 \AA$, is negligible with respect to the observed strength ($W_{\lambda}=4.7 \pm 0.2$ Å).

In view of the overall poor match to observations at $\mathrm{Z}=0.002$, in Fig. 9, we compare the dereddened NGC 2070 spectrum to predictions for non-rotating $\mathrm{Z}=0.008$ metallicity models (Meynet et al. 1994) plus LMC/SMC empirical templates at 3 Myr (start of WR emission) and 4.2 Myr (peak WR emission). At 3 Myr , results are broadly similar to the $Z=0.002$ case, whereas at $4.2 \mathrm{Myr}(\mathrm{H} \alpha-$ inferred age from Section 3.2), the P Cygni Si IV $\lambda \lambda 1393-1402$ is well reproduced owing to OB supergiants being present in sizeable numbers, but the strength of both the $\mathrm{Nv} \lambda \lambda 1238-42$ and Civ $\lambda \lambda 1548-51$ P Cygni profiles are underpredicted. The He II $\lambda 1640$ emission strength remains underestimated, albeit with an improved predicted equivalent width of $1.5 \AA$.

Overall, metal-poor Starburst99 models fare rather poorly in quantitatively reproducing the empirical data set. The origin of this disagreement has multiple causes:
(i) The central region of NGC 2070 is not a coeval burst, since it hosts a young, potentially coeval, star cluster R136 contributing $1 / 3$ of the far-UV continuum (Fig. 5) with the remainder spanning ages of 1-7 Myr (Schneider et al. 2018b). Improved agreement could be obtained by adopting dual age populations representing the cluster and extended star-forming region.
(ii) NGC 2070 is host to a number of VMS, within R136 and beyond, which possess very strong winds owing to their proximity to the Eddington limit (Bestenlehner 2020; Brands et al. 2022). These stars produce strong He II $\lambda 1640$ emission while on the main sequence (Crowther et al. 2016). In addition, we have shown that VMS contribute 18 per cent of the far-UV continuum of NGC 2070, such that models with upper mass cutoffs at $\sim 100 \mathrm{M}_{\odot}$ will underestimate the far-UV continuum. In order to reproduce He II $\lambda 1640$ in very young populations, one needs to extend the IMF in population

Figure 9. Comparison between dereddened ($E_{\mathrm{B}-\mathrm{V}}=0.3, R_{\mathrm{V}}=4.5$) cumulative far-UV spectrum of the central region of NGC 2070 (black) and the predicted Starburst 99 spectrum (red) based on $Z=0.008$ metallicity evolutionary models (Meynet et al. 1994) at 3.0 Myr (upper panel) and 4.2 Myr (lower panel) with LMC/SMC UV templates. Far-UV luminosities for this range of ages correspond to stellar masses of $5.5-8.5 \times 10^{4} \mathrm{M}_{\odot}$. The cutoff at $\lambda 1600$ is due to the use of empirical templates (predicted He II $\lambda 1640$ emission equivalent width is indicated).
synthesis calculations to higher masses and incorporate revised massloss prescriptions (Wofford et al. 2023).
(iii) The empirical UV template spectra at low metallicity in Starburst 99 are a mix of SMC and LMC stars, since these were incorporated at a time prior to the availability of large numbers of high-quality far-UV templates (Roman-Duval et al. 2020). OB stars in the SMC possess significantly weaker winds than LMC counterparts (Prinja \& Crowther 1998; Mokiem et al. 2007), so the use of SMC templates will yield weaker P Cygni profiles than observations at LMC composition. Alternatively, theoretical spectra could lead to improved agreement (e.g. Leitherer et al. 2010), especially at low metallicities where empirical templates are scarce or unavailable.
(iv) It is well known that evolutionary models for single stars struggle to reproduce observed WR populations (Hamann et al. 2019). In reality, binary channels (including mergers) will increase the production of WR and lower mass He stars, which will enhance the strength of He II $\lambda 1640$ from all WR subtypes, as well as other farUV P Cygni profiles ($\mathrm{N} v \lambda \lambda 1238-42$ from WN stars, C IV $\lambda \lambda 1548-$ 51 from WC stars).

Previous analyses of extragalactic star clusters (e.g. Smith et al. 2016; Sirressi et al. 2022) or entire galaxies (e.g. James et al. 2014; Chisholm et al. 2019) are often more successful at reproducing far-

Figure 10. Comparison between dereddened ($E_{\mathrm{B}-\mathrm{V}}=0.3, R_{\mathrm{V}}=4.5$) cumulative far-UV spectrum of the central region of NGC 2070 (black) and the predicted Starburst 99 spectrum based on contemporary, non-rotating $Z=0.014$ evolutionary models (Ekström et al. 2012) plus empirical Milky Way UV templates at 3.2 Myr (blue). The Far-UV luminosity of this model corresponds to a stellar masses of $6 \times 10^{4} \mathrm{M}_{\odot}$.

UV observations than we have achieved for NGC 2070, albeit not universally so (Sidoli, Smith \& Crowther 2006; Wofford et al. 2014; Leitherer et al. 2018). In part, this is achieved since the metallicity is varied, with high metallicities preferred in cases of strong stellar wind signatures, irrespective of nebular results for the regions in question.

To illustrate the role played by metallicity, we compare the dereddened UV spectrum of NGC 2070 with prediction of a 3.2 Myr model at $\mathrm{Z}=0.014$ (Ekström et al. 2012) plus Milky Way UV templates in Fig. 10. In contrast to Fig. 9, $\mathrm{N} v \lambda \lambda 1238-42$, C iv $\lambda \lambda 1548-51$, and He II $\lambda 1640$ are now reasonably well predicted, with Si IV $\lambda \lambda 1393-1402$ a little too strong and the far-UV iron forest also over predicted. N IV $\lambda 1718$ is also prominent (recall Fig. 6), in contrast to metal-poor predictions. Nevertheless, the overall match is satisfactory for an age close to the median of OB stars in NGC 2070 (Schneider et al. 2018b), albeit reliant on unphysical evolutionary models and templates.

4.2 Charlot and Bruzual

The extension of Charlot \& Bruzual 2019 models to IMFs with high upper mass limits at a wide range of metallicities permits some deficiencies of current Starburst 99 models to be addressed. As demonstrated by Wofford et al. (2023), the difference in predicted He II $\lambda 1640$ emission at ages of $1-3$ Myr between $M_{\text {up }}=100$ and $300 \mathrm{M}_{\odot}$ at LMC metallicity $(\mathrm{Z}=0.008)$ is striking (their fig 4). This arises from the inclusion of mass-loss prescriptions for VMSs (Vink et al. 2011). We compare far-UV CB19 ($\mathrm{Z}=0.002$, Kroupa IMF) predictions for $M_{\text {up }}=100$ and $300 \mathrm{M}_{\odot}$ at 1.0 and 2.5 Myr with NGC 2070 observations in Fig. 11. These ages correspond to the maximum He II $\lambda 1640$ emission due to VMSs (1 Myr) and classical WR stars (2.5 Myr) for $M_{\text {up }}=300 \mathrm{M}_{\odot}$. At 1 Myr , the high upper mass limit prediction provides a closer agreement with observations, albeit with Ov $\lambda 1371$ too strong, He II $\lambda 1640$ too weak and C IV $\lambda \lambda 1548-51$ extremely weak. At 2.5 Myr , all wind features are far too weak, with the exception of He II $\lambda 1640$ for the $M_{\text {up }}=300 \mathrm{M}_{\odot}$ case which has a satisfactory emission equivalent width, albeit far broader than observed.

Consequently, we also consider $\mathrm{Z}=0.008$ predictions from CB19 with $M_{\text {up }}=100$ and $300 \mathrm{M}_{\odot}$. Fig. 12 compares predictions at 2.2,

Figure 11. Comparison between dereddened ($E_{\mathrm{B}-\mathrm{V}}=0.3, R_{\mathrm{V}}=4.5$) cumulative far-UV spectrum of the central region of NGC 2070 (black) and the predicted CB19 spectrum based on $\mathrm{Z}=0.002$ evolutionary models (Chen et al. 2015) with $M_{\text {up }}=300 \mathrm{M}_{\odot}$ (red) or $100 \mathrm{M}_{\odot}$ (blue) at 1.0 Myr (top panel) and 2.5 Myr (lower panel). Far-UV luminosities for this range of ages correspond to stellar masses of 5-8 $\times 10^{4} \mathrm{M}_{\odot}$ for the $M_{\text {up }}=300 \mathrm{M}_{\odot}$ models.
3.0, and 3.8 Myr with observations, which span the range of ages at which prominent He II $\lambda 1640$ emission is predicted. At all ages the $M_{\text {up }}=300 \mathrm{M}_{\odot}$ model provides a better match to observations. Wofford et al. (2023, their fig. 4) highlight the sharp peak in He II $\lambda 1640$ at 2.2 Myr once VMSs enter the late WN phase (see also Smith et al. 2023). Consequently, the predicted He II $\lambda 1640$ is in good agreement with observations at this precise age, as is CIV $\lambda 1550$, albeit with O V $\lambda 1371$ overpredicted, and Si IV $\lambda \lambda 1393-1402$ underpredicted. N IV] $\lambda 1486$ is observed in NGC 2070, though is overpredicted in models at this age that extend to $M_{\mathrm{up}}=300 \mathrm{M}_{\odot}$.

Turning to later ages, $\mathrm{O} \vee \lambda 1371$ has faded in strength after 3 Myr , with SiIV $\lambda \lambda 1393-1402$ now well reproduced, with He II $\lambda 1640$ emission a little too weak, with C IV $\lambda \lambda 1548$-51 also too weak, alongside Si IV $\lambda 1640$. C IV $\lambda \lambda 1548-51$ continues to weaken at later ages (3.8 Myr) with He II $\lambda 1640$ from classical WR stars now well reproduced and Si IV $\lambda \lambda 1393-1402$ still matched. Overall, use of CB19 models at $Z=0.008$ favour an age of 2.2 Myr for NGC 2070 plus a high upper mass limit, in spite of the poor match to $\mathrm{O} v \lambda 1371$ and very weak N IV $\lambda 1718$ (in contrast to IUE observations in Fig. 6).

4.3 BPASS

Finally, we consider BPASS (v.2.2.1; Eldridge et al. 2017; Stanway \& Eldridge 2018) models for single or binary populations at $Z=0.002$ and $Z=0.008$, with a Kroupa IMF and $M_{\text {up }}=300 \mathrm{M}_{\odot}$. The maximum

Figure 12. Comparison between dereddened ($E_{\mathrm{B}-\mathrm{V}}=0.3, R_{\mathrm{V}}=4.5$) cumulative far-UV spectrum of the central region of NGC 2070 (black) and the predicted CB19 spectrum based on $Z=0.008$ evolutionary models (Chen et al. 2015) with $M_{\mathrm{up}}=300 \mathrm{M}_{\odot}$ (red) or $100 \mathrm{M}_{\odot}$ (blue) at 2.2 Myr (top panel), 3.0 Myr (central panel), and 3.8 Myr (lower panel). Far-UV luminosities for this range of ages correspond to stellar masses of $4-9 \times 10^{4} \mathrm{M}_{\odot}$ for the $M_{\text {up }}=300 \mathrm{M}_{\odot}$ models.

He II $\lambda 1640$ emission at $Z=0.002$ is predicted at an age of 4 Myr (single or binary case), as shown in Fig. 13. At this metallicity, all wind lines are predicted to be too weak, albeit with He II $\lambda 1640$ only a factor of two weaker than observed, since several H-rich WN stars are predicted for cluster mass of $9 \times 10^{4} \mathrm{M}_{\odot}$ which reproduces the far-UV luminosity of NGC 2070. At $Z=0.008$, predictions are improved, as shown in Fig. 14 for ages of 2 Myr (upper panel) and 4 Myr (lower panel). For the 2 Myr case, C iv $\lambda \lambda 1548-51, \mathrm{~N} v$ $\lambda \lambda 1238-42$, and Si IV $\lambda \lambda 1393-1402$ are reasonably well reproduced, although He II $\lambda 1640$ emission is only weakly present despite the

Figure 13. Comparison between dereddened ($E_{\mathrm{B}-\mathrm{V}}=0.3, R_{\mathrm{V}}=4.5$) cumulative far-UV spectrum of the central region of NGC 2070 (black) and the predicted BPASS spectrum based on $\mathrm{Z}=0.002$ metallicity evolutionary models (v.2.2.1, Eldridge et al. 2017) at 4 Myr for single stars (red) and binaries (blue). Far-UV luminosities correspond to stellar masses of 9×10^{4} M_{\odot} for the binary models.

Figure 14. Comparison between dereddened ($E_{\mathrm{B}-\mathrm{V}}=0.3, R_{\mathrm{V}}=4.5$) cumulative far-UV spectrum of the central region of NGC 2070 (black) and the predicted BPASS spectrum based on $\mathrm{Z}=0.008$ metallicity evolutionary models (v.2.2.1, Eldridge et al. 2017) at 2 Myr (upper panel) and 4 Myr (lower panel) for single stars (red) and binaries (blue). Far-UV luminosities for this range of ages correspond to stellar masses of 5-9 $\times 10^{4} \mathrm{M}_{\odot}$ for the binary models.

Table 4. Summary of results for individual versus integrated treatment of NGC 2070 in UV and visual, with integrated results obtained from Starburst 99 (SB99) using $Z=0.008$ evolutionary models (Meynet et al. 1994) and $M_{\text {up }}$ $=120 M_{\odot}$, Charlot \& Bruzual (CB19) using $\mathrm{Z}=0.008$ evolutionary models (Chen et al. 2015) and $M_{\mathrm{up}}=100$ or $300 \mathrm{M}_{\odot}$ or BPASS $\mathrm{Z}=0.008$ single and binary models (v.2.2.1, Eldridge et al. 2017; Stanway \& Eldridge 2018). LMC WR template luminosities are from Crowther, Rate \& Bestenlehner (2023) while N2 and O3N2 strong line calibrations are from Curti et al. (2017).

Property	Individual	Ref	Integrated	This study
			Visual (MUSE)	
Age (Myr)	$1-7,1-2.5 \dagger$	a, b	$4.2,3.0,4$	SB99, CB19, BPASS
Mass $\left(10^{5} \mathrm{M}_{\odot}\right)$	$0.5-1.0$	c, d	$0.85,0.6,1.1$	SB99, CB19, BPASS
$M_{\text {up }}\left(\mathrm{M}_{\odot}\right)$	~ 270	b	$100-300$	CB19
$\mathrm{N}(\mathrm{WN})$	11	e	$10-17$	WR templates
$\mathrm{N}(\mathrm{WC} 4)$	2	e	4	WR templates
$\log (\mathrm{O} / \mathrm{H})+12$	$8.26-8.5$	f, g	$7.9-8.1$	$\mathrm{~N} 2, \mathrm{O} 3 \mathrm{~N} 2$ diagnostics
			Far-UV (HST)	
Age (Myr)	$1.5 \dagger$	h	$4.2,2.2,2$	SB99, CB19, BPASS
Mass $\left(10^{5} \mathrm{M}_{\odot}\right)$	\ldots	\ldots	$0.85,0.4,0.5$	SB99, CB19, BPASS
$M_{\text {up }}\left(\mathrm{M}_{\odot}\right)$	~ 250	h	300	CB19
Z	\ldots	\ldots	0.014	SB99 \ddagger
a: Schneider et al. (2018b); b: Brands et al. (2022); c: Hunter et al. (1995); d: Andersen et al.				
$(2009) ;$ e: Doran et al. (2013); f: Vermeij \& van der Hulst (2002); g: Peimbert (2003); h:				
Crowther et al. (2016)				

inclusion of VMSs, and N IV $\lambda 1718$ is very weak (in contrast with IUE observations in Fig. 6).

Binary models predict ~ 6 VMSs at 2 Myr for a stellar mass of $5 \times 10^{4} \mathrm{M}_{\odot}$ that reproduces the far-UV luminosity of NGC 2070, categorized as a mix of O, Of and H-rich WN-types. In contrast with CB19 models, BPASS mass-loss prescriptions fail to account for the proximity of VMSs to the Eddington limit (Bestenlehner 2020; Brands et al. 2023). Predictions from single models are very similar to those from binary stars at such ages. At 4 Myr, preferred from predicted optical WR bumps, N V $\lambda \lambda 1238-42$ is now too weak, Si IV $\lambda \lambda 1393-1402$ is too strong, with He II $\lambda 1640$ again too weak despite arising from classical WR stars. A stellar mass of $9 \times 10^{4} \mathrm{M}_{\odot}$ is required for the binary models to reproduce the far-UV luminosity of NGC 2070 at 4 Myr , with ~ 10 classical WR stars predicted (mix of WN and WC). Overall, the 2 Myr BPASS models (single or binary) provide the closest match to UV observations, aside from the weakness of He II $\lambda 1640$.

5 DISCUSSION AND CONCLUSIONS

We present the integrated VLT/MUSE spectrum of the central 2×2 $\operatorname{arcmin}^{2}\left(30 \times 30 \mathrm{pc}^{2}\right)$ region of NGC 2070, the dominant giant HiI region of the Tarantula (30 Doradus) region in the LMC and construct an empirical far-UV spectrum of this region by combining observations of individual stars with templates from the ULLYSES survey (Roman-Duval et al. 2020). This region is unique in the sense that we are able to compare results from an individual treatment of stars with an integrated approach, plus both classical Wolf-Rayet stars and VMS have been identified within this region. A summary of UV and optical results is presented in Table 4.

Martins et al. (2023) consider UV and optical spectroscopic indicators of WR and VMSs in nearby star-forming regions, favouring optical diagnostics to identify the latter. Neither the far-UV (HST) nor optical (MUSE) spectroscopy of NGC 2070 permit unique diagnostics of VMS since both populations have similar He II $\lambda 1640$ morphologies (Fig. 4) and metal lines in the vicinity of He II $\lambda 4686$ are dominated by classical WR stars (Fig. 2). Consequently, despite NGC 2070 having the richest VMS population in the Local Group, their presence is masked by its mixed age population, which includes
classical WR stars. Nevertheless, unambigious diagnostics of very young populations (required for VMS) exist in the optical (Martins et al. 2023) and far-UV (Crowther et al. 2016), the latter involving the presence of P Cygni Ov $\lambda 1371$ and He II $\lambda 1640$ emission with Si IV $\lambda \lambda 1393-1402$ absent.

If we were reliant solely on integrated visual spectroscopy of NGC 2070, we would substantially underestimate its metallicity from strong line diagnostics (Marino et al. 2013; Curti et al. 2017) but obtain an age of the stellar population ($\sim 4 \mathrm{Myr}$ from Starburst99 and BPASS, 3.5 Myr from CB19) in close agreement with the median age of massive stars within the region. The Starburst 99 inferred mass is broadly consistent with that of the star cluster R136 (Hunter et al. 1995; Andersen et al. 2009) that likely dominates the stellar mass of the region. The strength of WR bumps from historical LMC metallicity models (Meynet et al. 1994) implemented in Starburst99 are underestimated, although results from contemporary LMC models (Chen et al. 2015) plus a high $M_{\text {up }}=300 \mathrm{M}_{\odot}$ in CB19 and BPASS models are improved for He II $\lambda 4686$ and Civ $\lambda \lambda 5801-12$. The number of WR stars estimated from line luminosities of blue and yellow WR bumps is in good agreement with latest empirical calibrations for LMC metallicity (Crowther et al. 2023).

Starburst 99 predictions from $\mathrm{Z}=0.008$ metallicity evolutionary models (Meynet et al. 1994) plus Magellanic Cloud empirical UV templates are incapable of reproducing the primary wind features in the integrated far-UV spectrum of NGC 2070 at a single age. For example, the maximum predicted emission $W_{\lambda}\left(\mathrm{He}_{\text {II }} \lambda 1640\right)$ $=1.5 \AA$, a factor of three lower than observed $(4.7 \pm 0.2 \AA)$. Starburst 99 models using contemporary solar metallicity models (Ekström et al. 2012) and Milky Way templates at 3.2 Myr provide a better match despite an unphysical metallicity. Various reasons for these deficiencies are set out in Section 4, including the mixed age of massive stars contributing to the integrated light (only $1 / 5$ arises from the R136 cluster), plus the lack of high-quality empirical templates (e.g. ULLYSES, Roman-Duval et al. 2020), neglect of VMSs and the lack of binary evolutionary models.

CB19 models accounting for $\mathrm{Z}=0.008$ evolutionary models (Chen et al. 2015) and synthetic spectra are more successful at reproducing He II $\lambda 1640$ emission at 2.2 Myr since they extend to higher initial masses $M_{\text {up }}=300 \mathrm{M}_{\odot}$) and fold in contemporary mass-loss prescriptions for VMSs, although no single age provides a satisfactory solution for all UV diagnostics. BPASS (Eldridge et al. 2017) models incorporate binary evolution but do not currently incorporate enhanced mass-loss for VMSs resulting from their proximity to the Eddington limit. Consequently, BPASS models are unable to reproduce strong He II $\lambda 1640$ in metal-poor models even with $M_{\text {up }}=300 \mathrm{M}_{\odot}$).

Fixing $\mathrm{Z}=0.008$ and combining UV and optical spectroscopic diagnostics, Starburst 99 models at $\sim 4.2 \mathrm{Myr}$ are capable of reproducing some optical ($\mathrm{H} \alpha, \mathrm{C}$ IV $\lambda \lambda 5801-12$) and UV (Si IV $\lambda \lambda 1393-$ 1402) features of NGC 2070, although He II $\lambda 1640, \lambda 4686$ and C iv $\lambda \lambda 1548-51$ are too weak. CB19 models at 3.8 Myr provide a better match to $\mathrm{He}_{\text {II }} \lambda 1640$ and $\lambda 4686$, although C IV $\lambda \lambda 1548-$ 51 and $\lambda \lambda 5801-12$ are too weak, while BPASS models at 4 Myr underpredict He II $\lambda 1640$, $\lambda 4686$, overpredicts C Iv $\lambda \lambda 58012-12$, with Si IV $\lambda \lambda 1393-1402$ and C IV $\lambda \lambda 1548-51$ broadly satisfactory. In view of our results, caution should be given to specific ages and metallicities of young, unresolved stellar populations (see Martins \& Palacios 2022; Wofford et al. 2023). Should observed regions include multiple star clusters or clusters embedded within extended starforming regions, it would be more realistic to incorporate either a dual or multiple populations (e.g. Chisholm et al. 2019; Sirressi et al.

Figure 15. BPT diagram (Baldwin, Phillips \& Terlevich 1981) illustrating the similarity in integrated strengths between NGC 2070/Tarantula (filled/open red square), Green Pea (green circles), extreme Green Pea (blue diamonds), and Lyman-continuum emitting Green Pea (pink triangles) galaxies, together with plus SDSS star-forming galaxies (black dots, Abazajian et al. 2009), adapted from Micheva et al. (2017, their fig. 2) and Crowther et al. (2017).
2022), although the extended population of NGC 2070 is far from coeval (Schneider et al. 2018b).

Although NGC 2070 is located in the LMC, our nearest extragalactic star-forming galaxy, if one compares its nebular properties in the BPT diagram (Baldwin, Phillips \& Terlevich 1981), it is located close to extreme Green Pea galaxies (Cardamone et al. 2009) as shown in Fig. 15. Green Pea galaxies have received considerable interest since a subset have been established as Lyman continuum leakers (Izotov et al. 2016). H α observations of NGC 2070 (Fig. 1) suggests a significant fraction of ionizing photons escape the region. By way of example, BPASS models at 4 Myr favour a stellar mass of $8.5-11 \times 10^{4} \mathrm{M}_{\odot}$ from FUV-optical continua, but only 6×10^{4} M_{\odot} from its $\mathrm{H} \alpha$ luminosity, favouring a sizeable escape fraction of ionizing photons (see also Doran et al. 2013).

The relatively high star-formation rate of NGC 2070 for its size is also more comparable to the properties of star-forming knots at high redshift with respect to local star-forming galaxies (Kennicutt R. C. et al. 2003), as shown in Fig. 16. Specifically, NGC 2070 properties are close to clumps in the lensed galaxy SDSS J1110 +6459 at $z \sim 2.5$ (Johnson et al. 2017). Star-forming knots in the lensed Sunburst arc have a similar size to NGC 2070 but are significantly more intensive (Rivera-Thorsen et al. 2017, 2019; Vanzella et al. 2022).

As we have shown, the ULLYSES survey (Roman-Duval et al. 2020) provides high-quality far-UV empirical templates for OB stars at half-solar metallicity, which serve as alternatives to widely used theoretical models (Leitherer et al. 2010) in population synthesis tools. High-quality optical VLT/Shooter spectroscopy of ULLYSES targets has also been acquired (XshootU, Vink et al. 2023), which complement the present MUSE observations since templates achieve higher spectral resolution, extend to the violet, and complement existing optical spectroscopic libraries of massive stars (e.g. Verro et al. 2022).

Indeed, ULLYSES/XshootU spectroscopy have been secured for a large number of OB stars in the SMC. Ideally, we would wish to extend this study to the $1 / 5$ solar metallicity of the SMC. The richest young star formation region in the SMC is NGC 346 (Massey,

Figure 16. Comparison between the integrated star-formation rate of NGC 2070/Tarantula (filled/open red square) and star-forming knots from local star-forming galaxies $(z=0$, grey Kennicutt et al. 2003) to those at a range of redshifts $(z=0.1-5)$, adapted from Johnson et al. (2017, their fig. 2) and Crowther et al. (2017).

Parker \& Garmany 1989). STIS/G140L spectroscopy has recently been obtained for the O stars within the central region of this giant HiI region (Rickard et al. 2022), whose central $1 \times 1 \operatorname{arcmin}^{2}$ ($20 \times 20 \mathrm{pc}^{2}$) has been observed with VLT/MUSE. Unfortunately, NGC 346 lacks a massive young star cluster at its heart such that any analysis would need to reflect stochasticity in both its star formation history and IMF (e.g. da Silva, Fumagalli \& Krumholz 2014; Krumholz et al. 2015; Orozco-Duarte et al. 2022).

Nevertheless, there are other large star-forming complexes in the Magellanic Clouds (Evans et al. 2006), for which quantitative UVoptical analysis could be undertaken based on ULLYSES templates plus integral field observations from the upcoming SDSS-V Local Volume Mapper (LVM, Kollmeier et al. 2017).

ACKNOWLEDGEMENTS

This study has been made possible courtesy of: (i) Science Verification MUSE observations of NGC 2070 (proposal led by Jorge Melnick and Chris Evans); (ii) the Director's Discretionary ULLYSES survey, which was implemented by a Space Telescope Science Institute (STScI) team led by Julia Roman-Duval, having been recommended by the Hubble UV Legacy Science Definition Working Group chaired by Sally Oey, convened in 2018 by the then STScI Director Ken Sembach. Thanks to Linda Smith for providing useful comments on a draft version of the manuscript, and the referee for feedback which helped to improve the clarity of the paper.

Based on observations made with ESO telescopes at the Paranal observatory under programme ID 60.A-9351(A) and observations obtained with the NASA/ESA Hubble Space Telescope, retrieved from the Mikulski Archive for Space Telescopes (MAST) at the STScI. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. PAC is supported by the Science and Technology Facilities Council research grant ST/V000853/1 (PI. V. Dhillon). NC gratefully acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG) CA 255/1-1.

This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. Starlink software is currently supported by the East Asian Observatory. IRAF was distributed by the National Optical Astronomy Observatory, which was managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. For the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) license to any Author Accepted Manuscript version arising.

DATA AVAILABILITY

The integrated MUSE and far-UV spectroscopy of NGC 2070 are available in ascii format (wavelength in \AA, flux in $\mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}$) at $10.5281 /$ zenodo 10204404 .

REFERENCES

Abazajian K. N. et al., 2009, ApJS, 182, 543
Andersen M., Zinnecker H., Moneti A., McCaughrean M. J., Brandl B., Brandner W., Meylan G., Hunter D., 2009, ApJ, 707, 1347
Bacon R. et al., 2010, in McLean I. S., Ramsay S. K., Takami H., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 7735, Ground-based and Airborne Instrumentation for Astronomy III. p. 773508, preprint (arXiv:2211.16795)

Baldwin J. A., Phillips M. M., Terlevich R., 1981, PASP, 93, 5
Bartzakos P., Moffat A. F. J., Niemela V. S., 2001, MNRAS, 324, 18
Berg D. A. et al., 2022, ApJS, 261, 31
Bestenlehner J. M., 2020, MNRAS, 493, 3938
Bestenlehner J. M. et al., 2014, A\&A, 570, A38
Bestenlehner J. M. et al., 2020, MNRAS, 499, 1918
Bestenlehner J. M., Crowther P. A., Broos P. S., Pollock A. M. T., Townsley L. K., 2022, MNRAS, 510, 6133

Bosch G., Terlevich R., Melnick J., Selman F., 1999, A\&AS, 137, 21
Brands S. A. et al., 2022, A\&A, 663, A36
Brands S. A., de Koter A., Bestenlehner J. M., Crowther P. A., Kaper L., Caballero-Nieves S. M., Gräfener G., 2023, A\&A, 673, A132
Brott I. et al., 2011, A\&A, 530, A115
Bruzual G., Charlot S., 2003, MNRAS, 344, 1000
Cardamone C. et al., 2009, MNRAS, 399, 1191
Carnall A. C. et al., 2023, MNRAS, 518, L45
Castro N., Crowther P. A., Evans C. J., Mackey J., Castro-Rodriguez N., Vink J. S., Melnick J., Selman F., 2018, A\&A, 614, A147

Castro N. et al., 2021a, The Messenger, 182, 50
Castro N. et al., 2021b, A\&A, 648, A65
Chandar R., Leitherer C., Tremonti C. A., 2004, ApJ, 604, 153
Chen Y., Bressan A., Girardi L., Marigo P., Kong X., Lanza A., 2015, MNRAS, 452, 1068
Chisholm J., Rigby J. R., Bayliss M., Berg D. A., Dahle H., Gladders M., Sharon K., 2019, ApJ, 882, 182
Crowther P. A., 2019, Galaxies, 7, 88
Crowther P. A., 2022, preprint (arXiv:2207.08690)
Crowther P. A., Dessart L., 1998, MNRAS, 296, 622
Crowther P. A., Smith L. J., 1997, A\&A, 320, 500
Crowther P. A., Walborn N. R., 2011, MNRAS, 416, 1311
Crowther P. A., Schnurr O., Hirschi R., Yusof N., Parker R. J., Goodwin S. P., Kassim H. A., 2010, MNRAS, 408, 731

Crowther P. A. et al., 2016, MNRAS, 458, 624
Crowther P. A., Castro N., Evans C. J., Vink J. S., Melnick J., Selman F., 2017, The Messenger, 170, 40
Crowther P. A., Broos P. S., Townsley L. K., Pollock A. M. T., Tehrani K. A., Gagné M., 2022, MNRAS, 515, 4130
Crowther P. A., Rate G., Bestenlehner J. M., 2023, MNRAS, 521, 585
Curti M., Cresci G., Mannucci F., Marconi A., Maiolino R., Esposito S., 2017, MNRAS, 465, 1384
Curtis-Lake E. et al., 2023, Nature Astron., 7, 622
da Silva R. L., Fumagalli M., Krumholz M. R., 2014, MNRAS, 444, 3275
de Koter A., Heap S. R., Hubeny I., 1997, ApJ, 477, 792
de Koter A., Heap S. R., Hubeny I., 1998, ApJ, 509, 879
De Marchi G., Panagia N., 2014, MNRAS, 445, 93
De Marchi G. et al., 2011, ApJ, 739, 27
Doran E. I. et al., 2013, A\&A, 558, A134
Easeman B., Schady P., Wuyts S., Yates R., 2024, MNRAS, 5275484
Eggenberger P. et al., 2021, A\&A, 652, A137
Ekström S. et al., 2012, A\&A, 537, A146
Eldridge J. J., Stanway E. R., Xiao L., McClelland L. A. S., Taylor G., Ng M., Greis S. M. L., Bray J. C., 2017, Publ. Astron. Soc. Aust., 34, e058
Evans C. J., Lennon D. J., Smartt S. J., Trundle C., 2006, A\&A, 456, 623
Evans C. J. et al., 2011, A\&A, 530, A108
Evans C. J. et al., 2015, A\&A, 574, A13
Fahrion K., De Marchi G., 2023, preprint (arXiv:2311.06336)
Feast M. W., Thackeray A. D., Wesselink A. J., 1960, MNRAS, 121, 337
Fitzpatrick E. L., Savage B. D., 1984, ApJ, 279, 578
Georgy C. et al., 2013, A\&A, 558, A103
Gräfener G., Koesterke L., Hamann W. R., 2002, A\&A, 387, 244
Hamann W. R. et al., 2019, A\&A, 625, A57
Heap S. R., Ebbets D., Malumuth E., 1992, in European Southern Observatory Conference and Workshop Proceedings. p. 34744 Garching: European Southern Observatory
Hénault-Brunet V. et al., 2012, A\&A, 546, A73
Hillier D. J., Miller D. L., 1998, ApJ, 496, 407
Howarth I. D., 1983, MNRAS, 203, 301
Howarth I. D., Murray J., Mills D., Berry D. S., 2004, Starlink User Note, 50
Hunter D. A., Shaya E. J., Holtzman J. A., Light R. M., O'Neil Earl J. J., Lynds R., 1995, ApJ, 448, 179
Izotov Y. I., Schaerer D., Thuan T. X., Worseck G., Guseva N. G., Orlitová I., Verhamme A., 2016, MNRAS, 461, 3683

James B. L., Aloisi A., Heckman T., Sohn S. T., Wolfe M. A., 2014, ApJ, 795, 109
Johnson T. L. et al., 2017, ApJ, 843, L21
Kalari V. M., Horch E. P., Salinas R., Vink J. S., Andersen M., Bestenlehner J. M., Rubio M., 2022, ApJ, 935, 162

Keenan F. P., Aller L. H., Ryans R. S. I., Hyung S., 2001, Proc. Natl. Acad. Sci., 98, 9476
Kennicutt R. C., Jr, 1998, ARA\&A, 36, 189
Kennicutt R. C. , Jr, Bresolin F., Bomans D. J., Bothun G. D., Thompson I. B., 1995, AJ, 109, 594

Kennicutt R. C. , Jr et al., 2003, PASP, 115, 928
Kewley L. J., Dopita M. A., 2002, ApJS, 142, 35
Kollmeier J. A. et al., 2017, preprint (arXiv:1711.03234)
Kroupa P., 2008, in Knapen J. H., Mahoney T. J., Vazdekis A., eds, Astronomical Society of the Pacific Conference Series 390, Pathways Through an Eclectic Universe. Astronomical Society of the Pacific, San Francisco:, p. 3
Krumholz M. R., Fumagalli M., da Silva R. L., Rendahl T., Parra J., 2015, MNRAS, 452, 1447
Lanz T., Hubeny I., 2007, ApJS, 169, 83
Leitherer C. et al., 1999, ApJS, 123, 3
Leitherer C., Ortiz Otálvaro P. A., Bresolin F., Kudritzki R.-P., Lo Faro B., Pauldrach A. W. A., Pettini M., Rix S. A., 2010, ApJS, 189, 309
Leitherer C., Ekström S., Meynet G., Schaerer D., Agienko K. B., Levesque E. M., 2014, ApJS, 212, 14

Leitherer C., Byler N., Lee J. C., Levesque E. M., 2018, ApJ, 865, 55
Maiolino R., Mannucci F., 2019, A\&AR, 27, 3
Maíz Apellániz J. et al., 2014, A\&A, 564, A63
Marino R. A. et al., 2013, A\&A, 559, A114
Martins F., Palacios A., 2022, A\&A, 659, A163
Martins F., Schaerer D., Marques-Chaves R., Upadhyaya A., 2023, A\&A, 678, A159
Massey P., Hunter D. A., 1998, ApJ, 493, 180
Massey P., Parker J. W., Garmany C. D., 1989, AJ, 98, 1305

Massey P., Penny L. R., Vukovich J., 2002, ApJ, 565, 982
Massey P., Puls J., Pauldrach A. W. A., Bresolin F., Kudritzki R. P., Simon T., 2005, ApJ, 627, 477

Massey P., Morrell N. I., Neugent K. F., Penny L. R., DeGioia-Eastwood K., Gies D. R., 2012, ApJ, 748, 96
Melnick J., 1985, A\&A, 153, 235
Meynet G., Maeder A., Schaller G., Schaerer D., Charbonnel C., 1994, A\&AS, 103, 97
Micheva G., Oey M. S., Jaskot A. E., James B. L., 2017, ApJ, 845, 165
Mokiem M. R. et al., 2007, A\&A, 473, 603
Orozco-Duarte R. et al., 2022, MNRAS, 509, 522
Pagel B. E. J., Edmunds M. G., Fosbury R. A. E., Webster B. L., 1978, MNRAS, 184, 569
Parker J. W., 1993, AJ, 106, 560
Pauldrach A. W. A., Hoffmann T. L., Lennon M., 2001, A\&A, 375, 161
Peimbert A., 2003, ApJ, 584, 735
Pellegrini E. W., Baldwin J. A., Ferland G. J., 2010, ApJS, 191, 160
Pellegrini E. W., Baldwin J. A., Ferland G. J., 2011, ApJ, 738, 34
Plat A., Charlot S., Bruzual G., Feltre A., Vidal-García A., Morisset C., Chevallard J., Todt H., 2019, MNRAS, 490, 978
Prinja R. K., Crowther P. A., 1998, MNRAS, 300, 828
Ramírez-Agudelo O. H. et al., 2017, A\&A, 600, A81
Rickard M. J. et al., 2022, A\&A, 666, A189
Rivera-Thorsen T. E. et al., 2017, A\&A, 608, L4
Rivera-Thorsen T. E. et al., 2019, Science, 366, 738
Robert C., Leitherer C., Heckman T. M., 1993, ApJ, 418, 749
Roman-Duval J. et al., 2020, Res. Notes Am. Astron. Soc., 4, 205
Russell S. C., Dopita M. A., 1990, ApJS, 74, 93
Sabbi E. et al., 2013, AJ, 146, 53
Sabbi E. et al., 2016, ApJS, 222, 11
Sabín-Sanjulián C. et al., 2017, A\&A, 601, A79
Sana H. et al., 2013, A\&A, 550, A107
Sánchez S. F. et al., 2022, ApJS, 262, 36
Saxena A. et al., 2020, A\&A, 636, A47
Schaerer D., Vacca W. D., 1998, ApJ, 497, 618
Schaller G., Schaerer D., Meynet G., Maeder A., 1992, A\&AS, 96, 269
Schneider F. R. N. et al., 2018a, Science, 359, 69
Schneider F. R. N. et al., 2018b, A\&A, 618, A73
Selman F., Melnick J., Bosch G., Terlevich R., 1999, A\&A, 341, 98
Shenar T. et al., 2017, A\&A, 598, A85
Shenar T. et al., 2019, A\&A, 627, A151
Shenar T. et al., 2022, A\&A, 665, A148
Sidoli F., Smith L. J., Crowther P. A., 2006, MNRAS, 370, 799
Sirressi M. et al., 2022, AJ, 164, 208
Smith L. J., Norris R. P. F., Crowther P. A., 2002, MNRAS, 337, 1309
Smith L. J., Crowther P. A., Calzetti D., Sidoli F., 2016, ApJ, 823, 38
Smith L. J. et al., 2023, ApJ, 958, 194
Stanway E. R., Eldridge J. J., 2018, MNRAS, 479, 75
Steidel C. C., Strom A. L., Pettini M., Rudie G. C., Reddy N. A., Trainor R. F., 2016, ApJ, 826, 159

Tehrani K. A., Crowther P. A., Bestenlehner J. M., Littlefair S. P., Pollock A. M. T., Parker R. J., Schnurr O., 2019, MNRAS, 484, 2692

Vacca W. D., Robert C., Leitherer C., Conti P. S., 1995, ApJ, 444, 647
Vanzella E. et al., 2022, A\&A, 659, A2
Vermeij R., van der Hulst J. M., 2002, A\&A, 391, 1081
Verro K. et al., 2022, A\&A, 661, A50
Vink J. S., Muijres L. E., Anthonisse B., de Koter A., Gräfener G., Langer N., 2011, A\&A, 531, A132

Vink J. S. et al., 2023, A\&A, 675, A154
Walborn N. R., Blades J. C., 1997, ApJS, 112, 457
Walborn N. R. et al., 2014, A\&A, 564, A40
Welty D. E., Xue R., Wong T., 2012, ApJ, 745, 173
Wofford A., Leitherer C., Salzer J., 2013, ApJ, 765, 118
Wofford A., Leitherer C., Chandar R., Bouret J.-C., 2014, ApJ, 781, 122
Wofford A. et al., 2023, MNRAS, 523, 3949
Wong T. et al., 2022, ApJ, 932, 47

Figure A1. Cumulative O-type far-UV spectrum of the central region of NGC 2070 (black) based on empirical data of 34 individual stars (red) and 159 LMC template stars (blue). Gaps in spectra arise from incomplete spectral coverage (e.g. COS G130M + G160M).

Figure A2. Cumulative WNh+Of/WN far-UV spectrum of the central region of NGC 2070 (black) based on empirical data of 7 individual stars (red) and 5 LMC template stars (blue). Gaps in spectra arise from incomplete spectral coverage (e.g. COS G130M + G160M).

APPENDIX A: TEMPLATE UV SPECTRA

The NGC 2070 far-UV spectrum has been constructed from a combination of empirical spectra (of individual stars) and use of template OB stars (Table A1) and Of/WN and WR stars (Table A2 for the remainder, primarily drawn from Data Release 6 (DR6)

FUV limit 1e-14 MUSE 2x2arcmin

Figure A3. Cumulative WR far-UV spectrum of the central region of NGC 2070 (black) based on empirical data of R140a1 (red, WN + WC) and 5 LMC template stars (blue, $4 \mathrm{WN}, 1 \mathrm{WC}$).

Figure A4. Cumulative B-type far-UV spectrum of the central region of NGC 2070 (black) based on LMC templates for 10 supergiants (red) and 6 non-supergiants (blue). Gaps in spectra arise from incomplete spectral coverage (e.g. COS G130M + G160M).
of the ULLYSES survey (Roman-Duval et al. 2020). Figs A1A4 present cumulative far-UV spectra for O, Of/WN, WR, and B stars, respectively, including breakdowns between empirical data sets and templates (separated into supergiants and non-supergiants for B stars).

Table A1. LMC template UV spectra of normal OB stars from HST ULLYSES survey (Roman-Duval et al. 2020). COS gratings G130M + G160M are abbreviated as G1\#0M.

Template	— Dwarf -		- Giant -		- Supergiant -	
	Star (Sp Type)	Instrument/Grating	Star (Sp Type)	Instrument/Grating	Star (Sp Type)	Instrument/Grating
O2	BI 237 (O2 V)	COS G1\#0M	VFTS 72 (O2 V-III)	COS G1\#0M	Mk 42 (O2 If*)	STIS/E140M
O2.5	VFTS 169 (O2.5 V)	COS G1\#0M	N11 ELS 26 (O2.5 III)	COS G1\#0M
O3	N11 ELS 60 (O3 V)	COS G1\#0M	VFTS 267 (O3 III-I)	COS G1\#0M	VFTS 180 (O3 If*)	STIS E140M
O3.5	VFTS 404 (O3.5: V:)	COS G1\#0M
O4	W61 28-5 (O4 V)	COS G1\#0M	Sk -67 ${ }^{\circ} 69$ (O4 III)	STIS E140M	Sk-67 166 (O4 I)	STIS E140M
O4.5	Sk-70 60 (O4-5 V)	STIS E140M
O5	PGMW 3120 (O5.5 V)	STIS E140M	N11 ELS 38 (O5 III)	COS G1\#0M	[ST92] 4-18 (O5 If)	COS G1\#0M
O6	PGMW 3070 (O6 V)	STIS E140M	Sk -71 19 (O6 III)	COS G1\#0M	Sk -67 ${ }^{\circ} 111$ (O6 Iafpv)	STIS E140M
O6.5	Sk -71 ${ }^{\circ} 50$ (O6.5 III)	STIS E140M
O7	Sk -67 ${ }^{\circ} 118$ (O7 V)	STIS E140M	BI 272 (O7 II)	STIS E140M	Sk-69 83 (O7.5 Iaf)	STIS E140M
O8	BI 184 (O8 V)	COS G1\#0M	Sk $-67^{\circ} 101$ (O8 II)	STIS E140M	PGMW 1363 (O8.5 Iaf)	STIS E140M
O9	VFTS 66 (O9 V)	COS G1\#0M	Sk $-71^{\circ} 8$ (O9 II)	STIS E140M	Sk -67 ${ }^{\circ} 107$ (O9 Ib)	STIS E140M
O9.5	Sk $-66^{\circ} 17$ (OC9.5 II)	COS G1\#0M	Sk $-67^{\circ} 5$ (O9.7 Ib)	STIS E140M
B0	HV 5622 (B0 V)	COS G1\#0M	Sk -70 79 (B0 III)	STIS E140M	Sk -68 52 (B0 Ia)	STIS E140M
B0.5	Sk -67 ${ }^{\circ} 216$ (B0.5 V)	STIS E140M	Sk $-68^{\circ} 155$ (B0.5 I)	COS G1\#0M
B0.7	\cdots	...	Sk -68 ${ }^{\circ} 140$ (B0.7 Ib-Iab)	COS G1\#0M
B1	Sk $-65^{\circ} 2(\mathrm{~B} 1 \mathrm{~V})$	STIS E140M	Sk -71 ${ }^{\circ} 35$ (B1 II)	COS G1\#0M	Sk $-66^{\circ} 35$ (BC1 Ia)	COS G1\#0M
B1.5	Sk $-67^{\circ} 14$ (B1.5 Ia)	STIS E140M
B2	...	\ldots	\ldots	\ldots	Sk -68 26 (BC2 Ia)	COS G1\#0M
B9	\ldots	Sk-67 207 (B9 Ia)	COS G1\#0M

Table A2. LMC template UV spectra of normal Of/WN and WR stars from HST ULLYSES survey (Roman-Duval et al. 2020) except where noted.

Template	Star (Sp Type)	Instrument/Grating
O2 If/WN5	Sk -67$^{\circ}$ 22 (O2 If/WN5)	STIS/E140M
O2.5 If/WN6	Mk 39 (O2.5 If/WN6)	COS G130M + G160M
O3.5 If/WN7	Mk 51 (O3.5 If/WN7)	COS G140L
O4 If/WN8	R136b (O4 If/WN8)	GHRS G140L a
WN5h	R136a3 (WN5h)	GHRS G140L b
WN6	Sk -71 $^{\circ}$ 21 (WN6h)	STIS E140M $_{\text {WN7-8 }}^{\text {VFTS 108 (WN7h) }}$
WC4	Sk -69 ${ }^{\circ}$ 191 (WC4)	COS G140L

a: de Koter, Heap \& Hubeny (1998), b: de Koter, Heap \& Hubeny (1997); c: GO 15629 (Mahy)

APPENDIX B: CENSUS OF FAR-UV BRIGHTEST SOURCES OF NGC 2070

Table B1 lists stars of known spectral type within the MUSE footprint, sorted by far-UV flux, based on a calibration of F275W
or F336W photometry drawn from HTTP (Sabbi et al. 2013, 2016). HSH95-17 is included since it lies within R136 GHRS/G140L 2×2 $\operatorname{arcsec}^{2}$ region and is considered to be an early O star (Kalari et al. 2022), although a few other sources exceeding $F_{1500} \geq 10^{-14}$ $\operatorname{erg~s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}$ have been excluded since their spectral types are unknown. These include HSH95-76 [P 870, $m_{\text {F275w }}=13.57 \mathrm{mag}$, Sabbi et al. (2016)], SMB 136 [$m_{275 \mathrm{w}}=13.88$ mag, Sabbi et al. (2016)], HSH95-87 [$m_{\text {F336w }}=14.27 \mathrm{mag}$, Sabbi et al. (2016)], HSH95 $120\left[m_{\text {F275w }}=14.55 \mathrm{mag}\right.$, Sabbi et al. (2016)], HSH95$139\left[m_{\mathrm{F} 336 \mathrm{~W}}=14.80 \mathrm{mag}\right.$, Hunter et al. (1995)], and HSH95-129 [$m_{\mathrm{F} 336 \mathrm{~W}}=14.97 \mathrm{mag}$, Hunter et al. (1995)].

Table B2 lists stars of known spectral type beyond the MUSE footprint but within the $3 \times 3 \mathrm{arcmin}^{2}$ region sampled with IUE/SWP (Vacca et al. 1995), sorted by far-UV flux, based on a calibration of F275W or F336W photometry drawn from HTTP (Sabbi et al. 2013, 2016). Bright sources lacking spectral types include SMB-183 $\left[m_{275 \mathrm{w}}=14.11 \mathrm{mag}\right.$, Sabbi et al. (2016) $]$, SMB-196 $\left[m_{275 \mathrm{w}}=14.27\right.$ mag, Sabbi et al. (2016)], and SMB-245 [$m_{275 \mathrm{w}}=14.67 \mathrm{mag}$, Sabbi et al. (2016)].

 $\mathrm{G} 130 \mathrm{M}+\mathrm{G160M}$ are abbreviated as G1\#0M.

R	Mk	P	HSH	SMB	VFTS	CCE	SpT	Ref	HTTP	$\begin{gathered} m_{275 \mathrm{~W}} \\ \mathrm{mag} \end{gathered}$	$\begin{gathered} m_{\mathrm{F} 336 \mathrm{~W}} \\ \mathrm{mag} \end{gathered}$	$\begin{gathered} m_{\mathrm{F} 555 \mathrm{~W}} \\ \mathrm{mag} \end{gathered}$	Ref	$\begin{aligned} & F_{1500} \\ & 10^{-13} \end{aligned}$	Spectrum (Template)	Ref	VMS
140a	\ldots	877	\ldots	6	507	3191	WC4+WN6 +	Do13	053841.601-690513.43	10.97	11.28	12.20	S	3.72	STIS/E140M	1	\ldots
136a1	3	7	WN5h	CD98	11.20	12.28	D	(3.32)	GHRS/G140L \ddagger	4	\checkmark
140b	...	880	...	8	509	3174	WN5(h) +O	Ev11	053841.613-690515.17	11.09	11.43	12.47	S	(3.04)	(WN6)
...	42	922	2	10	...	2102	O2 If	CW11	053842.104-690555.29	11.08	11.51	12.82	S	3.01	STIS/E140M	3	\checkmark
136a2	5	WN5h	CD98	11.33	12.34	D	(2.93)	GHRS/G140L \ddagger	4	\checkmark
...	39	767	7	14	482	2003	O2.5 If/WN6 +	Cr 22	053840.214-690559.86	11.38	11.66	12.95	S	2.74	COS/G1\#0M	3	\checkmark
142	...	987	1	3	533	2912	B1.5 Ia^{+}	Ev15	053842.738-690542.57	10.84	11.13	11.79	S	(2.50)	(B1.5 I)	\ldots	...
134	\cdots	786	4	\ldots	1001	1978	WN6(h)	CS97	053840.539-690557.18	11.45	11.62	12.70	S	(2.18)	(WN6)	...	\ldots
137	\ldots	548	\ldots	5	431	2889	B1.5 Ia	Ev15	053836.959-690507.84	11.04	11.30	12.08	S	(2.08)	(B1.5 I)	\ldots	\ldots
...	25	871	\ldots	19	506	2395	ON2 V	Wa14	053841.545-690519.43	11.74	12.01	13.32	S	2.04	COS/G1\#0M	3	\checkmark
141	...	1253	\ldots	9	590	2190	B0.7 Iab	Ev15	053845.579-690547.80	11.42	11.60	12.58	S	(1.92)	(B0.7 I)	\ldots	\ldots
136 a 3	\ldots	...	6	WN5h	CD98	11.82	12.97	D	(1.87)	GHRS/G140L \ddagger	4	\checkmark
...	30	1018	15	24	542	2999	O2 If/WN5	CW11	053843.080-690546.86	11.91	12.22	13.48	S	1.85	COS/G1\#0M	3	...
\ldots	12	1257	\ldots	11	591	1279	B0.2 Ia	Ev15	053845.687-690622.49	...	11.68	12.56	S	(1.80)	(B0I)	\ldots	\ldots
\ldots	35	1029	12	23	545	1474	O2 If/WN5	CW11	053843.202-690614.44	11.93	12.23	13.46	S	(1.40)	(O2 I/WN5)	\ldots	\checkmark
\ldots	32	1130	13	21	1034	3043	O7.5 II	WB97	053844.192-690547.06	11.96	12.23	13.40	S	(1.37)	(08 III)	\ldots	...
\ldots	34	1134	8	17	...	1766	WN5h + WN5h	Te19	053844.252-690605.93	12.04	12.11	13.15	S	(1.28)	(WN5)	\ldots	\checkmark
138	\ldots	499	\ldots	4	424	...	$\mathrm{B} 9 \mathrm{I}+\mathrm{p}$	Ev15	053836.132-690558.01	...	11.50	11.79	S	(1.25)	(B9I)	\ldots	\ldots
...	37Wa	917	11	25	1021	1349	O4 If^{+}	MH98	053842.072-690614.32	12.16	12.35	13.36	S	(1.14)	(O4 I)	\ldots	\checkmark
\ldots	11	1500	...	15	641	762	B0.5: I	Ev15	053849.723-690642.95	...	12.19	13.18	S	(1.13)	(B0.5 I)	\ldots	...
\ldots	35 Sa	1036	23	37	1028	1423	O4-5 V	WB97	053843.263-690616.51	12.18	12.53	13.85	S	(1.12)	(O4.5 V)	\ldots	\ldots
...	...	1080	25	39	1031	2186	O3-4 V	Bo99	053843.684-690547.89	12.20	12.56	14.23	S	(1.10)	(O3 V)	\ldots	\ldots
\ldots	13	1311	...	40	599	1433	O3 III	Wa14	053846.177-690617.39	12.28	12.63	13.85	S	(1.02)	(O3 III)	\ldots	\ldots
...	26	1150	...	32	562	2819	O4 III	WB97	053844.406-690536.22	12.28	12.46	13.70	S	(1.02)	(O4 III)	\ldots	\ldots
136 a 5	20	O2 If	Cr16	12.49	13.71	D	(1.01)	GHRS/G140L \ddagger	4	\checkmark
136c	\ldots	998	10	27	1025	1737	WN5h + ?	Cr10	\ldots	\ldots	12.54	13.43	D	(0.97)	(WN5)	...	\checkmark
...	47	607	...	29	440	2417	O6-6.5 III	Wa14	053837.729-690521.03	12.15	12.44	13.69	S	0.96	STIS/E140M	2	...
\ldots	33 Na	1140	16	33	...	1943	OC2.5 If + O4 V	Br22	053844.329-690554.66	12.37	12.55	13.64	S	(0.94)	(O3 I)	\ldots	\ldots
\ldots	54	488	...	16	420	1689	B0.5 Ia	Ev15	053835.941-690609.23	12.20	12.26	13.10	S	(0.93)	(B0.5 I)	\ldots	\ldots
\ldots	27	850	\ldots	38	502	2653	O9.7 II	Wa14	053841.271-690532.44	12.39	12.67	13.82	S	(0.92)	(O9.5 III)	\ldots	\ldots
...	\cdots	1014	...	41	...	3062	O8:	Ca21	053843.030-690540.44	12.43	12.57	13.60	S	(0.89)	(08 III)	\ldots	\ldots
136a7	24	20	\ldots	...	O3 III(f*)	Be20	12.64	13.97	S	(0.88)	GHRS/G140L \ddagger	4	\checkmark
...	\ldots	860	28	53	\ldots	1912	O3 V	MH98	053841.490-690556.90	12.45	12.80	14.04	S	(0.87)	(O3 V)	\ldots	\ldots
...	\ldots	1231	...	31	585	2193	O7V	Wa14	053845.279-690546.53	...	12.66	13.78	S	(0.87)	(O7 V)	\ldots	\ldots
136b	\ldots	985	9	18	\ldots	1669	O4 If/WN8	Cr16	12.27	13.24	D	0.86	GHRS/G140L	5	\checkmark
\ldots	37a	949	14	28	1022	1442	O3.5 If/WN7	CW11	053842.397-690615.08	12.33	12.48	13.52	S	$0.82 \dagger$	(O3.5 If/WN7)	6	\checkmark
...	24	1260	\ldots	47	\ldots	2760	O3 V	WB97	053845.687-690539.02	12.53	12.73	13.96	S	(0.81)	(03 V)	\ldots	\ldots
140c	...	908	...	55	519	3112	O3-4((f)) + OB	Wa14	053841.934-690513.02	12.53	12.81	14.18	S	(0.81)	(03.5 V)	\ldots	\ldots
\ldots	\ldots	863	29	56	1014	1956:	O3 V	MH98	053841.507-690600.92	12.55	12.90	14.18	S	(0.80)	(O3 V)	\ldots	...
\ldots	33 Sa	1120	18	44	...	2177	O3 III	Ma15	053844.123-690556.63	12.48	12.76	13.81	S	$0.79 \dagger$	(O3 III)	6	...
...	50	643	...	34	450	1293	O9.7 III: + O7::	Wa14	053838.476-690621.96	12.57	12.75	13.69	S	(0.78)	(O9.5 III)	\ldots	...

Table B1 - continued

R	Mk	P	HSH	SMB	VFTS	CCE	SpT	Ref	HTTP	$\begin{gathered} m_{275 \mathrm{~W}} \\ \text { mag } \end{gathered}$	$\begin{gathered} m_{\text {F336W }} \\ \text { mag } \end{gathered}$	$\begin{gathered} m_{\mathrm{F} 555 \mathrm{~W}} \\ \mathrm{mag} \end{gathered}$	Ref	$\begin{aligned} & F_{1500} \\ & 10^{-13} \end{aligned}$	Spectrum (Template)	Ref	VMS
136 a 4	\ldots	...	21	\ldots	\cdots	\ldots	O3 V	Be20	\ldots	\cdots	12.81	13.96	H	(0.75)	GHRS/G140L \ddagger	4	\checkmark
...	\cdots	923	33	60	...	1793	O 3 V	Ma05	053842.119-690600.73	...	13.09	14.33	S	$0.75 \dagger$	(O3 V)	6	...
136a6 \#1	\cdots	...	19	$\mathrm{O} 2 \mathrm{I}(\mathrm{n}) \mathrm{f} * \mathrm{p}+$?	Be20	12.86	13.92	H	(0.72)	GHRS/G140L \ddagger	4	...
...	49	691	...	30	...	1261	WN6(h)	CS97	053839.143-690621.24	12.66	12.62	13.41	S	(0.71)	(WN6)
$136 \mathrm{a6}$ \#2	26	\ldots	\ldots	...	$\mathrm{O} 2 \mathrm{I}(\mathrm{n}) \mathrm{f} * \mathrm{p}+$?	Be20	12.89	14.19	H	(0.70)	GHRS/G140L \ddagger	4	\ldots
...	\cdots	912	38	70	1019	1608	$\mathrm{O} 3 \mathrm{~V}+\mathrm{O} 6 \mathrm{~V}$	Ma02	053842.004-690607.56	12.72	13.02	14.30	S	(0.68)	(O3 V)
\cdots	6	1563	\ldots	61	656	1979	O7.5 IIIp	Wa14	053851.200-690559.28	12.73	13.11	14.36	S	(0.68)	(O7 III)	...	\ldots
\cdots	8	1531	\ldots	58	648	2780	O5.5 IV	Wa14	053850.400-690538.17	12.73	12.96	14.23	S	(0.67)	(O5.5 V)	\ldots	\ldots
\ldots	38	930	...	45	525	1184	B0 Ia	Wa14	053842.209-690625.56	12.55	12.79	13.83	S	(0.67)	(B0I)
136 a 8	27	O2-3 V	Cr16	12.93	14.22	H	(0.67)	GHRS/G140L \ddagger	4	...
...	\cdots	\cdots	17	\cdots	O	Ka22	...	\ldots	13.00	13.78	H	(0.63)	GHRS/G140L \ddagger	4	\ldots
...	\cdots	1273	\ldots	59	...	1223	O7:	Ca21	053845.842-690620.83	12.82	13.05	14.05	S	(0.62)	(O7 III)	\ldots	...
\cdots	\cdots	...	30	06.5 Vz	Be20	13.02	14.21	D	(0.62)	GHRS/G140L \ddagger	4	...
...	...	\ldots	31	35	...	\cdots	O 2 V	Be20	053842.471-690604.53	\cdots	12.89	14.05	S	$0.61 \dagger$	$(\mathrm{O} 2 \mathrm{~V})$
\cdots	\cdots	713	\ldots	72	...	2245	O5V	Bo99	053839.478-690510.36	12.85	13.20	14.60	S	(0.60)	(O4.5 V)	\ldots	\cdots
\cdots	\cdots	...	36	...	\ldots	...	O2 If	Be20	-	.	13.06	14.41	S	(0.59)	(O2 I)	\ldots	\checkmark
...	...	\ldots	35	\ldots	...	\ldots	O3 V	Be20	13.12	14.43	D	$0.55 \dagger$	GHRS/G140L \ddagger	4	...
\cdots	...	975	...	71	...	2748	O6-7 V	Bo99	053842.616-690536.74	12.93	13.18	14.50	S	(0.56)	(06 V)	...	\ldots
\cdots	15	1312	\cdots	43	\ldots	2165	O7V	WB97	053846.158-690551.37	...	13.14	14.13	S	(0.55)	(07 V)	\ldots	\ldots
...	\cdots	1113	53	78	1032	2977	O8 III	Le21	053844.063-690544.82	12.97	13.32	14.63	S	(0.54)	(O8 III)	..	\ldots
140d	\cdots	...	\cdots	81	497	2231	O3.5Vz + OB	Wa14	053841.126-690513.17	12.97	13.28	14.65	S	(0.54)	(03.5 V)	\ldots	\ldots
...	\cdots	\cdots	42	$\mathrm{O} 3 \mathrm{~V}+\mathrm{O} 3 \mathrm{~V}$	Ma02	053842.119-690600.73	12.98	13.34	14.71	S,D	(0.54)	(O3 V)	...	\ldots
...	\cdots	\ldots	75	\cdots	\ldots	\cdots	O6V	Be20	053842.178-690601.90	13.01	13.86	15.08	S,D	(0.52)	(O6 V)	\cdots	\ldots
\ldots	\cdots	288	\cdots	84	385	2451	O4-5V	Wa14	O53832.293-690523.85	13.22	13.38	14.65	S	0.51	COS/G140L	2	\cdots
\ldots	33 Nb	1152	32	66	...	1896	O6.5 V	Be20	053844.467-690555.50	13.03	13.28	14.36	S	(0.51)	(06 V)
\ldots	\cdots	1034	61	85	1027	2987	O 5 V	Le21	053843.195-690542.61	13.05	13.38	14.68	S	(0.50)	(O4.5 V)	...	\ldots
\ldots	\cdots	...	39	\cdots	1005	...	O3 $\mathrm{V}+\mathrm{O} .5 \mathrm{~V}$	Ma02	\cdots	...	13.26	14.50	D	(0.50)	(O3 V)	\ldots	...
\ldots	53	...	\cdots	51	427	389	WN8(h)	Ev11	053836.407-690657.48	...	13.27	13.77	S	(0.49)	(WN7-8)
\ldots	35 N	1013	41	76	1026	1494	O3 III(f*)	MH98	053843.075-690611.28	...	13.29	13.97	S,D	(0.48)	(O3 III)
\ldots	\cdots	1042	56	87	1029	2128	O3.5I + OB	Wa14	053843.343-690547.55	13.10	13.39	14.71	S,D	(0.48)	(O3 I)	\ldots	...
\cdots	\cdots	...	40	\cdots	O 3 V	Be20	\cdots	\ldots	13.30	14.56	D	(0.48)	(O3 V)
\ldots	\cdots	1195	43	83	...	2112	O3 V	MH98	053844.950-690554.11	13.12	13.37	14.57	S	(0.47)	(O3 V)
\ldots	\cdots	1123	\cdots	74	1033	2913	O7 III	Le21	053844.172-690542.17	13.13	13.42	14.53	S	(0.46)	(O7 III)
\cdots	\cdots	885	\cdots	68	512	1199	O2 V-III	Wa14	053841.734-690625.01	13.15	13.30	14.34	S	(0.46)	(O2 V)	\ldots	\cdots
\ldots	51	666	\cdots	50	457	603	O3.5 If/WN7	CW11	053838.838-690649.49	...	12.98	13.81	S	0.45	COS/G140L	2	\checkmark
\cdots	\cdots	724	\cdots	75	\cdots	1274	O7 III	Bo99	053839.692-690624.01	13.17	13.37	14.41	S	(0.45)	(O7 III)	\ldots	...
\cdots	14S	1350	\ldots	64	608	1827	O4 III	Wa14	053846.785-690603.10	13.01	13.19	14.29	S	0.43	COS/G140L	2	...
\cdots	...	723	\cdots	92	\cdots	2570	O5:	Ca21	053839.638-690526.37	13.21	13.53	14.77	S	(0.43)	(O5 III)	\ldots	...
\cdots	36	706	\ldots	86	468	1749	O2 V	Wa14	053839.369-690606.49	13.21	13.39	14.58	S	(0.43)	(O2 V)
...	...	812	51	89	O3 V	MH98	053840.895-690555.93	13.23	13.48	14.70	S	(0.43)	(O3 V)

Table B1 - continued

R	Mk	P	HSH	SMB	VFTS	CCE	SpT	Ref	HTTP	$\begin{gathered} m_{275 \mathrm{~W}} \\ \mathrm{mag} \end{gathered}$	$\begin{gathered} m_{\mathrm{F} 336 \mathrm{~W}} \\ \mathrm{mag} \end{gathered}$	$\begin{gathered} m_{\mathrm{F} 555 \mathrm{~W}} \\ \mathrm{mag} \end{gathered}$	Ref	$\begin{aligned} & F_{1500} \\ & 10^{-13} \end{aligned}$	Spectrum (Template)	Ref	VMS
\ldots	27E	858	\ldots	100	503	\cdots	O9 III	Wa14	053841.367-690532.44	13.23	13.57	14.87	S,D	(0.43)	(O9 III)	\cdots	\cdots
\cdots	\ldots	1267	\cdots	90	...	2911	O7: V	Pa93	053845.757-690540.82	13.24	13.52	14.72	S	(0.42)	(07 V)
\cdots	28	805	\cdots	80	\ldots	2447	O5-6 V	Bo99	053840.798-690525.10	13.24	13.40	14.61	S	(0.42)	(05.5 V)
\cdots	...	787	\cdots	103	...	2233	O9-B0 V	Bo99	053850.435-690534.56	13.25	13.60	14.98	S	(0.42)	(09 V)
\cdots	4	1607	\cdots	65	664	774	O7 II	Wa14	053852.724-690643.13	...	13.37	14.38	S	0.41	COS/G140L	2	...
\cdots	52	$\mathrm{O} 3-4 \mathrm{Vz}$	Be20	13.46	14.72	D	(0.41)	GHRS/G140L \ddagger	4	...
\cdots	\cdots	\ldots	45	O4: Vz	Be20	13.48	13.65	D	(0.40)	(O 4 V)
\cdots	\cdots	900	37	77	1018	1459	O2-4.5	He12	053841.874-690612.52	13.29	13.42	14.49	D	(0.40)	(O3 III)
\cdots	\cdots	...	49	O 3 V	Be20			13.49	14.75	D	(0.40)	(O3 V)	\cdots	...
\cdots	\cdots	...	50	O3-4V	Be20	\ldots	\ldots	13.51	14.65	D	(0.39)	GHRS/G140L \ddagger	4	...
\cdots	\cdots	...	55	O 2 Vz	Be20	13.52	14.74	D	(0.39)	(O2 V)
\cdots	5	1552	...	54	652	1405	B2 Ip + O9III:	Wa14	053851.043-690620.40	...	13.06	14.15	S	(0.39)	(B2 I)
\cdots	\cdots	...	46	兂	O2-3 III	Be20	13.53	14.56	S	(0.39)	(O2.5 III)
\cdots	\ldots	506	...	82	...	1632	O8:	Ca21	053836.237-690608.42	13.35	13.52	14.55	S	(0.38)	(08 III)	\ldots	...
\cdots	14 N	1317	\cdots	91	601	1890	O5-6 V	Wa14	053846.280-690559.32	13.36	13.56	14.68	S	(0.38)	(05.5 V)
...	7	1553	\cdots	94	651	2057	O7V	Wa14	053851.029-690554.70	13.36	13.59	14.74	S	(0.38)	(07 V)
\cdots	47	111	O 2 V	Be20	053842.630-690601.92	13.39	13.66	14.72	S	(0.37)	(O2 V)
\cdots	\cdots	\cdots	48	...	\cdots	...	O2-3 III	Be20	...	\cdots	13.60	14.75	D	(0.36)	(O2.5 III)	\cdots	...
\cdots	\cdots	-	58	\cdots	...	兂	O2-3 V	Be20	\cdots	,	13.61	14.80	D	(0.36)	GHRS/G140L \ddagger	4	...
\cdots	\cdots	467	...	93	416	1700	08.5 V	Ma12	053835.570-690606.65	13.41	13.57	14.74	S	(0.36)	(08 V)
\cdots	\cdots	...	\cdots	106	583	2107	$\mathrm{O} 8 \mathrm{~V}+\mathrm{O} 8.5 \mathrm{~V}$	Wa14	053845.211-690548.48	13.44	13.71	14.92	S	(0.35)	(O8 V)	\cdots	...
\cdots	\cdots	\cdots	62	O2-3 V	Be20	\cdots	...	13.65	14.91	D	(0.35)	GHRS/G140L \ddagger	4	\ldots
\cdots	52	493	...	48	423	660	B1 Ia	Ev15	053836.053-690646.50	\ldots	13.19	13.64	S	(0.34)	(B1 I)
\cdots	...	1340	\cdots	110	604	2884	O8.5 V	Wa14	053846.567-690537.10	13.47	13.71	14.95	S	(0.34)	(O8 V)	\cdots	...
\cdots	\cdots	1248	\cdots	112	...	3034	O6:	Ca21	053845.494-690543.99	13.48	13.73	15.00	S	(0.34)	(O6 III)	\cdots	\cdots
\cdots	\cdots	1614	\cdots	118	667	1699	O6 V	Wa14	053852.832-690612.01	\ldots	13.95	15.08	S	0.33	COS/G140L	2	\ldots
\cdots	\cdots	\cdots	86	...	\cdots	...	O5: V	Be20	\cdots	\ldots	13.72	14.73	D	(0.33)	GHRS/G140L \ddagger	4	...
\cdots	\cdots	827	60	95	1007	1763	O6.5 V-III	He12	053841.066-690601.89	\cdots	13.72	14.86	S,D	(0.32)	(O6.5 III)
\cdots	\cdots	\cdots	67	96	...	1857:	O6:	Ca21	053841.324-690557.59	13.52	13.86	15.09	S,D	(0.32)	(06 III)
\cdots	\cdots	661	\cdots	108	455	1572	05:V:n	Wa14	053838.759-690613.22	13.55	13.75	15.08	S	(0.32)	(O4.5 V)
\cdots	\cdots	1281	\cdots	114	\cdots	2033	O7:	Ca21	053845.907-690550.77	13.56	13.76	14.90	S	(0.31)	(O7 III)	\cdots	\cdots
\cdots	37 Wb	897	44	88	1017	1374	O2 If/WN5	CW11	053841.862-690614.41	13.56	13.60	14.53	S	(0.31)	(O2 If/WN5)	...	\checkmark
\cdots	...	761	63	105	\cdots	2077	O3-6 V	WB97	053840.143-690551.26	13.56	13.76	14.86	S	(0.31)	(04.5 V)
\ldots	.	781	72	113	...	1974	O6:	Ca21	053840.477-690553.42	13.57	13.83	14.99	S	(0.31)	(O6 III)	\cdots	\cdots
\cdots	70	\ldots	O 5 Vz	Be20	13.81	14.96	D	(0.30)	GHRS/G140L \ddagger	4	...
\cdots	\cdots	\cdots	74	121	...	\ldots	O6V	MH98	\cdots	\cdots	13.82	15.11	D	(0.30)	$(\mathrm{O} 6 \mathrm{~V})$
\cdots	\cdots	1329	...	122	...	2718	O9:	Ca21	053849.107-690547.18	13.63	13.86	15.23	S	(0.29)	(O9 III)	\cdots	...
\ldots	...	1023	59	99	\cdots	1703	O3 III	MH98	053843.168-690603.65	13.63	13.73	14.76	S,D	(0.29)	(O3 III)
\ldots	...	974	\ldots	104	532	963	O3 V(n)z + OB	Wa14	053842.657-690635.83	\cdots	13.85	14.81	S	(0.29)	(O3 V)
\cdots	\cdots	978	54	109	\cdots	1963	O4:	Ca21	053842.679-690556.30	13.67	13.80	14.79	S	(0.28)	(O4 III)	\cdots	...
...	\cdots	...	71	...	\ldots	...	O2-3 V	Be20	053842.365-690604.90	13.70	13.98	15.16	S,D	(0.28)	(O2.5 V)	\cdots	...

Mapping the core of the Tarantula Nebula. III 9041

Table B1 - continued

R	Mk	P	HSH	SMB	VFTS	CCE	SpT	Ref	HTTP	$\begin{gathered} m_{275 \mathrm{~W}} \\ \text { mag } \end{gathered}$	$m_{\text {F336W }}$ mag	$\begin{gathered} m_{\mathrm{F} 555 \mathrm{~W}} \\ \mathrm{mag} \end{gathered}$	Ref	$\begin{aligned} & F_{1500} \\ & 10^{-13} \end{aligned}$	Spectrum (Template)	Ref	VMS
\cdots	\cdots	...	57	\cdots	O3 III(f*)	MH98	\ldots	...	13.90	14.80	D	(0.28)	(O3 III)	\ldots	\ldots
\cdots	\ldots	776	...	124	484	3081	O6-7 V	Wa14	053840.354-690543.79	13.71	13.94	15.09	D	(0.27)	(06 V)	\ldots	\ldots
\ldots	\ldots	921	82	134	522	3030	$\begin{gathered} \text { O6 II- } \\ \text { Iab }+ \text { O5.5 V } \end{gathered}$	Wa14	053842.082-690545.47	13.72	14.01	15.26	S	(0.27)	(O6 III)	...	\ldots
\cdots	\cdots	...	77	...	\ldots	...	O5.5V + O5.5 V	Ma02	...	\ldots	13.94	15.21	D	(0.27)	(05.5 V)	...	\ldots
\cdots	\cdots	1196	\cdots	130	...	2763	O6:	Ca 21	053844.958-690538.63	13.75	13.89	15.14	S	(0.26)	(O6 III)	...	\ldots
\cdots	\cdots	...	80	O8V	Be20	13.95	15.17	D	(0.26)	(08 V)	...	\ldots
\cdots	\cdots	973	\ldots	129	\ldots	2545	O8:	Ca 21	053842.607-690522.21	13.75	14.05	15.25	S	(0.26)	(O8 III)	...	\ldots
\cdots	\cdots	...	66	O2 V-III	Be20	13.95	15.06	D	(0.26)	GHRS/G140L \ddagger	4	\ldots
...	33 Sb	1111	34	...	\ldots	...	WC5	MH98	053844.062-690555.64	13.76	13.82	14.49	S	(0.26)	(WC4)	\ldots	\ldots
\cdots	\cdots	600	...	123	...	2946	O3-5 V	Bo99	053837.658-690542.06	...	13.96	15.04	S	(0.26)	(O4 V)	\ldots	\ldots
\cdots	15S	1306	\cdots	117	...	2053	O8 III	WB97	053846.113-690554.44	13.79	13.93	14.95	S	(0.25)	(O8 III)	\cdots	\ldots
...	\cdots	...	89	..	\cdots	...	O4 V	Cr16	13.99	14.76	D	(0.25)	GHRS/G140L \ddagger	4	\ldots
\cdots	\cdots	621	...	97	445	2981	$\mathrm{O} 3-4 \mathrm{~V}+\mathrm{O} 4-7 \mathrm{~V}$	Wa14	053838.026-690543.30	13.80	13.58	14.79	S	(0.25)	(03.5 V)	\cdots	\ldots
\ldots	\cdots	\cdots	69	O4-5 V	Be20	14.02	15.05	D, H	(0.25)	GHRS/G140L \ddagger	4	\ldots
\ldots	\cdots	\cdots	65	\ldots	\ldots	\cdots	O4 V	Cr16	\cdots	\cdots	14.03	15.18	D	(0.24)	(O4 V)	...	\ldots
\ldots	\cdots	...	64	\ldots	\ldots	\ldots	O4-5 V	Be20	053842.646-690601.05	13.83	13.95	14.53	S	(0.24)	(O4 V)	\cdots	\cdots
\ldots	78	O4: V	Be20	14.04	15.26	D	(0.24)	GHRS/G140L \ddagger	4	...
...	...	324	...	131	393	2256	09.5(n)	Wa14	053832.992-690513.05	13.87	14.04	15.26	S	(0.24)	(O9.5 III)	...	\cdots
\ldots	\cdots	977	\ldots	139	...	2893	O6: V	Bo99	053842.636-690538.69	13.88	14.12	15.36	S	(0.23)	(06 V)	\ldots	\cdots
\ldots	\cdots	1222	\cdots	116	\ldots	3180	O3-6 V	WB97	053845.150-690508.34	13.88	14.08	14.99	S	(0.23)	(04.5 V)	...	\ldots
\ldots	73	O9.7-B0 V	Be20	\cdots	...	14.12	15.13	D	(0.23)	GHRS/G140L \ddagger	4	\ldots
\ldots	\cdots	1594	...	125	661	2691	O6.5V + O9.7V	Wa14	053852.049-690533.79	13.94	14.00	15.19	S	(0.22)	(O6 V)	...	\ldots
\ldots	\cdots	1295	\ldots	137	596	1325	O7-8 V	Wa14	053846.059-690615.55	13.97	14.25	15.35	S	(0.21)	(O7 V)	\ldots	...
\ldots	...	884	\cdots	143	511	1008	O 5 Vz	Wa14	053841.717-690628.13	13.98	14.21	15.31	S	(0.21)	(04.5 V)	\ldots	\cdots
\cdots	\cdots	\cdots	95	155	...	1920	O4:	Ca21	053840.949-690555.14	14.00	14.26	15.43	S	(0.21)	(O4 IIII)	\ldots	\ldots
...	\cdots	\cdots	84	145	\cdots	1956:	O5:	Ca21	14.20	14.80	H	(0.21)	(O5 III)	\cdots	\cdots
\ldots	\cdots	...	92	\cdots	\cdots	...	O 6 Vz	Be20	\cdots	\cdots	14.20	15.46	D	(0.21)	GHRS/G140L \ddagger	4	\cdots
\cdots	\cdots	1026	68	127	\ldots	1787	O4-5 V	Be20	053843.180-690601.73	14.01	14.10	14.80	S	(0.21)	(04.5 V)	...	\ldots
...	\cdots	1141	109	169	1035	2129	O8.5 I-II	He12	053844.312-690545.10	14.01	14.29	15.57	S	(0.21)	(08.5 I)	...	\cdots
\cdots	\cdots	970	83	142	1023	1580	O8 III-V	He12	053842.618-690610.00	14.02	14.22	15.31	S	(0.20)	(08 III)	\cdots	\cdots
...	\cdots	\cdots	90	\cdots	O4: V:	Be20	\cdots	...	14.24	15.48	D	(0.20)	GHRS/G140L \ddagger	4	...
\cdots	\cdots	\cdots	...	141	373	2090	O9.5n	Wa14	053831.224-690553.03	...	14.24	15.27	S	(0.20)	(O9.5 III)	\ldots	\cdots
\cdots	\cdots	1191	\cdots	128	575	2804	B0.7 III	Ev15	053844.904-690533.13	13.76	13.99	15.12	S	(0.20)	(B1 III)	\ldots	\cdots
...	\cdots	\cdots	88	165	1009	1732	O6.5 V-IIII	He12	053841.147-690602.91	14.07	14.23	15.42	S	(0.20)	(O6.5 III)	\ldots	...
...	\cdots	\cdots	108	...	\cdots	\ldots	O7-8 V	Cr16	\cdots	...	14.27	15.44	D	(0.20)	(07 V)	\ldots	\ldots
...	...	729	138	144	...	1535	O5:	Ca21	053839.700-690608.63	14.08	14.20	15.31	S	(0.19)	(O5 III)
...	\cdots	\cdots	96	163	1008	1852	ON6.5 II-I	He12	053841.093-690558.40	14.09	14.32	...	S	(0.19)	(O6 I)	...	\cdots
...	\cdots	957	99	167	\ldots	1527	08 V	MH98	053842.445-690609.22	14.11	14.32	15.41	S	(0.19)	(O8 V)	\ldots	\ldots
...	...	1527	...	119	646	1951	B0.5 III(n)	Ev15	053850.263-690604.37	13.84	14.03	14.99	S	(0.19)	(B0 III)	\cdots	\ldots
...	\cdots	...	93	\cdots	\cdots	\cdots	O4-5 V	Cr16 ${ }^{\text {a }}$	\cdots	...	14.34	15.60	H	(0.18)	GHRS/G140L \ddagger	4	...
...	...	531	...	166	\cdots	1941	O8 V	Bo99	053836.728-690556.46	14.15	14.32	15.54	S	(0.18)	(O 8 V)	\cdots	...

Table B1 - continued

R	Mk	P	HSH	SMB	VFTS	CCE	SpT	Ref	HTTP	$\begin{gathered} m_{275 \mathrm{~W}} \\ \text { mag } \end{gathered}$	$\begin{gathered} m_{\mathrm{F} 336 \mathrm{~W}} \\ \mathrm{mag} \end{gathered}$	$\begin{gathered} m_{\mathrm{F} 555 \mathrm{~W}} \\ \mathrm{mag} \end{gathered}$	Ref	$\begin{aligned} & F_{1500} \\ & 10^{-13} \end{aligned}$	Spectrum (Template)	Ref	VMS
\cdots	\cdots	740	\cdots	159	\cdots	1537	O6:	Ca21	053839.837-690607.99	14.15	14.29	15.41	S	(0.18)	(O6 III)	\ldots	\ldots
...	\ldots	...	94	...	\ldots	...	O4-5 Vz	Be20	14.36	15.57	D	(0.18)	GHRS/G140L \ddagger	4	\ldots
\cdots	\cdots	1031	...	152	543	2521	O9 IV + O9.7: V	Wa14	053843.190-690527.52	14.17	14.26	15.44	S	(0.18)	(O9 V)	\ldots	\ldots
\cdots	\cdots	1288	\ldots	175	597	375	O8-9 V(n)	Wa14	053846.063-690656.16	...	14.38	15.62	S	(0.18)	(O9 V)	\ldots	\ldots
\ldots	\ldots	1468	...	174	635	1334	O9.5 IV	Wa14	053849.039-690619.57	...	14.39	15.56	S	(0.18)	(09 V)	...	\ldots
\cdots	\cdots	...	101	178	1020	1401	O3-4	He12	053842.012-690616.83	14.21	14.40	15.53	S	(0.17)	(03.5 V)	...	\ldots
\cdots	\ldots	1145	\ldots	168	561	2301	O9:(n)	Wa14	053844.368-690514.36	...	14.41	15.46	S	(0.17)	(09 III)	...	\ldots
\cdots	\cdots	901	\cdots	138	518	1068	O3.5 III(f $*$)	Wa14	053841.934-690629.70	14.21	14.24	15.15	S	(0.17)	(O3 III)	...	\ldots
\cdots	\cdots	887	85	154	1016	1371	O8V	Bo99	053841.755-690619.06	14.22	14.33	15.31	S	(0.17)	(O8 V)
\ldots	\cdots	1336	...	176	...	2945	O8:	Ca 21	053846.481-690542.20	14.22	14.39	15.54	S	(0.17)	(08 III)	...	\ldots
\cdots	\ldots	...	114	O5-6 V	Be20	14.43	15.68	D	(0.17)	(05.5 V)	...	\ldots
\cdots	\cdots	198	...	3167	O8:	Ca21	053841.818-690507.18	14.23	14.48	15.76	S	(0.17)	(O8 III)	...	\ldots
\cdots	\ldots	841	98	157	...	2016	O4-6(n)(f)p	WB97	053841.186-690552.12	14.25	14.42	15.45	S	(0.17)	(O5 III)
\cdots	\ldots	...	100	B0 V	MH98	053842.206-690614.82	14.27	14.52	15.64	S,H	(0.17)	(B0 V)	...	\ldots
\cdots	\cdots	992	...	182	...	2665	O7:	Ca21	053842.838-690530.36	14.29	14.44	15.56	S	(0.16)	(O7 III)
..	\ldots	485	\cdots	158	419	2897	O9: V(n)	Wa14	053835.906-690534.95	14.32	14.33	15.41	S	(0.16)	(09 V)
\ldots	\cdots	...	113	190	...	1503	O9 V	MH98	053842.243-690612.23	14.32	14.53	15.62	S	(0.16)	(09 V)
\cdots	\cdots	796	...	185	\cdots	2565	O6:	Ca21	053840.665-690531.16	14.32	14.42	15.59	S	(0.16)	(O6 III)
\cdots	\ldots	670	\ldots	172	456	2385	Onn(f)	Wa14	053838.818-690525.56	14.34	14.42	15.45	S	(0.15)	(O6 III)
\cdots	\cdots	994	\ldots	146	\cdots	2270	B0: V	Bo99	053842.841-690514.80	14.07	14.19	15.44	S	(0.15)	(B0 V)
\cdots	\cdots	1201	\cdots	171	579	3116	O9:((n))	Wa14	053844.969-690507.65	14.36	14.56	15.47	S	(0.15)	(O9 V)	\cdots	\ldots
\cdots	\cdots	...	141	O5-6 V	Cr16	14.56	15.82	D	(0.15)	GHRS/G140L \ddagger	4	...
\cdots	\cdots	...	116	\cdots	\ldots	\ldots	07 V	Be20	\ldots	\ldots	14.57	15.79	D	(0.15)	(O7 V)	\ldots	\cdots
\cdots	\cdots	...	115	\cdots	...	\cdots	$\mathrm{O} 9+\mathrm{V}$	Cr16	\cdots	\ldots	14.57	15.76	D	(0.15)	(O9 V)
...	\ldots	1359	\ldots	202	\cdots	2782	O8:	Ca21	053846.901-690536.82	14.37	14.59	15.78	S	(0.15)	(08 III)	...	\cdots
\cdots	\ldots	1560	\ldots	200	654	3010	O9 Vnn	Wa14	053851.159-690541.81	14.38	14.62	15.77	S	(0.15)	(09 V)
\cdots	\cdots	...	\ldots	179	570	3134	09.5ne +	Wa14	053844.684-690545.19	14.39	14.42	...	S	(0.15)	(O9.5 III)
\cdots	\cdots	578	\cdots	209	436	2223	O7-8 V	Wa14	053837.348-690521.29	14.39	14.58	15.93	S	(0.15)	(07 V)	...	\ldots
\cdots	\cdots	...	112	O7-9 Vz	Be20	14.61	15.74	D	(0.14)	GHRS/G140L \ddagger	4	\ldots
\cdots	\cdots	\ldots	...	224	660	3027	09.5 Vnn	Wa14	053851.812-690546.85	14.43	14.76	16.00	S	(0.14)	$(\mathrm{O} 9 \mathrm{~V})$...	\ldots
\cdots	\cdots	\cdots	132	...	\cdots	\cdots	O7: V	Be20	14.64	15.86	D	(0.14)	(07 V)	...	\ldots
\cdots	\ldots	348	\cdots	227	400	2607	09.7	Be20	053833..536-690521.73	14.45	14.79	16.05	S	(0.14)	(O9.5 III)	\ldots	\ldots
\cdots	\cdots	\cdots	\cdots	212	...	2776	O8:	Ca21	053843.127-690537.76	14.51	14.67	15.89	S	(0.13)	(O8 III)	\ldots	...
\cdots	\cdots	490	\cdots	140	422	1373	O4 III(f)	Wa14	053835.993-690616.91	14.15	14.23	15.15	S	0.13	COS/G140L	2	...
...	123	O6 V	Be20	053842.043-690604.58	14.52	14.71	15.76	S	(0.13)	(06 V)	\ldots	\ldots
\ldots	\ldots	\ldots	121	\ldots	\ldots	\ldots	09.5 V	Be20	14.73	15.85	D	(0.13)	(O9 V)	\ldots	\cdots
\ldots	\ldots	...	134	\cdots	O7 Vz	Be20	053842.182-690604.95	14.52	14.74	15.44	S	(0.13)	(07 V)	\ldots	...
...	\ldots	206	476	2789	$\mathrm{O}(\mathrm{n})$)	Wa14	053839.734-690539.27	14.53	14.73	15.72	S	(0.13)	(06 III)
...	444	...	O9.7	Wa14	053838.011-690508.53	14.55	14.86	16.12	S	(0.13)	(B0 V)	...	\ldots
\cdots	\ldots	218	615	1398	O9.5 IIInn	Wa14	053847.320-690617.74	...	14.78	15.64	S	(0.12)	(O9.5 III)
...	...	881	...	215	...	2389	O9:	Ca21	053841.643-690523.77	14.58	14.69	15.87	S	(0.12)	(O9 III)	\ldots	...

Table B1 - continued

R	Mk	P	HSH	SMB	VFTS	CCE	SpT	Ref	HTTP	$\begin{gathered} m_{275 \mathrm{~W}} \\ \mathrm{mag} \end{gathered}$	$\begin{gathered} m_{\text {F336W }} \\ \text { mag } \end{gathered}$	$\begin{gathered} m_{\mathrm{F} 555 \mathrm{~W}} \\ \mathrm{mag} \end{gathered}$	Ref	$\begin{aligned} & F_{1500} \\ & 10^{-13} \end{aligned}$	Spectrum (Template)	Ref	VMS
...	\cdots	\cdots	118	\cdots	\ldots	\ldots	O7-8 V	Cr16	\cdots	...	14.79	15.89	D	(0.12)	(O8 V)	\ldots	\ldots
...	\ldots	211	...	1415	O7:	Ca21	053843.317-690611.65	14.61	14.80	15.92	S	(0.12)	(O7 III)	...	\ldots
...	\cdots	743	\ldots	151	\ldots	1523	O6:	Ca 21	053839.846-690609.50	14.61	14.83	15.40	S	(0.12)	(O6 III)	...	\ldots
...	\ldots	918:	\ldots	311:	\cdots	1522	O7:	Ca21	053842.067-690608.95	...	14.82	15.81	S	(0.12)	(O7 III)	...	\ldots
...	\cdots	194	446	1339	Onn	Wa14	053838.245-690617.36	14.62	14.63	15.46	S	(0.12)	(09.5 V)	\ldots	\ldots
...	...	915	144	238	...	2130	O8:	Ca21	053842.061-690552.23	14.62	14.85	15.97	S	(0.12)	(O8 III)	\ldots	\ldots
...	103	189	1010	1346	O7 V-III	Ma12	053841.255-690617.02	14.65	14.69	15.55	S	(0.11)	(07 III)	...	\ldots
...	...	\ldots	...	226	382	2901	O4-5 V	Wa14	053832.253-690544.58	14.66	14.82	15.93	S	(0.11)	(04.5 V)	...	\ldots
...	...	\cdots	140	187	1015	1734	O8: V	Le21	053841.637-690603.25	14.66	14.83	15.76	S	(0.11)	(08 V)	\ldots	\ldots
...	208	443	1557	07: V	Wa14	053837.972-690615.30	14.67	14.75	15.73	S	(0.11)	(07 V)	\ldots	\ldots
...	...	547	\ldots	214	432	466	08-9 V	Wa14	053837.030-690650.70	...	14.88	15.73	S	(0.11)	(08 V)	\ldots	\ldots
...	\ldots	1369	\ldots	219	613	2005	08.5 Vz	Wa14	053847.161-690554.46	14.68	14.80	15.80	S	(0.11)	(08 V)	\ldots	\ldots
...	...	853	...	177	1011	1447	O5V	Le21	053841.348-690614.04	14.70	14.75	15.39	S	(0.11)	(04.5 V)	\ldots	...
...	126	193	1004	1725	O9.5 V-III	He12	053840.831-690604.60	14.70	14.82	15.59	S	(0.11)	(09.5 III)	\ldots	\ldots
...	...	803	\cdots	213	491	276	O6 V	Wa14	053840.846-690657.51	...	14.96	15.69	S	(0.10)	(06 V)	\ldots	\ldots
...	\cdots	239	649	2038	O9.5 V	Wa14	053850.610-690554.57	14.77	15.02	16.14	S	(0.10)	(O9 V)	\ldots	\cdots
\cdots	...	1224	\cdots	231	...	1472	O6:	Ca21	053845.213-690613.62	14.78	14.90	15.99	S	(0.10)	(O6 III)	\ldots	\ldots
...	\cdots	...	\cdots	277	\cdots	2453	O8:	Ca21	053840.166-690520.63	14.78	15.04	16.34	S	(0.10)	(08 III)	\ldots	\ldots
...	...	1401	\ldots	234	619	689	O7-8 V(n)	Wa14	053847.717-690644.94	\ldots	14.99	16.07	S	(0.10)	(O8 V)	\ldots	\ldots
...	102	207	\cdots	...	O2-3 III	Cr16	053843.165-690600.85	14.79	14.79	15.52	S	(0.10)	(02.5 III)	\ldots	\ldots
...	...	1087	...	272	\ldots	1275	O8:	Ca21	053843.749-690621.89	14.79	15.06	16.27	S	(0.10)	(O8 III)	\cdots	...
...	\cdots	1086	\ldots	247	\cdots	2454	O7:	Ca 21	053843.709-690521.64	14.80	14.97	16.16	S	(0.10)	(07 III)	...	\cdots
...	...	982	160	258	...	2044	O4: V	Pa93	053842.721-690552.80	14.80	14.98	16.14	S	(0.10)	(O4 V)

Sp Types:Be20: Bestenlehner et al. (2020); Be22: Bestenlehner et al. (2022); Bo99: Bosch et al. (1999); Ca21 Castro et al. (2021b); Cr10: Crowther et al. (2010); Cr16: Crowther et al. (2016); Cr22: Crowther et al. (2022); CD98: Crowther \& Dessart (1998); CS97: Crowther \& Smith (1997); CW11: Crowther \& Walborn (2011); De97: de Koter, Heap \& Hubeny (1997); Do13:Doran et al. (2013) Ev11: Evans et al. (2011); Ev15: Evans et al. (2015); He12: Hénault-Brunet et al. (2012); Ka22 Kalari et al. (2022); Le21 : D. Lennon (priv comm, 2021); Ma02: Massey, Penny \& Vukovich (2002); Ma05: Massey et al. (2005); Ma12: Massey et al. (2012); MH98 : Massey \& Hunter (1998); Pa93: Parker (1993); Te19: Tehrani et al. (2019); Wa14: Walborn et al. (2014); WB97: Walborn \& Blades (1997)
Spectroscopy: 1. GO 16272 (Shenar); 2. GO 15629 (Mahy); 3. Roman-Duval et al. (2020); 4. Heap, Ebbets \& Malumuth (1992); 5. de Koter, Heap \& Hubeny (1998); 6. Massey et al. (2005). Note: (a) spectral type of HSH 119 (fainter component of blend with $m_{\text {F336W }}=15.0 \mathrm{mag}$)
Photometry: D: De Marchi et al. (2011); H: Hunter et al. (1995); S: Sabbi et al. (2016)
 estimated from photometry, the latter indicated in parentheses. See Table B1 for references in common.

R	Mk	P	HSH	SMB	VFTS	CCE	SpT	Ref	HTTP	$\begin{gathered} m_{275 \mathrm{~W}} \\ \mathrm{mag} \end{gathered}$	$\begin{gathered} m_{\mathrm{F} 336 \mathrm{~W}} \\ \mathrm{mag} \end{gathered}$	$\begin{gathered} m_{\mathrm{F} 555 \mathrm{~W}} \\ \mathrm{mag} \end{gathered}$	Ref	$\begin{aligned} & F_{1500} \\ & 10^{-13} \end{aligned}$	Spectrum (Template)	Ref	VMS
139	\cdots	952	\cdots	2	527	\ldots	O6.5 Iafc + O7 Iaf	Wa14	053842.351-690458.19	10.97	10.86	12.02	S	6.21	(O7 I)	1	\cdots
145	\cdots	1788	...	\cdots	695	\ldots	WN6h + O3/5 If/WN7	Sh17	053857.072-690605.58	...	10.88	11.94	S	4.21	(WN6)	1	\checkmark
135	...	355	\ldots	12	402	...	WN5: + WN7	Sh19	053833.615-690450.47	11.63	11.68	12.82	S	2.34	(WN6)	1	..
...	23	1163	...	42	566	...	O3 III(f*)	Wa14	053844.558-690451.19	12.40	12.68	14.03	S	(0.91)	(O3 III)	...	\ldots
...	...	1035	O3-6V	WB97	053843.159-690441.82	12.93	13.35	14.75	S	(0.56)	(O4.5 V)
...	57	541	\cdots	79	429	\ldots	O7: V + B1: V	Sh22	053836.854-690458.28	12.95	13.32	14.70	S	(0.55)	(07 V)	...	\ldots
...	...	809	\cdots	133	O8-9 V	Bo99	053840.773-690452.83	13.67	14.01	15.34	S	(0.28)	(09 V)	...	\ldots
...	\cdots	1077	550	...	O5 V((f))z	Wa14	053843.599-690442.44	13.78	14.12	15.42	S	(0.26)	(05 V)
...	\cdots	124	\cdots	...	350	\ldots	08.5V + 09.5 V	Sh22	053828.057-690629.05	13.79	14.09	15.03	S	(0.25)	(09 V)
...	...	83	\cdots	...	339	\ldots	O9.5 IV	Wa14	053826.218-690501.84	13.83	14.15	15.52	S	(0.24)	(09 V)	...	\ldots
...	\ldots	169	\cdots	107	360	\cdots	O9.7	Wa14	053829.421-690521.20	13.84	13.85	14.85	S	(0.24)	(O9.5 III)	\cdots	\ldots
\cdots	\ldots	466	\cdots	150	415	\ldots	09.5 V	Wa14	053835.480-690457.67	13.90	14.17	15.50	S	(0.23)	(09 V)	\ldots	\ldots
\cdots	60	195	\cdots	98	363	\ldots	B0.2 III-II	Ev15	053829.986-690505.18	13.61	13.68	14.86	S	(0.23)	(B0 III)	\cdots	\ldots
\cdots	...	1052	\cdots	\cdots	546	\ldots	O8-9 III	Wa14	053843.373-690446.34	14.02	14.21	15.41	S	(0.20)	(O8 III)	.	\ldots
\cdots	\cdots	1729	\cdots	\cdots	686	\ldots	B0.7 III	Ev15	053855.634-690723.71	14.05	14.15	15.05	S	(0.15)	(B1 III)	\ldots	\ldots
...	\cdots	1756	\cdots	\cdots	688	\ldots	O9.7 III	Wa14	053856.058-690554.04	14.45	14.70	15.64	S	(0.14)	(O9.5 III)	\ldots	\ldots
\cdots	\cdots	955	\cdots	\cdots	529	\ldots	O9.5(n)	Wa14	053842.374-690443.12	14.55	14.89	16.09	S	(0.13)	(O9.5 III)	...	\ldots
\cdots	\cdots	905	\cdots	...	521	\ldots	O9 V(n)	Wa14	053841.955-690704.97	...	14.82	15.90	S	(0.12)	(09 V)
\cdots	\cdots	171	...	216	361	\ldots	O8.5 V	Wa14	053829.482-690620.55	14.63	14.81	15.75	S	(0.12)	(08 V)
\cdots	\cdots	1840	\cdots	...	707	\cdots	B0.5 V	Ev15	053858.907-690642.05	...	14.55	15.65	S	(0.12)	(B0.5 V)	\ldots	\cdots
...	\ldots	\cdots	486	\cdots	B1-2ne +	Ev15	053840.604-690456.02	14.20	14.16	15.28	S	(0.11)	(B1 III)	\ldots	...
...	\ldots	319	412	\cdots	09.7	Wa14	053834.901-690453.74	14.71	15.14	16.47	S	(0.11)	(O9.5 III)	\ldots	...
...	\cdots	1209	\cdots	205	...	\ldots	O9-B0 V	Bo99	053845.055-690446.88	14.74	14.85	15.67	S	(0.11)	(09 V)
\ldots	...	1429	621	...	O2 V((f))z	Wa14	053848.089-690442.18	14.80	14.86	15.59	S	(0.10)	(O2 V)

Sp Types: Sh17: Shenar et al. (2017); Sh19: Shenar et al. (2019); Sh22: Shenar et al. (2022)
Spectroscopy: 1. Fitzpatrick \& Savage (1984)

APPENDIX C: FAR-UV CALIBRATIONS

We calibrate F_{1500} fluxes against $m_{\text {F275W }}$ or $F_{\text {F336W }}$ photometry using reference O stars in 30 Doradus that have been observed in the far-UV. These are listed in Table C1, sorted by F_{1500} with references to spectral types, photometry and HST data sets identical to Table B1. Column densities, $\log N(\mathrm{HI})$ from fits to Ly α are included and should be reliable to ± 0.05 dex (e.g. Welty, Xue \& Wong (2012) obtain $\log N\left(\mathrm{HI}_{\mathrm{I}} / \mathrm{cm}^{2}\right)=21.79$ for Mk 42). Comparisons are presented in Fig. 3, with calibrations presented in Equations 1 and 2. Since we utilize templates spanning a range of extinctions, we also adjust far-UV slopes ($\lambda \lambda 1160-1700$) of templates to individual O stars within the MUSE field from their ${ }_{\text {F336w }}$ $m_{\text {F555w }}$ colours. These are presented in Fig. C1 with the fit obtained as follows
$F_{1700} / F_{1160} \simeq 1.76\left(m_{\text {F336W }}-m_{\text {F555W }}\right)+3.33$.
30 Doradus O stars external to the MUSE field reveal a somewhat different behaviour, likely as a result of lower dust extinction.

Figure C1. Relationship between $\left(m_{\mathrm{F} 336 \mathrm{~W}}-m_{\mathrm{F} 555 \mathrm{~W}}\right)$ colour and far-UV slope, F_{1700} / F_{1160}, for O stars in 30 Doradus (solid within MUSE field) with far-UV spectroscopy and HST/WFC3 photometry. The solid line is a linear fit to observations within the MUSE field.

Table C1. Reference O stars within 30 Doradus used to calibrate far-UV fluxes (units are $\operatorname{erg~s}{ }^{-1} \mathrm{~cm}^{-2} \AA^{-1}$), $\lambda \lambda 1160-1700$ slopes and $\log N(\mathrm{HI})$ from fits to Ly α. Sources within MUSE footprint are indicated. References are as for Table B1.

Star	Sp Type	Ref	$m_{\text {F275W }}$ (mag)	$m_{\text {F336W }}$ (mag)	$\begin{gathered} m_{\mathrm{F} 555 \mathrm{~W}} \\ (\mathrm{mag}) \end{gathered}$	Ref	$\begin{aligned} & F_{1500} \\ & 10^{-13} \end{aligned}$	F_{1700} / F_{1160}	$\begin{gathered} \log N(\mathrm{H} \mathrm{I}) \\ \mathrm{cm}^{-2} \end{gathered}$	HST data set	Ref	MUSE
Mk 42	O2 If	CW11	11.08	11.51	12.82	S	3.01	1.00	21.75	STIS/E140M	3	\checkmark
Mk 39	O2.5 If/WN6 +	Cr 22	11.38	11.66	12.95	S	2.74	1.13	21.75	COS/G130M + G160M	3	\checkmark
VFTS 506	ON2 V	Wa14	11.74	12.01	13.32	S	2.04	1.06	21.8	COS/G130M + G160M	3	\checkmark
Mk 30	O2 If/WN5	CW11	11.91	12.22	13.48	S	1.85	0.98	21.75	COS/G130M + G160M	3	\checkmark
VFTS 180	O3 If*	Wa14	...	12.11	13.52	S	1.57	1.12	21.6	COS/G130M + G160M	3	...
VFTS 87	O9.7 Ib-II	Wa14	11.97	12.09	13.60	S	1.52	1.02	21.6	STIS/E140M	3	\ldots
VFTS 267	O3 III-I	Wa14	...	12.15	13.49	S	1.39	1.33	21.75	COS/G130M + G160M	3	\ldots
VFTS 440	O6-6.5 III	Wa14	12.15	12.44	13.69	S	0.96	1.17	21.75	STIS/E140M	2	\checkmark
Mk 37a	O3.5 If/WN7	CW11	12.33	12.48	13.52	S	0.82	1.50	...	STIS/G140L	6	\checkmark
Mk 33S	O3 III	Ma15	12.48	12.76	13.81	S	0.79	1.20	...	STIS/G140L	6	\checkmark
VFTS 586	O 4 Vz	Wa14	13.06	13.50	15.02	S	0.76	0.91	21.75	COS/G130M + G160M	3	\ldots
VFTS 352	O4.5 Vz + 05.5 Vz	Wa14	12.75	13.13	14.46	S	0.70	1.02	21.8	COS/G130M + G160M	3	...
Mk 55	O6 Vnn	Wa14	12.79	13.04	14.34	S	0.61	1.32	21.75	COS/G130M + G160M	3	...
VFTS 385	O4-5 V	Wa14	13.22	13.38	14.65	S	0.51	1.20	21.8:	COS/G140L	2	\checkmark
VFTS 404	O3.5 V	Wa14	12.76	12.95	14.13	S	0.49	1.74	21.9	COS/G130M + G160M	3	\ldots
Mk 51	O3.5 If/WN7	CW11	...	12.98	13.81	S	0.45	1.73	21.9:	COS/G140L	2	\checkmark
Mk14S	O4 III	Wa14	13.01	13.19	14.29	S	0.43	1.54	21.9:	COS/G140L	2	\checkmark
Mk 4	O7 II	Wa14	\ldots	13.37	14.38	S	0.41	1.53	22.0:	COS/G140L	2	\checkmark
VFTS 667	06 V	Wa14	...	13.95	15.08	S	0.33	1.09	21.9:	COS/G140L	2	\checkmark
VFTS 169	O2.5 V	Wa14	13.64	13.46	14.60	S	0.32	1.75	22.0	COS/G130M + G160M	3	...
VFTS 190	O7 Vnnp	Wa14	13.70	13.43	14.70	S	0.28	1.78	21.7	COS/G130M + G160M	3	...
VFTS 66	O9.5 III	Wa14	14.40	14.49	15.61	S	0.14	1.67	22.0	COS/G130M + G160M	3	\ldots
VFTS 422	O4III(f)	Wa14	14.15	14.23	15.15	S	0.13	2.10	21.9:	COS/G140L	2	\checkmark

This paper has been typeset from a $\mathrm{T}_{\mathrm{E}} \mathrm{X} / \mathrm{ET} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ file prepared by the author.

[^0]: ${ }^{1}$ https://archive.stsci.edu/hlsp/http
 ${ }^{2}$ We have followed the approach set out in Section 2.2 to estimate $F_{1500} \sim$ $1.2 \times 10^{-11} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \AA^{-1}$ for the region of the Tarantula exterior to the MUSE footprint

[^1]: ${ }^{3}$ The spectral resolution of STIS/G140L observations from Crowther et al. (2016) achieved $R \sim 1000$, too low for our purposes here
 ${ }^{4}$ https://ullyses.stsci.edu/

