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Virtual Category Learning: A Semi-Supervised
Learning Method for Dense Prediction with
Extremely Limited Labels

Changrui Chen, Jungong Han*, Kurt Debattista

Abstract—Due to the costliness of labelled data in real-world applications, semi-supervised learning, underpinned by pseudo labelling,
is an appealing solution. However, handling confusing samples is nontrivial: discarding valuable confusing samples would compromise
the model generalisation while using them for training would exacerbate the issue of confirmation bias caused by the resulting
inevitable mislabelling. To solve this problem, this paper proposes to use confusing samples proactively without label correction.
Specifically, a Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model
optimisation even without a concrete label. This provides an upper bound for inter-class information sharing capacity, which eventually
leads to a better embedding space. Extensive experiments on two mainstream dense prediction tasks — semantic segmentation and
object detection, demonstrate that the proposed VC learning significantly surpasses the state-of-the-art, especially when only very few
labels are available. Our intriguing findings highlight the usage of VC learning in dense vision tasks.

Index Terms—Semi-supervised learning, Semantic Segmentation, Object Detection.

1 INTRODUCTION

EEP Learning solutions are significantly disadvantaged

by the expensive labelling cost of large-scale datasets,
especially on dense prediction tasks. Annotating the data
for tasks such as object detection and semantic segmen-
tation takes substantially longer when compared to non-
dense applications such as image classification. Though
crowd-sourcing platforms facilitate data labelling for many
common application scenarios, such as autonomous driv-
ing, data labelling in scientific applications usually re-
quires expert labelling, which is not readily available. Semi-
supervised learning, which makes use of limited labelled
data in combination with large amounts of unlabelled
data for training, has shown great potential to reduce the
reliance on large amounts of data labelling [1], [2], [3],
[4]. Diminishing the performance gap between fully- and
semi-supervised methods enables the introduction of deep-
learning models to more application topics. In existing semi-
supervised learning frameworks, a challenging problem is:
how to best utilise the unlabelled data.

Pseudo labelling (PL) [5] has recently emerged as a solu-
tion to the above problem [1], [3] and achieved state-of-the-
art performance. Here, unlabelled data are automatically
annotated by the model itself [6] (or via an exponential mov-
ing average version [1]) and then fed back to re-optimise
the model. Despite their preliminary success, existing PL-
based semi-supervised methods are not good at or even
incapable of dealing with the extremely-scarce label setting.
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It motivates us to study the limited supervised case, which
is imperative in real-life application scenarios.

Typically, due to the limited diversity of training samples
in a very small available set of labelled data, the non-optimal
decision boundary usually leads to an indecisive decision
on some unseen confusing samples when inferring their
pseudo labels. In PL, two strategies are usually adopted
to deal with confusing samples: a) discarding all of them
using a strict filtering mechanism [6], or b) retaining them
with all potential labels [7]. However, neither of these two
options is optimal, especially when the labelled training
data are very limited. The value of confusing hard samples
is clear to see since hard example mining [5] has successfully
proven its effectiveness in fully-supervised learning. If all
confusing samples are rejected by a strict filtering mecha-
nism, their positive contributions will be wasted, while the
remaining well-fitted samples only marginally contribute
to performance improvements. On the contrary, simply
keeping them all is ineffective due to the involvement of
too many incorrect pseudo labels. Arbitrarily optimising
semi-supervised detectors with these noisy labels results in
confirmation bias issue [9]. To demonstrate these points, we
show in Fig. 1a the mean Average Precision (mAP) of a semi-
supervised object detector with different strategies on 1% la-
belled MS COCO [10]. Noticeable performance degradation
can be observed when either choosing one stricter filtering
mechanism (orange line) or adding an additional one (green
line) to reject confusing samples. Likewise, simply keeping
all confusing samples (yellow line) pseudo labels also ends
up with a decreased mAP since the unreliable pseudo labels
aggravate the confirmation bias issue and can result in
training collapse. A similar phenomenon can be seen in
semantic segmentation (Fig. 1b) as well.

In light of the above, efforts have been dedicated to
exploring how to correct the biased pseudo labels to utilise



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

mioU (\%)

--- baseline

/ -
=+ w/ VC loss (ours)

50 4 -
/)
454/
—— discard by add = w/ VC loss (ours)

124/ discard by stricter. 40 —— discard
keep | keep

T T T T T T T T T T ; f :
0k 25k 50k 75k 100k 125k 150k 175k 0K 10K 20K 30K 40K
Step Step

(a) (b)

Fig. 1: a): The mAP of a semi-supervised detector [I1]
with a preset confidence score filtering on 1% labelled MS
COCO [10]. The mAP sees a decrease with all strategies for
dealing with confusing samples (e.g., the bear-like dog at
the right) except for the VC learning. The additional filter-
ing mechanism (add.) is the temporal stability verification
proposed in this paper. Stricter filtering (stricter.) raises the
threshold in the score filtering from 0.7 to 0.8. b): The mIoU
of a semi-supervised semantic segmentor on 1/128 labelled
Pascal VOC.

the confusing samples efficiently. Existing methods [4] ini-
tially investigate relatively straightforward tasks such as
classification on CIFAR [11]. However, promising progress
has not yet been made for a complex dense prediction task,
such as object detection with extremely small amounts of
labelled data. Then, a question arises: what if we do not discard
confusing samples but consider their contributions, which may
not necessarily need the concrete label information, during the
model training? This paper answers this question by propos-
ing a novel Virtual Category (VC) learning based on the
observation that there is an implicit and safe optimisation
direction in PL models for confusing data.

Fig. 2 provides an example, in which the bear-like dog
is a typical confusing sample due to its appearance. For a
classification model, the arrow pointing towards the ‘dog’ is
the best optimising direction, which results in the smallest
testing error value. However, if the doubtful pseudo label
is ‘bear’, the incorrect optimising direction would lead to
worse performance. We discover that building a Potential
Category (PC) set consisting of the possible categories of
a confusing sample z, compared to determining the exact
correct label, is much easier. The remaining task is to find
a good optimising direction (labelled VC in Fig. 2) for the
sample x without the guidance of the categories in the
potential category set. Therefore, instead of selecting the
correct one from the potential category set, which is usually
challenging, we compromise by proposing a VC label to take
the place of all unreliable labels in the potential category set. A
new learning scheme, namely VC learning, allows the model
to be optimised with the VC label. By ignoring the categories
in the potential category, it will disable the gradient of
the corresponding output logits, thus avoiding any wrong
optimising direction that would mislead the model. Most
importantly, the proposed VC specifies a reasonable upper
bound for the inter-class sharing information capcity. Hence,
the decision boundary can consistently benefit from the
confusing data without suffering from the confirmation bias
issue. With regards to the potential category set, we come up

@ predefined category
@ virtual category
@ training sample

»

strong aug.
- =2

@ bear weak aug.

Fig. 2: Illustration of the basic idea of the virtual category in
the manifold of the optimisation space. The peak indicates
a high testing error value.

with multiple methods to build it. As can be seen in Fig. 1,
the performance of the model armed with the proposed VC
learning (dot-dashed line) sees a significant increase due to
the effective use of the confusing samples.

The proposed VC learning is applied to a semi-
supervised detector and a semi-supervised segmentor, both
with extrmely limited labelled training data, to evaluate its
effectiveness and generalisation capability on dense pre-
diction tasks. In the object detection on MS COCO, VC
learning achieves 19.46 mAP with only 586 labelled im-
ages; this even outperforms some recently published semi-
supervised detectors [6], [12] with 1000+ labelled images.
For semantic segmentation, we developed a powerful and
straightforward pseudo-labelling framework. VC learning
further boosts the baseline framework to achieve a mloU
of 55.37 on Pascal VOC with only 82 labelled images. It
surpasses state-of-the-art methods by a large margin. The
contributions of this article are summarised as follows:

o We take advantage of confusing samples with pseudo
labels in a semi-supervised manner through VC
learning. Our VC learning alleviates the confirmation
bias issue caused by confusing samples. It works ex-
tremely well when only very limited labelled training
data are available.

o We theoretically exhibit the feasibility of using VC
learning for semi-supervised learning. The findings
highlight the need to rethink the usage of confusing
samples in semi-supervised tasks.

e Compared to our previous ECCV oral paper [13],
we extend VC learning to semi-supervised semantic
segmentation. More methods for the potential cat-
egory set creation and an additional loss function
form are introduced, ie., the mean squared error
for VC learning. On top of it, we also propose a
new module to generate the virtual weight in VC
learning. The experiments show that VC learning can
be well applied in semantic segmentation.

e We incorporate VC learning into a unified pseudo-
labelling framework for semi-supervised learning,
which can deal with multiple dense prediction tasks,
including semantic segmentation and object detec-
tion. The proposed framework surpasses state-of-
the-art methods by a significant margin on ALL
tasks, which verifies the generalisation of VC learn-
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ing.

2 RELATED WORKS

In this section, a literature review on the semi-supervised
learning and the downstream tasks — segmentation and
detection — is conducted.

2.1 Semi-supervised Learning

In the last few years, numerous deep backbones and mod-
ules training under a fully-supervised scheme have been
proposed. VGGNet [14] adopted 3 x 3 convolution layer
as the main model component. GoogLeNet [15] proposed
the network-in-network structure for the first time, which
allows scaling the width and depth of a convolution neural
network (CNN). ResNet [16], proposed the residual block,
which made it possible to optimise a very deep neural
network. Recently, inspired by the attention module in
neural language processing [17], the vision transformer [15]
appealed to many researchers. Fully-supervised training is
very close to the ability of human beings in many vision
tasks [19]. However, in other research and application areas,
it is usually difficult to build large-scale labelled datasets
such as ImageNet [20] and MS COCO [10] to satisfy the
training of fully supervised models. Semi-supervised learn-
ing, such as MeanTeacher [21] and FixMatch [3] etc., tackles
this issue.

Semi-supervised learning is a training scheme that uses
only a small amount of labelled data and a large amount
of unlabelled data to train a model. It can be grouped
into three main paradigms: a) generative models, b) graph-
based methods, and c) pseudo-labelling models. Several
unsupervised generative models were extended to solve
the semi-supervised problems. For example, the stacked
semi-supervised generative model proposed by Kingma et
al. [22] appended a generative classifier to the latent rep-
resentation produced by the encoder to enable variational
autoencoder to tackle semi-supervised classification. The
feature representation would benefit from the reconstruc-
tion proxy task of the auto-encoder with the unlabelled
data. Generative Adversarial Network (GAN) has also been
considered as semi-supervised learning methods [23]. By
assigning a ‘fake’ class to all generated images, unlabelled
images in the dataset can be labelled as non-fake’ to train
the classifier [23]. In addition to the generative model, some
graph-based methods introduced data relationships into
semi-supervised training [4], [24]. The intuitive motivation
is that adjacent nodes in an embedding graph should have
similar representations. Recently proposed semi-supervised
methods mainly focus on the teacher-student framework
via pseudo labelling [2], [3]. The overall idea of a teacher-
student framework is to let the predictions of the teacher
model be the pseudo labels for optimising the student
model. It requires models to produce consistent outputs
when the inputs are perturbed. Image augmentations, such
as flipping, Cutout [25], or Gaussian Blurring, are usually
applied to perturb input images. Some solutions take advan-
tage of adversarial learning and proposed learnable adver-
sarial augmentations [26]. The form of teacher model is in
a variety of styles. An exponential moving averaged (EMA)

3

version [21] or even the student itself [3] was investigated
to play the role of the teacher. Many different entities of
consistency regularisation have been explored. For example,
Jeong et al. [27] tried to minimise the discrepancy between
the latent representations of perturbed inputs. Yang et al. [7]
proposed to use the temporal ensembling predictions as the
teacher predictions. FixMatch [3] adopted a weak and a
strong augmentation to obtain the predictions of the teacher
and student model, respectively. The teacher-student frame-
work, which is used as the baseline in this paper, has proven
to be successful in several downstream tasks. Despite their
successes, the performances of such systems are far from
satisfactory in the real scenario, where an extremely low
label ratio, say below 1%, is provided.

2.2 Semantic Segmentation

Semantic segmentation can be seen as a dense classification
task at the pixel level. Most recent segmentation models
are inspired by FCN [28]. The performance of segmentation
models is sensitive to the output resolution. Thus, some
following works, such as U-Net [29], proposed an encoder-
decoder framework to increase the output resolution with-
out compromising efficiency. The receptive field is also
crucial to segmentation accuracy. Atrous convolution used
by the Deeplab series [30], [31], [32] decently enlarged the
receptive field without the aid of stacking large convolu-
tional kernels. The self-attention mechanism enables the
segmentor to build long-range connections across the entire
images, further exploiting contextual information [33]. Com-
pared to the image-level labels, the cost required by such
pixel-level dense labelling makes semi-supervised learning
even more crucial. Consistency regularisation is also widely
adopted in semi-supervised semantic segmentation. Ouali
et al. [34] proposed to align the output of different de-
coders or models. The discriminator, which is usually used
in adversarial learning, was considered to minimise the
distribution distance between the predictions of unlabelled
data and the ground truth of labelled data. The teacher-
student model has been well introduced to self-supervised
segmentation [35]. However, we discover that its training is
very unstable. Thus, this article first investigates and solves
this problem to build a strong and stable baseline model and
then evaluates the proposed VC learning on it.

2.3 Object Detection

Object Detection, which finds significant applications in
downstream tasks, aims to distinguish foreground objects
in images or videos and identify them. Object detectors so
far can generally be divided into three types: 1) two-stage
detectors [36], [37], represented by Faster RCNN [30]; 2)
one-stage detectors [38], [39], [40], [41], such as the YOLO
series [38], [39]; and 3) point-based detectors [42], [43], [44],
such as Center Net [42]. The main difference between two-
stage and one-stage detectors lies in whether an additional
module is used to generate candidate region proposals for
classification and localisation. Point-based detectors discard
anchor boxes and instead use points and sizes to represent
objects. In this paper, Faster RCNN, one of the most widely
used detectors, serves as our baseline detector to explore
VC learning in semi-supervised object detection(SSOD).
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Fig. 3: The pipeline of the proposed VC learning when dealing with a confusing sample in semi-supervised one-pixel
classification. 71" is the teacher model. S represents the student model. When training the student classifier with a confusing
sample, the weight matrix IW* of the student classifier is extended by a virtual weight w", which is transformed from the

corresponding teacher feature vector f.

SSOD originates from semi-supervised classification, where
only a small amount of bounding box labelled data and
numerous unlabelled data are available for training a
detector. Most of the recently proposed SSOD algorithms
followed pseudo-labelling methods. For instance, CSD-
SSD [27] applied consistency regularisation on the predicted
classification probability vectors and regression vectors of
the input image and its mirror version when dealing with
unlabelled images. Several self-supervised detectors [1], [6],
[7], [12], which provide teacher-produced pseudo-labels for
student detectors, have emerged recently.

Although the teacher-student pseudo labelling technique
shows good potential on both tasks, it is still struggling with
the confirmation bias issue when training with confusing
samples. This paper proactively utilises these confusing
samples and alleviates the confirmation bias issue via the
novel VC learning method.

3 METHODOLOGY

In this section, the overall problem is first defined. The VC
learning and its explanation are subsequently described.

3.1

In the semi-supervised problem, two data subsets D'
and D" are given for model optimisation, where D
{(z4, ) nNio} is the subset with ground truth label '
available, D* = {2%|N,} is the unlabelled subset. N'
and N* are the numbers of labelled and unlabelled data,
respectively. This paper mainly investigates the limited-
supervised learning problem, ie., , N* > N ! which can
be considered as a sort of challenging subproblem of semi-
supervised learnin ing. For segmentation the pixel-level class
index y € NHX is the label. y = [a1,b1,a9,bs,cls] is
the label of the object detection task, where the first four
numbers indicate the coordinates of the top-left and bottom-
right points and cls is the index of the category label. This

Problem Definition

paper follows the teacher-student framework to generate
the pseudo label 3’ of z" for re-optimising. As shown
in Fig. 3, two encoders T' and S, which share the same
architecture, are introduced. The parameters of the teacher
encoder T are updated by the parameters of the student S
with a momentum parameter.

3.2 Virtual Category Learning

For ease of understanding, we abstract our VC learning
framework for dense vision tasks as a general one-pixel
classification task. It can be easily extended to a multi-pixel
framework for semantic segmentation and an instance-level
framework for object detection as shown in Fig. 4. In Fig. 3,
two feature encoders T' and S first embed the confusing
pixel from the weakly and strongly augmented images into
the feature space. The linear classifier parameterised by W*
in the teacher branch produces the categorical probability
of the input data by performing a matrix multiplication
of the feature vector f'" and the weight matrix W*. The
bias parameter is ignored here for simplicity. Typically, the
category with the highest probability, e.g., ¥ = bear here,
will then be used as the pseudo label for the output of the
student branch. However, an incorrect pseudo label may
mislead the training.

In this paper, we propose VC learning which modifies
the pseudo category label with an additional virtual cate-
gory to allow the student model to be optimised safely by
confusing samples. Once the initial pseudo label ' = bear
is obtained, a potential category discovery operation is
performed to construct a set {dog, bear} for this training
sample. We find that the potential category discovery is rel-
atively feasible compared to designing a mapping function
P(y = GT|y'; f) to correct wrong pseudo labels, especially
when the labelled subset D' is much smaller than DU
The discovery method will be introduced in the following
Section 3.5.

If y' = bear is the only potential category we can find,
this pixel is regarded as an unambiguous sample. If the
potential category set contains more than one category, it
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Fig. 4: Explanation of data sample preparation for different
tasks. In object detection, we use ROI Align [45] to extract
the feature vectors of each region of interest as the data
samples. While VC learning is operated in a pixel-wise
manner in semantic segmentation.

means that this sample is exactly a confusing sample to the
model. In Fig. 3, a pixel (white circle) of the bear-like dog
is an example confusing sample with {dog,bear}. To en-
courage the confusing pixel to consistently contribute to the
optimisation of the student model S rather than arbitrarily
discarding it, the weight matrix W in the student classifier
is extended by a ‘personal’ weight vector w* named virtual
weight. The ingredient of the virtual weight w" is the feature
vector f!, which is the feature of this confusing sample in
the teacher model. Notably, the so-called ‘personal” virtual
weights for different confusing samples are various. With
the extended weight matrix, the size of the student classifier
output (i.e., logits) is therefore increased by 1:

1+K

fT ' [wv7w07 "'7wK71] = [lv7l07 ""ZK71}7 (1)

1+ K

where K is the number of the predefined categories, [ and
I* are the logits of the virtual category and the predefined
class i respectively.

Optimisation Objective To calculate the loss value of the
extended logits, the pseudo label is modified by providing
a positive label ‘1" for the virtual category. The training
target form is: [1,0, ..., ign, ..., ign, 0], where ‘ign’ means we
ignore that class. Thanks to the virtual category taking on
the responsibility of being the target category, the confusing
labels in the potential category set can be ignored, thereby
avoiding any potential misleading, as it is hard to determine
which one is the real ground truth. Thus, the optimisation
objective is to get a large logit value for the virtual category
and small logit values for the rest of the categories except
for those in the potential category set.

o training sample (bear-like dog)
5 lpullv

dog (GT) @ virtual category

Fig. 5: Explanation of VC learning in the feature space. The
circles are the embeddings of the category cluster centres.
The hollow diamond is the embedding of the training
sample. The cross-hatch diamond is the embedding of the
virtual category.

3.3 Explanation

This section describes how the proposed VC learning can
be interpreted both from the aspect of the feature space and
from the aspect of mathematical feasibility.

3.3.1 Feature Space

In the feature space, as shown in Fig. 5, let the circles
indicate the centres of the predefined categories. Pulling
the training sample (diamond) to the circles a or b is risky
since we don’t know which one is the real ground truth.
Given the VC, the decision boundary can still be optimised
with VC learning, as it provides a safe optimising direction:
pushing the training sample away from the circles ¢ and d
and pulling it closer to the diamond of the virtual category.
Although one may suspect that our approach looks similar
to contrastive learning [46], [47] in terms of the optimisation
objective, they differ in several aspects. First, contrastive
learning operates before the task-relevant layer (i.e., the
classifier). As a result, it only drives the backbone encoder
to extract better features but does not contribute anything
to the task-relevant layer. While our approach acts after
the classifier so that the gradient of the virtual category
can backpropagate to not only the backbone but also the
weight vectors in the classifier. Second, the weight vectors
of the other categories in the classifier naturally constitute
negative samples such that there is no need to maintain a
negative sample pool, which has been a worrying bottleneck
for contrastive learning.

3.3.2 Mathematical Derivation

To explain our method from the mathematical perspective,
we define the loss function of VC learning starting from
cross entropy (CE) loss. Assuming a batch size of 1, the CE
loss is:

efT.,wi:GT K o
i GT
Lop = _ZOQ(W) = log(z L T )
i=0 i=0

where f € Rehannelxl jg the input feature vector of the
last linear layer (i.e., the classifier), w? € Rehannelx1 jg the
corresponding weight vector of the category ¢ in the last
linear layer, I'! = fT - w’ is the logit of the category i, K
is the number of the predefined categories, and GT is the
index of the ground truth.

The intuitive target of minimising CE loss is to get a
large logit 1“7 of the ground truth and small values for the
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rest of the categories ['#GT In a self-supervised scheme,
the teacher model infers the pseudo classification label 3’ of
an unlabelled data sample z*. As Eq. (2) can be a smooth
approximation of the max function [48], the CE loss with the
pseudo label ' can be expressed as:

K ‘ )
Lcg = log(z et ) & mazicqo,.. k-13(1"—=1Y). (3)
i=0

Minimising Eq. (3) is expected to satisfy:
(Y Y < (=Y —1Y)20, ie PV <IY. (@)

Since ' may not always be correct, when 3’ is not equal
to the real ground truth G7T, satisfying Eq. (4) leads to
IGT < 1Y, thereby aggravating the issue typically termed
confirmation bias. It can also be explained without the max
function approximation. The LogSumExp is monotonically
increasing:

elj_ l’y'

a K . 7
Y Py = 5 >0
907 —1v) Og(gae S T

Thus, when i’ # GT, the logit 1¥" will be large and [’ of the
other categories (including GT’s logit) will be small when

©)

log(XX, eli’ly/) is converged.
With Eq. (1), the loss in VC learning can be defined as
follows according to Eq. (2):

K+1

Lyc—cp=log( Y
i=0,i¢ PC

', ©6)

where PC is the potential category set. ¢ = K is the index of
the virtual category, i.e.,, [*=% =[".i ¢ PC means the labels
in the potential category set are ignored in the summation.
For VC learning, following the derivation of Eq. (3), we
obtain:
K+1

i=0,i¢ PC
@)
Similar to Eq. (4), minimising Eq. (7) is expecting:

(liyﬁ'u/\iéPC’ —1Y) < (li:v —1")20, e, [IFONMEPC < v

®)
Comparing Eq. (8) with Eq. (4) reveals:

1) VC loss first ignores the logits I°T¢ of the con-
fusing labels in the uncertain potential set when
satisfying the inequation in Eq. (8), thereby avoiding
misleading the training.

2) Additionally, it provides an alternative upper bound
I = fT - w for all the rest of the logits ["#7°C.
The information embedded by the classifier weight
vector can be decoupled into two parts: the direction
of the vector and the magnitude(norm) of the vector.
Since the magnitude is controlled by a norm factor
in this paper, VC learning tries to ensure that the
cosine similarity of f and w" is the maximum.
The directions of the weight vectors in a linear
classifier can represent the information of different
categories [49]. Thus, [V = fT - w" should be larger
since w" is obtained from f¢, which is the feature in

w” Virtual Weight

LF L S S §

Transformer Layer

Lo b

/0w wh-2 kel

Fig. 6: The transformer layer for the virtual weight genera-
tion.

the teacher of the exact same data sample of feature
f. f and f* share a lot of information, thus leading
to the largest cosine similarity. Consequently, [* can
be a meaningful upper bound for all the rest logits
I'¢PC  The shared information between f and f? is
the upper bound of intra-class information sharing
capacity.

The VC learning is applicable not only to the cross-
entropy loss function. Mean squared error loss, which is
a widely used loss function in several semi-supervised

models [50], is also compatible as follows:
K+1 ‘ .
Lvo—mse= Y, (o(I') =) )
i=0,i¢ PC

where o is the sigmoid function, ¢’ is the binary objective
label. t* = 1 if the sample is of the category i. Otherwise,
t' = 0. The objective label of VC is t = 1 if the sample is
confusing.

3.4 Virtual Weight

As mentioned before, the weight vectors in a linear classifier
can be decoupled into two parts: the direction and the mag-
nitude. To make the virtual weight w”, the most intuitive
solution is to directly use the direction of the teacher feature
vector f! and scale it with a magnitude factor (the minimal
norm of the pre-define classifier weights is adopted):

w’ = 4 * NOTM, (10)
£ ll2
which is used in our former ECCV publication [13]. In this

paper, we further explore a new option.

As shown in Fig. 6, a self-attention transformer layer is
adopted to generate a learnable virtual weight. The input
tokens consist of the weight vectors w’~% in the student
classifier and the feature vector f or f!. We use the first
output of the transformer layer as the virtual weight w".
This module is trained by the available ground truth and
the pseudo labels with high confidence scores. By doing so,
the weight generator is expected to be aware of the inherent
relation between w’~¥ and the feature vector to produce
the final virtual weight.
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3.5 Potential Category Set

The potential category set consists of different predictions of
one training sample. Any method that can give reasonably
different predictions can be used to build the potential
category set. For example, inspired by consistency regu-
larisation, the predictions under different conditions reveal
the potential categories of a confusing sample. The pseudo
label inferring process can be represented by: iy’ = gg(z*),
where ¢ is a neural network parameterised by 6, and z*
is an unlabelled input image. By adopting different gy,
predictions under different conditions, which constitute the
PC set, can be obtained. The size of the potential category set
is used to determine whether a training sample is confusing
to the model or not. If different predictions agree with each
other, i.e., the number of elements of the potential category
set is one, the training sample is not considered a confusing
sample. Otherwise, it is a confusing sample. In this paper,
different policies are tailored and investigated for different
tasks based on the specificity of each task.

3.5.1 Semantic segmentation

Top-2 probability. Most semi-supervised semantic segmen-
tors usually adopt a high confidence score threshold, such
as 0.95, to filter out confusing pixels. However, there are still
many valuable low-confidence pixels. We use the categories
of the top-2 probability to create the potential category set
as the simplest policy for them in semantic segmentation.
Teacher-student mutual verification. Though the parame-
ters of the teacher model are updated by the student’s pa-
rameters, comparing the segmentation result y' ) inferred
by the student with y () produced by the teacher finds
many confusing pixels in the pseudo labels of semantic
segmentation.

3.5.2 Object detection

Unlike semantic segmentation, the location of pseudo labels
plays a crucial role in the model training of object detection.
Therefore, the confidence score-based methods, such as the
top-2 probability policy, cannot be used in object detection
since a pseudo bounding box with a low confidence score
usually means its position is also unreliable. The prediction
format for object detection consists of the coordinates and
categories of bounding boxes. The principle of creating a PC
set in object detection is comparing two individual predic-
tion sets of one image. Two sets of predictions may have
varying numbers of bounding boxes located at different
positions. Consequently, we employ the Intersection over
Union (IoU) metric to match bounding boxes between the
two sets. When the IoU between two boxes exceeds a thresh-
old (set at 0.5 in this paper), we compare their category
predictions to determine if they are confusing samples. A
bounding box in one set that doesn’t find a match in the
other set is considered a confusing sample. For example, if
the category of a bounding box in one set is ‘bear’, but finds
no matching in the other set, the PC set is {bear, bg}.

We propose two easy-to-implement methods for object
detection to get the two sets for the comparison:
Temporal stability. In object detection, the pseudo label of
an image varies at different training iteration steps [7]. When
pseudo-labels at different training steps are compared, those

Algorithm 1 The training process with VC learning.

nun

X_wW = aug(x)
X_s = strongaug (x)
# Get logits of K classes and student features
logits, feats = model_s (x_s)
# Get pseudo labels and teacher features
logits_1, feats_1 = model_t (x_w)
logits_2, feats_2 = model_s (x_w)
y_1, y_2 = argmax(logits_1l), argmax(logits_2)
if y 1 == y_2:

return loss_fn(softmax(logits), y_1)
# Get logit of virtual category
logit_vc = einsum(feats, vw_gen(feats_1), "nc,nc->n")
logits = cat((logits, logit_vc), dim=1)
# Masked Softmax, ignore potential categories.

probs, mask = masked_softmax(logits, ign_idx=[y_1, y_21])
loss = loss_fn(

probs, num_classes,

reduction="none") x mask
loss = loss.sum(dim=1) .mean ()

return loss

einsum: sums the product based on the Einstein summation convention;
masked_softmax: softmax with ignoring index argument;
cat: concatenation.

mismatched pseudo labels reveal the potential categories.
We select the model of the current iteration step ggeur and
ggrast Which is the checkpoint when the model viewed the
current image the last time to produce two prediction sets
y' M and y'® for the comparison. In the first training epoch,
VC learning does not involve any data, as the model views
all images for the first time.

Cross-model verification. Comparing the decisions of two
conditionally independent models gy, and gyw) for the
same sample z can also be used to discover the potential
categories. Two models are initialised with different initial
parameters. The orders of the training data for these two
models are also different, ensuring that they do not collapse
on each other .., #(®) £ §®),

From the aspect of the design of PC set creation, the PC
set creation method for object detection can also be used
in semantic segmentation. The reason for using different
methods for different tasks is rooted in the variances in the
implementation aspects of the two tasks. For example, the
cross-model verification in semantic segmentation requires
an extremely high GPU memory to train two deep segmen-
tation models simultaneously.

In summary, if the size of the potential category set is not
equal to 1, it means that this sample should be considered
as a confusing sample. The VC learning will take over the
training of this confusing sample. Regular loss, such as the
cross-entropy loss, is used for unambiguous samples.

4 EXPERIMENTS

In this section, experiments on two dense prediction tasks
— semantic segmentation and object detection — are con-
ducted to evaluate the proposed VC learning.
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TABLE 1: Ablation study on different ¢;,,,. The values inside
the parentheses indicate peak performance.

8

TABLE 2: The hyperparameters and augmentation settings
of VC learning in semi-supervised semantic segmentation.

| 0.0 | 0.3 | 0.6

tiow

Hyper-parameter | Value

mloU | 49.02 (49.02) | 49.25 (49.25) | 48.94 (49.29)

4.1 Implementation Details

The teacher-student pseudo labelling method serves as
the baseline in this section. Given an unlabelled image
x¥, the softmax output P(z") is inferred by the teacher
model. In the semantic segmentation task, P(z*) is a pixel-
level probability matrix. While in object detection, it is an
instance-level probability distribution. A predefined confi-
dence threshold ?;,,, is used to filter out extremely noisy
pseudo labels using max(P(z")) < tiow. The prediction
with a very high confidence score maxz(P(z")) > t will
be fully trusted. We ablate this threshold and found that
the final performance does not show significant differences
(see Tab. 1). But with a threshold of 0.6 (we adopt in
this paper), the convergence speed is faster. The remaining
pseudo labels and all available ground truth labels partici-
pate in the semi-supervised training. The proposed method
is implemented in the PyTorch framework [51]. The code
can be found at the public repository’.

The training process with VC learning is shown in
Algorithm 1. Here we take a general classification model
and the teacher-student mutual verification as an example
for simplicity. If the pseudo labels produced by the teacher
and the student agree with each other, VC learning returns
the loss value without any additional process. Otherwise,
the logit of the potential category will be ignored when the
masked softmax function is performed. Finally, the target of
the loss function is replaced by the virtual category (here it
is Kin Algorithm 1) to calculate the loss value.

4.2 Semantic Segmentation
4.2.1 Datasets and Evaluation Protocol

For the semantic segmentation task, we perform exper-
iments on two well-known datasets, Pascal VOC and
Cityscape. PascalVOC 2012 consists of 20 classes and one
background class. The size of the training images is 1464.
Hariharan et al. [52] augment PascalVOC 2012 with 9118
additional images. All the 10582 images are adopted in our
experiments following the mainstream settings of the semi-
supervised segmentation community. Cityscape contains 5k
pixel-level labelled images of urban street scenes. The evalu-
ation metric is the mean of Intersection over Union (mlIoU).

4.2.2 Settings

The semantic segmentation model of all the following exper-
iments is DeeplabV3+ [53] with a ResNet50 [16] backbone.
We randomly divide the dataset with partitions 1/64, 1/96,
and 1/128 for labelled /unlabelled data in Pascal VOC, re-
spectively. 1/64,1/72, and 1/80 are adopted for Cityscapes.
The overall loss function is as follows:

L= Li(a"sy) + BLve(xy).
Other details of the model set-up are shown in Tab. 2.

1)

1. https:/ / github.com/GeoffreyChen777/VC

t 0.95

tiow 0.6 (Pascal VOC) / 0.8 (Cityscapes)
VC loss type CE

EMA momentum 0.9996

optimiser SGD

learning rate Ir 0.001 (Pascal VOC) / 0.002 (Cityscapes)
weight decay 0.0001

momentum 0.9

iteration num 40K (Pascal VOC) / 80K (Cityscapes)
8 1

labelled data number 1/64,1/96,1/128 (Pascal VOC)
1/64,1/72,1/80 (Cityscapes)
batch size (labelled) bs* 4

batch size (unlabelled) bs* | 4

Augmentation | Parameters
weak augmentations

Random Flip p=0.5
Random Crop 512x512

Random Resize Scales: [0.5, 0.75, 1, 1.5, 1.75, 2.0]

strong augmentations

weak aug. same as above
Random ColorJitter
Random Grayscale
Random Gaussian Blur

Cutout

p=0.2
p=20.5
p = 0.5s=(0.02, 0.4), r=(0.3, 3.3)

Teacher Model Student Model

45

45 A ?/6 Z -
42.51 —— momentum=0.5

40 4 —— momentum=0.5
—— momentum=0.1 40 1 —— momentum=0.1
35 —— momentum=0.9 —— momentum=0.9
T T T T T T T T
0K 10K 20K 30K 0K 10K 20K 30K
Step Step

(@) (b)

Fig. 7: The mloU of the teacher-student baseline model with
different BN momentums.

4.2.3 Baseline

The teacher-student architecture (mean teacher [21]) is
widely adopted in semi-supervised learning. However, it
does not work satisfactorily in semantic segmentation. At
the beginning of training, the model performance sees a
remarkable improvement, but then the mloU drops off a
cliff. We find that the batch normalisation layer is the key
component for a strong baseline model. In the limited-
supervised setting, it can greatly affect the quality of pseudo
labels and aggravate the confirmation bias issue.

A batch normalisation (BN) layer consists of two statis-
tical parameters — an estimated mean and an estimated
standard deviation. However, different augmentations fit
different BN parameters [57]. The statistical information
of the data used for pseudo labelling and model training
is inconsistent. The pseudo labelling phase usually adopts
a very basic augmentation to process the input data. In
contrast, some strong augmentations are used for the data
processing of the model training stage. Thus, we manage
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TABLE 3: The performance of semantic segmentation on Pascal VOC with different label ratios.

Pascal VOC label ratio 1/64 1/96 1/128

Fold 1 2 3 mean 2 3 mean 1 2 3 mean
CCT (CVPR20) [34] 39.12 42.82 50.65 44.20 37.81 38.79 33.19 36.60 23.89 23.89 28.22 25.33
GCT (ECCV20) [54] 41.30 41.34 50.10 44.25 41.07 35.67 40.80 39.18 28.91 35.46 33.85 32.74
CPS (CVPR21) [50] 45.34 44.15 47.83 45.78 40.06 33.78 37.99 37.28 29.71 32.54 31.22 31.16
USRN (CVPR22) [55] 61.70 50.44 53.22 55.12 46.02 4451 46.40 45.64 39.59 37.43 N/A 38.41
ST++ (CVPR22) [56] 62.11 59.39 62.43 61.31 55.57 54.46 55.35 55.13 45.54 46.99 43.42 45.32
Our Baseline 62.91 60.45 57.61 60.32 56.01 57.84 55.86 56.57 46.08 53.40 52.83 50.77
vC 65.54 63.93 58.86 62.78 59.02 58.60 59.12 58.91 48.94 55.37 54.71 53.00

TABLE 4: The performance of semantic segmentation on Cityscape with different label ratios.

Citysacapes label ratio 1/64 1/72 1/80

Fold 1 2 3 mean 2 3 mean 1 2 3 mean
CCT (CVPR20) [34] 52.59 54.24 51.27 52.70 51.44 48.68 52.50 50.87 51.10 54.01 54.26 53.12
GCT (ECCV20) [54] 52.14 51.52 49.20 50.95 47.43 46.62 52.23 48.76 47.46 51.06 51.31 49.94
CPS (CVPR21) [50] 46.80 48.05 48.02 47.62 42.10 46.69 48.16 45.65 46.36 40.63 44.89 43.96
USRN (CVPR22) [55] N/A 50.54 N/A 50.54 N/A N/A N/A N/A N/A N/A 49.92 49.92
ST++ (CVPR22) [56] 51.67 56.56 49.11 52.45 51.20 47.02 52.77 50.33 44.02 49.64 46.04 46.57
Our Baseline 51.72 56.63 49.84 52.73 53.38 48.96 51.20 51.18 48.35 59.59 53.81 53.92
vC 52.62 58.30 50.74 53.88 55.53 49.92 53.62 53.02 48.92 61.00 54.65 54.86

two groups of statistical parameters in the BN layers for

each phase.
Moreover, the estimated statistics are updated with a
momentum argument by Zpe, = (1 — momentum) x

ZTotd + momentum X Teyrrent>. Most neural networks adopt
a small momentum such as 0.1. As shown in Fig. 7, we
find that it leads to a severe training collapse when the
numbers of labelled data are very limited. Increasing the
momentum alleviates this issue. The possible reason is that
a small momentum exacerbates a statistics bias due to the
repeating sampling of the labelled data. Each training batch
in a teacher-student framework is composed of labelled and
unlabelled images. Due to the limited size of the labelled
data subset, oversampling is quickly encountered. A small
momentum makes the statistics of the labelled subset dom-
inant in the estimated mean and standard deviation.

Thus, we adopt a relatively large momentum for all BN
layers. Doing so makes the training stable, leading to an
effective straightforward baseline model. The details can be
found in the public source code repository.

4.2.4 Performance

We report the performance of our semi-supervised baseline
and the model armed with the proposed VC learning in
Tabs. 3 and 4. Since different selections of labelled images
yield very different results in the extremely scarce-label
setting, we randomly select three data folds to make the
experiments more convincing. Other methods’ results are
reported in their papers or produced by their official codes.
On the Cityscapes dataset, USRN cannot be optimised on
some data folds due to the extremely unbalanced class
distribution issue. Therefore, we use N/A in the table for
those experimental results. To have a fair comparison, we
use the final checkpoint to produce the results in Tabs. 3
and 4 rather than the checkpoint with the highest mIoU. The

2. Here, the momentum is not the ema momentum to update the
teacher parameters. It is the momentum in each BN layer for updating
the estimated statistics.

strong teacher-student baseline model outperforms most of
the state-of-the-art semi-supervised semantic segmentation
algorithms. VC learning further boosts the baseline model to
achieve a remarkable improvement. For example, on Pascal
VOC fold 2 with a 1/128 label ratio, VC learning achieves
a mloU of 55.37, which is far higher than the recent ST++
(46.99). At most label ratios and data folds, VC learning
surpasses others, indicating the superiority of VC learning.

In comparison to the VOC dataset, Cityscapes is a
smaller (10k+ vs. 3k) and more challenging dataset. Adding
some training data, such as increasing the label ratio from
1/80 to 1/64, does not significantly improve model perfor-
mance. When we compare the three columns representing
mean performance in Tab. 4, it’s evident that most methods
achieve similar mloU scores across different label ratios.
There is no clear, consistent trend of performance decline
as the label ratio decreases, as observed with methods like
CCT, GCT, and ours. However, ST++ significantly under-
performs at extremely low label ratios, and one possible
reason is overfitting. ST++ introduced a scheme to compare
multiple-step predictions to filter out images with unstable
predictions. Instead of utilising all available training data to
the maximum extent, they discard a significant portion of it
and retrain the model with the remaining data. This means
that ST++ substantially reduces the number of training
images, especially at very low label ratios. As a result, the
model is prone to overfitting due to the training data being
limited, leading to worse performance. In contrast, our VC
learning makes an effort to leverage not only the confident
training samples but also the confusing ones, resulting in
the best overall performance.

We also evaluate VC learning with different backbones
and report the segmentation results in Tab. 5. It is clear that
VC learning constantly improves the baseline model with
both backbones. On 1/128 label ratio, the baseline model
with ResNet101 backbone performs worse than the one with
ResNet50, which is possibly caused by overfitting.
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Fig. 8: a) and b) Experiments of different strategies for
dealing with confusing samples. t.s.m. means the teacher-
student mutual verification policy for the potential category
set creation. t.2 indicates the top-2 probability method. T
means the virtual weight is produced by the weight gen-
erator formed by a transformer layer. ¢) Ratio of confusing
samples. d) mloU of pseudo labels w/ and w/o VC learn-
ing.

TABLE 5: Segmentation results of our baseline model and
VC learning with different backbones on Pascal VOC.

Backbone | Lable Ratio | Setting | mIoU
ResNet50 1/9 Ea\s]ecline ggg;

T
ResNet101 1/9 lia\s]ecline gggg

4.2.5 Analysis and Ablation Study

We ablate VC learning using the Pascal VOC 1/128 label
ratio fold1l setting. By doing so, the value of the confusing
sample and the effect of VC learning can be observed.

A. Ratio of confusing samples.

The ratio of confusing samples is shown in Fig. 8c. At
the very beginning of training, the ratio of confusing sam-
ples is nearly 20%. Fig. 8d shows that the mloU of the
pseudo-labels in the early stage is unsurprisingly low. Thus,
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TABLE 6: Segmentation results of VC learning with CE loss
and MSE loss on Pascal VOC.

. Fold
Label Ratio Loss 1 2 3 mean
1/64 CE 65.54 63.93 58.86 62.78
MSE 65.14 63.19 58.28 62.20
NEG 64.83 62.13 58.18 61.71
1/96 CE 59.02 58.60 59.12 58.91
MSE 58.94 58.62 58.49 58.69
NEG 58.15 58.22 57.54 57.97
1/128 CE 48.94 55.37 54.71 53.00
MSE 49.45 54.45 54.34 52.75
NEG 48.80 54.32 54.54 52.55

arbitrarily training the model with low-quality confusing
samples makes it become a victim of confirmation bias. VC
learning aims to alleviate this problem, thus resulting in
better pseudo-label accuracy (w/ vc in Fig. 8d).

B. Policies for confusing samples.

In the previous section, we mentioned that neither dis-
carding nor retaining is the optimal solution for confusing
samples. In Fig. 8a, we plot the mloU curves of these two
solutions and our VC learning. The keeping strategy (line 1,
also to be regarded as the baseline) performs significantly
worse than the other two solutions, which indicates the per-
formance issues that arise due to confirmation bias caused
by wrong pseudo labels. By comparing line 3 with line 1, we
can see that eliminating the influence of confirmation bias
by discarding confusing samples can improve the model
performance by far. However, it totally discards the poten-
tial contributions of confusing samples. Our VC learning
(line 2) proactively utilises confusing samples, which further
improves the mloU to best the other runs. It supports our
motivation for making use of confusing samples.

C. Creating methods of potential category set.

In Fig. 8a, The potential category set creation method is the
teacher-student mutual verification. It is only applied to the
pseudo labels of high confidence pixels (i.e., > 0.95). We also
propose a method termed top-2 probability to deal with the
low confidence pixels (i.e., < 0.95) and plot the mloU in
Fig. 8b as line 5. By comparing line 5 with line 1, it indicates
that VC learning makes effective use of low-confidence data.
We then combine the abovementioned two methods to gain
an even better mIoU (line 4).

D. Virtual weight.
The previous ablation studies are conducted with the vir-
tual weight proposed in our ECCV publication, i.e., the
normalised and scaled teacher feature vectors. This paper
introduces an new version produced by a transformer layer.
Line 6 in Fig. 8b is the mloU of VC learning with the virtual
weight generated by the transformer. We can see that it
exceeds all others, indicating that a better virtual weight
is worth exploring in semantic segmentation. Moreover,
we ablate the feature vectors from the teacher and the
student as the input token of the transformer layer. A similar
performance is observed: 48.94 (f) v.s. 48.76 (f*).

To illustrate the individual contributions of direction
and magnitude of the virtual weight, we employ cosine
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Ground Truth

Pseudo Label (S)

Pseudo Label (T)

Disputed Area

Disputed and
Low-conf. Area

Fig. 9: Visualisation of potential category sets. The row of
Pseudo Label (S) is inferred by the student model. The
predictions of the teacher model are indicated by Pseudo
Label (T).

Image

Ground
Truth

w/o VC

w/ VC

Fig. 10: Visualization results on the validation set of Pascal
VOC.

similarity as the loss function, replacing the cross-entropy
(CE) and mean squared error (MSE) losses used in the basic
version of VC learning. The results are presented in Tab. 7.

TABLE 7: Cosine Sim. means using cosine similarity to
replace the CE or MSE loss in VC learning.

Method
mloU

| Baseline

| 46.08

| Cosine Sim.

| 47.76

| Ve
| 48.62

By maximizing the cosine similarity between the feature
vector and the virtual weight while minimizing the co-
sine similarity between the feature vector and the classifier
weight of negative categories, we disregard the magnitudes
of both the virtual weight and the classifier weights. Cosine
Sim. outperforms the baseline, highlighting the significance
of the direction. In addition, it's important to note that VC
demonstrates that magnitude is also crucial, as it achieves
the best results.

E. Visualisation of potential category set in semantic segmenta-
tion.
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To analyse what kind of areas VC learning will be mainly
applied to, we visualise some demo pictures with their
pseudo labels predicted by the student and teacher model in
Fig. 9. Disputed pixels are usually located on the boundaries
of objects or semantically similar objects. For example, the
model makes an indecisive decision about the monitor’s
boundary in column 1 of Fig. 9. Some pixels belonging to
the printer also introduce some false-positive predictions.

F. Qualitative results.

The qualitative visual results of our baseline model and the
model with VC learning are in Fig. 10. The baseline model
trained by limited labelled data produces many wrong pre-
dictions. On the contrary, the model with our VC learning
processes these images very well.

G. Loss forms.

VC learning is compatible with not only the cross entropy
(CE) loss function but also the mean squared error (MSE)
loss function. The comparison results are reported in Tab. 6.
The VC learning with CE loss function outperforms the
version with MSE loss. They all stand out against other
methods, indicating the superiority and compatibility of our
approach.

H. Contribution of Virtual Category.

In VC learning, we propose VC as the training label while
omitting the categories in the potential category set. With
the MSE loss, it is feasible to train the model with only the
negative categories outside the potential category set. The
performance is reported in Tab. 6 of the label ‘NEG’. As
indicated in Tab. 6, employing MSE with VC produces su-
perior results compared to using only NEG. This highlights
the substantial contribution of VC.

4.3 Object Detection
4.3.1 Datasets and Evaluation Protocol

To evaluate the proposed method for object detection, we
assess it on two well-known object detection benchmark
datasets — MS COCO [10] and Pascal VOC [58]. Following
the mainstream evaluation setting, we use the subset index
provided by Unbiased Teacher [1] to split the train set
across five different labelled ratios: 0.5%, 1%, 2%, 5% and
10% (each ratio uses five random seeds used to obtain an
averaged mAP). We also report the performance on Pascal
VOC with VOCO07-trainval as the labelled subset and VOC12-
trainval as the unlabelled subset. Performance is evaluated
on VOCO07-test. The evaluation metric for all the experiments
reported in this subsection is mAP calculated by the COCO
evaluation kit [59].

4.3.2 Settings

Following the mainstream choice of the community, we
adopted Faster-RCNN [36] with FPN [65] and ResNet-
50 [16] as the object detector. The training is conducted on
8 GPUs with batch size of 1/4 per GPU for labelled /unla-
belled data. More details are introduced in Tab. 8.

Object detection consists broadly of two subtasks: classi-
fication and localisation. Since the classification confidence
score is not qualified to indicate the location quality of
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TABLE 8: The hyperparameters and augmentation settings
of VC learning in semi-supervised object detection.

Hyper-parameter | Value

t 0.7

VC norm const=3.5

VC loss type CE with focal loss term

PC set discovery T.S.

EMA momentum 0.9996

optimiser SGD

learning rate Ir 0.01

weight decay 0.02

momentum 0.9

« 4

B8 4

iteration num 180k

labelled data number 0.5-10% (COCO)
VOCO07 as labelled data

batch size (labelled) bs* 8

batch size (unlabelled) bs* 32

Augmentation | Parameters
weak augmentations
Random Flip p=0.5

Random Resize Range: [400, 1200]

strong augmentations

weak aug. same as above
Random ColorJitter

Random Grayscale p=0.2
Random Gaussian Blur p=20.5

Cutout p = 0.7 s=(0.05, 0.2), r=(0.3, 3.3)
p = 0.55=(0.02, 0.2), r=(0.1, 6.0)

p = 0.35=(0.02, 0.2), r=(0.05, 8.0)

pseudo labels, some of the previous works [1], [6] disabled
the localisation loss of unlabelled data. We find that the
method of creating the potential category set can also mea-
sure the quality of the location of pseudo labels. When
we create the potential category set for a pseudo box b,
we evaluate its location shift with the nearby box b. We
utilise the Intersection over Union (IoU) metric to match the
bounding boxes. When the IoU between two boxes b and
b of two different predictions is higher than a predefined
threshold (which we have set at 0.5 in this paper) and is the
max one, b is considered the nearby box of b. We propose
to decouple the horizontal and vertical boundary quality
instead of using the IoU as a comprehensive metric to filter
out the whole bounding box with low IoU value. The reason
is that the IoU value can be affected by one biased boundary,
even if the remaining boundaries are good. The horizontal
quality flag g, is calculated as:

]-a (3017;501) < tioc & (1?2;75:2) < tioc

hor = { 0, otherwise - (12)

where x1, 2, 21, T2 are the coordinates of the left and right
boundary of the pseudo box b and the nearby box b, w is the
width of b, ¢, is the threshold for high-quality boundaries.
Guer is calculated in the same way. The decoupling allows
high-quality boundaries to contribute to the localisation
training. For example, the regression of the left and right
boundary can be trained when the horizontal boundary
quality is satisfied, even if the top and bottom boundaries
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are biased. The localisation loss consists of four Smooth-
L1 [66] loss terms:

£7‘6g* = Qhorﬁx + QUercy + qhorﬁw + qverﬁh- (13)

In summary, the overall loss function is as follows:

L= ,Clds(l'l; y)+£;“eg(xl; y)_’_ﬁﬁt‘:/lsc(mu’ y/)+6£reg*(wu; yl)

(14)
The classification loss for unlabelled data is replaced by the
proposed VC learning loss term. The default hyperparame-
ters and augmentation settings are as shown in Tab. 8.

4.3.3 Performance

MS COCO We first evaluate our method on MS COCO
with five label ratios. The results using 5 averaged random
seeds are reported in Tab. 9. The results with { are obtained
from the available official code. ‘Ours’ are obtained by the
model with exactly identical settings of UnbiasedTeacher,
which is our baseline model. Given that scale jittering, as
used in SoftTeacher, has been shown to have a substan-
tial positive impact, we have incorporated this technique
into our approach and report the corresponding results as
‘Ours*. Furthermore, we adopt a relatively smaller batch
size for labelled data, as recommended by SoftTeacher, to
accelerate the training process in ‘Ours*. The significant
improvements can be summarised as follows:

1) Compared with the supervised baseline, the mAP in-
creases dramatically after training with the unlabelled data
via our method.

2) Our method outperforms other state-of-the-art semi-
supervised detectors on all the label ratios by a significant
margin. The mAP of our method at a small label ratio is
close to or even exceeds the mAP of some methods using a
large ratio.

Pascal VOC We also evaluate our method with VOCO07 as
the labelled subset and VOC12 and COCO* as the unla-
belled subsets. We collect the images that contain objects
in VOC predefined categories from MS COCO to build a
subset COCO*. The results are presented in Tab. 10. Since
the source codes of some methods are unavailable, the
evaluation styles they used are unclear. Usually, the results
based on the VOC-style AP are higher. Thus, we evaluate
our method with both COCO-style mAP and VOC-style
AP for the sake of fairness. Our method presents the best
performance on these two unlabelled data subsets. Since
VOCO07 consists of more than 5K labelled images, and it is a
relatively easy dataset, Tab. 10 indicates that our method can
effectively further improve the performance, even if there is
already sufficient labelled data.

4.3.4 Analysis and Ablation Study

In this subsection, we choose 1% data of MS COCO as the
labelled subset in object detection to analyse and validate
our method in detail. All the experiments in this section
are performed under the exactly same setting of the base-
line model Unbiased Teacher except for the batch size. We
adopt a smaller batch size to shorten the training time of
each ablation study, therefore resulting in slightly decreased
mAPs of all experiments compared to Tab. 9. The overall
ablation study is reported in Tab. 12. The model with VC
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TABLE 9: The performance on MS COCO with different label ratios. The results with | are obtained from the available
official code. Ours are the results with the same settings of Unbiased Teacher for the sake of fairness. Ours* is the results
obtained by using some training settings in Soft Teacher. Different styles of underlines highlight the fair comparisons.

COCO label ratio 0.5% 1% 2% 5% 10%
Supervised \ 6.83 \ 9.05 \ 12.70 \ 18.47 \ 23.86
CSD (NeurIPS19) [27] 741 10.51 13.93 18.63 22.46
STAC (arXiv) [6] 9.78 13.97 18.25 24.38 28.64
Instant Teaching (CVPR21) [12] - 18.05 22.45 26.75 30.40
Interactive (CVPR21) [7] - 18.88 22.43 26.37 30.53
Humble Teacher (CVPR21) [60] - 16.96 21.72 27.70 31.61
Combating Noise (NeurIPS21) [61] - 18.41 24.00 28.96 32.43
Unbiased Teacher (ICLR21) [1] 16.94 20.75 24.30 28.27 31.50
Soft Teacher (ICCV21) [62] 15.04t 20.46 25.93t 30.74 34.04
MUM (CVPR22) [63] - 21.27 26.84 31.90 35.92
DTG (NeurIPS22) [64] 18.54 21.88 24.84 28.52 31.87
Ours 18.12 21.61 25.84 30.31 33.45
Ours* 19.46 23.86 27.70 32.05 34.82
TABLE 10: Results of the experiment in VOC. D' and D" are
the labelled and unlabelled subset choices. COCO* consists 0.22 0.22
of the images from COCO that contain objects in the VOC PSSt 0.20
categories. Numbers in () are obtained with the VOC-style 0207 L 0.18
o o
AP, g 0.18 1 baseline <E( 0.16
; —— a) discard 01447
D VOC07 0.16 —— b) keep i
Method D* |  VOCl2 | VOCI2+COCO* Ve 012
STAC [0] 44,64 46.01 044 7 020 — T — 7
Instant Teaching [17] 50.00 50.80 Ok 0k ok 10K O S0k Jonke 180K
Interactive [7] 46.23 49.59
Humble Teacher [60] 53.04 54.41 @) (b)
Combating Noise [61] 49.30 50.20
Unbiased Teacher [1] 48.69 50.34 % )
MUM [63] 50.22 52.31 4 3
2 24 4 © 20 A
Ours | 5040 (55.74) | 51.44 (56.70) g S
© >
w0 22 184
g‘ a
TABLE 11: Validation mAP with different strategies to deal @ 20 1 s — w/VC
with confusing samples. e L . . ‘ < 16 | — wove
Y 3k 7K 11K 15K 3Kk 7K 11K 15K

c) VC
20.81

Strategy
mAP

| baseline

20.00

| a)discard |

19.37

b) keep |
19.36

learning and Reg* Loss performs favourably against the
baseline model.

A. Ratio of confusing samples.

The ratio of confusing samples is shown in Fig. 11c. At
the beginning of training, the ratio of confusing samples is
increasing as there are many images the model encountered
the first time. This ratio accounts for 20% throughout the
entire training process. This illustrates that there are numer-
ous uncertain samples present when the number of labels is
extremely limited. Fig. 11d shows the mAP of the pseudo-
labels in the early stage, which reveals training the model
with low-quality confusing samples yields a worse pseudo
label quality, thereby hindering the model performance.

B. Policies for confusing samples.

Here, we adopt the temporal stability verification to create
the potential category set for confusing samples. To analyse
the effectiveness of the virtual category, we respectively
report the mAP of the model under three policies: a) discard-
ing all confusing samples (discard), b) retaining all potential

© (d

Fig. 11: a) Experiments of different strategies for dealing
with confusing samples. As the pseudo labels of the valu-
able confusing samples are highly unreliable, it is not opti-
mal to either discard or keep them. Our VC learning(dot-
dashed line) satisfies both demands, thereby resulting in a
significant improvement. b) Experiments of different thresh-
olds of the confidence score filtering w/ or w/o our VC
learning. c) Ratio of confusing samples. d) mAP of pseudo
labels w/ and w/o VC learning.

labels for them (keep), and c) assigning our virtual category
to replace the potential categories (VC). The baseline model
is trained with vanilla pseudo labels (baseline) without the
potential category discovery. As shown in Tab. 11, both
discarding and retaining policies decrease the mAP. By
analysing the mAP during the entire training presented
in Fig. 11a, we noticed that rejecting confusing samples (blue
line) results in a low mAP at the very beginning of the
training. The reason is that using this policy discards some
confusing samples with correct pseudo labels that the model
needs. Then, as shown by the green line in Fig. 11a, training
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TABLE 12: Ablation study on VC loss and modified locali-
sation loss Reg* Loss. The method of creating the potential
category set in VC learning is temporal stability verification.

VC loss | Reg*Loss | mAP
20.00

v 20.81

v v 20.94

TABLE 13: Ablation study of different methods for creating
the potential category. We also report the performance with
only co-training techniques.

Method | mAP
baseline 20.00
Temporal 20.81
Cross 20.96
co-training w/o VC 20.53

with all potential categories gives a small performance boost
at the early stage of training because more under-fitted
samples are introduced to the model, but ends up with a low
mAP. We believe this is due to the confirmation bias issue
caused by incorrect pseudo labels that gradually hurts the
performance. Our approach effectively resolves this conflict
by providing a virtual category for the confusing sample.
The dot-dashed line in Fig. 11a demonstrates that these
confusing samples consistently benefit the model. The mAP
sees a rise of 0.81 with our VC learning. The model with our
VC learning exceeds the baseline early in the training and
continues to lead until the end of the training.

In addition, as can be seen from Fig. 11b, we evaluate
our VC learning with different thresholds (indicated by
three colours) of the confidence score filtering adopted by
our baseline model Unbiased Teacher. Confusing samples
always exist, no matter whether the filtering mechanism is
strict or not. The model with VC learning (dot-dashed lines)
outperforms the baseline (solid lines) on three thresholds.
Notably, the slump in the mAP disappears when thr = 0.6,
meaning that the confirmation bias has been effectively
alleviated.

C. Creating methods of potential category set

Section 3.5.2 explored two methods to create the poten-
tial category set. We validate them and report the results
in Tab. 13. The cross-model verification achieves the best
performance. The reason is that the cross-model verification
is similar to the co-training technique which uses two inde-
pendent models to provide pseudo labels for each other. It
slightly alleviates the confirmation bias issue, thus resulting
in additional improvement. As shown in Tab. 13, the co-
training can improve mAP by 0.53 individually. For the sake
of fairness to other methods without co-training, we use
the temporal stability verification in all other experiments,
although the cross-model verification performs better.

D. Virtual weight

We choose the feature vector f* from the teacher model to
produce the virtual weight. It is natural to validate different
augmentations for the input image of the teacher model to
generate various virtual weights. We explore three different
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TABLE 14: Ablation study of different image augmentation
for virtual weights generation.

Augmentation |

mAP |

none |

2080 |

| strong aug.

20.70

flipping
2081 |

TABLE 15: Ablation study on the contributions of omitting
the loss of categories in potential category set and VC.

Method | Omi. (discard)
mloU | 19.37

| Omi. (detach)
| 19.70

| Ve
| 20.81

settings: no augmentation, horizontal flipping, and strong
augmentation. The results are reported in Tab. 14. No perfor-
mance gap can be observed between no augmentation and
only horizontal flipping. Training with the virtual weight
generated by the strong augmentation slightly degrades
the mAP. The possible reason might be that the strong
augmentation, especially the cutout, significantly perturbs
the input image. Thus, in the feature space, the direction of
the virtual weight is far away from the weight vector of the
GT category.

In this paper, we introduce a transformer module to
generate the virtual weight and its effect has been verified
in the segmentation task. We also evaluate it in object
detection on 1% labelled COCO. The experiments show that
it achieves comparable performance to the basic version
(20.74 v.s. 20.81), i.e., the feature vector from the teacher
branch. Two main reasons are as follows: 1) unlike semantic
segmentation that each pixel must have a label, the position
of pseudo labels in object detection is highly uncertain,
especially for the background class. Therefore, it is difficult
to select a proper position and size of the bounding box to
extract local features to train the transformer. The imbalance
of foreground and background will also lead to the collapse
of its training. 2) the quality of the virtual weight is not the
bottleneck of VC learning in object detection. We evaluate
the upper bound by using the ground truth to select the real
weight as the virtual weight. It indicates that the improve-
ment room is only 0.48 (21.29 vs 20.81). In summary, it is
a good choice to adopt the most straightforward solution
for object detection, i.e., using f*, which not only avoids the
abovementioned problems but also achieves good results.

E. Contribution of Virtual Category

Similar to the ablation study in segmentation (Sec. 4.2.5 H).
We conduct experiments to present the contribution of VC
and the discarding operation. As shown in Tab. 15, "Omi.
(discard)” denotes that we remove all confusing training
samples, while “Omi. (detach)” signifies that we omit the
loss components associated with categories in the potential
category set and disable the VC’s contribution by detaching
it from the PyTorch computational graphs. ‘Omi. (discard)’
yields the worst results. This strategy discards all contri-
butions from confusing samples, even though some correct
pseudo-labels are undoubtedly conducive to optimization.
‘Omi. (detach)’ performs better than ‘Omi. (discard)’. This
experiment confirms that the accuracy gain does not solely
arise from ignoring the loss components of categories in the
potential category set as it still falls short of the performance
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TABLE 16: Ablation study of different hyperparameters. ;..
is the threshold for location quality.

0.03 \
2092 |

0.05 \ 0.1
2094 |

tioc ‘
mAP |

Potential
Category
1

Potential
Category
2

Ground & N
Truth Background W

badd *?
& ,,"’

Fig. 12: Visualisation of potential category sets in object
detection.

achieved by VC. "VC’ delivers the best results. Our VC learn-
ing strives to leverage all confusing samples to the fullest
extent possible, thereby achieving superior performance.

FE. Virtual Category learning in different stages

We attempted to incorporate VC learning into the first stage
of FasterRCNN, specifically the Region Proposal Network
(RPN). Since the RPN is primarily engaged in a binary
classification task, distinguishing between foreground and
background regions, the confusion arises when determining
whether a given region of interest corresponds to an object
within the dataset or not. We observed that many of these
confusing regions of interest pertain to out-of-dataset ob-
jects. Importantly, including such training samples for RPN
does not negatively impact the final detection results, as the
second stage of detection can effectively handle them. On
the contrary, including these out-of-dataset objects during
RPN training proves beneficial to some extent in identifying
potential objects, especially when there are limited available
ground truth labels. The experimental results are detailed in
Tab. 18.

G. Visualisation of potential category set.

We visualise some demo pictures with their confusing
pseudo labels in Fig. 12. Unlike semantic segmentation,
labels for object detection can appear anywhere in an image.
Therefore, the teacher model inevitably produces false posi-
tive pseudo labels as shown in the first column of Fig. 12. In
addition, similar semantics also make the model fail to give
accurate predictions.

H. Hyperparameters of Reg* Loss
The ablation study of the location quality threshold ¢;,. in
the L,.4- are shown in Tab. 16. A higher threshold will

15
TABLE 17: The top-1 accuracy on minilmageNet (4k labels).

Method | Top-1 Acc.
MeanTeacher [21] 27.49
Label Propagation [67] 29.71
SimPLE [68] 49.39
Teacher-student Baseline 43.10
Ours 51.49

TABLE 18: Ablation study on VC learning at different stages.

Baseline

20.00

VC (stage 2)
&
| 20.81

| VC (stage 1 and 2)
| 2072

retain more unstable boundaries, leading to worse perfor-
mance.

4.4 Others

In addition, we simply evaluate VC learning on minilm-
ageNet [69] for a non-dense task — image classification.
The top-1 accuracy of the proposed method is presented
in Tab. 17. VC learning achieves 51.49% on minilmageNet,
surpassing existing works by a large margin.

5 DISCUSSION AND CONCLUSION

In this section, we discuss the limitations of VC learning
first. The VC learning takes over the optimisation of the con-
fusing samples. In object detection, by comparing the mAP
gains of 10% and other small label ratios, the improvement
of our method is slightly lower but still rivals the first. This
phenomenon is expected and reasonable. On the one hand,
more labelled data means a better baseline detector. Thus,
the room between the baseline and the fully-supervised
upper bound is smaller. On the other hand, fewer unlabelled
data and a better detector indicate that confusing samples
are fewer. At the extreme, with 100% labelled data, our VC
learning will be applied to no sample, thereby resulting in
no improvement. Notably, this scenario is not the topic of
this paper. We focus on more practical situations, where
very limited labelled data are available. The experiments
with very limited labels demonstrated that the effectiveness
of VC learning is remarkable.

In conclusion, this paper proposed VC learning, which
exploits the confusing under-fitted unlabelled data. We pro-
vide a virtual category label to a sample if its pseudo label
is unreliable. It allows the model to be safely trained with
confusing data for further improvement to achieve state-
of-the-art performance. It can serve as a stepping stone to
future work for the community of semi-supervised learning,
especially with very limited labels.
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