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Abstract

The two major aims of the present study were: (i) quantify localised cortical bone adaptation at the surface level using 

contralateral endpoint imaging data and image analysis techniques, and (ii) investigate whether cortical bone adaptation 

responses are universal or region specific and dependent on the respective peak load. For this purpose, we re-analyse 

previously published � CT data of the mouse tibia loading model that investigated bone adaptation in response to sciatic 

neurectomy and various peak load magnitudes (F = 0, 2, 4, 6, 8, 10, 12 N). A beam theory-based approach was developed 

to simulate cortical bone adaptation in different sections of the tibia, using longitudinal strains as the adaptive stimuli. We 

developed four mechanostat models: universal, surface-based, strain directional-based, and combined surface and strain 

direction-based. Rates of bone adaptation in these mechanostat models were computed using an optimisation procedure 

(131,606 total simulations), performed on a single load case (F = 10 N). Subsequently, the models were validated against 

the remaining six peak loads. Our findings indicate that local bone adaptation responses are quasi-linear and bone region 

specific. The mechanostat model which accounted for differences in endosteal and periosteal regions and strain directions 

(i.e. tensile versus compressive) produced the lowest root mean squared error between simulated and experimental data 

for all loads, with a combined prediction accuracy of 76.6, 55.0 and 80.7% for periosteal, endosteal, and cortical thickness 

measurements (in the midshaft of the tibia). The largest root mean squared errors were observed in the transitional loads, 

i.e. F = 2 to 6 N, where inter-animal variability was highest. Finally, while endpoint imaging studies provide great insights 

into organ level bone adaptation responses, the between animal and loaded versus control limb variability make simulations 

of local surface-based adaptation responses challenging.

Keywords Bone adaptation · Region specific · Mechanostat · Mouse tibia loading · Sciatic neurectomy · Simulations

1 Introduction

The mouse tibia compression loading model is commonly 

used to assess bone adaptation due to mechanical loading 

(De Souza et al. 2005; Sugiyama et al. 2008, 2010, 2012; 

Birkhold et al. 2014, 2016; Roberts et al. 2020; Nepal et al. 

2023). This model has helped researcher understanding 

of various parameters and relationships in Frost’s mecha-

nostat model, such as range of habitual strains and rates of 

bone formation and resorption, which have been crucial 
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in developing computational models of bone adaptation 

(Pereira et al. 2015; Cheong et al. 2020; Oliviero et al. 

2018). However, these parameters are often obtained from 

studies that consider a single peak load.

In the mid-2000s, Skerry argued that a universal (i.e. 

same for all bone types) mechanostat theory may be an over-

simplification of the adaptive processes occurring in bone, 

but that the latter depend on a number of factors includ-

ing bone type (e.g. tibia vs femur), spatial position within a 

certain bone (e.g. proximal vs distal region in the tibia) and 

the surface they occur on (e.g. endosteal versus periosteal) 

(Skerry 2006). Skerry argued that the mechanostat may 

respond differently even within the same bone, providing 

the example that excessive mass in the distal portion of a 

limb (e.g. femur, tibia) would reduce locomotion capability; 

and therefore, a uniformly reinforced bone is not the optimal 

shape for daily load-bearing activities (Skerry 2008).

Skerry’s arguments are supported by many findings 

from the mouse tibia loading model; several key support-

ing observations from these studies include: i) changes in 

cortical bone area (Ct.Ar) and cortical thickness (Ct.Th) 

depend linearly on applied peak mechanical load (De Souza 

et al. 2005; Sugiyama et al. 2012; Miller et al. 2021; Ell-

man et al. 2013; Kotha et al. 2004), ii) adaptation varies 

along the proximal-distal length of the tibia (De Souza et al. 

2005; Sugiyama et al. 2012; Roberts et al. 2020; Miller et al. 

2021; Galea et al. 2020; Monzem et al. 2021), iii) Ct.Th 

changes within a given cross section of bone are non-uni-

form around endosteal and periosteal regions (Roberts et al. 

2020; Pereira et al. 2015; Miller et al. 2021), iv) the peri-

osteal and endosteal surface experience different amounts 

of formation and resorption with respect to applied loads 

(Roberts et al. 2020; Robinson et al. 2021), v) regions expe-

riencing compressive or tensile strains (i.e. approximately 

corresponding to the posterior and anterior sides of bone) 

show differing amounts of bone adaptation (Robinson et al. 

2021) and vi) the apparent adaptive strain threshold varies 

between compressive and tensile regions in both cancellous 

and cortical bone (Yang et al. 2021). These experimental 

findings support Skerry’s suggestions for the existence of 

region and site-specific mechanostat models controlling 

bone adaptation.

Computational bone adaptation models have been devel-

oped to simulate and investigate mechano-adaptation in the 

mouse tibia, using a variety of mechanical signals includ-

ing: i) fluid flow (Pereira et al. 2015; Carriero et al. 2018; 

Tiwari et al. 2018), ii) hydrostatic pressure (Scheiner et al. 

2016; Pastrama et al. 2018), iii) peak stress/strain (Villette 

and Phillips 2017; Carpenter and Carter 2008), iv) princi-

pal stress/strain (Birkhold et al. 2016; Cheong et al. 2020) 

and v) strain energy density (Cheong et al. 2020, 2021; 

Lavaill et al. 2020). Each of these models provide their own 

strengths and weaknesses regarding representation of the 

dynamic mechanical signal, algorithmic complexity and 

implementation, and the ability to predict bone adaptation 

responses. However, a major challenge in developing region 

specific models is the computational expense of mechanical 

signal calculation. Finite element modelling is the current 

gold standard method of investigating mechanostat param-

eters (Pereira et al. 2015; Cheong et al. 2020; Oliviero et al. 

2018; Carriero et al. 2018). While accurate in calculating 

mechanical signals, performing calculations across millions 

of voxel-derived elements is a time-consuming procedure 

that may take several hours to complete (Pickering et al. 

2022). Mechanical beam theory presents itself as an alter-

native method of performing stress/strain analysis in cortical 

bone analysis, with solutions obtained in seconds as opposed 

to hours (Miller et al. 2021; Trichilo 2018; Pickering et al. 

2021; Lerebours et al. 2016; Hjelmstad 2007; Bauchau and 

Craig 2009; Tiwari et al. 2018; Buenzli et al. 2013; Ashrafi 

et al. 2020; Kumar et al. 2019); this approach has been val-

idated against finite element modelling, proving to be an 

equivalent strain modelling tool (Pickering et al. 2022).

One further challenge in creating region specific models 

is the � CT imaging protocol used in experimental mouse 

tibia studies. Two types of imaging methods are currently 

employed to obtain high resolution scans of the tibiae: i) 

endpoint imaging and ii) longitudinal imaging. Endpoint 

imaging compares scans of both tibiae at the end of the 

experiment, comparing the loaded tibia to the unloaded 

(known as the internal or contralateral control) tibia to deter-

mine adaptive bone changes (De Souza et al. 2005; Sugiy-

ama et al. 2012; Birkhold et al. 2016; Pereira et al. 2015; 

Galea et al. 2020; Robinson et al. 2021; Galea et al. 2015; 

Meakin et al. 2015; Halloran et al. 2002; Stadelmann et al. 

2011). Endpoint imaging is the more traditional approach, 

and assumes that the contralateral control is indicative of 

the loaded limb at the beginning of the study. However, 

this neglects right versus left limb differences which may 

impact local bone adaptation measurements. Additionally, 

such variations have impacts on the registration of images 

to one another, further increasing the difficulty of tracking 

the adaptation of a discrete location. Longitudinal imag-

ing uses � CT scans of the same limb at various time points 

throughout an experiment, in combination with volumetric 

image registration, to measure bone’s adaptive response 

(Roberts et al. 2020; Cheong et al. 2021). This technique 

can be considered the more accurate method to track dis-

crete bone adaptation responses; however, there have been 

several concerns regarding the effects of radiation dose on 

cell behaviour and bone remodelling which require a fur-

ther optimisation of the longitudinal scanning procedure 

(Grudzenski et al. 2010; Oliviero et al. 2017, 2019). Further-

more, the image resolution obtainable from endpoint scan-

ners is higher than that possible for the currently available 

in vivo scanners. While longitudinal imaging does provide 
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a better representation of surface-based changes across mul-

tiple time points, the technique is still relatively new and 

the depth of mechanical loading studies does not yet match 

available endpoint imaging data.

To this end, a highly cited paper exploring the magni-

tude of the loading response to progressively increasing peak 

loads was conducted by Sugiyama et al. (2012). This study 

performed contralateral endpoint imaging to investigate the 

adaptive response to 8 different peak loads superposed on 

a reduced habitual loading model (induced through sciatic 

neurectomy). In our previous study (Miller et al. 2021), we 

re-analysed the � CT data and showed that extracting local 

bone properties from the contralateral study was possible; 

however, the study did not track surfaces, instead only cal-

culating relative adaptive quantities, i.e. ΔCt.Th . The two 

major aims of the current study are: i) to quantify localised 

cortical bone adaptation at the bone surface level using con-

tralateral endpoint imaging data and image analysis tech-

niques, and ii) to investigate whether cortical bone adapta-

tion responses are universal or region specific and dependent 

on the respective peak load. To address these aims, we first 

develop an image registration algorithm to extract endosteal 

and periosteal bone surfaces of the mouse tibia; this is per-

formed for both loaded and contralateral control limbs at 

different cross sections (with a focus on the midshaft), and 

data are subsequently used to compute cortical surface and 

cortical thickness changes. Secondly, we develop four beam 

theory-based mechanostat models of cortical bone adap-

tation that utilise either universal parameters or take into 

consideration combinations of region-specific and strain 

direction dependent values. Mechanostat parameters in our 

simulation studies are derived from optimisation procedures 

using a subset of the experimental data. Subsequently, we 

run predictions with our optimised mechanostat model on 

the remaining sets of experimental data and compare our in 

silico results to experimental data at the cortical surface and 

cortical thickness levels. In doing so, we aim to gain novel 

insights into the mechano-adaptive response, and to analyse 

whether or not mechanostat parameters are solely dependent 

on peak load.

2  Methods

The beam theory-based computational model of cortical 

bone adaptation was developed based on previously 

published experimental data collected by Sugiyama et al. 

(2012). The imaging and computational model developments 

follow the flowchart shown in Fig. 1. Experimental � CT data 

were pre- and post-processed, and the local bone adaptive 

response (i.e. surface propagation and Ct.Th) was measured. 

The mean value of � CT images of the control limb, 

Fig. 1  Mechanostat optimisation algorithm and mechanostat validation algorithm flowcharts
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representing the group population cross section of cortical 

bone, served as the initial condition for the adaptation 

algorithm. Mechanical loading was simulated through 

multiple mechanostat algorithms applied to the cross section 

in different bone regions. Sciatic neurectomy was simulated 

by linearly superposing a uniform constant rate of bone loss 

at the endosteal surface. The multiple mechanostat models 

were calibrated on a single set of experimental data (i.e.  

F = 10 N) and then validated against data for peak loads of  

F = 0, 2, 4, 6, 8 and 12 N.

2.1  Experimental analysis

This section provides an overview of the methods used for 

experimental data collection, pre-processing of data, and 

post-processing of data using image analysis algorithms.

2.1.1  Experimental mouse tibia compression model

Experimental data used for this study was previously 

reported by Sugiyama et al. (2012). A summary of the exper-

imental procedure is provided below, for further details see 

Sugiyama et al. (2012). 48 mature female C57BL/6 mice 

were divided into 8 groups (n = 6 mice per group) and were 

assigned a peak compressive load per group (F = 0, 2, 4, 

6, 8, 10, 12 or 14 N). For our study, the F = 14 N loading 

case was excluded due to woven bone formation. All mice 

were subjected to a right sciatic neurectomy at 17 weeks of 

age (i.e. t
0
 , day 1 of experiment) to induce bone loss due to 

mechanical disuse. External mechanical loading was applied 

to the right tibia starting on day 5 and occurring every sec-

ond day for two weeks. Each loading session consisted of 

40 cycles of intermittent loading (trapezoidal wave form, 0.5 

N pre-load, 500 N/s loading rate, 0.05 s hold duration, 10 s 

rest interval). The left tibiae were used as contralateral con-

trols. Mice were euthanised at 20 weeks of age (i.e. t
end

 , day 

21 of experiment), with both left and right tibiae collected 

and scanned using � CT (SkyScan 1172 (SkyScan, Kontich, 

Belgium), 4.78 �m isotropic voxel size).

Sciatic neurectomy has been identified to sensitise the 

mechanical response of bone to loading (De Souza et al. 

2005; Moustafa et al. 2012; Meakin et al. 2015; Delisser 

2019; Piet et al. 2019a, b). Mouse tibia adaptation studies 

that apply loading to an unaltered (i.e. non-neurectomised) 

tibia utilise loads of between F = 10 to 13 N (De Souza 

et al. 2005; Sugiyama et al. 2008, 2010; Pereira et al. 2015; 

Piet et al. 2019a); this limited range is due to lower loads 

inducing no significant adaptive response, whereas higher 

loads (i.e. F >= 14 N) can lead to woven bone formation 

or fracture of the tibia/fibula. Adding sensitivity to bone 

formation through sciatic neurectomy therefore enables a 

deeper exploration of site-specific adaptation and peak load 

dependency, together with the ability to study the effects of 

mechanical unloading of the tibia.

2.1.2  Image pre‑processing

� CT data were aligned and binarised using MATLAB 2021b 

as described previously (Pickering et al. 2021). In summary, 

scans were down sampled by a factor 2 (adjusted isotropic 

resolution = 9.56 �m ), binarised using Otsu thresholding 

method, and were rotated such that the principal moment of 

inertia axis aligned with the z-axis (see Fig. 2 A). All images 

from the control tibia were flipped horizontally to be able to 

register the loaded and contralateral cross sections.

The current analyses were performed on the proximal-

middle (i.e. z = 37 %) and middle (i.e. z = 50 % cross sec-

tions of the mouse tibia, two commonly investigated sec-

tions within the limb (Srinivasan et al. 2019; DeLong et al. 

2020; Rooney et al. 2022). Unlike in (Sugiyama et al. 2012), 

who used an average of 100 cortical slices per section for 

their cortical bone adaptation analyses, we instead use a 

single cross sectional image; the latter approach has previ-

ously been shown to deliver equivalent results describing 

the adaptation response within a given section (Miller et al. 

2021). The methods and results presented here focus on the 

midshaft, for analysis of the proximal-middle section please 

refer to Supplementary Fig. 1.

Cross sectional slices were first processed to remove any 

small cavities (representing blood vessels) that may have 

been present. The centroid, area and second moments of 

area were calculated. Images were rotationally registered 

such that the resulting I
min

 was aligned to the y axis and were 

translationally registered to align the endosteal centroid (i.e. 

marrow cavity) to a common reference point (Pereira 2014) 

Fig. 2  Data alignment and slice selection. a Tibial � CT data are 

rotated to align such that the long axis of the tibia is aligned with a 

global z-axis. The z = 50 % cross section is extracted for analysis. 

b Selected cortical bone cross sections are rotated to align minimum 

2
nd moment of area with the y-axis. Point distributions PS around the 

cortical surfaces are normalised between 0 and 1 in a clockwise direc-

tion, starting at the negative y axis
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(Fig. 2). An additional rotation between 1 ◦ to 5 ◦ around 

the endosteal centroid was manually applied to the control 

limb cross-sections to better align with the loaded limb for 

contralateral image analysis. Pixels along the periosteal and 

endosteal envelopes were identified and mapped into an 

array; periosteal and endosteal position ( PP , PE ) distribu-

tions were normalised between 0 and 1 in a clockwise direc-

tion, with PP , PE = 0 aligned to the negative y axis.

Periosteal and endosteal envelopes of a given cross sec-

tion are described using the continuous function �:

where �S represents the (x, y) coordinates of a surface point 

at a given state, S indicates the surface (endosteal (E) or 

periosteal (P)), j represents the selected limb (right loaded 

limb (R) or left control limb (L)), i represents the index of 

the surface point, t is the time (in days), n represents the 

specimen within the loading group (n = 1, 2, 3, 4, 5, 6), and  

F is the applied peak load (i.e. 0, 2, 4, 6, 8, 10 or 12 N).

2.1.3  Measurement of local bone adaptation quantities

For each load case F, local bone adaptation was defined by 

the difference between the loaded and control tibia. As the 

mice were considered skeletally mature at commencement 

of the experiment (i.e. t
0
 = 1 day), we assume that the 

control leg stays unaltered from t
0
 to t

end
 , and the initial 

condition for the loaded leg is the same as the control leg 

(i.e. �S

R,i
(t0, F) = �

S

L,i
(t0, F) = �

S

L,i
(t

end
, F) , where t

end
 = 21 

days)1. Surface-based cortical adaptation ( Δ�S

i
 ) at t

end
 can 

therefore be defined as follows:

where the function d measures perpendicular distance 

between adapted ( t
end

 ) and baseline ( t
0
 ) states, evaluated at 

each cortical point. Net adaptation was calculated by adapt-

ing the minimum distance method presented in Miller et al. 

(2021); the baseline state (i.e. �S

L,i
(t

end
, n, F) ) was interpo-

lated such that the number of points was increased four-

fold, the distance between each point �S

R,i
(t

end
, n, F) ) and all 

interpolated points of �S

L,i
(t

end
, n, F) was measured, and the 

shortest distance was taken as the representative measure-

ment Δ�S

i
 (shown on the periosteal surface in Fig. 3).

(1)�
S
j,i
(t, n, F)

(2)Δ�S

i
= d

(

�
S

R,i
(t

end
, F), �S

L,i
(t

end
, F)

)

Similarly, cortical thickness changes were computed 

using the hybrid measurement approach reported previously 

in Miller et al. (2021):

where Ct.Thj,i is the cortical thickness evaluated at �P
j,i

 . The 

hybrid measurement technique calculates thickness using 

two methods: minimum distance to the endosteal surface, 

and perpendicular distance to the next cortical edge (peri-

osteal or endosteal). The smaller of the two measurements 

is taken as the representative thickness for each point, with 

ΔCt.Th
i
 being the difference between adapted and control 

limbs evaluated at each point �P
j,i

 . This approach is able to 

manage cortical cross-sections which have an irregular 

shape, e.g. sections with a pronounced tibial ridge such as 

the proximal-middle (i.e. z = 37 %) section (see Miller et al. 

2021 for further details).

Following all measurements for each mouse n, mean and 

standard deviation values were calculated for Δ�P

i
 , Δ�E

i
 and 

ΔCt.Th
i
 . A Student’s t-test was performed within each load-

ing group to identify statistical significance for each of the 

three measures ( p < 0.05 indicates statistical significance). 

The mean and standard deviation values were used to guide 

parameter selection within our model; in particular, we note 

that F = 0 and 2 N load cases provide insight into the effects 

of sciatic neurectomy on cortical bone.

All subsequent analysis and the proposed bone adaptation 

algorithm will refer to the mean (i.e. population) response 

of cortical bone, defined as:

For a more compact notation, we will drop the bar from the 

above equation, with all future reference to �S
j,i

 indicating the 

mean population value.

(3)ΔCt.Th
i
= Ct.Th

R,i
− Ct.Th

L,i

(4)�̄
S
j,i
= �̄

S
j,i
(t, F)

Fig. 3  Surface-based adaptation method. The number of points 

around the unadapted state (i.e. �S

L
 ) are interpolated fourfold. Meas-

urements are conducted between each point around the adapted state 

(i.e. �S

R
 ) and all points �S

L
 . The shortest distance ( Δ�S ) is selected as 

the net adaptation distance

1 Note that in endpoint imaging studies, the initial state of the tibia is 

not generally imaged and comparisons are made between loaded and 

contralateral tibia at t
end

 . However, for bone adaptation simulations, 

an initial state of the tibia is required to simulate adaptation due to 

applied loading.
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2.2  Cortical bone adaptation algorithm

In the following, we describe the cortical bone adaptation 

model which is based on a four-step algorithm, outlined 

in Fig. 4. Using the endosteal/periosteal surface positions 

at t
0
 of the loaded leg (i.e. �S

R
(t0, F) ), the algorithm itera-

tively: 1) extracts geometrical properties of the cross sec-

tion (centroid, area, second moment of areas), 2) converts 

peak load into a strain signal using beam theory, 3) runs 

the mechanostat model, and 4) applies adaptive changes 

to the endosteal/periosteal surfaces. We use an explicit 

forward Euler scheme to integrate the mechanostat dif-

ferential equations together with a step size of Δt = 1 day. 

SN-related catabolism is simulated for 5 days with no 

additional external loading. The algorithm subsequently 

simulates 14 days of experimental loading-based adapta-

tion, followed by 2 final days of SN-related bone loss, 

terminating at t
end

 = 21 days and replicating the experi-

mental procedures. We note that due to registration issues 

and high standard deviations within the z = 37 % section, 

reasonable comparisons between simulation and experi-

mental results could not be; as such, the remainder of the 

methods and subsequent results will relate to the z = 50 

% section only.

2.2.1  Beam theory for axial strain prediction

A previously validated beam theory approach was used to 

determine the axial strain in cortical bone (Pickering et al. 

2022). For the beam theory approach the ankle was treated 

as a pin supported joint and an axial compressive load F 

applied at the tibial plateau at position pF = (x, y)F , repli-

cating the experimental procedure (Pickering et al. 2021). 

The tibia was assumed to account for 90 % of the peak load 

applied, with the remaining 10 % attributed to the fibula 

(Pickering et al. 2021). In addition, the offset loading posi-

tion induces bending loads (i.e. M = 0.9F × (p
c
− p

F
) , 

where pc = (x, y)C represents the cross sectional centroid).

The longitudinal strain at each point �S

i
 of cortical bone 

cross section is computed using the generalised flexure 

formula (Bauchau and Craig 2009):

where �S

z,i
 is the longitudinal strain on the surface S, E is the 

Young’s Modulus of bone (14.8 GPa, Kohles et al. (1997)), 

(5)

�
S
z,i
(t, �S

i
, F) =

1

E
�

S
z,i
(t, �S

i
, F) =

1

E

(

0.9F

A
+

(

MxIyy + MyIxy

IxxIyy − I2
xy

)

(yS
i
− yc)

−

(

MyIxx + MxIxy

IxxIyy − I2
xy

)

(xS
i
− xc)

)

Fig. 4  Bone adaptation Algo-

rithm Flowchart. The model 

follows an iterative, four stage 

process: (1) Cross sectional 

properties ( A, Ixx, Iyy, Ixy ) are 

calculated, (2) externally 

applied forces F are translated 

into longitudinal strains �S

z
 at 

locations around the cortical 

shell, (3) strains are compared 

against a mechanostat model 

to determine net adaptation M, 

(4) coordinates of all points are 

updated by the identified net 

adaptation amount following the 

normal direction vector uS

i
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F is the experimentally applied peak load, A is the cortical 

area, M
x
 and My are the bending moments around the x and 

y axes, I
xx

 , Iyy and Ixy are the second moments of area of 

the cross section, xS

i
 and yS

i
 are the (x, y) coordinates of the 

surface point �S

i
 , and x

c
 and y

c
 are the (x, y) coordinates of 

the centroid.

For the bone adaptation algorithm, we selected longi-

tudinal strain as our effective strain stimulus for cortical 

bone adaptation. Longitudinal strain has previously been 

shown to be equally representative of cortical adaptation 

when compared to alternative measures such as strain energy 

density (SED) (Cheong et al. 2020). In the mouse tibia load-

ing model, longitudinal strains dominate and hence provide 

the major contribution to SED compared to shear strains 

(Trichilo 2018); the values of longitudinal strain also contain 

directional information (i.e. negative value for compressive 

and positive values for tensile strains), a property which was 

required for the current algorithm.

2.2.2  Mechanostat model

As outlined in the introduction, there is evidence that 

there are different mechanostats in different bone regions 

(Skerry 2006, 2008; Robinson et al. 2021). We developed 

four mechanostat models to investigate this: M1: a single, 

universal formation rate and formation threshold, M2: two 

formation rates distinguishing between strain directionality 

(i.e. tension, compression) with a single threshold, M3: two 

formation rates distinguishing between cortical surfaces (i.e. 

periosteum, endosteum) with surface-based thresholds, and 

M4: four formation rates to account for both surfaces in both 

strain directions with surface-based thresholds (see Fig. 5).

Assuming that bone formation and resorption occurs 

perpendicular to the periosteal and endosteal surfaces, we 

can formulate a general scalar evolution algorithm for both 

surfaces as:

where the scalar incremental surface change ( MS

i
 ) is depend-

ent on the time t in days, current surface position �S

i
 , and the 

influence of longitudinal strain �S

z,i
 . Using a forward Euler 

integration scheme, an explicit algorithm to calculate the 

spatial position of the periosteal and endosteal surfaces can 

therefore be written as:

where Δt indicates the chosen time step, MS

i
 represents the 

net formation calculated through the mechanostat function 

and evaluated at time t, and ûS

i
 is the normal unit vector 

(approximated using coordinates of adjacent points) evalu-

ated at time t. During initialisation, the system is assumed 

(6)M
S

i
= M

S

i
(�S

z,i
(t, �S

i
, F))

(7)𝜼S

t+Δt,i
= 𝜼S

t,i
+ M

S

i

|
|
|t
⋅ û

S

i

|
|
|t
⋅ Δt

to be homeostatic (i.e. M(t
0
) = 0), with both surfaces con-

sidered as stationary.

The four mechanostat models all follow the same general 

format. The full mechanostat model can be described using 

the following equations:

(8)M
E

i
=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜀
E

norm
⋅ kE

C
− kE

SN
, 𝜀E

z,i
< −𝜀

E

hom

−kE

SN
, − 𝜀

E

hom
≤ 𝜀

E

z,i
≤ 0

𝜀
E

norm
⋅ kE

T
− kE

SN
, 𝜀E

hom
< 𝜀

E

z,i

−kE

SN
, 0 ≤ 𝜀

E

z,i
≤ 𝜀

E

hom

(9)M
P

i
=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜀
P

norm
⋅ kP

C
, 𝜀P

z,i
< −𝜀

P

hom

0, − 𝜀
P

hom
≤ 𝜀

P

z,i
≤ 0

𝜀
P

norm
⋅ kP

T
, 𝜀P

hom
< 𝜀

P

z,i

0 0 ≤ 𝜀
P

z,i
≤ 𝜀

P

hom

Fig. 5  Visualisation of mechanostat relationships for the cortical 

surfaces. (Top): cortical cross section showing the null axis (N.A.), 

periosteum under compression (1), periosteum under tension (2), 

endosteum under compression (3) and endosteum under tension (4). 

(Bottom): schematic of the mechanostats and their association to cor-

tical surfaces (1), (2), (3), and (4)
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where MS

i
 is the net adaptation amount ( �m∕day ), �

norm
 

is the normalised strain difference ( ��∕�� ), �E

hom
 is the 

homeostatic strain threshold ( �� ), kS

sd
 is the rate of adap-

tation with respect to strain direction sd (i.e. tension (T) 

or compression (C)) and the normalised strain difference 

( μm∕day∕(��∕��)= �m∕day ), and k
E

SN
 is the constant 

bone resorption rate on the endosteal surface due to sciatic 

neurectomy ( �m∕day∕(��∕��)= �m∕day ). This resorp-

tion term has been included based on our image analysis 

results (see Sect. 3.1) and with findings in literature, and 

represents the loss of bone due to the absence of habitual 

activity, e.g. walking (Sugiyama et al. 2012; Miller et al. 

2021; Piet et al. 2019a, b; Kodama et al. 1999). We assume 

this endosteal resorption is uniform and constant; no loss 

of bone was observed at the periosteal surface in our image 

analysis, therefore strains below the threshold elicited no 

periosteal adaptation response. Strain threshold values 

were selected based on formation trends identified during 

experimental data analysis (explained further in Sect. 3.1). 

Following these observations, we identified that formation 

thresholds were significantly different between surfaces, but 

were approximately equal between tensile and compressive 

regions for a surface. As such, a single formation threshold 

was selected per surface ( �E

hom
= 1100 � , �P

hom
= 2785 � ). 

In line with previous studies of mechano-adaptation, our 

mechanostat model uses a linear relationship between lon-

gitudinal strain and the adaptive response (De Souza et al. 

2005; Sugiyama et al. 2012; Miller et al. 2021; Schulte et al. 

2013; Huiskes et al. 1987; Razi et al. 2015). Adaptation rates 

k
S

sd
 were calculated per mechanostat model through an opti-

misation process, discussed in the next section. We use the 

relative strain change �S

norm
 (i.e. the normalised strain differ-

ence between observed and threshold strains, calculated in 

Eq. 10) to better manage the conversion between observed 

strain, adaptation rates and the net adaptation resulting from 

the applied load. Comparisons of simulated adaptation at t = 

21 days and mean experimental adaptation within a loading 

group were used to evaluate model prediction accuracy. For 

surface-based evaluation ( Δ�P
, Δ�

E ), accuracy at a given 

point �S

i
 was defined by simulated measurements being 

within ± 9.52 �m (i.e. image resolution after down-sam-

pling) of experimental measurements. For ΔCt.Th , meas-

urement accuracy was defined within a range of ± 19.12 �m 

(i.e. two times the image resolution after down-sampling) 

from experimental measurements. Accuracy results were 

normalised around the surfaces (i.e. number of accurately 

simulated points / total number of points) to determine a 

total surface prediction accuracy.

(10)�
S

norm
=

�
P

z,i
(t, �S

i
, F) − �

S

hom

�
S

hom

2.3  Parametric optimisation

The four mechanostat models were optimised using data 

from the F = 10 N load case. Per mechanostat model, for-

mations rates kS

sd
 used to calculate adaptive changes MS

i
 were 

considered equivalent as follows:

M1: Single formation rate ( kP

T
= k

P

C
= k

E

T
= k

E

C
 ), single 

threshold ( �P

hom
= �

E

hom
= 1100 ��)

M2: Two formation rates ( kP

T
= k

E

T
, k

P

C
= k

E

C
 ), single 

threshold ( �P

hom
= �

E

hom
= 1100 ��)

M3: Two formation rates ( kP

T
= k

P

C
, k

E

T
= k

E

C
 ), surface 

thresholds ( �P

hom
= 2785 ��, �

E

hom
= 1100 ��)

M4: Four formation rates ( kP

T
, k

P

C
, k

E

T
, k

E

C
 ), surface 

thresholds ( �P

hom
= 2785 ��, �

E

hom
= 1100 ��)

Areal properties are subject to change based on the for-

mation occurring around the cortical shell, e.g. changes to 

the periosteum will influence the strain experienced on the 

endosteal surface, altering the amount of adaptation that will 

occur. As such, for all mechanostat models except M1, opti-

mum combinations of formation rates were found in tandem.

Net simulated surface adaptation ( Δ�S ) was calculated 

for both surfaces for a given combination of formation rates. 

The relative error between simulated (sim) and experimental 

(exp) results was evaluated using root mean square (RMS) 

analysis:

where iS
max

 is the total number of cortical points (i.e. 500 

per surface). RMS error was obtained for the periosteum 

(RMSP ), endosteum (RMSE ), and combined periosteum 

and endosteum (RMSC ). Optimisation for each of the mod-

els was conducted in four stages, outlined in Table 1. The 

first stage, S0, conducted a course sweep of formation rate 

parameters at an increment of 0.5 �m . The combination 

of parameters that provided the smallest RMSC error were 

selected and used in the next stage of refinement.

3  Results

3.1  Experimental cortical adaptation

Experimental results are provided here for the midshaft of 

the tibia. For results relating to the proximal-middle sec-

tion, please refer to Supplementary Fig. 1. Figure 6 shows a 

graphical representation of adaptation (black line = baseline 

tibia at t
0
 , blue line = periosteum at t

end
 , red line = endos-

teum at t
end

 ), and the associated strain profile calculated 

using beam theory in the midshaft of the tibia. For all load 

cases, peak tensile and compressive strains were observed at 

(11)RMS
C =

√

√

√

√ 1

iS
max

iS
max
∑

i=1

(

(Δ�S

i
)
sim

− (Δ�S

i
)
sim

)2
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approximately PS = 0.46 and PS = 0.99 respectively, and the 

neutral axis lay at approximately PS = 0.27 and PS = 0.68.

Net experimental adaptation measurements are presented 

in Fig. 7; results of disuse (F = 0, 2 N), homeostasis (F 

= 6 N) and overuse (F = 10 N) will be highlighted to aid 

with discussion. Data represented shows the mean (solid 

line), standard deviation (shaded area) and statistical sig-

nificance of p < 0.05 (bold black) for Δ�P (blue), Δ�E (red) 

and ΔCt.Th (yellow). The F = 0 N loading case showed 

no statistically significant growth on the periosteal surface, 

with the mean Δ�P remaining approximately at 0. While 

the endosteal surface shows minimal statistically significant 

adaptation, the average Δ�E shows a resorption around the 

entire surface of approximately 21.9 �m . Similar trends were 

observed between the F = 0 and 2 N loading cases. Here 

we also observe that the mean Δ�E remains approximately 

0 for the entire surface. While Δ�E does not remain consist-

ent around the endosteal surface as it does for the F = 0 N 

loading case, statistically significant resorption is observed 

for 55.4 % of the surface, with an average resorption of 22.8 

�m . The endosteal surface change for F = 2 N did not fol-

low mechanical loading trends and shared a similar aver-

age resorption compared to F = 0 N; as such, the endosteal 

threshold was selected as marginally higher than strain 

induced via a 2 N load (i.e. �E

hom
= 1100 ��).

The F = 6 N peak load did not induce statisti-

cally significant adaptation around the periosteal sur-

face. However, sections of the posterior surface 

( 0.1 < P
P
< 0.18, 0.8 < P

P ≤ 1.0 ) show an increase in the 

mean adaptive response with a peak formation of 23.7 �m 

occurring at PP
= 0.9 . F = 6 N experienced the highest 

standard deviation across all experimental results, with a 

range of ± 63.37 �m occurring at PP
= 0.5 . The periosteal 

formation threshold (i.e. �P

hom
= 2785 �� ) was calculated as 

an intermediate strain between F = 4 and 6 N, based on the 

observed formation trends. The endosteal surface experi-

ences an average resorption of 10.1 �m , with a peak resorp-

tion of 24.2 �m at PE
= 0.76 . While the average Δ�E shows 

a trend of resorption, only 3.2 % of this was shown to be 

statistically significant.

Under the F = 10 N load case, the periosteal surface shows 

statistically significant formation along the posterior portion 

( 0 ≤ P
P
< 0.15, 0.85 < P

P ≤ 1.0 ) of the cross section, with 

a peak formation of 45.6 �m at PP
= 0.89 . Several points 

around PP
= 0.45 on the anterior surface of the periosteum 

show a statistically significant formation of Δ�P
≈ 14.1 �m . 

The endosteal surface shows significant formation events, 

both on the posterior ( 0 ≤ P
E
< 0.1, 0.91 < P

E ≤ 1.0 ) and 

anterior ( 0.42 < P
E
< 0.48 ) portions of the surface, with a 

maximum formation of 38.8 �m at PE
= 0.45.

3.2  Optimisation of mechanostat parameters

Mechanostat parameters for all four models, along with 

periosteal, endosteal, and total RMS error, are shown in 

Table 2. In all models, the endosteal surface experiences 

a constant resorption of kE

SN
 = −1.398 �m/day, identified 

through experimental analysis as the average change of the 

endosteal surface in the F = 0 N load case. Formation rates 

found through the optimisation process differ significantly 

across each of the four mechanostat models, ranging from 

a minimum of 0.435 �m per normalised strain difference 

per day (M2, tensile-based formation) to a maximum of 

7.055 �m per normalised strain difference per day (M4, 

tension-based formation on the endosteal surface). Of the 

four models, M4 experienced the smallest error across 

the periosteal, endosteal, and total surface measurements 

Table 1  Parameter optimisation stage outlines

Model Stage Range Increment # of Inde-

pendent 

parameters

Total 

combina-

tions

M1 S0 0−20�m 0.5�m 1 41

S1 S0 ± 0.5�m 0.1�m 1 11

S2 S1 ± 0.05�m 0.01�m 1 11

S3 S2 ± 0.005�m 0.001�m 1 11

M2 S0 0 μm − 20�m 0.5�m 2 1681

S1 S0 ± 0.5�m 0.1�m 2 121

S2 S1 ± 0.05�m 0.01�m 2 121

S3 S2 ± 0.005�m 0.001�m 2 121

M3 S0 0 μm − 20�m 0.5�m 2 1681

S1 S0 ± 0.5�m 0.1�m 2 121

S2 S1 ± 0.05�m 0.01�m 2 121

S3 S2 ± 0.005�m 0.001�m 2 121

M4 S0 0 μm − 8�m 0.5�m 4 83521

S1 S0 ± 0.5�m 0.1�m 4 14641

S2 S1 ± 0.05�m 0.01�m 4 14641

S3 S2 ± 0.005�m 0.001�m 4 14641

Fig. 6  Experimental bone adaptation results of registered mean peri-

osteal and endosteal surfaces (left) and associated longitudinal strain 

distributions (right) for F = 10 N (black line = baseline tibia at t
0
 , 

blue line = periosteum at t
end

 , red line = endosteum at t
end

 ). Strain 

profiles calculated on �S

R
(t

end
, F)
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(RMSP = 6.152 �m , RMSP = 10.45 �m and RMSP = 8.573 

�m , respectively).

In M4, the four rates diverged considerably through the 

optimisation process; the endosteal surface under tension 

was the most sensitive to strains, with a formation rate 

Fig. 7  Average experimental changes to the periosteal surface Δ�P 

(blue), endosteal surface Δ�E (red) and cortical thickness ΔCt.Th 

(yellow). Solid lines represent the mean adaptive change, shaded 

areas represent the range of standard deviation, and bold black lines 

represent surface points P
S that show statistical significance of p < 

0.05
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of 7.055 �m per normalised strain difference per day. In 

contrast, the endosteal surface under compression was the 

least sensitive to strain, with a formation rate of 0.794 

�m per normalised strain difference per day. Rates on the 

periosteal surface lie between these two values, with com-

pressive and tensile formation rates of 2.148 and 0.981 

�m per normalised strain difference per day respectively.

All loads were simulated through the optimised parame-

ters above, with associated RMS errors presented in Fig. 8. 

As no formation-based adaptation was present under the 

F = 0 N load case, RMS error on all surfaces across all 

models were identical. For RMSP , RMSE and RMSC , the 

M1 and M2 models produced a near identical error across 

all loads. M3 and M4 performed almost equally and pro-

vided a lower error than the M1 and M2 models across 

all loads on the periosteal surface. However, M4 showed 

distinct improvements over the other models in terms of 

endosteal surface (RMSE ) and combined surface (RMSC ) 

error measures, with the optimisation load (F = 10 N) 

providing less than half the error of all other models inves-

tigated. As such, results in the following section will relate 

to those obtained from M4.

3.3  Simulated cortical adaptation

The difference between predicted and measured adaptation 

for Δ�P (blue), Δ�E (red) and ΔCt.Th (yellow) has been pre-

sented in Fig. 9 (magenta line denotes surface level accuracy, 

green line denotes thickness level accuracy), and prediction 

accuracy across all loads is presented in Fig. 10. Evident 

in Fig. 9, simulated surface level results were substantially 

more accurate on the periosteum. Simulation accuracy 

ranged from 53.4 % (F = 4 N) to 97.6 % (F = 8 N) on the 

periosteum, while the endosteum ranged from 28.2 % (F = 4 

N) to 94.6 % (F = 0 N), with an average prediction accuracy 

across all loads of 76.1 % and 55.3 % for the periosteum and 

endosteum, respectively.

Δ�
P accuracy was highest when loads were sufficient to 

produce formation both under tension and compression, with 

the F = 8, 10 and 12 N load cases seeing an accuracy of 

97.6 %, 84.6 % and 88.6 %. In contrast, biological noise 

(expressed as standard deviation) present in the experimental 

analysis of Δ�E was not captured by the simulation, resulting 

in low prediction accuracies of 38.2 %, 77.0 % and 42.2 % 

for the same load cases. The F = 12 N load case was also 

observed to experience major resorption around the lateral 

neutral axis ( PE
≈ 0.36 ), experiencing double the amount of 

resorption when compared to F = 10 N (32.40 �m compared 

to 15.36 �m ). F = 10 N was also observed to elicit a higher 

formation amount of 38.82 �m , compared to 28.47 �m in 

the F = 12 N case.

Constant resorption applied to the endosteal surface 

due to SN was found to accurately predict adaptation for 

94.4 % when no additional load was applied (i.e. F = 0 N). 

Table 2  Optimised parameters for mechanostat models

Units M1 M2 M3 M4

Homeostatic Strain Thresholds

�
P

hom
�� 1100 1100 2785 2785

�
E

hom
�� 1100 1100 1100 1100

Sciatic Neurectomy Resorption Rate

k
E

SN
�m∕day −1.398

Formation Rates

k
P

T
�m∕day 0.499 0.435 0.986 2.148

k
P

C
�m∕day 0.499 0.513 0.986 0.981

k
E

T
�m∕day 0.499 0.435 1.056 7.055

k
E

C
�m∕day 0.499 0.513 1.056 0.794

Root Mean Squared Error

RMSP �m 8.924 8.819 6.481 6.152

RMSE �m 30.65 30.69 24.53 10.46

RMSC �m 22.57 22.58 17.94 8.573

Fig. 8  RMS error for the periosteal (top), endosteal (middle) and 

combined (bottom) surfaces across all loads per mechanostat model 

(M1 = blue line, M2 = yellow line, M3 = orange line, M4 = purple 

line). All models were optimised using F = 10 N, with parameters 

used to simulate remaining load cases
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Fig. 9  Comparison of simulated (solid line) and experimental (dotted 

line) results for bone adaptation at the periosteum (blue), endosteum 

(red) and Ct.Th (yellow). Points marked by a magenta line denote 

simulated measurements within ± 9.52 �m (i.e. image resolution) 

of experimental results for the periosteum and endosteum, whereas 

points marked by a green line denote simulated measurements within 

± 19.12 �m (i.e. two times the image resolution) of experimental 

results at the Ct.Th level
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Due to endosteal geometry fluctuations around the cortical 

shell, prediction accuracy decreased for F = 2, 4, 6, 8 and 

12 N. A common region of discrepancy between simulated 

and experimental results was on the posteromedial edge 

( PE
> 0.75 ), which the simulation tended to over-predict the 

anabolic influence of mechanical loading; this phenomenon 

was less pronounced for F = 0, 2 and 10 N.

Accuracy measures from the surface analysis did not 

directly influence the accuracy of the Ct.Th measurements. 

ΔCt.Th accuracy ranged from 62.8 % (F = 8 N) to 95.2 % 

(F = 0 N), with an average accuracy of 81.29 % across the 

seven loads. We also note that F = 10 N showed 100 % 

due to being the load case selected for parameter optimisa-

tion. ΔCt.Th was found to be more accurate than both Δ�P 

and Δ�E across all loads with the exception of F = 8 and 

12 N, where Δ�P showed a higher total accuracy. The F = 

4 N case showed drastic prediction improvement between 

surface and thickness change measurements, experiencing 

an accuracy of 53.4 % and a 28.2 % for the periosteal and 

endosteal surface respectively, but increasing to an 87.8 % 

ΔCt.Th accuracy.

Fig. 11 compares simulated net adaption to the mean and 

standard deviation of experimental adaptation observed in 

response to each load in four regions around the tibia (0.27 

= lateral, 0.46 = anterior, 0.68 = medial, 0.99 = posterior) 

for Δ�P , Δ�E and ΔCt.Th . On the periosteum, the posterior 

region (i.e. compressive region) shows a pseudo-linear form-

ative adaptation response from loads F = 6 N and higher, 

while the anterior region (i.e. tensile region) shows forma-

tive events above F = 8 N; smaller loads did not induce a 

formative response. Both the medial and lateral edges (i.e. 

neutral axis) show approximately no formation or resorption 

under all loads. Predictions of the simulation fell within the 

standard deviation for all loads at all locations around the 

periosteum (Supplementary Fig. 1).

On the endosteum, a constant resorption of approximately 

25 �m was observed at the medial and lateral edges, as well 

as on the posterior and anterior regions for loads below 

F = 2 and 4 N, respectively. Loading above this induced 

pseudo-linear formation, fully countering the effects of SN 

by F = 6 N, and saturating at a net formation of approxi-

mately 28 �m . All values were predicted by the simulation 

Fig. 10  Total surface predic-

tion accuracy for Δ�P (blue), 

Δ�
E (red) and Δ Ct.Th (yellow), 

grouped by peak load magni-

tude. ’Avg’ prediction accuracy 

represents the average accuracy 

across all loads

Fig. 11  Comparison of net adaption measurements for Δ�P , Δ�E 

and ΔCt.Th across all load cases taken at: peak tension ( PS
= 0.46 , 

green), peak compression ( PS
= 0.99 , red), and the neutral axis 

( PS
= 0.27 , purple and P

S
= 0.68 , orange). Squares with error bars 

represent the mean ± standard deviation obtained from experimental 

measurements, and solid lines represent simulated adaptation meas-

urements
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to within standard deviation ranges, except for the posterior 

region under the F = 8 and 12 N load cases which were 

over-predicted.

The ΔCt.Th results approximate to superimposition of 

Δ�
P and Δ�E per each region analysed, and as such trends 

are maintained; medial and lateral edges experience a con-

stant resorption of approximately 25 �m , with pseudo-linear 

formative trends from loads above F = 2 and 4 N on the 

posterior and anterior regions, respectively. On the ΔCt.Th 

level, the simulation over-represented posterior formation 

for F = 6 N and slightly under-estimated anterior formation 

for F = 10 N; all remaining results falling within standard 

deviations of the experimental findings.

4  Discussion

Our study is the first to investigate the application of mul-

tiple mechanostats in a single predictive model of cortical 

bone adaptation for the mouse tibia loading model. Using 

a beam theory-based adaptation algorithm, we were able to 

efficiently calibrate the large number of mechanostat param-

eters and subsequently perform predictive simulations of 

bone adaptation on the endosteal and periosteal surfaces. 

Using a comprehensive experimental data set, our model’s 

adaptation parameters were validated against several peak 

load magnitudes. Our results show that mechanostat param-

eters did not depend on the applied peak loading; rather, the 

distinction between compressive and tensile strain regions 

on each cortical surface had a significant influence on the 

accuracy of the simulation results.

Alignment of � CT imaging data to extract local bone 

adaptation properties posed the most significant challenge 

of the current work. Comparing surface-based changes 

requires a high degree of precision and is therefore highly 

sensitive to variations around the cortical shell. Biologi-

cal variation was likely a major contributing factor; this 

biological variation can be observed between mice (i.e. 

different mice have different tibial shapes), but also in the 

difference between the left and the right leg within a single 

mouse. The effects of this phenomenon were evident in the 

high standard deviations and low statistical significance 

observed, particularly on surface-based experimental anal-

ysis (see Fig. 7). This was best exemplified by the Δ�P in 

the F = 6 N load case, showing a peak standard deviation 

of ± 63 �m which is over double the maximum forma-

tion experienced under the F = 10 or 12 N load cases. 

Additionally, standard deviations observed in the z = 37 

% section were considerably higher, with a peak of ± 126 

�m observed on the endosteum under the F = 10 N peak 

load case. ΔCt.Th was less sensitive to alignment issues 

as it is a relative measurement between surfaces; as long 

as there is a consistent reference point to align the data to, 

the orientation of the slice is irrelevant.

However, using information collected from mean surface 

growth, our model was still capable of achieving high lev-

els of accuracy at predicting mean experimentally observed 

adaptation, both at the surface and Ct.Th levels (Fig. 9). Our 

model presents as a valuable alternative to existing adapta-

tion studies and predictive models that represent cortical 

adaptation as bone mineral content, bone mineral density or 

bone volume changes (Robinson et al. 2021; Roberts et al. 

2020; Ashrafi et al. 2020; Cheong et al. 2021); by directly 

modelling geometrical changes, our model is able to capture 

discrete, surface-based changes that other models are not 

currently capable of describing.

Our optimisation results show a clear benefit for simulat-

ing adaptation using multiple mechanostats. Not only did the 

optimisation process reveal that multi-mechanostat model 

M4 produced the smallest RMSC for the optimisation load 

case (less than half the error compared to M1-M3), but the 

same parameters also produced the lowest RMSC across all 

remaining load cases (Fig. 10). The single parameter mecha-

nostat models M1 and M2 were also effective at minimising 

errors for loads 8N and below, but interestingly provided the 

worst RMSC for the F = 10 N optimisation load case at over 

double the error obtained from model M4 (22.57 �m and 

8.573 �m , respectively). Simulation models of mechano-

adaptation studies are typically optimised around such high 

loads (e.g. F = 10, 12 N) (Pereira et al. 2015; Cheong et al. 

2020; Lavaill et al. 2020); our study shows that the single 

mechanostat model does not provide the best representation 

for all regions of all surfaces at high loads.

The M4 model shows a clear difference in adaptive rates, 

both between surfaces and compressive/tensile regions. 

Shown in Table  2, the endosteal surface under tension 

(i.e. anterior region) was over 3 times more responsive to 

strain magnitude compared to the periosteal surface under 

tension, and was almost nine times more responsive than 

the endosteal surface under compression. This is likely 

due in part to two factors: i) the anterior endosteal surface 

experiences the lowest strain magnitude, and therefore is 

the last to become mechanically activated, and ii) at high 

loads (F = 10, 12 N), the peak net adaptation in the anterior 

endosteal region is equivalent to the compressive endosteal 

and periosteal regions (see Fig. 6). In general, regions of 

tensile strain within the mouse tibia experienced a greater 

sensitivity to strains, however this did not translate directly 

to greater adaptation occurring in these regions given the 

lower tensile strain magnitude (see Fig. 6). Comparing this 

to the findings shown in Fig. 9, the discrepancy between 

strain magnitude and mechano-sensitivity on the endosteum 

is largely nullified due to high-load saturation, with both ten-

sile and compressive regions experiencing equivalent peak 

adaptation for loads above 6 N. However, peak periosteal 
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adaptation in the tensile region is far less prominent than the 

compressive, suggesting elevated strains are not enough to 

reach the saturation limit. The adaptation patterns observed 

supports findings of other studies which show that the com-

pressive regions of bone experience a greater volume of 

formation compared to tensile regions (Roberts et al. 2020; 

Miller et al. 2021; Robinson et al. 2021), which we iden-

tify is due to a reduced response on the anterior periosteal 

surface.

Our implementation of a resorption due to SN with 

superposed, beam theory-informed formation proved to 

be effective method of representing cortical bone adapta-

tion. Assuming a constant, uniform, endosteal resorption 

due to SN was able to represent SN-induced bone loss in a 

complete mechanical disuse state (i.e. F = 0 N, Fig. 9). At 

higher peak loads (i.e. F = 8, 10 and 12 N), the adaptive 

response shows a two-peak trend representing the regions 

of high compressive/tensile strain, and the near-zero strains 

experienced around the null axis; our bending-based adap-

tive model is therefore able to correctly predict the same 

trends. However, when looking at the endosteal surface 

under the same loads, the mean experimental results show 

regions of resorption or suppressed formation in areas of 

high strain, particularly in regions of compression ( PE
< 

0.25, PE
> 0.75). In fact, inconsistencies to the assumption 

of bending-induced adaptation can be observed across all 

loads; for example, under a 4 N load, posterior and ante-

rior regions where strain is elevated show resorption, while 

areas around the null axis remain near zero. This counters 

the findings from the F = 0 N load case, where all regions 

experience resorption, including the null axis, and higher 

loads of 8 N and above, where the null axis still experiences 

resorption. This may be a result of the cellular environments 

on the cortical surfaces and their respective responses to 

mechanical stimuli, or alternatively due to lack of control 

during experimental loading (e.g. repeatable load location 

precision); however, such analysis was beyond the scope of 

the current investigation.

Through verification of our model using the F = 0 and 

10 N peak load magnitude cases, our results validate the 

assumption of a linear relationship between strain and form-

ative adaptation in the mouse tibia axial loading model. This 

assumption had previously been investigated on the Ct.Ar 

(Sugiyama et al. 2012) and Ct.Th (Miller et al. 2021) lev-

els and has formed the basis of several predictive models 

(Pereira et al. 2015; Cheong et al. 2020; Ashrafi et al. 2020; 

Lavaill et al. 2020). Highlighted in Fig. 11, the simulated 

adaptation fell within the standard deviation range of the 

mean experimental results at the periosteal, endosteal and 

Ct.Th levels. The notable outlier is the posterior periosteal 

surface under a 6 N peak load, which over-predicted ΔCt.Th . 

As highlighted previously, the F = 6 N loading case showed 

the highest standard deviation of experimental results, 

with Fig. 11 showing a decrease in formation from the F 

= 4 N load case in the compressive posterior section. This 

may indicate that the periosteal surface threshold was not 

selected correctly, however all loads above 6 N were accu-

rately predicted.

While our four-mechanostat model has added additional 

complexity to current cortical adaptation algorithms, there 

is yet more complexity that can be added. In our current 

model, we opted to select one single formation threshold per 

surface, extrapolated from experimental data. While other 

models treat the threshold as a parameter to be optimised 

for, doing so exponentially increases the required number 

of simulations to obtain a solution; for instance, stage S0 of 

optimisation for the M2/M3 models (i.e. two variable param-

eters) required a 41-fold increase in calculation time over 

M1, whereas the M4 model (i.e. four variable parameters) 

took over 2000 times the computational duration. We there-

fore set thresholds manually to reduce the number of vari-

ables and therefore optimisation processing time. However, 

the mechanostat’s adaptation threshold is a concept that is 

difficult to directly quantify from experimental data. Using 

an approximate value enabled the thorough investigation of 

a four-mechanostat configuration model in a time-efficient 

manner, revealing the benefits that a more comprehensive 

mechanostat approach can provide in mechano-adaptation 

simulations.

Our model also represents experimental loads as a sin-

gle net daily strain stimulus and does not consider any 

other habitual daily loading. Sciatic neurectomies were 

performed to the right hind limbs of each mice to com-

pletely mitigate mechanical loading, however the mouse 

may still be applying small amounts of pressure through 

limping that would contribute to the daily mechanical 

strain stimulus. In addition, one would assume the three 

remaining limbs are required to compensate for the loss of 

normal function due to neurectomy. However, following 

sciatic neurectomy, weight bearing has been demonstrated 

to remain unchanged on the contralateral limb (Kingery 

et al. 2003). In fact, decreases in epiphyseal bone mineral 

density in control limbs were observed following contralat-

eral sciatic neurectomy, supporting the assumption that the 

contralateral limb does not experience increased loading. 

In future studies of mechanical loading-based adaptation, 

one could consider bilateral sciatic neurectomy followed 

by adaptation to the habitual disuse state (approximately 

35 days required as per Monzem et al. 2021); this would 

ensure both legs are adapted prior to unilateral loading, 

isolating the mechano-adaptation response. Alternatively, 

tail suspension also provides bilateral disuse (Amblard 

et al. 2003), but is a more stressful method of disuse in 

rodent studies.

Finally, while we have shown that the four identified 

regions of the cortical shell adapt differently, connecting 
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these sensitivities to biological processes was beyond the 

scope of the present study. An investigation performed by 

Moustafa et al. (2012) showed that performing a sciatic 

neurectomy in mice increased the percentage of sclerostin-

positive osteocytes within the cortical shell of the tibia, and 

that application of a mechanical load (F = 13.5 N) reduced 

the percentage to levels significantly below the control, i.e. 

unloaded, non-neurectomised limb. This is furthered by the 

studies of Piet et al. (2019a), who showed sciatic neurectomy 

followed by mechanical loading (F = 9 N) exhibits both 

an increase in osteoblast count and a decrease in osteoclast 

count on the endosteal surface, as well as an increased peri-

osteal mineralised surface. However, histomorphometry was 

not factored into the loading study analysed in this paper 

(Sugiyama et al. 2012); as such, we are unable to comment 

on the distribution or cellular concentrations on either sur-

face and any differences that may be present across the mul-

tiple peak loads investigated.

5  Conclusion

In this work, we presented an image analysis framework 

for experimental mouse tibia endpoint imaging studies that 

allowed registration of two-dimensional cortical cross-sec-

tions of loaded and contralateral mouse tibiae; this enabled 

the identification of mean endosteal and periosteal surfaces 

before and after loading, as well as the extraction of local 

cortical thickness measurements. Applying this framework 

to the previously collected data of Sugiyama et al. (2012), 

we investigated bone region- and longitudinal strain direc-

tion-dependent adaptation responses, and their potential 

dependence on peak load magnitude, considering four mech-

anostat models of varying complexity. Our image analysis 

and numerical simulation studies provided insights into the 

mechano-adaptation response:

• Mean local cortical thickness estimation can be readily 

achieved by image co-registration and suitable normal or 

closest distance between bone surface measurements.

• Estimation of mean endosteal and periosteal surfaces at 

the commencement of loading and at study endpoint is 

challenging due to between-animal variation per group 

and between contralateral limbs.

• Root mean square error for the multi-mechanostat 

model (M4) was less than half the error observed in 

the universal mechanostat model (M1).

• Mean local cortical bone adaptation responses are 

quasi-linear and bone region specific. Low strain bone 

regions located near the null axis show very little bone 

adaptation response.

• High strain compressive and tensile bone regions show 

similar responses to changes in peak load. However, 

bone formation in the compressive regions of high 

strain commence at approximately 2 N lower loading 

magnitude.

The developed mechanostat model can be used to compare 

the adaptation response across different mouse tibia axial 

loading studies that each consider differing peak loads. 

Additionally, the simulated bone loss due to sciatic neurec-

tomy could be replaced with alternate disease states (e.g. 

osteoporosis induced through ovariectomy). The numeri-

cally efficient simulation framework based on beam theory 

also provides a means to replace current, mechanical only 

based models with mechanobiological models of bone 

adaptation that account for bone cellular interactions.
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