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Networks and Beyond: A new Joint
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Arash Bozorgchenani, Member, IEEE, Charilaos C. Zarakovitis, Member, IEEE, Su Fong Chien,
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Abstract—Network connectivity exposes the network infrastructure and assets to vulnerabilities that attackers can exploit. Protecting

network assets against attacks requires the application of security countermeasures. Nevertheless, employing countermeasures incurs

costs, such as monetary costs, along with time and energy to prepare and deploy the countermeasures. Thus, an Intrusion Response

System (IRS) shall consider security and QoS costs when dynamically selecting the countermeasures to address the detected attacks.

This has motivated us to formulate a joint Security-vs-QoS optimization problem to select the best countermeasures in an IRS. The

problem is then transformed into a matching game-theoretical model. Considering the monetary costs and attack coverage constraints,

we first derive the theoretical upper bound for the problem and later propose stable matching-based solutions to address the trade-off.

The performance of the proposed solution, considering different settings, is validated over a series of simulations.

Index Terms—countermeasure selection, quality of service, optimization, matching game, intrusion response mechanisms.

✦

1 INTRODUCTION

B Y blending different types of technologies and ad-
vances, 5G offers various types of services such as

smart home, vehicular communication, smart parking, air-
ground integrated communication, fog/edge computing,
industry 4.0, and blockchain-based services to name some
[1]. Even though the new technologies pave the way for a
fully connected people and things era by enabling many
5G services with various demands such as eMBB, mMTC,
and uRLLC, they introduce new security challenges too [2].
On one hand, this includes the utilization of 5G enabling
technologies such as software-defined networking, network
function virtualization, mobile edge computing, network
slicing, etc. On the other hand, the heterogeneity of the 5G
network brings new security challenges too, including the
internet of things and end-user devices, service requests,
new stakeholders and mission-critical applications, etc. [3].
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Needless to say that the pre-5G security threats still need to
be addressed as well.

Cyberattacks target the network infrastructure to under-
mine the services’ availability, and information confidential-
ity and integrity. The continuous rise in the number and
complexity of attacks made it difficult to keep track of the
large number of alerts generated by Intrusion Detection
Systems (IDSs) and made security teams worldwide seek
effective remediation tools. Potential tools to counteract
ongoing threats are the Intrusion Response Systems (IRSs),
which are capable of reacting against suspicious activities
in real or near real-time by continuously monitoring the
IDS alerts [4]. These reactions in a 5G network can include
any of the atomic countermeasures of notifying the net-
work operator, notifying the vendor, filtering the traffic, re-
launching a node, re-configuring a virtual network function,
replacing one node with another, providing a patch to
prevent/remedy the identified attacks, and etc. The effec-
tiveness of different countermeasures can be evaluated by
their ability to mitigate the risk the assets of the network
are exposed. One solution is applying a combination of
different atomic countermeasures to address the affected
nodes. On the one hand, from the orchestrator/provider’s
side, it is essential to address as many detected attacks
as possible to minimize the impact of the threats in the
network. On the other hand, applying countermeasures can
have some potential consequences in terms of costs too. The
remediation actions affect the system’s QoS requirements
such as time, energy, and monetary costs required to prepare
and deploy the countermeasures, to name a few.

In the context of emerging intrusion detection challenges
within 5G network systems, it is essential to acknowledge
the intricate relationship between cybersecurity optimiza-
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tion and critical system performance metrics such as latency,
energy efficiency, and monetary costs. Addressing these
complex trade-offs is at the heart of our exploration. In
the future, automating the fine-tuning of these metrics,
traditionally performed manually by cybersecurity response
teams and network operators, becomes a key objective.
This automation aims to achieve faster and more precise
optimization compared to human-driven decision-making.

Thereby, we formulate a joint security-vs-QoS counter-
measure selection problem to optimize the Intrusion Re-
sponse Mechanisms (IRMs) in network systems. To address
this problem, we propose a Gale-Shapley stable matching-
based approach to select the best set of countermeasures.
Such a selection needs to balance the inherent trade-off
between the effectiveness of the risk mitigation policy and
its potential negative QoS impact. Such a balance is per-
formed by the security administrator that has to maintain
an adequate level of protection with a limited budget. Our
contribution1 can be summarized as follows:

1) Formulating a joint security-vs-QoS problem for the
optimal selection of countermeasures considering
time, energy, and monetary cost as the QoS factors;

2) Transforming the problem into a single objective
problem by an ϵ-constraint method and reformulat-
ing the problem in a two-sided matching game;

3) Designing a Hospital/Resident (HR) model for the
problem and proposing two Stable Matching (SM)
countermeasure-oriented and attack-oriented algo-
rithms to solve the problem from the security and
QoS perspectives, which are unique.

4) Deriving the upper bound for the problem by em-
ploying the decomposition and Branch-and-Bound
(BB) techniques;

5) Performing extensive simulation experiments to
demonstrate the impact of different parameters on
the performance of the two proposed algorithms.

The rest of the paper is organized as follows. In Section 2,
we review the state of the art. In Section 3 the model is
described. Section 4 first shows the reformulated problem
based on the HR model and later introduces our proposed
algorithms. In Section 5, we present the simulation results.
Section 6 concludes the paper.

2 RELATED WORKS

In this section, we have conducted a thorough literature
review and presented the most related works in the area
of countermeasures selection.

A diverse range of solution methodologies has been
employed to address the challenge of countermeasure selec-
tion across various domains. In the following sub-sections,
we initially organize related works by categorizing them
based on specific domains, encompassing countermeasure
selection within Cyber-Physical Systems (CPS), as well as
studies delving into cost analysis, risk assessment, and gov-
ernment investment. Subsequently, we examine common
methodologies widely employed to address the problem.

1. This research has been conducted as part of the H2020 SANCUS
project whose architecture and engines are elaborated in [5].

2.1 Domain-specific Overview

Numerous studies have focused on the Cyber-Physical Sys-
tems (CPS) domain. For instance, an Autonomous Response
Controller (ARC) is presented in [6] to react against cy-
berattacks with a focus on Cyber–Physical Power Systems
(CPPS). The ARC can autonomously evaluate the security
improvement resulting from applying certain remediations
and it covers the uncertainty of the IDS alerts by using
the Competitive Markov Decision Processes. The efficiency
of the framework is demonstrated in a real sub-station
in the CPPS with an acceptable response time. However,
their cost model only includes the CPU and RAM costs.
Authors in [7] developed a method to achieve minimum
cost defense in the context of CPS. Specifically, such a proce-
dure chooses optimal defense nodes using their developed
Atom Attack Defense Trees (A2DT), which is a variant of
the more conventional Attack-Defense Tree (ADT) model.
Then, the authors used an ad-hoc methodology to solve
the path calculation over the A2DT and demonstrated its
efficiency through 2 use cases: Automated Teller Machine,
and Supervisory Control and Data Acquisition systems.

On the line of CPS protection, a method is proposed
in [8] to identify the security control to protect large-scale
CPSs. By leveraging a model to calculate and aggregate
the risk among the different CPSs components, the authors
used an ad-hoc version of the Genetic Algorithm (GA) to
select the adequate remediations that minimize the risk at
the lowest cost. Finally, a real case scenario was employed
to demonstrate the approach’s applicability.

Numerous works have studied both the private and
social costs of countermeasures, addressing cybersecurity
investment in risk-neutral firms [9], estimating the uncertain
risk faced by an organization under cyberattack [10], opti-
mal cybersecurity investment in supply chains and firms
[11], and the balance between prevention, detection and
containment safeguards in cybersecurity [12].

Research on decision-making regarding cybersecurity
plans by governments and firms is offered in [13]. Bearing
in mind the budget limitations, the authors suggested a
method to compute optimal decisions on the countermea-
sures portfolio by a two-stage stochastic programming ap-
proach, separating prevention-detection and reaction stages.
Moreover, authors in [14] proposed a scheme to deter-
mine the security investments that should be implemented
by organizations in various risk treatment options. Those
investments are connected with specific security controls,
generating a model which is later solved as an optimization
problem using dynamic programming.

For a more comprehensive literature review on IRSs, you
can read the work in [15] which analyzed the major reaction
proposals from 2012 to 2017, focusing on their principal
advantages and potential deficiencies.

2.2 Methodological Approaches

Exploring diverse methodologies for countermeasure se-
lection, this section briefly reviews varied approaches em-
ployed in the literature. From bio-inspired techniques like
GAs and Artificial Immune Systems (AISs) to Machine
Learning (ML)-based solutions, and graph-based modeling
using frameworks such as Probabilistic Attack-Response
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Trees and Directed Acyclic Graphs (DAG), researchers have
employed a spectrum of strategies to address the counter-
measure selection optimization in different domains.

Risk reduction requires the definition and implemen-
tation of a security configuration by the deployment of
various security mitigation actions to reduce the risk. Hence,
an optimization problem should be solved to select the most
effective yet cost-efficient security countermeasures. Many
researchers apply approximate bio-inspired solutions like
GAs to approach this problem. In [16], the authors proposed
an AIS to select countermeasures to defeat cyberattacks
through cloning and mutation phases. They, however, sug-
gested a context-aware stop condition based on experimen-
tal outcomes and authors’ subjective beliefs. In [17] the
authors further improved the previous work by proposing
an AISGA method leveraging a GA to optimize the selection
of input parameters of the AIS method by minimizing the
global risk and the execution time of the method.

A methodology to generate response policies is pre-
sented in [18] addressing four problems of countermeasure
selection, countermeasure deployment, the order of deploy-
ment, and the duration they last. The authors proposed
a decision-making framework for IRS that optimizes the
responses based on some attributes namely attack damage,
deployment cost, negative impact, and security benefit and
proposed a GA with Three-dimensional Encoding to solve
the problem. However, solving the four problems altogether
by a GA takes a long time to converge considering all the
random options that an individual can take. There have
also been other GA-based solutions for countermeasure
selection problems [19]. However, all these studies applying
evolutionary-based methods accept the risk of receiving
only near-optimal solutions after going through many it-
erations.

ML-based solutions for countermeasure selection have
also been explored. Authors in [20] studied the applica-
bility of Deep Reinforcement Learning (DRL) for intrusion
response control on stationary systems. This work was later
extended to a non-stationary system in [21]. The system
under protection is modeled as a set of components that
possess state variables (i.e., active, updated, new version
available, corrupted, vulnerable). The DRL learns from a
simulated version of the real system and then is tested on
it in a successive phase with a reward function based on
execution time and cost of the actions executed. Experiments
compare the proposed DRL algorithm with a Q-learning
solution to demonstrate its feasibility.

Several studies also considered graph-based modeling
for the attacks and countermeasures. In [22], a framework
to respond to multi-path attacks is formulated with a pro-
posed greedy algorithm for cost-sensitive countermeasure
selection. The authors leveraged the Probabilistic Attack-
Response Tree models to represent potential attacker move-
ments and evaluate three metrics of security benefit, deploy-
ment cost, and negative impact. Similarly, in [23], authors
employed DAGs to formalize ADT, from which they ex-
tracted its defense semantics describing how the attacker
and defender may interact. They developed an open-source
tool to automate the described methodology.

A risk assessment methodology based on the application
of an Attack Graph (AG) was proposed in [24], enhancing

the standard AG-based model. Later, a heuristic approach
is introduced to compute the optimal countermeasure for
deployment while minimizing the overall risk with specific
budget constraints.

2.3 Our Observations

The described works take important steps within the re-
action strategies ecosystem. However, there are several
downsides present in the literature such as a) simplified
modeling, b) approximate solutions, c) convergence issues
in the learning-based solutions and the accuracy of the data
used to train, and d) lack of consideration of different QoS
parameters. Moreover, another important consideration in
some of the studies in the literature is that the reaction
frameworks are applied to specific scenarios leveraging a
comprehensive knowledge of the protected system. One
could argue that, in order to be generic and applicable to
several contexts, the network dynamicity in the selection
of countermeasures should be reflected in the model and
results. In other words, the security-vs-QoS trade-off should
be better reflected in the model and solution such that the
operator/security administrator can make a wise decision at
different time instants according to the network conditions,
available resources, and the threat level.

To this extent, the proposed solution in this work reflects
the above shortcomings from the literature by formulating
a joint security-vs-QoS optimization problem and strategi-
cally selecting the best remediation actions from an effective
countermeasure repository by employing a stable matching
game. We would like to highlight that the QoS-aware se-
lection problem has attracted attention from the scientific
community in different domains such as device-to-device
communication in cellular networks, contention-based net-
works, quantum technology, and also cybersecurity, [25],
[26], [27], [28], [29]. Numerous papers in the literature have
employed game-theoretical approaches to address joint se-
curity and QoS problems [27]. However, the distinctiveness
of our paper lies in the novel problem formulation and the
utilization of Gale-Shapley Stable Matching to address the
Security-vs-QoS problem within the context of IRSs for 5G
networks and beyond.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In order to protect a network against attacks, it is vital
to design IRSs and make appropriate response decisions
to dynamically eliminate potential consequences, reduce
security risks, and at the same time consider their impact
on the QoS costs [30]. These remediations intend to pro-
tect the infrastructure and more specifically the network
nodes/assets, which include, the IoT devices, base stations,
servers, SDN controller, and network functions, denoted
as U = {u1, . . . , un, . . . uN}. Each of these nodes can be
attacked from different layers, i.e., hardware, firmware,
operating system, application and etc. In the following, we
introduce the security and QoS models separately and later
formulate the joint security-vs-QoS problem for counter-
measure selection. Please note that in the following sections,
the terms mitigation action, remediation, and security coun-
termeasures are used interchangeably.
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3.1 Security Model

Let us assume there exist A types of attacks in the system,
where ωa shows attack type a (e.g. DoS or eavesdropping).
For each attack type, we consider a mitigation action list
that shows the possible countermeasure types that can be
taken. To address an attack type across all the affected
nodes, different instantiations of a countermeasure type
might need to be deployed. For instance, the reconfiguration
of a node for more robustness is a countermeasure type where
this reconfiguration can vary across different nodes. Hence,
in the rest of the paper to facilitate ease of writing, the
terms attack and countermeasures refer to attack types and
countermeasure types, respectively. Let us define L(a) as
the list of countermeasures that can be taken for attack a as

L(a) = {θc|U
na
c = 1, ∀un ∈ U} (1)

where U
na
c is an indicator function which is 1 if countermea-

sure c addresses the a-th attack on node n and θc is the c-th
countermeasure that can be taken for the a-th attack. Let us
show C as the total number of system countermeasures to

address all attacks, i.e., |
⋃A

a=1 L(a)| = C .
Each countermeasure addresses at least one attack. Let

us show the attacks the c-th countermeasure can address as

W(θc) = {ωa|U
na
c = 1, ∀un ∈ U} (2)

where, |W(θc)| > 0, ∀θc. On the other hand, one attack
might affect different nodes across the network. We define
the list of all of the attacks in the network (across all nodes)
that a generic c-th countermeasure can address, as

V(θc) = {van|U
na
c = 1, ∀un ∈ U} (3)

where van represents an attack of type a detected on the n-th
node, that can be addressed by countermeasure θc.

Let us define L̄ as the set of selected atomic countermea-
sures to address the detected attacks in the network, where
|L̄| ≥ 0. Then the total number of addressed attacks in the

network is
∣

∣

∣

⋃

θc∈L̄ V(θc)
∣

∣

∣.

IDSs provide risk assessment metrics such as the severity
and probability of the attacks. Exploiting this information
the Risk Factor (RF) for the a-th attack can be driven as
Ra = S(a) · P (a), where 0 ≤ P (a) ≤ 1 is the probabil-
ity/likelihood of occurrence of an attack and S(a) ∈ [0 10]
is its severity. IDSs can also assess how much security
is improved if a specific security enhancement is applied,
which in turn assists the IRSs in relatively quantifying the
effectiveness of different countermeasures [6]. After taking a
countermeasure both severity and probability matrices will
be updated to see how effective the selected countermeasure
is. In the rest of the paper, we only focus on the RF as
it represents how severe and probable an attack is. Let us
show R̄a(θc) as the updated RF of the a-th attack after tak-
ing the countermeasure and Ra as the RF before taking the
countermeasure. As part of the threat mitigation process, we
would like to reduce the updated RF as much as possible by
taking the most suitable countermeasure, hence we define
∆Ra(θc) = Ra− R̄a(θc) as the gap between the initial value
of RF and the updated RF that should be maximized. It
should be noted that ∆Ra(θc) > 0, i.e., the updated RF

for those addressed attacks after taking a countermeasure is
always reduced.

On the other hand, since the nodes in the network have
different importance, we consider a priority-aware security
utility function and define the overall security utility func-
tion for those selected atomic countermeasures as

∑

θc∈L̄

∑N
n=1

∑A
a=1 αn∆Ra(θc)

∑N
n=1

∑A
a=1 αnRa

(4)

The nodes’ coefficients (0 < αn ≤ 1) show the importance
of each of the network nodes, e.g., an SDN controller has
a higher coefficient than an IoT device. This ensures we
prioritize reducing the RF for more important network
nodes. Eq. (4) calculates the weighted reduced RF of those
addressed attacks across the nodes over the weighted initial
RF values.

3.2 Time and Energy Considerations

The implementation of countermeasures exhausts some re-
sources. For instance, the response dropping the malicious
commands consumes computer CPU and memory resources
to analyze protocol data units of communication messages,
along with consuming storage resources for recording all
known attack signatures [6]. Hence, there will be some
energy consumption and time spent in both the prepara-
tion and deployment phases of applying countermeasures.
Assuming the countermeasures are deployed sequentially,
we define time as the time duration spent for applying
the cth countermeasure and formulate it as T tot(θc) =
T pre(θc) + T dep(θc), where T pre(θc) is the time spent for
the preparation of the countermeasure (officially termed as
service preparation time), and T dep(θc) is the time spent for
the deployment of the countermeasure (commonly termed
as service deployment time). Countermeasure deployment can
be manual or automatic (deployed by the system); however,
here we focus on the automatic deployment of counter-
measures. Thus, the overall time for those selected atomic
countermeasures can be written as

∑

θc∈L̄

T tot(θc) (5)

On the other hand, the total energy consumption by
the system for the lth countermeasure can be written as
Etot(θc) = Epre(θc)+Edep(θc), where Epre(θc) is the system
energy consumption for preparation of the countermeasure
and Edep(θc) is the system energy consumption for the
deployment of the countermeasure. Hence, we can define
the overall energy consumption for those selected atomic
countermeasures as

∑

θc∈L̄

Etot(θc) (6)

3.3 Monetary Cost Consideration

The defense cost is an important reference index in secu-
rity countermeasure selection problems. For instance, the
defense cost for the ADTree of a small network system with
15 attack nodes can reach $300,000, which is a heavy burden
for small and mid-sized enterprises [7]. Thus, the monetary
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cost of a reaction (including fixed and variable costs) is an
important metric, which can include hardware equipment,
software development, labor, license, or loss resulting from
users’ dissatisfaction. In this regard, deprivation cost is also
defined as the economic valuation of the post-disaster (i.e.,
cyber attacker) human suffering (i.e., attacked firms’ loss)
associated with a lack of access to a good/service [31]. For
instance, a DoS attack can cause a degradation of service on
an ISP’s network, resulting in service level agreements being
violated. A cost could be reimbursements to customer net-
works. The same incident might lead to a loss of reputation
for the ISP, which is a qualitative impact 2. Let us denote
Ψtot(θc) as the monetary cost of taking cth countermeasure
including the above-mentioned factors.

3.4 Problem Formulation

Having defined the security and QoS models, the joint
security-vs-QoS utility function for an atomic countermea-
sure is defined as

Υ(θc) =

∑N
n=1

∑A
a=1

αn∆Ra(θc)∑
N
n=1

∑
A
a=1

αnRa

β1T tot(θc) + β2Etot(θc) + β3Ψtot(θc)
(7)

where β∗ refers to the coefficient of the QoS parameters such
that

∑3
i=1 βi = 1. As the countermeasure selection problem

is restricted by QoS costs, the IRS might not always be able
to address all the attacks at once in a large network. On
the other hand, best efforts should be made to minimize the
assets’ exposure to threats. The goal of the joint security-
vs-QoS optimization problem is to optimize the IRMs by
selecting the most suitable countermeasures in order to
maximize (a) the joint utility function, and (b) the number
of addressed attacks across the nodes. Hence, we define

P1 : max
L̄

{

∑

∀θc∈L̄

Υ(θc),

∣

∣

∣

∣

⋃

∀θc∈L̄

V(θc)

∣

∣

∣

∣

}

(8)

subject to

C1.1 :
∑

∀θc∈L̄

Ψtot(θc) < ξ (9)

The objective function (8) targets to find the best counter-
measures to be selected in the decision vector L̄ to jointly
maximize the utility function and the number of addressed
attacks across the nodes. Constraint (9) represents the maxi-
mum monetary budget for taking countermeasures.

Problem P1 is a bi-objective optimization problem. In
order to solve the problem we employ an ϵ-constraint
method. The ϵ-constraint method generates single objective
sub-problems by transforming all but one objective into
constraints [32]. As our problem is a bi-objective optimiza-
tion problem, this is a good method, as it can generate
the exact Pareto front by varying the upper-bound of the
new constraint3. This method has been broadly used in the
literature [33]. Hence, by following the ϵ-constraint approach
we transform P1 to P2 as below:

2. More detailed modeling can be considered to extend the monetary
cost representation, however, this is out of the scope of this research.

3. The impact of varying upper-bounds will be studied in the simu-
lation results section

P2 : max
L̄

{

∑

∀θc∈L̄

Υ(θc)

}

(10)

subject to

C2.1 :
∑

∀θc∈L̄

Ψtot(θc) < ξ (11)

C2.2 :

∣

∣

∣

∣

⋃

∀θc∈L̄

V(θc)

∣

∣

∣

∣

≥ M̄ (12)

In P2, a new bounded constraint C2.2 is defined which
was one of the objectives in P1, indicating the number of
addressed attacks across all nodes shall be larger than the
threshold M̄ .

The optimization problem aims at taking the most suit-
able set of countermeasures from the mitigation action list
in order to maximize the joint utility function of the system
and addresses a minimum of a certain number of attacks by
a maximum defined monetary budget. Different coefficients
for QoS parameters in (7) enforce to outweigh some of the
objectives (based on the network condition), which can be
set dynamically at different time instants according to our
priorities/preferences of the objectives.

4 MANY-TO-ONE-STABLE MATCHING SOLUTION

In this section, we propose assigning/matching the coun-
termeasures to the attacks by a framework that considers
stability as the solution concept instead of optimality. The
applied framework involves a two-sided matching game.
A Stable Matching Problem (SMP) is produced by a dis-
tributed process that matches together preference relations
of the two sides that are of the same size. The order of
preferences is given by the strictly ranked rate utilities
of the two sides [34]. SM solutions have been broadly
used in wireless networks for problem-solving [35]. In our
problem, however, the number of detected attacks might be
different from the number of countermeasures (i.e., different
set sizes), which means we need to seek a many-to-one
generalization of SMP called the HR problem [36].

4.1 Hospital/Residents Model

In the HR problem, each hospital has one or more posts to be
filled, and a preference list ranking a subset of the residents.
Likewise, each resident has a preference list ranking a subset
of the hospitals. The capacity of a hospital is its number
of available posts. We need to match each resident to at
most one hospital such that no hospital exceeds its capacity
threshold while observing the stability conditions [36]. We
can map the residents to the attacks and the hospitals to the
countermeasures, and design an SM between the two sides
in order to mitigate the attacks’ impact on the system.

The SMP is modeled by the tuple
〈

A, C, {Ua}a∈A, {Uc}c∈C , {qc}c∈C

〉

, where A is the set
of attacks, C is the set of countermeasures, {Ua} and {Uc}
are the utility functions of attacks and countermeasures, and
{qc} are the quotas associated with each countermeasure
representing the maximum number of attacks they can
address, where in our work is equal to the W(θc), i.e.,
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no limitations on capacity. Let us introduce the following
definitions [37]:

Definition 1. A Matching M is from the set A ∪ C into the
set of unordered family of elements A ∪ C such that:

1) |M(a)| = 1, ∀a ∈ A
2) 1 ≤ |M(c)| ≤ qc, ∀c ∈ C
3) M(a) = c if and only if a ∈ M(c).

In Definition 1, the first criterion means each attack
(resident) is matched to one countermeasure4 (hospital), and
the second one means each countermeasure has a maximum
capacity of qc as the number of attacks it can address, and
the last criterion means a countermeasure c is the match
for attack a, iff the attack a is in the preference list of
countermeasure c (i.e., a is acceptable to c). It should be
noted that we have set qc = W(θc) and this guarantees that
no countermeasure will be over-subscribed.

Definition 2. The matching M is blocked by the pair (a, c) ∈
A× C if the following conditions are satisfied

1) a and c find each other acceptable
2) Ua(c) > Ua(M(a))
3) either |M(c)| < qc and Uc(a) > 0
4) or Uc(a) > Uc(a

′) for some a′ ∈ M(c)

According to Definition 2 if conditions (1), (2), and either
of (3) or (4) occur that means either of the sides prefers each
other over their current matching.

Definition 3. A Matching M is stable if it admits no block-
ing pair.

The stability as a criterion for matching ensures that nei-
ther side of the game has the incentive to improve outside
of the matching scheme.

Let us define the cost function of an attack as:

Ua(c) =β1

(

T tot
ca − xmin

xmax − xmin

)

+ β2

(

Etot
ca − xmin

xmax − xmin

)

+

β3

(

Ψtot
ca − xmin

xmax − xmin

)

(13)

and the utility function of a countermeasure as

Uc(a) =

∑Na

n=1 αn∆Rca
∑Na

n=1 αnRa

(14)

where xmax and xmin denote the maximum and minimum
value of the respective QoS parameter (provided in Table 1),
∑3

i=1 β = 1, and Na is the number of nodes with attack a.
Let us define xca ∈ {0, 1} as a decision variable meaning

if countermeasure c and attack a are matched. Then the
problem P2 can be reformulated in the form of an SMP
as

P3 : max
x

{

C
∑

c=1

A
∑

a=1

(

Uc(a)

Ua(c)

)

xca

}

(15)

4. We would like to emphasize that our proposed HR model is
inherently flexible and allows accommodating scenarios involving the
combination of multiple countermeasures to address a single attack by
considering them as a separate countermeasure.

subject to

C3.1 :
C
∑

c=1

A
∑

a=1

Ψtot(θc)xca < ξ (16)

C3.2 :
C
∑

c=1

A
∑

a=1

Naxca ≥ M̄ (17)

C3.3 :
C
∑

c=1

xca = 1, ∀a ∈ A (18)

C3.4 : xca ∈ {0, 1} (19)

where x is the matching decision vector identifying the
selected atomic countermeasures. Constraint (16) and (17)
represent the monetary cost and the minimum number of
attacks to be addressed across all nodes. Constraint (18)
assures that an attack is matched with only one countermea-
sure. Constraint (19) indicates that a countermeasure and an
attack are either matched or not (binary value). It should be
noted that Ua(c) > 0 ∀c in order to get a feasible solution.
Please note the difference between A and M̄ , where the first
shows the number of attacks and the latter the minimum
number of addressed attacks across all nodes in the network.

Remark 1. Weighting the two sides of the SMP (i.e, security and
QoS) does not have any impact on the preference list formation.
Hence, it does not yield different solutions in P3.

Remark 2. The existence of different weights on each side of
the game (if applicable) can result in different matching; hence,
different solutions in P3.

In order to solve the above SMP, we first present its
upper bound through theoretical analysis, and later propose
distributed solutions.

4.2 Theoretical Analysis

One of the most famous challenges in Combinatorial opti-
mization is the Knapsack problem, which has been proven
to be NP-Hard [38]. One of the variants of the Knapsack
problem is called the Multiple Knapsack Problem (MKP).
In MKP, there exist multiple Knapsacks each with a certain
capacity. The decision is whether an item should be selected
and if yes, to which Knapsack it should be allocated to. P3

resembles a Multiple Multi-dimensional Knapsack Problem
(MMKP), where the two dimensions are (16) and (17) and C
represents the number of Knapsacks. As MMKP is also NP-
hard, similar to [39], we derive the upper bound and discuss
the exact solution by employing the decomposition and BB
techniques as the dynamic alternative approaches require
huge memory requirements.

As the main challenge in BB algorithm is the determina-
tion of the upper bound, we only focus on the derivation of
the upper bound of P3. The upper bound for the standard
Knapsack problem has been calculated by greedy algo-
rithms [38]. Hence we decompose the MMKP into several
simple standard Knapsack problems and the upper bound
of the original P3, which is an MMKP, can be obtained by
solving the sub-problems in parallel. We first relax two of
the constraints in P3 and rewrite it as
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P4 : max
x

L(x, ρ,ϑ) =
C
∑

c=1

A
∑

a=1

(

Uc(a)

Ua(c)

)

xca (20)

+ ρ

(

C
∑

c=1

A
∑

a=1

Naxca − M̄

)

+
A
∑

a=1

ϑa

(

C
∑

c=1

xca − 1
)

subject to C3.1 and C3.4, where ρ and ϑ = [ϑ1, . . . ϑA]
are the dual variables associated with constraints C3.2
and C3.3, respectively. The optimum value of P4 is an
upper bound of the optimum value of P3 for arbitrary non-
negative ρ and ϑ ∈ RA. To further gain a tight upper bound,
we have to optimize P4 for the dual variables as

P5 : g(ρ,ϑ) = min
ρ>0,ϑ

L(x, ρ,ϑ) (21)

subject to C3.1 and C3.4. Considering P4 we can rewrite
L(x, ρ,ϑ) as

L(x, ρ,ϑ) =
C
∑

c=1

A
∑

a=1

Uc(a)

Ua(c)
xca + ρ

C
∑

c=1

A
∑

v=1

Naxca (22)

− ρM̄ +
C
∑

c=1

A
∑

a=1

ϑaxca −
A
∑

a=1

ϑa

=
C
∑

c=1

{

A
∑

a=1

(

Uc(a)

Ua(c)
+ ρNa + ϑa

)

xca

}

− ρM̄ −
A
∑

a=1

ϑa

Obviously, the upper bound of the original MMKP can
be computed by decomposing equation (22) into C standard
Knapsack problems in parallel that can significantly reduce
the computing power. In the simplest case, a sub-problem
for each countermeasure c can be written as the following
minimization problem

P6 : min
x

A
∑

a=1

(

Uc(a)

Ua(c)
+ ρNa + ϑa

)

xca (23)

subject to C3.1 and C3.4
Denote the minimum value of each c-th sub-problem

as µc, the summation of each minimum value of the c-th
sub-problem of P6 plus the last two terms in (22) gives the
upper bound of the original MMKP in P3 as

C
∑

c=1

µc − ρM̄ −
A
∑

a=1

ϑa (24)

The solution to (24) can be calculated efficiently due to the
greedy choice property possessed by the standard Knapsack
problem; hence, convergence is guaranteed. Now we can
rewrite P5 as

P7 : g(ρ,ϑ) = min
ρ>0,ϑ

(

C
∑

c=1

µc − ρM̄ −
A
∑

a=1

ϑa

)

(25)

subject to C3.1 and C3.4. Please note that the process of
obtaining the optimal dual variables for P7 and the rest of

the BB algorithm follow the standard procedure, and thus
will not be discussed here.

4.3 Distributed Stable Matching-based Solution

In this section, we propose two algorithms to solve the for-
mulated SMP by considering the constraints in our problem.
Each of these algorithms considers the preference of one
side of the game. Hence, we introduce an Attack-oriented
SM (ASM) algorithm and a Countermeasure-oriented SM
(CSM) algorithm.

In order to respect the constraint C3.2 in our SM solu-
tions, we first consider a pre-processing step. As illustrated
in Alg. 1 among all the possible countermeasures sets (that
form a solution) combination that can be taken for address-
ing the attacks, we select those solutions that can cover a
minimum of a certain number of attacks in the network as
feasible solutions. This allows us to ensure the constraint
C3.2 is always respected and the complexity of the SM
solution algorithms will be reduced by solving the problem
only for the feasible solutions instead of all solutions. Then
these feasible solutions, S , are passed to the SM algorithms
to find the matching solutions.

Algorithm 1 Feasible Solution Formation

Input: C, M̄
Output: S
1: for each i = 1 to C do
2: Y ← all

(

C
i

)

countermeasure solution combinations
3: for each solution j in Y do
4: if

∑

c∈Yj

∑A
a=1 xcaNa ≥ M̄ then

5: S ← Yj

6: end if
7: end for
8: end for

We adopt the Gale-Shapley algorithms [36], [40] and
propose two algorithms which are namely ASM and CSM.
The difference between the two algorithms lies in the fact
that which side’s preference is considered for the matching.
The preference lists of ASM and CSM are composed using
(13) and (14), respectively. Alg. 2 shows the ASM solution
which finds the matching for each feasible solution in S . The
algorithm continues matching each attack with its highest
preferences until the required number of attacks across the
nodes is covered.

Algorithm 2 Attack-oriented SM Algorithm

Input: Preference list of V and C
Output: ASM solution covering a minimum of M̄ attacks

Initialization phase:
1: initialize all of the a ∈ A and c ∈ C to be free

Matching evaluation:

2: while
(

∑C
c=1

∑A
a=1 xcaNa

)

< M̄ do

3: c := first countermeasure on a’s list
4: M = M ∪ {(a, c)}
5: end while

In Alg.3, on the other hand, after a countermeasure
proposes an attack and they are matched, any successor
countermeasure is removed from the attack’s list. This is
due to the fact that the newly matched attack will not prefer
any of the successor countermeasures in the future over
the one to which it is matched (as it has lower preferences
for them). This shortens the SM solution space, as each
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countermeasure does not propose those attacks to which it
cannot match. The CSM Algorithm is performed vertically,
i.e., matching the first preference of each of the countermea-
sures, then their second preference and etc., as it results in
better performance and it is more fair w.r.t. the horizontal
matching when the coverage of the attacks is supposed
to be performed partially, i.e., C3.2. However, when the
percentage of the covered attacks across the nodes is 100%
both perspectives (i.e., vertical and horizontal matching)
result in the same solution.

Algorithm 3 Countermeasure-oriented SM Algorithm

Input: Preference list of A and C
Output: CSM solution covering a minimum of M̄ attacks

Initialization phase:
1: initialize all of the a ∈ A and c ∈ C to be free

Matching evaluation:

2: while
(

∑C
c=1

∑A
a=1 xcaNa

)

< M̄ do

3: a := first attack on c’s list
4: if a is already assigned to c′ then
5: M = M \ {(a, c′)};
6: end if
7: M = M ∪ {(a, c)}
8: for each successor of c′ of c on a’s list do
9: delete the pair (a, c′);

10: end for
11: end while

The overall steps for our proposed solution is shown
in Alg. 4. First the feasible solution set is formed, then the
result of the SM (either ASM or CSM) is stored and after
performing this process for all the feasible solutions, the one
that respects C3.1 and maximizes P3 is the final solution.

Algorithm 4 The proposed Solution

Input: C, M̄ , preference lists
Output: Solution of P3

1: Run Alg.1 to obtain the set S
2: for each i in S do
3: Run Alg.2 or to Alg.3 to solve the SM problem
4: M←Mi

5: end for

6: return argmaxM∈M

{

∑C
c=1

∑A
a=1 xca

(

Uc(a)
Ua(c)

)}

s.t. C3.1

The time complexity of Alg. 4 is O(C|Y | + |S|CA). The
complexity of Line 1 (i.e., Alg.1) is O(C|Y |). The complexity
of Alg.2 or Alg.3 is O(CA), which shows the dimension
of the preference lists [41]. The SM algorithms provide a
good sub-optimal solution as has been demonstrated in the
literature [42].

The outcomes of the two algorithms are not necessarily
equal. In the ASM solution, the attacks are allocated to their
most preferred countermeasure as the countermeasures do
not become over-subscribed, hence, the ASM algorithm
gives the best QoS-wise SM solution. However, in the CSM
solution, the countermeasures propose the attacks according
to their preferences (i.e., security) and they are matched if
this is the best proposal it has received (in terms of QoS).
Hence, the solution of CSM is more balanced in terms of
security and QoS.

Proposition 1. ASM and CSM respect all the criteria of a
matching game.

Proof. We need to ensure the three criteria in Definition 1
are respected. C3.3 guarantees that the first criterion in
Definition 1 is respected for both ASM and CSM algorithms.
Moreover, as we assume the number of attacks matched
with a countermeasure cannot exceed the capacity of the
countermeasure, criterion 2 is also respected. Finally, the
third criterion in Definition 1 is also respected as each
matching pair is performed following the preference lists
of the two sides, i.e., they are in each other’s preference
list iff the two sides are acceptable to each other. Thus, the
proposition is proved.

Proposition 2. The ASM and CSM algorithms are stable for full
attack coverage.

Proof. In order to prove the stability of the two algorithms,
the blocking situations defined in Definition 2 need to be
avoided. Suppose (a1, c1) and (a2, c2) are the results of
the CSM algorithm. Let us assume c2 prefers a1 over its
matching (which is a2). This means c2 must have proposed
to a1 before proposing to a2 due to the functionality of
the Gale-Shapley algorithm. Since c2 proposed to a2 at some
point, a1 must have rejected c2. This signifies at the time
of rejection, a1 preferred some c′ over c2. From the output
of this matching example, it can be observed that a1 has
chosen c1 over the rest of its matching preferences including
c2. Thus, a1 would not break up with c1 to match with c2. As
the proposed algorithm terminates either when all counter-
measures are matched to attacks or every unmatched coun-
termeasure has been rejected by every acceptable attack.
Therefore, the algorithm terminates after a finite number
of steps. A similar example can be provided for ASM
algorithm. As ASM and CSM algorithms respect Definition
2, the proposed algorithms result in a stable matching for
full attack coverage. Thus, the proof is completed.

As demonstrated in Propositions 1 and 2, the proposed
algorithms meet all the criteria of a matching game, with
the absence of blocking pairs; hence, the matching solution
is stable for full attack coverage. In this paper, the prefer-
ence lists of the attacks and countermeasures are based on
specific payoffs or objectives (i.e., (13) and (14)) that indi-
viduals aim to maximize. These preferences can be seen as a
strategy within the framework of a non-cooperative game.
In other words, participants’ preferences are not only static
rankings but rather strategic decisions, such as rejecting a
match, aimed at optimizing the overall payoffs within the
constraints of the stable matching algorithm. This allows for
analyzing stable matching as a non-cooperative game where
individuals strategically choose their preferences to achieve
more favourable outcomes. It is well known that a Nash
equilibrium is a theoretical solution to a non-cooperative
game [43], [44]. In this particular problem, a Nash equilib-
rium, within the defined game, is a stable matching between
countermeasures and attacks [40], [44].

The partial coverage case may lead to an unstable
matching but with higher coverage percentage, this will be
significantly reduced. However, this problem can still be
addressed, which is discussed in Section 5.5.

Proposition 3. There can be multiple potential matching solu-
tions when

∑

a Na > M̄
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Fig. 1. Preference Lists of Countermeasures and attacks

Fig. 2. Matching Solutions

Proof. Due to the nature of partial attack coverage of C3.2
(i.e., the case

∑

a Na > M̄ ) and the fact that the SM
algorithms can be executed in different orders (i.e., starting
the game from a different attack or countermeasure), the
outcome can form a Pareto set of solutions.

Here we provide an example to prove this. Let us assume
A = 10, C = 3 and M̄ = 80%. Let us for simplicity
consider there are 10 nodes in the network that have each of
these attacks. Fig. 1 shows the preference lists of the attacks
and countermeasures. Solving the problem with different
starting points (starting from c1, c2 and c3) using Alg. 3
we obtain the matching results as shown in Fig. 2. As seen
there can be three possible matchings of M1, M2, and M3.
It should be noted that Alg. 3 stops when the number of
covered attacks across the nodes reaches a minimum of
80%. As seen, starting the CSM algorithm from different
starting points results in different matching solutions. The
same applies to the ASM algorithm.

5 SIMULATION RESULTS

We evaluate the performance of the proposed game
theoretical-based methods by simulations performed in
MATLAB. Table 1 summarizes the simulation parameters.
By analyzing several attack types targeting different net-
works (IP network, IoT, mobile networks, among others),
their impact in terms of security, and the potential counter-
measures to mitigate their impact, we noticed the presence
of variability in the data. Therefore, in order to reflect
this variability of inputs, we consider randomly generated
values as given in Table 1 to avoid unrealistic scenarios
for the evaluation of the proposed solutions. Furthermore,
in Section 5.6, we assess the effectiveness of the proposed
solution by comparing its performance against other bench-
marks. This evaluation involves aligning attack scenarios,
countermeasures, and QoS and security values with realistic
5G scenarios. In the following, the performance of the two
algorithms is evaluated by the impact of different parame-
ters on the joint utility function, security utility, or QoS cost
values. Please note that in the following sub-sections, we
differentiate the terms attack which is on a specific node,
and the attack types (e.g., DoS).

TABLE 1
Simulation Setting

Parameter Value
# of devices (N ) 100
# of attack types (A) [20 25 30 35 40]
# of countermeasure types (C) [4 6 8 10 12]
Time, Energy, Monetary cost, Security [0 1]
% of covered attacks (M̄ ) [50 60 70 80 90 100]%
Monetary budget (ξ) [4-12]

(a) ASM Alg.

(b) CSM Alg.

Fig. 3. Impact of β on the QoS cost of the two algorithms

5.1 Impact of β on the QoS costs parameters

Fig. 3 shows the impact of QoS coefficients on the cost of
each of the QoS parameters (see Remark 2). This figure is
the average result of 1000 simulation runs, where we relax
A = 10, C = 4, M̄ = 90%, and ξ = 6, respectively. As
seen, in both Figs. 3a and 3b when β1, β2 and β3 are set
the highest value, i.e., 0.9, the lowest value of time, energy,
and monetary cost, respectively, can be obtained. This is due
to the impact of the coefficient in the matching result. For
instance, when β1 = 0.9, each attack type prioritizes time
more than the other QoS parameters for their preference
list formation, which results in a more time-aware matching
solution. The same energy and cost minimization can be
observed by setting β2 and β3 to the highest weight. How-
ever, when the coefficients are equal (the last set of bars),
the obtained SM solutions have the same time, energy, and
monetary cost values too. Finally, the SM solutions obtained
from the ASM algorithm have slightly lower (i.e., better)
QoS costs than the CSM algorithm. This is because the CSM
algorithm prioritizes security more than QoS.

5.2 Impact of monetary budget on the QoS/Monetary

Costs and Security Utility

Figs. 4a and 4b depict the impact of the monetary budget
(see Constraint (16)) on the QoS/Monetary costs and se-
curity utility, respectively, of the two ASM and CSM algo-
rithms. This figure is the average result of 200 simulation
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(a) QoS/Monetary Cost (b) Security Utility

Fig. 4. Impact of monetary budget on the joint objective function, QoS,
and security of the two algorithms

runs, where we relax A = 20, C = 10, βi = 0.33, and
M̄ = 100%.

The first observation is that the ASM algorithm has
lower QoS costs than the CSM algorithm as it prioritizes
the QoS for the matching (Figs. 4a). On the other hand, the
CSM Algorithm outperforms the ASM Algorithm in terms
of security utility as it prioritizes security for the matching
Figs. 4b. The impact of monetary costs is directly reflected
in both QoS costs and security utility as it restricts the
optimization in finding a solution that optimizes the joint
objective function in P3. As seen in Fig. 4b as the monetary
budget increases it brings higher options (larger solution
pool) for the P3; thus, higher security utility can also be
obtained, however, it also increases the QoS costs, as seen
in Fig. 4a. Therefore, this is a trade-off to be considered.
Please note that the QoS costs, as defined in Eq.(13), include
time, energy, and monetary costs where each parameter
is multiplied by a β∗ = 0.33. The other observation is
that even though the monetary costs are increasing up to
12, the matching algorithms do not select solutions with
a cost higher than 8/10 for ASM/CSM algorithm as those
solutions do not optimize P3 (due to the higher QoS costs).
These figures indicate that in order to cover 100% of the
attacks across the nodes while there are 20 different attack
types and 10 countermeasures in hand, a monetary cost in
the [4 10] range is needed, a higher monetary cost5 is not
necessary. This implies if the monetary budget is restricted
to 4, the maximum security that can be obtained from the
solution is 13.7 and 14.7 for ASM and CSM algorithms.

5.3 Impact of number of attack types and countermea-

sure types on the utility and cost values

Figs. 5a and 5b depict the average joint utility per attack
(across the nodes) when impacted by various numbers of
attack and countermeasure types. Each of the points in these
figures represents the average of 200 simulation experiments
where in each experiment random security and QoS values

5. A lower monetary cost does not allow for finding a feasible
solution most of the times; thus, not suitable to consider

are generated for fairness. In order to focus on the impact
of the number of attack and countermeasure types, we relax
the βi = 0.33, M̄ = 90%, and ξ = 15. This experiment
answers the question ”Do we receive a higher joint utility for
each attack (across nodes) if there are more countermeasure
and attack types in the network?”. As seen, increasing
the number of countermeasure types increases the average
attack (across the nodes) utility and by the increase in the
number of attack types, the average attack (across nodes)
utility remains quite stable. In order to better understand
the reason we have plotted Fig. 6.

Fig 6 depicts the impact of the number of attack and
countermeasure types on the security and QoS of the so-
lutions obtained by the two algorithms, where the results
show the average of 200 simulation experiments. By taking
a closer observation on fig 6a and 6b we can see that as
the number of countermeasure types increases, there will
be lower QoS costs per attack. This is because each attack
type has wider options to choose from (or be chosen for
the CSM algorithm); hence, a higher chance to match to a
countermeasure type with lower QoS cost. Increasing the
number of countermeasure types also increases the security
per attack for the same reason.

On the other hand, as the number of attack types in the
system increases, the average security utility per attack in
the system slightly decreases and QoS remains quite stable.
This is because there are a fixed number of countermeasure
types to address more attack types. However, as seen when
the number of countermeasure types is 12, the QoS cost is
the least, and security utility is the most in both Figs. 6a and
6b. Finally, it can be observed that Fig.6b depicts a higher
security value as it is obtained by a CSM algorithm and
Fig.6a has lower QoS costs as it is obtained by the ASM
algorithm.

5.4 Impact of the percentage of covered attacks on

objective function

Fig. 7 depicts the impact of Constraint (17) on the joint
objective, QoS, and security of the two ASM and CSM al-
gorithms. This figure is the average result of 500 simulation
experiments, where we relax A = 10, C = 4, ξ = 6, and
βi = 0.33.

There are mainly two points that can be observed from
the figures. First, as the percentage of covered attacks (across
the nodes) increases, there is higher QoS costs, higher secu-
rity utility, and higher joint utility value, which is expected.
Second, the ASM algorithm has lower QoS costs due to the
priority given to the QoS when performing the matching,
and the CSM algorithm has higher security utility due to
the priority given to the security objective when performing
the matching. In the joint objective figure, however, the
CSM algorithm performs better when it considers the ratio
of security utility and QoS costs. Remarkably, the trade-off
can be clearly observed as the graph in Fig.7b (QoS costs)
complements the graph in Fig.7c (security Utility), resulting
in a perfect matching. Finally, an SM is guaranteed for the
case of M̄ = 100%.

5.5 Pareto Front Solutions

As discussed in Proposition 3, for the case of partial attack
coverage (across the nodes), the obtained solution might not
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(a) ASM Alg.

(b) CSM Alg.

Fig. 5. Impact of number of attack and countermeasure types on the
utility (Per attack) of the two algorithms

be stable; hence, the algorithms might produce several so-
lutions each by executing P3 from different starting points.
Each of these solutions might result in a better objective
than the other (i.e., security or QoS). In this sub-section,
we perform simulation results for this special case. In such
a case, the quality of a solution can be determined by its
Pareto-dominance with respect to other solutions [45]. In
particular, let Φ = {Φ1,Φ2, ...,ΦZ} be the set of solutions
(from the zth starting point), where Φz is the zth solution,
and Z is the total number of generated solutions. Consider-
ing two solutions, say Φ1 and Φ2, for a given problem with
S conflicting objectives, say Os (for all s ∈ [1, S]), we define
Pareto-dominance as follows:

Definition 4. Let Os(Φ) be the value of the objective function
for the s-th objective evaluated at some solution Φ. Then Φ1 is
said to Pareto-dominate Φ2 (i.e., Φ1 ≻ Φ2) if Os(Φ1) ≤ Os(Φ2)
for all s ∈ [1, S], and there exists some p ∈ [1, S] such that
Op(Φ1) < Op(Φ2).

In our problem, S = 2 represents the two security and
QoS objectives, and Os represents the value of the objectives
as defined in (13) and (14). We have set A = 20, C = 4,
ξ = 7, and M̄ = 80%. Fig.8 depicts three solution sets
(for P3) composed of different atomic countermeasures,
i.e, {1,2,4}, {2,3,4} and {1,2,3,4} to be taken to address
the attacks. These are the only feasible solution sets to

(a) ASM Alg.

(b) CSM Alg.

Fig. 6. Impact of number of attack and countermeasure types on per
attack security and QoS of the two algorithms

cover a minimum of 80% of the attacks (across the nodes)
with different objective values, where each of these feasible
solution sets can result in different solutions when executing
P3 from different starting points.

The red and blue points represent these different so-
lutions (i.e., Φz as defined in Def.4) for ASM and CSM
algorithms. Fig.8 represents only those solutions whose
monetary cost does not violate the monetary budget in
C3.1. As seen the countermeasure-oriented solutions have
the highest security utility and the attack-oriented solutions
have the best QoS. Please note that QoS costs are negated in
this figure for a better representation of the goodness of the
Pareto Fronts. The solutions shown in the orange circle are
the (strong) Pareto optimal solutions (any change makes at
least one objective worse off), where they offer either lower
QoS cost or higher security utility.

5.6 Comparison

In this sub-section, we assess the performance of our pro-
posed solution in comparison to two benchmark scenarios.
It is essential to acknowledge that the unique problem
formulation in our work makes it challenging to identify
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(a) Joint Objective Utility

(b) QoS Cost

(c) Security Utility

Fig. 7. Impact of % of covered attacks on the joint objective function,
QoS costs, and security utility of the two algorithms

directly comparable models in the existing literature. Nev-
ertheless, we have selected the following two benchmarks
for our comparative analysis:

• SecCost: This benchmark is derived from a study
in [46], focusing on security and monetary costs.
Countermeasures with the highest effectiveness are
chosen based on the metric:

|W(θc)|P (θc)

Ψtot(θc)
(26)

where P (θc) represents the probability of preventing
an attack, normalized to a percentage. In the bench-
mark, countermeasures are selected in descending
order of their effectiveness until all attacks are cov-
ered. Subsequently, the time, energy, monetary costs
and security of the obtained solution are calculated.

• Rule-based: This benchmark represents a classical
approach commonly used as a baseline, where coun-
termeasure selection is based solely on maximizing
security.

In this section, we present experimental results conducted
using data collected within the framework of the H2020
SANCUS project [47]. The experiment incorporates a diverse
set of attacks and countermeasures, including both atomic
and non-atomic measures, tailored to 5G scenarios. The
considered attacks encompass AMF-targeted attacks, PFCP-
related attacks, and API patching, along with improper asset
management attacks. The corresponding countermeasures

TABLE 2
List of Countermeasures

Abbr. Countermeasure(s)
C1 Notify the network operator/provider
C2 Block the attacker
C3 Isolate the device
C4 Relaunch the infected node
C5 Reconfigure the VNF
C6 Replace the infected node
C7 Change the network topology
C8 Block the attacker & isolate the device

C9
Notify the network operator/provider & block the at-
tacker

C10
Notify the network operator/provider & isolate the de-
vice

C11
Notify the network operator/provider & block the at-
tacker & isolate the device

addressing these attacks are detailed in Table 2. It is note-
worthy that countermeasures C8 to C11 are non-atomic.
The attacks can be detected based on different IDMs and
the algorithm is containerized as a Virtual Machine (VM)
using Docker/Kubernetes. More information about the IDM
selection and deployment scheme of the VM within the
Management and Orchestration (MANO) framework of the
5G core can be found in [48].

We compare the selected countermeasures of our solu-
tion, denoted as SM6, with SecCost and a rule-based ap-
proach, denoted as Rule. Specifically, the selected counter-
measures are C2, C3 for SM, C7 for SecCost, and C11 for
the Rule-based approach. Fig.9 illustrates the comparison
of these three approaches in terms of security and QoS
metrics associated with the selected countermeasures and
the approaches with the best performance in each metric
are encircled in red.

The Rule selects C11, incorporating three atomic coun-
termeasures simultaneously to achieve the highest security
gain. This is evident from the first set of bars in Figure
9. However, the chosen countermeasures under the Rule
approach exhibit a substantial QoS cost, when compared
to our solution. On the other hand, SecCost factors in se-
curity and monetary costs in its countermeasure selection,
resulting in commendable performance in terms of security
and monetary cost-effectiveness. However, it demonstrates
the least favourable outcomes concerning time and energy
consumption. Our proposed SM solution strikes a balance
between security and all the QoS metrics. This results in
a security level and monetary costs comparable to those
achieved in SecCost but with significantly lower time and
energy consumption. The strength of our SM solution lies
in its ability to match each attack with a countermeasure by
considering the utility of both aspects—security and QoS.
Please note that in this experiment, the coefficients of QoS
objectives are set equally. By adjusting the associated β∗

values to favour specific QoS metrics, the selected counter-
measures may vary. This offers additional flexibility for the
operator to adapt the importance of each objective based on
specific requirements.

6. For this experiment we employ the CSM algorithm.
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(a) Feasible Solution 1 (b) Feasible Solution 2 (c) Feasible Solution 3

Fig. 8. Pareto set of Fronts of the two algorithms for each feasible solution

Fig. 9. Matching Solutions

6 CONCLUSION

This work studies the countermeasure selection problem as
part of an Intrusion Response System (IRS) by considering
a trade-off between Security and QoS. The joint problem
is formulated considering the constraints on monetary costs
and the percentage of covered detected attacks. The problem
is transformed into a stable matching model and addressed
with a Gale-Shapley solution that considers the utility of
two sides of the game, which are the attack and counter-
measure types. We first derived the upper bound for the
problem and later proposed algorithms to solve the game.
Extensive simulation results are carried out to validate the
performance of the game-theoretical solutions to see the
impact of monetary costs, percentage of covered attacks,
number of attack and countermeasure types on the joint
utility function. Moreover, the Pareto front solutions are
plotted to show the diverse feasible solutions with respect to
security and QoS objectives for the special case of non-stable
solutions.

In the future, we wish to extend this work by investigat-
ing the deployment order of countermeasures. This not only
impacts the response effectiveness in terms of risk reduction

but also impacts the time model. We also plan to study the
execution duration of the selected countermeasures and the
network area they are applied as they will impact the system
costs/utility too.
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