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Abstract

Natural languages are powerful tools wielded by human beings to communicate
information. Among their desirable properties, compositionality has been the main
focus in the context of referential games and variants, as it promises to enable
greater systematicity to the agents which would wield it. The concept of disentan-
glement has been shown to be of paramount importance to learned representations
that generalise well in deep learning, and is thought to be a necessary condition
to enable systematicity. Thus, this paper investigates how do compositionality at
the level of the emerging languages, disentanglement at the level of the learned
representations, and systematicity relate to each other in the context of visual
referential games. Firstly, we find that visual referential games that are based on the
Obverter architecture outperforms state-of-the-art unsupervised learning approach
in terms of many major disentanglement metrics. Secondly, we expand the previ-
ously proposed Positional Disentanglement (PosDis) metric for compositionality
to (re-)incorporate some concerns pertaining to informativeness and completeness
features found in the Mutual Information Gap (MIG) disentanglement metric it
stems from. This extension allows for further discrimination between the different
kind of compositional languages that emerge in the context of Obverter-based
referential games, in a way that neither the referential game accuracy nor previ-
ous metrics were able to capture. Finally we investigate whether the resulting
(emergent) systematicity, as measured by zero-shot compositional learning tests,
correlates with any of the disentanglement and compositionality metrics proposed
so far. Throughout the training process, statically significant correlation coefficients
can be found both positive and negative depending on the moment of the measure.
Thus, our results on that end are inconclusive and it shows that more theoretical
work is necessary.

1 Introduction

Visual referential games are at an interface between the language processing subfields of language
emergence, language grounding, and the computer vision subfield of unsupervised representation
learning. While language emergence raises the question of how to make artificial languages emerge
with similar properties to natural languages, or at least ‘natural-like’ protolanguages, with compo-
sitionality at the forefront of those properties[3, 21, 43, 55], language grounding is concerned with
the ability to ground the meaning of (natural) language utterances into some sensory processes, with
the visual modality being the main focus of research. On one hand, emerging artificial languages’
compositionality has been shown to further the learnability of said languages [35, 60, 8, 43] and, on
the other hand, natural languages’ compositionality promises to increase the generalisation ability
of the artificial agent that would be able to rely on them as a grounding signal, as it has been found
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to produce learned representations that generalise, when measured in terms of the data-efficiency
of subsequent transfer and/or curriculum learning [26, 49, 50, 32]. More in touch with the current
context of this study, Chaabouni et al. [12] showed that, when a specific kind of compositionality is
found in the emerging languages (the kind that scores high on the positional disentanglement (posdis)
metric for compositionality that they proposed), then it is a sufficient condition for systematicity to
emerge.

Emerging languages are far from being ‘natural-like’ protolanguages [38, 10, 11], but sufficient
conditions can be found to further the emergence of compositional languages and generalising learned
representations (e.g. Kottur et al. [38], Lazaridou et al. [42], Choi et al. [16], Bogin et al. [6], Guo
et al. [21], Korbak et al. [36], Chaabouni et al. [12], Denamganaï and Walker [18]). Nevertheless,
the ability of neural networks to generalise in a systematic fashion has been called into question,
especially when it comes to language grounding in general [28], on relational reasoning tasks [2],
or on the SCAN benchmark [41, 46, 44], and more recently the gSCAN benchmark [57]. Neural
networks induction biases have been investigated towards finding necessary conditions that favour
the emergence of systematicity [28, 59, 37, 40, 58].

Compositionality & Systematic Generalisation/Systematicity. As a concept, compositionality has
been the focus of many definition attempts. For instance, it can be defined as “the algebraic capacity
to understand and produce novel combinations from known components”(Loula et al. [46] referring
to Montague [47]) or as the property according to which “the meaning of a complex expression is a
function of the meaning of its immediate syntactic parts and the way in which they are combined” [39].
Although difficult to define, the commmunity seem to agree on the fact that it would enable learning
agents to exhibit systematic generalisation abilities (also referred to as combinatorial generalisation
[5]). Some of the ambiguities that come with those loose definitions start to be better understood and
explained, as in the work of Hupkes et al. [31]. In this paper, we will refer to compositionality as “the
ability to entertain a given thought implies the ability to entertain thoughts with semantically related
contents”[20], and thus use it interchangeably with systematicity, following the classification made
by Hupkes et al. [31].

Compositionality, as a property of languages, can be difficult to measure. Brighton and Kirby [9]’s
topographic similarity (topsim) which is acknowledged by the research community as the main
quantitative metric for compositionality [42, 21, 59, 12, 55]. Recently, taking inspiration from
disentanglement metrics, Chaabouni et al. [12] proposed two new metrics entitled posdis (positional
disentanglement metric) and bosdis (bag-of-symbols disentanglement metric), that have been shown
to be differently ‘opinionated’ in the sense that they each seem to capture different ways in which a
language can be shown to be compositional.

In accordance with Hill et al. [28], Chaabouni et al. [12] also found that compositionality is not
necessary but only sufficient to bring about systematic generalisation, as shown by the fact that
non-compositional languages wielded by symbolic (generative) referential game players were enough
to support systematic generalisation as evaluated by zero-shot compositional learning tests (in
which a set of stimuli composed of specific attributes are held-out from the training set, while
making sure that the agents are still familiarising themselves with the specific attributes in different
contexts/combinations to the held-out ones). One of the necessary conditions they found to foster
generalisation is the richness of stimuli (i.e. many possible values per attribute/latent dimension).
Therefore, in this paper, on top of measuring the different ways in which emerging languages
can be compositional, using topsim, posdis, and bosdis, we will perform zero-shot compositional
learning tests in the context of a “poorness” of stimuli, in order to measure systematic generalisation
abilities/systematicity in the most difficult context.

Disentanglement & Compositionality in Visual Referential Games. Disentanglement, as a prop-
erty of learned representations, is the objective of the unsupervised representation learning field. It
has been shown to be worthy of pursuit for disentangled learned representations are, at least, more
sample-efficient and, at best, enabling greater performance, when considering subsequent upstream
tasks [26, 24, 63]. Nevertheless, it also suffers from a definition issue [27, 19] that spawned many
different metrics with different sensibility and correlations among themselves [45].

In the context of visual referential games (as opposed to symbolic ones), we are entitled to wonder (i)
in the objective of promoting compositionality in the emerging languages, how do disentangled
learned representations relate to the emergence of compositionality, (ii) from the perspective
of unsupervised representation learning, whether some induction biases of referential games
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(a) (b)

Figure 1: (a): Illustration of a descriptive object-centric (partially-observable) 2-players/L-
signal/N = 0-round/K = 0-distractor referential game. (b): Example images of the dataset
showing the different objects (in specific viewpoints), along with a possible zero-shot compositional
learning train-test split example.

promote disentanglement, and (iii) how do disentanglement and compositionality relate with
(emergent) systematicity.

Therefore, in order to measure disentanglement, we will make use of the FactorVAE Score [33], the
Mutual Information Gap (MIG) [13], and the Modularity Score [56] as they have been shown to
be part of the metrics that correlate the least among each other by Locatello et al. [45]. Moreover,
the posdis and bosdis metrics for compositionality have been inspired by the MIG metric for
disentanglement, therefore it is relevant to verify whether compositionality as measured by the former
is correlated with disentanglement as measured by the latter. By including many metrics for both
disentanglement and compositionality, we aim to make sure to capture any correlation between the
many opinionated definitions of the concepts of disentanglement and compositionality.

Contributions. Firstly, following Chaabouni et al. [12]’s introduction of the posdis and bosdis
metrics inspired by the MIG disentangelement metric, we expand on their work by developing a
different version, more opinionated in the sense that the compositionality that it highlights is imbued
with some disentanglement concerns, we discuss the advantages and disadvantages of both versions
via the lenses of decoding and compression in Section 3. Our version finds its motivation in the need
to discriminate further between the different kind of compositional languages that emerges in the
context of obverter-based referential games, as detailed in Section 4.4.

Secondly, we show experimental results in Section 4.2 that the visual referential game paradigm
furthers strong disentanglement at the level of learned representations, outperforming the state-of-
the-art method FactorVAE. This paradigm is thus highlighted as an interestingly viable alternative to
VAE-based [25, 33, 13] and GAN-based [14] approaches to the unsupervised learning of disentangled
representations, in the context of a “poorness” of the stimuli.

Finally we investigated whether the resulting (emergent) systematicity, as measured by zero-shot
compositional learning tests, correlates with any of the disentanglement and compositionality metrics
proposed so far, in the context of visual referential games (see Section 4.5). Throughout the training
process, statistically significant correlation coefficients can be found as both positive or negative
depending on the timing of the measure. Thus, our results on that end are inconclusive, and it shows
that more theoretical work is necessary.

2 Setup

2.1 Visual Referential Games

Referential/Language games emphasise the functionality of languages, namely, the ability to ef-
ficiently communicate and coordinate between agents. Following the nomenclature proposed in
Denamganaï and Walker [17], we will focus primarily on a descriptive object-centric (partially-
observable) 2-players/L = 10-signal/N = 0-round/K = 0-distractor referential game variant, as
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illustrated in Figure 1a, with a descriptive ratio of 0.5. This ratio stands for the probability of the
target stimuli to be shown to the listener agent, while the rest of the time it is substituted for the
Descriptive Distractor(see Figure 1a).

As an object-centric referential game, as opposed to stimulus-centric, the listener and speaker agents
are not being presented with the very same target stimuli. Rather, they are being presented with
different viewpoints on the very same target object shown in the target stimuli, where the word
viewpoint ought to be understood in a very large sense. Indeed, object-centrism is implemented by
designing one of the latent axes of the dataset as a source of invariance for the concept of object, the
object-centric latent axis. Thus, the listener and speaker agents would be presented with different
stimuli that keeps the conceptual object being presented constant, i.e. that keeps constant the values
on all the other latent axes but the object-centric latent axis value. This aspect was introduced by
Choi et al. [16] (without it being of primary interest), where the pair of agents would literally be
shown potentially the same 3D objects under different viewpoint, thus thinking of object-centrism as
a viewpoint shift is historically relevant.

Concerning the communication channel, the vocabulary V is fixed with 10 ungrounded symbols,
plus an eleventh grounded symbol accounting for the end of sentence semantic, thus |V | = 11. The
maximum sentence length L is always equal to 10, thus placing our experiments in the context of
an overcomplete communication channel whose capacity is far greater than the number of different
meanings that the agents would encounter in our experiments.

We will focus exclusively on two parameterisation of the communication channel. Fisrtly, on the
Straight-Through Gumbel-Softmax (STGS) approach proposed by Havrylov and Titov [23], as it
supposedly allows a richer signal towards solving the credit assignment problem that language
emergence poses since the gradient can be backpropagated from the listener agent to the speaker
agent, while, in comparison, it cannot be backpropagated when using more commonly adopted
approaches based on REINFORCE-like algorithms [66]. And, secondly, we investigate the Obverter
approach proposed by Batali [4] and updated to the recent deep learning paradigm by Choi et al.
[16], Bogin et al. [6], for its induction bias has proven itself powerful. As a well-discussed concept in
the Theory of Mind, it posits that the speaker agent should make the assumption that the listener’s
mind operates similarly to its own, thus using its own understanding of a given utterance as a good
enough proxy of the expected listener’s understanding of the same utterance, when trying to convey a
given meaning in the obvious constraint that the listener’s state of mind is inaccessible to it.

Having described the referential game setup, the following section provides details on the architecture
of the speaker and listener agents and the dataset used1.

2.2 Agent Architectures

Each agent consist of, at least, a language module and a visual module. The listener agents also
incorporates a third decision module that combines the outputs of the other two modules. In the
case of the Obverter approach, both agents play the role of the listener from one round to another,
therefore they both incorporate it. As this work focuses on learning ‘good’ representations, we make
the architectural choice of sharing the visual module between the pairs of agents, as preliminary
experiments showed it increases sample-efficiency.

In the case of the STGS approach, while the speaker agent is prompted to produce the output string
of symbols with a Start-of-Sentence symbol and the visual module output as an initial hidden state,
the listener agent consumes the string of symbols with the null vector as the initial hidden state. In
the following subsections, we detail each module architecture in depth.

Visual Module. The visual module f(·) consists of four 3 × 3 convolutional layers with stride 2,
followed by a fully-connected layer reducing the feature maps to flattened vectors of dimension
32. The two first convolutional layers have 32 filters, whilst the last two layers have 64. Each
convolutional layer is followed by a 2D batch normalisation layer, which are found crucial in the case
of the Obverter approach (without it, training does not take off), and the resulting outputs are passed
through ReLU activation functions. The bias parameters of the convolutional layers are not used, as
it is common when using batch normalisation layers. Inputs are resized to 64 × 64, thus yielding

1For more details, please refer to our code released at: https://github.com/Near32/ReferentialGym/
tree/develop/zoo/referential-games%2Bcompositionality%2Bdisentanglement.
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feature maps of dimension 64 × 4 × 4. The input to the final fully-connected layer is a flattened
representation of dimension 1024.

Language Module. The language module g(·) consists of a one-layer GRU network [15] in the
case of the Obverter approach, and a one-layer LSTM network [29] in the case of the STGS, with
64 hidden units. In the context of the listener agent, the input message m = (mi)i∈[1,L] (produced
by the speaker agent) is represented as a string of one-hot encoded vectors of dimension |V | and
embedded in an embedding space of dimension 64 via a learned Embedding. The output of the
listener agent’s language module, gl(·), is the last hidden state of the LSTM layer or GRU layer,
hl
L = gl(mL, h

l
L−1). In the context of the speaker agent’s language module gs(·), the output is the

message m = (mi)i∈[1,L] consisting of one-hot encoded vectors of dimension |V |, which are sampled
using the STGS approach from a categorical distribution Cat(pi) where pi = Softmax(ν(hs

i )),
provided ν is an affine transformation and hs

i = gs(mi−1, h
s
i−1). h

s
0 = f(st) is the output of the

visual module, given the target stimulus st.

Decision Module. Depending on the approach, the decision module can be very different. In the
case of the STGS, similarly to Havrylov and Titov [23], the decision module builds a probability
distribution over a set of K+1 stimuli/images (s0, ..., sK), consisting of K distractor stimuli and the
target stimulus (or possibly another distractor in the case of the descriptive games), given a message
m:

p((di)i∈[0,K]|(si)i∈[0,K];m) = Softmax((hl
L · f(si)

T )i∈[0,K]). (1)

In our case though, since there are no distractors, we set K = 0, and, since the agents play a
descriptive game, a final category is added to encode the meaning/prediction that none of the K + 1
stimuli is the target stimulus that the speaker agent was ‘talking’ about. The addition is made at the
logit level as a learnable logit value, logitno−target, it is an extra parameter of the model. In this case
the decision module output is as follows:

p((di)i∈[0,K+1]|(si)i∈[0,K];m) = Softmax((hl
L · f(si)

T )i∈[0,K] ∪ {logitno−target}), (2)

where p(dK+1|(si)i∈[0,K];m) is the predicted likelihood that none of the experienced stimuli is the
target stimulus.

Similarly to Choi et al. [16], the decision module of Obverter agents is a two-layer fully-connected
network d(·) with 128 hidden units and a ReLU activation function, taking as input the concatenation
of the outputs of the visual and language modules, and outputting 2 logits for each input stimulus. The
first logit d0(si) encodes that the listener agent is experiencing the same stimulus than the speaker
agent, while the second one d1(si) encodes the negation. Given a set of K + 1 stimuli, the prediction
distribution of the listener agent is as follows:

p((di)i∈[0,K+1]|(si)i∈[0,K];m) = Softmax((d0(si))i∈[0,K] ∪ {
1

K + 1

K
∑

i=0

d1(si)}). (3)

We also experimented with taking the minimum and maximum of the set of logits that encodes
the negation, but the most efficient approach is by using an average pooling over the set of
negation-encoding logits, as presented in Equation 3.

2.3 Dataset

In the following experiments, learning agents observe visual stimuli from particular train/test splits
of a replication of the dataset used in the original work of Choi et al. [16], that we will refer to as
3DShapesPyBullet, and that we open-source (HIDDEN-FOR-REVIEW-PURPOSE).

Built in order to be employed as a benchmark for disentangled representation learning, the 3DShape-
sPyBullet dataset consists of visual representations of objects with the following attributes (illustrated
in Figure 1b): a Shape attribute with 5 different values; a Color attribute with 5 different values; a
Viewpoint attribute with 10 different values. All combinations of values along any of the generative
factors/attributes/latent axes are part of the dataset, thus yielding a dataset of size 250, which fit in
the context of the “poorness” of the stimuli. Using an object-centric referential game, we define the
Viewpoint latent axis as our object-centric latent axis.
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In order to build a zero-shot compositional learning test set, half of the possible values for each
attribute are defined as testing-purpose values. Subsequently, for every value on the Shape latent axis,
2 out of the 5 available Color values are defined as testing-purpose values for this specific Shape
value and the resulting stimuli are held-out, as shown in Figure 1b. Rather than sampling the held-out
Color values to a given Shape value in a random fashion, we make sure that they are different from
one Shape value to another and that all the possible Color values are represented at least with one
Shape value in the training set. This ensures that the agent is familiar with all the possible values on
each latent axis while remaining unaware of a subset of all the combinations possible.

The choice of defining around half of the possible values on each attribute is motivated by the results
of Bahdanau et al. [2] when evaluating for emergent systematicity: a CNN+LSTM architecture,
similar to that of ours here, has been found sufficiently challenged by such a train/test split.

In the original work of Choi et al. [16], a specific batch sampling scheme was used in order to guide
the language emergence process towards greater completeness and informativeness (see Section 3.1),
by sampling batches of stimuli with controlled amount of Descriptive Distractors that would differ
from the target exclusively in terms of the Shape or the Color attribute value, in a form of supervised
contrastive learning. We do not make use of this sampling scheme as we place ourselves in the
context of unsupervised learning, where the actual latent factors should not be known in advance.

3 Metrics

In order to measure disentanglement, we adapted to our framework the implementations of the
FactorVAE Score [33], the Mutual Information Gap (MIG) [13], and the Modularity Score [56]
from the open-source work of Locatello et al. [45]. The choice of those metrics is motivated by their
results showing that they correlate the least among each other, which we therefore understand as being
differently opinionated about what it means for learned representations to be called disentangled.

By incorporating those different opinions/definitions about both disentanglement and compositionality,
we aim to answer more thoroughly the question of finding whether disentanglement, compositionality,
and systematicity are linked in the context of (discriminative) referential games. Moreover, the posdis
and bosdis metrics for compositionality have been inspired by the MIG metric for disentanglement,
therefore it is relevant to verify whether compositionality as measured by the former is correlated
with disentanglement as measured by the latter. By including many metrics for both disentanglement
and compositionality, we aim to make sure to capture any correlation between the many opinionated
definitions of the concepts of disentanglement and compositionality.

3.1 Positional Disentanglement Metrics Formulation

As detailed in Chen et al. [13], the Mutual Information Gap (MIG) metric is defined for latent
variables (zj)j∈[1,J] and ground truth factors (vk)k∈[1;K], where J is the dimension of the model
at the level of its latent variables and K is the number of factors in the current dataset. The MIG
“enforce[s] axis-alignment by measuring the difference between the top two latent variables with
highest mutual information”, for each ground truth factor. Summing over all ground truth factors
yield the MIG score:

MIG(z, v) =
1

K

K
∑

k=1

1

H(vk)

(

I(z
j
(1)
k

; vk)− I(z
j
(2)
k

; vk)
)

(4)

where j
(l)
k is the index of the latent variable with the l-th highest mutual information with the k-th

ground truth factor, for instance z
j
(1)
k

= argmaxzjI(zj ; vk), and H(vk) refers to the entropy of the

k-th ground truth factor and is used for normalization purpose since ∀(j, k) ∈ [1, J ]× [1,K], 0 ≤
I(zj , vk) ≤ H(vk).

On the other hand, the Positional Disentanglement (posdis) metric is defined for symbol positions
within sentences (sj)j∈[1,clen] and, similarly to the MIG case, ground truth factors (vk)k∈[1;K], where
clen is the length of sentences uttered by the speaker of consideration (when omitting symbol positions
with zero entropy). The posdis is defined, on the contrary to MIG, for each symbol position sj within
sentences, and summed over those possible symbol positions that are not constant (non-null entropy),
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rather than over the ground truth factors:

posdis(s, v) =
1

clen

clen
∑

j=1

1

H(sj)

(

I(v
k
(1)
j

; sj)− I(v
k
(2)
j

; sj)
)

(5)

where k
(l)
j is the index of the ground truth factor with the l-th highest mutual information with the

j-th symbol position within sentences, for instance v
k
(1)
j

= argmaxvkI(vk; sj).

Given that posdis and bosdis are defined in the context of a generative referential game where the
listener agent aims to reconstruct the ground truth factors, it can be argued that these metrics take
the viewpoint of the listener agent who attempts to decode the speaker’s sentences in order to output
predicted factors (aiming to converge on the ground truth factors). In other words, the philosophy of
theses metrics is that of a decoding problem rather than that of a compression problem.

The compression approach would revolve around the speaker agent’s viewpoint as it aims to compress
the observed stimuli, that reflects the ground truth factors (or are the ground truth factors themselves
in the case of symbolic referential games), into informative, complete and hopefully compositional
sentence utterances. To further flesh out the parallel with some disentanglement definitions [19, 56],
one could easily swap compositional in the last sentence for modular. Thus, a speaker-centred
positional disentanglement metric would straightforwardly apply the formulae of Equation 4:

speaker − posdis(s, v) = MIG(s, v) =
1

K

K
∑

k=1

1

H(vk)

(

I(s
j
(1)
k

; vk)− I(s
j
(2)
k

; vk)
)

(6)

The main advantage of the speaker-centred formulation over the listener-centred one is twofold.
Firstly, it is able to discriminate between complete and incomplete languages, following the definition
of completeness by Eastwood and Williams [19]: “the degree to which each underlying factor is
captured by a single code variable”, or, in our case, a single symbol position within sentences. For
instance, a language that would capture some underlying factor vk1 using two or more symbol
positions within sentences, for instance in a redundant fashion, would yield a lower speaker-centred
posdis than languages that would capture it with only one. In the context of cheap talk where there is
no cost to communication symbol usage, it might be of lesser importance, but using both metrics in
concert would at least enable more insights into the kind of language that emerged.

Secondly, most importantly, the speaker-centred formulation cares about the informativeness (“the
amount of information that a representation captures about the underlying factors of variation”[19]) of
the language with respect to all the ground truth factors. Indeed, while the mutual information I( ; )
is symmetric, the posdis and MIG scores are not, and especially when it comes to informativeness:
for instance, a language whose sentences would consist of only one symbol position with non-null
entropy used to capture only one of the many ground truth factors would score perfectly on the
listener-centred posdis formulation, but poorly on the speaker-centred formulation because the other
underlying ground truth factor have not been captured.

In terms of disadvantage, the speaker-centred formulation of posdis loses the relaxation made by
the listener-centred posdis when compared to topographic similarity: the speaker-centred posdis
would penalise languages that do not exhibit a one-to-one attribute-position mapping. Borrowing
from Chaabouni et al. [12], the different metrics, topsim, bosdis, listener-centred posdis, and speaker-
centred posdis are differently opinionated about what it means for a language to be compositional,
and we argue that the speaker-centred formulation is one of the most opinionated so far. Using them
in concert is thus allowing more insights about the kind of compositionality that may emerge in each
of the artificial languages we may consider.

4 Results

In this section, we detail our results when training pairs of agents for 4, 000 epochs on the 3DShape-
sPyBullet dataset, with 5 random seeds for the contexts with the synthetically compositional com-
munication channels (SC-RG) and between 5 and 15 random seeds for the normal referential game
contexts (RG). We used the Adam optimizer [34] with a learning rate of 6.0e−4 and PyTorch’s [52]
default hyperparameters. The batch size was 64, as proposed in Kim and Mnih [33]. Thus, in the
case of the Obverter-based pairs of agents, the role alternation period was 2.
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(a)
(b)

(c)

Figure 2: Zero-shot compositional learning testing and training accuracy (a) and Systematicity gap
((b):difference between accuracy on test and train sets) for the different referential game approaches,
at the end of training. (c): Disentanglement scores of the different approaches. The FactorVAE
approach is outperformed by the different Obverter-based referential game approaches.

4.1 Obverter vs. STGS

Figure 2a and 2b detail at the end of training the referential game accuracy against the training
set and the zero-shot compositional learning test set, and the systematicity gap, respectively, for
both Obverter-based and STGS-based pairs of agents. Focusing on the SC-RG contexts, we can
argue that even when the language is compositional in the sense of the posdis metric, the Obverter-
based approaches outperform the STGS-based approach in terms of systematicity (higher absolute
accuracies shown in Figure 2a, and less negative gap shown in Figure 2b). Going forward, we focus
on the Obverter-based approaches.

4.2 Referential Games further Disentanglement

Figure 2c details the disentanglement scores of the different approaches. Even when fine-tuning the
FactorVAE’s hyperparameter γ, the different Obverter-based referential game approaches outperform
the state-of-the-art FactorVAE approach.

We observe a trade-off between the MIG and FactorVAE scores depending on whether a Dropout
layer is added just before the Decision modules of the Obverter-based approaches. It highlights the
Dropout mechanism as a driver for FactorVAE-centred disentanglement.

Comparing the results when using a synthetically compositional communication channel (SC-RG)
from the results when using the normal referential game setting (RG), it is striking to see that
disentanglement in the sense of the MIG score is maximized in the RG context, while all the other
disentanglement metrics are maximised in the SC-RG contexts, when comparing to respective
architecture/approach in the RG context. This result seems to imply that, in the absence of Dropout
layers, there is some specific regularisation effect taking place in the Obverter-based RG setting that
promotes the emergence of disentanglement in the sense of the MIG score.

4.3 Compositional Language does not further Listeners’ Systematicity

In parallel to the results found in Chaabouni et al. [12] (showing that when the emerging language
is compositional enough in the sense of the posdis metric then the agents wielding it are highly
likely to have systematic abilities), Figure 2b shows that, in spite of learning from a posdis-biased
compositional language, neither the listener from an Obverter-based approach or from a STGS-based
approach are able to bridge the systematicity gap.

Of the Properties of Symbolic Stimuli. The main difference between our context and theirs is that
they were using symbolic stimuli, while our results is in the context of visual stimuli. Therefore, it
could be argued that a specific property found in symbolic stimuli might be a necessary condition for
systematicity to emerge when the emerging languages are compositional in a posdis fashion.

Similarly to Montero et al. [48]’s interpretation of Chaabouni et al. [12]’s work, we were expecting this
specific property to be captured within one of the disentanglement metrics. Yet, our disentanglement
scores found in the context of synthetically compositional communication channels (see Fig. 2c) are
differently high depending on the approach. Of particular interest, the presence of the Dropout layer
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Figure 3: Compositionality metrics for the different referential game approaches, at the end of
training.

just before the Decision modules of the Obverter-based agents was highlighted earlier as a mechanism
furthering high disentanglement of the learned representations in the sense of the FactorVAE score,
and, in the case of the systematicity gap, it induces the least negative systematicity gap among the
SC-RG contexts, and the most positive systematicity gap among the RG settings.

Thus, our results would push forward the idea that, on top of promoting generalisation in the broader
sense, the addition of specific Dropout layers in the architecture also brings about systematicity
(/compositional or algebraic generalisation), in the context of visual referential games, and high
disentanglement of learned representations in the sense of the FactorVAE score is correlated to high
systematicity.

Of the Importance of the Language Emergence Process. It is important to also highlight the
limitation that our SC-RG contexts do not allow for the non-stationary process through which the
language used by the pair of agents would emerge as highly compositional in the sense of the
posdis metric, on the contrary to Chaabouni et al. [12]’s protocol. Therefore, both the stimuli nature
(symbolic or visual), on one hand, and the presence or lack there off of the language emergence
process, on the other hand, could be necessary conditions for the emergence of systematicity, when
the language is already compositional in the sense of the posdis metric.

4.4 Disentangling Compositionality in Emerging Languages?

Figure 3 details the different attributes of the emerging languages in the different referential game
approaches. The comparison of the speaker-centred and listener-centred posdis results in the RG
contexts highlights that reducing the Obverter’s confidence threshold (from the default value of
0.98 to 0.85) significantly affects the informativeness and completeness of the emerging language,
enabling us to discriminate between further kind of positionally disentangled compositionality.

Recalling the MIG scores in the RG contexts from Figure 2c, we can see that high (or low) disentan-
glement in the sense of the MIG score metric does not correlate with high (or low) compositionality in
the sense of any posdis metrics. This result subsequently thickens the mystery behind disentanglement
and compositionality’s relationship.

4.5 Disentanglement, Compositionality, & Systematicity are not Naïvely Correlated

We compute Spearman ρ correlation matrices between the different metrics throughout the training
process of Obverter-based approaches (see Appendix A), from epoch 200 to 4000, with an interval
of 200 epoch between measures. While some statistically significant coefficients can be found
throughout the training process, they are not consistent and rather often contradictory, irrespective
of the context. From those results, the best we can conclude is that our current concepts for
disentanglement, compositionality, and systematicity do not naïvely correlate. We leave it to future
works to investigate analysis of a different kind, for instance as time-series variables.

5 Conclusion

Primarily, we found that Obverter-based visual referential games outperform the state-of-the-art
unsupervised learning FactorVAE approach in terms of many major disentanglement metrics, and
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highlighted the necessary design choices that lead to that result. Secondly, we expanded the posdis
metric in a principled way with respect to disentanglement concepts of informativeness and complete-
ness, thus allowing for further discrimination between the different kind of compositional languages
that emerge in the context of referential games. Finally, investigating the relationship between
disentanglement, compositionality and systematicity in this unique paradigm of visual referential
games, our results provide further evidence that compositionality, disentanglement, and systematicity
are not related as expected and are, thus, not fully understood yet.

Broader Impact

This work consists solely of simulations, thus alleviating some of the ethical concerns, as well as
concerns regarding any consequences emerging due to the failure of the system presented. With
regards to the ethical aspects related to its inclusion in the field of Artificial Intelligence, we argue that
our work aims to have positive outcomes on the development of human-machine interfaces, albeit
being not yet mature enough to aim for this goal. The current state of our work does not allow us to
extrapolate towards negative outcomes.

This work should benefit the research community of language emergence and grounding, in its current
state.
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A Appendix A : Spearman ρ Correlation Matrices

Figure 4: Spearman ρ correlation coefficients (odd rows) and p-values (even rows) matrices between
the different metrics, from epoch 200 to 4000, with an interval of 200 epochs between measures, in
the context of RG:Obverter.
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Figure 5: Spearman ρ correlation coefficients (odd rows) and p-values (even rows) matrices between
the different metrics, from epoch 200 to 4000, with an interval of 200 epochs between measures, in
the context of RG:Obverter+Conf.0.85.
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Figure 6: Spearman ρ correlation coefficients (odd rows) and p-values (even rows) matrices between
the different metrics, from epoch 200 to 4000, with an interval of 200 epochs between measures, in
the context of RG:Obverter+Dropout.
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