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A B S T R A C T

The response of plates subjected to blast loads is of considerable scientific interest. The loading imparted to
a structure following a close-in detonation of a high explosive is typically high in magnitude, near-impulsive,
spatially non-uniform, with localised variability and a high dependence on factors such as charge shape,
position, and composition. The resulting structural response may induce large displacements in materials
whose properties may not be fully characterised. In order to properly account for the effects of such intrinsic
and extrinsic uncertainties, modelling approaches must balance the competing demands of accuracy and
low computational demand. This article applies the extended Hamilton’s principle to rigid-plastic thin plates
subjected to impulsive blast loads to derive the governing equation of motion without a prior assumption of
the initial specific impulse distribution. Closed-form solutions to predict the plastic response are derived for
rectangular and circular plates. The analytical models for uniform specific impulses are found to be in good
agreement with high-fidelity numerical simulations performed using LS-DYNA and experimental data available
in the literature.

1. Introduction

There is significant scientific interest in studying the structural
response in the inelastic range when structures are subjected to extreme
dynamic loadings, such as missile impacts and explosions. Extremely
high magnitudes and short durations characterise these loads, see [1–
4], and are expected to cause mainly plastic deformations in the
structures.

Tyas and Rigby and their collaborators [1–3,5] provide experimen-
tal evidence that near-field blasts generate spatially non-uniform spon-
taneous pressures that, subsequently, decay exponentially. Such intense
loading could induce large displacement, strain rate-dependent, and
material failure effects in the structural response, see, e.g., Jones [6].

For these reasons, in addition to geometric complexities and bound-
ary effects, the blast analyst typically resorts to making use of hy-
drocodes and Finite Element (FE) programs, attempting to simulate
the complete problem. However, such an approach is computationally
expensive. The challenge becomes more critical if we recognise that the
input data of the blast threat are never known in advance, as pointed
out by Tyas [3]. Furthermore, the material characteristics are prone, to
some extent, to potential variabilities. Thus, to design robust structures,
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it is more appropriate not to perform a single simulation but rather
a large number of analyses, to fully characterise the likely response
and associated confidence intervals. What, then, suits the analyst in
this regard is the availability of models that can be evaluated more
efficiently.

The present work aims to develop an analytical model to predict
the response of thin ductile plates under impulsive blast loads. To this
end, the current knowledge about the physical problem (see Section 2)
is utilised while attempting to minimise the complexity of the problem.

First, the load is assumed to be perfectly impulsive and, thus,
specified in terms of an initial velocity field derived from the prescribed
blast-induced specific impulse. According to the UFC 3-340-02 design
manual [7], the impulsive regime applies when the time to maximum
response to load duration ratio is greater than three, see Figure 1–
7 of the manual. Secondly, the material is idealised as rigid-perfectly
plastic, which obeys von Mises’s yield function and its associated flow
rule. Finally, the plate, which is restrained along its outer periphery, is
assumed to deform in membrane mode without in-plane displacements;
hence, flexural effects are ignored.

The first assumption, due to Rigby et al. [8], is fundamental to
the present analysis (the absence of externally applied forces ensures
a monotonic deformation path in a rigid-plastic structure, as will be
discussed in Section 3). The last assumption is based on the membrane
thinness and loading intensity.
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The well-known extended Hamilton’s principle, see, e.g., [9,10],
is applied to the above described problem to obtain the appropri-
ate equation of motion governing the transverse displacement of the
thin membrane. The equation is found as a two-dimensional linear
wave equation. Therefore, it is solved by the modal decomposition
technique while enforcing Drucker’s [11,12] postulate of the plastic
work nonnegativity. Analytical solutions are provided for rectangular
membranes subjected to arbitrary distribution of specific impulse and
for axisymmetric circular membranes.

The closed-form solutions for rectangular and circular membranes
loaded by uniform impulses are compared to experimental data found
in Nurick, Martin and Pearce [13], Gharababaei and Darvizeh [14],
and Nurick, Gelman, and Marshall [15]. In addition, the analytical
solution is compared to results from LS-DYNA [16] simulations, where
the loads are prescribed through the initial velocity field according
to Rigby et al. [8] and using relevant material parameters adopted
from [8,17,18]. Finally, the present model is compared to an existing
model proposed by Yuen et al. [19] as a modification to Nurick and
Martin’s [20] model. The uniform and non-uniform impulse solutions
are found to be reasonably accurate with very low computational
expense.

2. Literature review

2.1. Background

The field of investigating the response of engineering structures
under intense dynamic loads has attracted the interest of many re-
searchers. By far, the idealisation of a rigid-plastic material behaviour
has been the basic framework based on which several approximate
closed-form solutions were obtained. In earlier works, responses to
uniform dynamic pressure and uniform impulse were the main topic.
Both small and large displacement regimes were considered in the
response of circular and rectangular plates and beams with various
boundary conditions.

Again, structures were idealised as rigid-plastic, and the particular
spatial form of the dynamic load is assumed a priori. The first step
is to find the ‘‘quasi-static’’ limit load by means of the upper and
lower limit analysis theorems and to assume the incipient collapse
mechanism. The mechanism should be consistent with the underlying
yield function, its associated flow rule, and boundary conditions. At
the static collapse load, motion follows the ‘‘quasi-static’’ mechanism.
As the dynamic load intensity increases further, determination of the
resulting dynamic mechanism becomes highly involved, and hence it
is typically assumed. Then, the exact dynamic equilibrium equation is
formulated in which the acceleration derives from the assumed collapse
mechanism. The equation is then solved while avoiding any violation
of the yield condition and the flow rule. If yield violation cannot be
avoided, then the initially assumed mechanism is wrong. In this case,
another initial mechanism must be chosen, and the process is repeated.
The solution is valid when equilibrium, yield conditions, flow rule, and
boundary conditions are all satisfied. Thin plates are found to initially
respond in flexure, and as displacement increases further, membrane
effects evolve and become dominant. The load-free membrane response
is typically driven by some initial displacement and velocity conditions,
which are the final states of the initial flexural phase of response.

Typically, the eventual correct solution could be associated with
a ‘‘dynamic’’ collapse mechanism that is substantially different from
the ‘‘quasi-static’’ mechanism. Since the material is rigid-plastic, then
motion will eventually end, which happens when the external loads are
removed and the instantaneous velocity is zero everywhere (i.e. current
kinetic energy and external work are simultaneously zero).

The methodology behind the earlier works has been continued
recently where non-uniform blast loads are also studied. However,
the so-obtained solutions apply to the initially specified spatial forms
of the loading function. Response to arbitrary loading has not been
obtained. Furthermore, no solution for membranes’ responses due to
initial conditions imposed directly by the blast load is available.

2.2. Analytical models

A subset of earlier and recent publications that studied the dynamic
response of rigid-plastic structures under extreme dynamic loadings
(e.g. blast and impact) is summarised in Table 1. For more discussion
of the analytical method and for additional references, the reader is
referred to [21–25], and [26].

Martin and Symonds [41] developed the mode approximation tech-
nique to predict the response of rigid-plastic structures. Martin [40]
showed that the motion of an impulsively loaded structure eventually
converges to a mode-form response. The current practice of simplified
blast analysis, which is adopted in [7] and applied in Rigby et al. [52],
is also a mode approximation technique. This single-degree-of-freedom
SDOF technique is originally developed by Biggs [53].

In an analytical and experimental work, Nurick and Martin [20,
54] derived a non-dimensional impulse (or a damage number) that
correlates linearly with the normalised permanent displacements of
rectangular and circular thin plates obtained from a large set of exper-
imental data. Their model was revised (25 years later) by Nurick and
his colleagues [19]. The model applies to plates loaded by impulses of
constant amplitudes.

Cloete and Nurick [46] hypothesised that a quadratic displacement
field can be assumed to analyse a uniformly loaded thin plate. Using
such field, the authors solved the problem of a circular membrane
loaded with uniform impulse. They found that the central residual
transverse displacement varies linearly with Nurick and Martin’s non-
dimensional impulse. Moreover, it was shown that such displacement
is independent of the ‘‘in-plane’’ components of displacement.

In studying the response of thin plates under non-uniform blast
loads, Tyas, Rigby, and co-authors [8,55] established two important
relationships. Firstly, the local initial velocity, �̇�0, of the target (with
density 𝜌, thickness ℎ, and exposed area 𝐴) is confirmed to be a linear
function of the imparted non-uniform specific impulse field, 𝑖,

�̇�0 =
𝑖

𝜌ℎ
,

which is based on the upper bound kinetic energy. That is, non-
uniform specific impulse generates non-uniform initial velocity, see
Fig. 1(c). This initial velocity field contrasts with the ‘‘lower-bound’’
initial velocity field,

�̇�0,𝑙𝑏 =
∫
𝐴
𝑖 𝑑𝐴

𝜌ℎ𝐴
.

which is uniform and is interpreted as the rigid-body velocity (i.e. total
impulse divided by total mass), see Fig. 1(b).

Secondly, the maximum permanent displacement is a linear func-
tion of the energy-equivalent uniform total impulse, 𝐼𝑘, which is also
based on the upper bound kinetic energy uptake, 𝐾𝑢𝑏, developed by
Tyas and Pope [5], see Fig. 1,

𝐾𝑢𝑏 =
1

2𝜌ℎ ∫𝐴 𝑖2 𝑑𝐴, and 𝐼𝑘 =

√
𝐴∫𝐴 𝑖2 𝑑𝐴.

The authors showed that the blast load can be replaced by a
prescribed initial velocity field, which remarkably simplifies the anal-
ysis. This observation highlights the importance of the actual spatial
variation of the specific impulse. According to the authors, the imparted
energy from the blast onto a thin plate cannot be higher than 𝐾𝑢𝑏 or
lower than the kinetic energy computed with �̇�0,𝑙𝑏, provided the regime
is impulsive.

Pannell et al. [56] proposed a model that predicts the non-uniform
distribution of specific impulses arising from near-field blasts with
scaled distances of 0.11–0.55 m/kg1/3. Determining the specific im-
pulse profile is critical in analysing structures under near-field blast
loading, as discussed in [8].
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Table 1
Analytical works to study the dynamic response of rigid-plastic structures under extreme dynamic loadings.

Circular plate Rectangular plate Beam Theory

Small displacement (flexure) [27–31] [32,33] [34–37] [38–41]
Large displacement (membrane) [5,8,42–46] [14,26,47–49] [50,51]

Fig. 1. Non-uniform specific impulse distribution (a) and the generated profile of initial
velocity assuming a lower-bound (b) and an upper-bound (c) kinetic energy uptake,
reproduced after Tyas and Pope [5].

2.3. Experimental results

Nurick and his collaborators [13,15,54,57,58] presented extensive
experimental data for circular and rectangular plates under uniform
impulsive loads.

As discussed in Section 1, the team of the Blast and Impact Engi-
neering research group at the University of Sheffield [1–3,5] confirmed
experimentally that near-field blasts produce spatially non-uniform
specific impulses. Furthermore, the researchers and their collaborators
presented experimental and numerical studies of the transient defor-
mation of thin ductile plates subjected to near-field blast [55]. In their
study, both the blast load and the full-field transient displacement of
the target were measured locally: (a) the dynamic pressures histories at
different spatial points were measured by the Characterisation of Blast
Loading (CoBL) apparatus [2,59], providing the spatial variations of the
specific impulses; (b) full-field transient displacements of the targets
were measured using high-speed imaging, described further in [18];
and (c) the total impulse was measured using a ballistic pendulum.

Also, Langdon and her collaborators [18,60,61] studied the response
of steel plates under near-field blast experimentally. It was observed
that a localised blast load induces central dishing (or bulging) in the
targets. Gharababaei and Darvizeh [14] performed blast experiments
on steel, aluminium, and copper thin circular plates which were loaded
by detonating thin cylindrical charges of high explosives. The authors
used rigid tubes to guide the propagation of the shock waves as they
travel towards the specimens. Large plastic deformations were observed
in the tests.

In addition, Aune and his team presented experimental and numer-
ical studies on the response of thin plates under free-air blasts [62,63]
and blasts produced in a shock tube facility [64]. Additional air-blast
experiments are also reported by Spranghers et al. [65,66]. The plates
are made of ductile materials (structural steel and aluminium) and were
observed to respond impulsively and plastically.

2.4. Aims of the present study

The above discussion serves as a short account of some notable
works investigating the response of simple structures to blast loads. As

mentioned, some discuss the theory and provide analytical solutions,
while others give experimental observations to strengthen or refine the
theory.

Commercially available FE programs can simulate the nonlinear
structural response under specific blast settings [8,17,63,66,67]. How-
ever, such approach is computationally expensive and requires signif-
icant user expertise. Furthermore, extra computations might be neces-
sary to ensure the solution is insensitive to any artificial parameters
that are not pertinent to the physical problem (e.g. those related
to hourglassing, artificial damping, structural and material locking,
extra contact and leakage controls, etc.) Therefore, the approach is
not directly suitable for probabilistic-based blast analyses that require
many repeated calculations. The situation takes us back to the interest
in building analytical solutions to idealised mechanical problems as
they are more computationally efficient and fast-running. This is the
rationale of the present work.

As discussed in Section 1, the present work aims to develop an
analytical solution to predict the transient and permanent displace-
ment of thin ductile plates subjected to impulsive blast loads. The
model utilises the following simplifying idealisations: impulsive blast
load, rigid-perfectly plastic material behaviour, and membrane mode
of deformation, according to observations from the already discussed
literature. We apply the extended Hamilton’s principle to obtain a
general equation of motion that applies to any target’s geometry with-
out a prior assumption on the initial field. The then-derived equation
and solution will accommodate any distribution of the blast-induced
specific impulse.

3. Theory

3.1. Problem definition

Consider a thin membrane made of a rigid-perfectly plastic metal
that is subjected to a prescribed initial velocity field obtained from a
specific impulse distribution according to Tyas and Pope [5] and Rigby
et al. [8].

The membrane can be of a rectangular or circular geometry, and it
is supported along its outer periphery. For the rectangular geometry, 𝐿𝑥

and 𝐿𝑦 are the sides’ lengths, as indicated in Fig. 2, and 𝑅 is the radius
of the circular membrane. The specific impulse is denoted by 𝑖(𝑥, 𝑦)

or 𝑖(𝑟), where 𝑥 and 𝑦 are the rectangular undeformed coordinates for
rectangular geometry, whereas 𝑟 is the radial undeformed coordinate
for the circular membrane. Let 𝑡 denotes time, and 𝜌, ℎ, and 𝜎0 denote,
respectively, density, thickness, and characteristic yield strength of the
membrane.

The membrane is assumed to respond in pure membrane mode.
Further, it is assumed that the components of displacement along the
undeformed in-plane coordinates are negligible. That is, the only non-
zero displacement is the one along the original out-of-plane coordinate,
which is denoted by 𝑤. In other words, every particle of the membrane
displaces vertically.

In line with the perfect plasticity assumption, the characteristic
yield strength 𝜎0 is assumed constant. Thus, for materials exhibiting
substantial work-hardening [64,68], 𝜎0 could be defined such that a
rectangular stress-plastic strain curve preserves the total area under the
actual uniaxial stress-plastic strain curve. This approach is adopted in
the UFC 3-340-02 [7] manual.
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Fig. 2. Problem definitions for the rectangular membrane: (a) plan view showing
undeformed geometry and (b) side view showing a typical spatial distribution of specific
impulse 𝑖.

3.2. Development of the equation of motion

The extended Hamilton’s principle is applied to the present problem
to systematically derive the equation of motion. In applying the princi-
ple, treatment of kinetic energy and external work (if any) terms are not
new and will not be shown for brevity. However, the internal energy
term needs special consideration. First, there is no elastic strain energy
in the system, and the only allowed internal energy (arising from the
accumulation of plastic deformation) is dissipative in nature. To obey
such irreversible behaviour, the rate of plastic work must always be
non-negative [11,12]. That is, when strain rate tends to change sign,
stress must instantly do so in a rigid-perfectly plastic structure.

In Hamilton’s principle, the total internal energy is the one that
should be included, not the rate of energy. The total energy is the
time integral of the energy rate. However, the time integration can be
carried out beforehand (i.e. explicitly) when the total plastic strain is
monotonic since the stress would be constant in terms of sign (recall
that its magnitude is already constant from the perfect plasticity). Now,
since there are no external forces, the total plastic strain is guaranteed
to be monotonic (i.e. the sign of strain rate is fixed) when the transverse
velocity is monotonic.

In the following, 𝜎𝑖𝑗 , 𝑠𝑖𝑗 , 𝜀𝑖𝑗 , and 𝜆 are the stress, deviatoric stress,
(Green–Lagrange) strain, and the plastic multiplier, respectively. A dot
(.) over a symbol denotes time differentiation, a repeated subscript
implies summation, and a superscript (𝑝) denotes the plastic part.

With reference to the von Mises’s yield function, 𝑓 (𝜎𝑖𝑗 ) =
1

2
𝑠𝑖𝑗𝑠𝑖𝑗 ,

yielding of the material occurs when 𝑓 (𝜎𝑖𝑗 ) =
1

3
𝜎2
0
. Associated with such

yielding condition, the incremental flow rule reads

�̇�
𝑝

𝑖𝑗
= �̇�

𝜕𝑓

𝜕𝜎𝑖𝑗
= �̇�𝑠𝑖𝑗 �̇�

𝑝

𝑖𝑗
≡ 0 if 𝑓 (𝜎𝑖𝑗 ) <

1

3
𝜎2
0

(3.1)

Now, if the material has actually yielded, i.e. �̇�𝑖𝑗 ≡ 0, then under a
monotonic deformation regime, the flow rule can be integrated by parts
(while taking advantage of �̇�𝑖𝑗 = 0 and assuming 𝜆|𝑡=0 = 0) to obtain

𝜀
𝑝

𝑖𝑗
= ∫ �̇�

𝑝

𝑖𝑗
𝑑𝑡 = ∫ �̇�𝑠𝑖𝑗 𝑑𝑡 = 𝜆𝑠𝑖𝑗 − ∫ 𝜆�̇�𝑖𝑗 𝑑𝑡 = 𝜆𝑠𝑖𝑗 . (3.2)

Eq. (3.2) allowed a transition from the flow to the total theory
of plasticity, and it holds only when the path is monotonic. In fact,
Drucker [12] assures that when loading is monotonic, the two plasticity
theories are identical.

Using Eq. (3.2), it can be shown that 𝜆 =
(√

3∕2 𝜀
𝑝

𝑖𝑗
𝜀
𝑝

𝑖𝑗

)
∕𝜎0, and the

total plastic work, which is

𝑊𝑝 = ∫𝑉 𝜎𝑖𝑗𝜀
𝑝

𝑖𝑗
𝑑𝑉 , (3.3)

can be expanded as 𝑊𝑝 = ∫
𝑉
𝑠𝑖𝑗𝜀

𝑝

𝑖𝑗
𝑑𝑉 = ∫

𝑉
𝜆𝑠𝑖𝑗𝑠𝑖𝑗 𝑑𝑉 = ∫

𝑉
𝜆

(
2

3
𝜎2
0

)
𝑑𝑉 ,

or

𝑊𝑝 = ∫𝑉 𝜎0

√
2∕3 𝜀

𝑝

𝑖𝑗
𝜀
𝑝

𝑖𝑗
𝑑𝑉 . (3.4)

where the plastic incompressibility, 𝜀𝑝
𝑖𝑖

= 𝜆𝑠𝑖𝑖 = 0, of the von-Mises
material was utilised.

From now on, the superscript 𝑝 will be omitted as total strain and
plastic strain are identical in line with the rigid-plastic assumption. To
evaluate the quantity 𝜀𝑖𝑗𝜀𝑖𝑗 , the four non-vanishing strain components
as functions of the transverse displacement, 𝑤(𝑥, 𝑦, 𝑡), will be utilised.
These are

𝜀𝑥 =
1

2

(
𝜕𝑤

𝜕𝑥

)2

, 𝜀𝑦 =
1

2

(
𝜕𝑤

𝜕𝑦

)2

,

𝛾𝑥𝑦 =
𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
= 2

√
𝜀𝑥𝜀𝑦 , (3.5)

and from the incompressibility condition, one has

𝜀𝑧 = −(𝜀𝑥 + 𝜀𝑦). (3.6)

Then, through some algebra simplifications, it can be shown that

𝜀𝑖𝑗𝜀𝑖𝑗 = 2(𝜀𝑥 + 𝜀𝑦)
2. (3.7)

Therefore, the total plastic work under a monotonic deformation
path becomes

𝑊𝑝 = ∫𝑉
2√
3
𝜎0(𝜀𝑥 + 𝜀𝑦) 𝑑𝑉

= ∫𝑉
2√
3
𝜎0

[
1

2

(
𝜕𝑤

𝜕𝑥

)2

+
1

2

(
𝜕𝑤

𝜕𝑦

)2
]
𝑑𝑉 . (3.8)

It should be noted that the stress 𝜎𝑖𝑗 , appearing in Eq. (3.3), is the
second Piola–Kirchhoff stress since it is the work-conjugate to Green–
Lagrange strain. However, for consistency of the formulation, the small
strain assumption implies that this mentioned stress can be replaced
with the true Cauchy stress. Hence, we refer to 𝜎𝑖𝑗 throughout as the
Cauchy stress.

Then, the extended Hamilton’s principle is applied, which reads

𝛿

(
∫

𝑡2

𝑡1

𝐻 𝑑𝑡

)
= 0, (3.9)

where 𝛿 is the variational operator, and 𝑡1 and 𝑡2 are arbitrary times.
In Eq. (3.9), the Hamiltonian, 𝐻 , of the system (in absence of external
work and elastic strain energy) is given by

𝐻 =
[
𝐾 −𝑊𝑝

]
. (3.10)

in which 𝐾 is the total kinetic energy of the membrane, which is
𝐾 = ∫

𝑉

1

2
𝜌�̇�2 𝑑𝑉 , and𝑊𝑝 was given in Eq. (3.8). Notice that𝐻 becomes

a functional of 𝑤 only.
Finally, by (i) applying 𝛿 on 𝑤, (ii) carrying out spatial and temporal

integration by parts, (iii) imposing constraints on 𝑤 at the membrane
edges and anywhere at times 𝑡1 and 𝑡2 where 𝛿𝑤 vanishes identically,
and (iv) requiring 𝛿𝑤 to be otherwise arbitrary, then one obtains the
(Euler–Lagrange) equation of motion governing the response of the
rigid-perfectly plastic membrane as

2√
3
𝜎0

[
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2

]
= 𝜌�̈�. (3.11)
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Eq. (3.11) is a two-dimensional scalar (plastic) wave equation in
𝑤(𝑥, 𝑦, 𝑡) in a rectangular coordinate system and with a wave speed[
2𝜎0∕(

√
3 𝜌)

]1∕2
. Note that Eq. (3.11) is a field equation so that it applies

to any membrane geometry with restrained edges.
Later, the equation is solved for a rectangular membrane, as defined

in Fig. 2, under the following kinematic conditions

𝑤(0, 𝑦, 𝑡) = 𝑤(𝐿𝑥, 𝑦, 𝑡) = 𝑤(𝑥, 0, 𝑡) = 𝑤(𝑥, 𝐿𝑦, 𝑡) = 0,

𝑤(𝑥, 𝑦, 0) = 0, (3.12)

and the dynamic condition

�̇�(𝑥, 𝑦, 0) =
𝑖(𝑥, 𝑦)

𝜌ℎ
. (3.13)

Eq. (3.13) is experimentally shown to hold for thin plates under non-
uniform specific impulse [5,8,55], which was derived from the balance
of linear momentum of shear non-rigid thin plates.

For a circular membrane and under axisymmetric conditions (which
will be assumed throughout), it can be shown, through the standard
transformation from rectangular to polar coordinates, that the equation
of motion is given as

2√
3
𝜎0

[
𝜕2𝑤

𝜕𝑟2
+

1

𝑟

𝜕𝑤

𝜕𝑟

]
= 𝜌�̈�. (3.14)

where a term within the brackets on the left-hand side (1∕𝑟2) 𝜕2𝑤∕𝜕𝜃2

has been omitted due to the axisymmetric assumption. Eq. (3.14) will
be solved under the following conditions

𝑤(𝑅, 𝑡) = 𝑤(𝑟, 0) = 0, �̇�(𝑟, 0) =
𝑖(𝑟)

𝜌ℎ
. (3.15)

Although the actual problem involves plastic deformations, the
obtained equations of motion are linear. Hence, they can be solved by
Fourier’s decomposition, which is based on the principle of superposi-
tion.

It should be recalled that the above equations of motion are valid
as long as the deformation path remains monotonic so that Eq. (3.2) is
not violated. Hence, the solutions (to be presented later) of Eqs. (3.11)
and (3.14) are valid up to the instant of time when the transverse
velocity, �̇�, tends to change sign, or simply when velocity reaches zero.
In other words, a component of the solution must terminate whenever
the velocity associated with it reaches zero for the first time. Otherwise,
plastic work would decrease and thereby violating its irreversibility or
dissipating nature, and thus the solution becomes non-physical.

Many textbooks, e.g. references that treat the elastic free vibration
of pre-tensioned membranes under small displacements, such as [69,
Ch. IX] or [70, Sec. 69], show how equations similar to Eqs. (3.11)
and (3.14) can be solved. Excellent stepwise derivations are presented
in [71]. Hence, the derivation steps of the solution will be omitted for
brevity. Instead, the solutions themselves are given.

4. Rectangular membrane

4.1. Response of rectangular membrane

The rectangular membrane equation of motion, Eq. (3.11), was
solved by the modal decomposition technique under the prescribed
geometric conditions, Eqs. (3.12) and (3.13). Its solution is

𝑤(𝑥, 𝑦, 𝑡) =
4

𝜌ℎ𝐿𝑥𝐿𝑦

∞∑
𝑚,𝑛=1

𝐼𝑚𝑛

𝜔𝑚𝑛

𝜙𝑚𝑛(𝑥, 𝑦) sin
(
𝜔𝑚𝑛𝑡

)
(4.1)

with the wave speed 𝑐, mode shape 𝜙𝑚𝑛(𝑥, 𝑦), modal angular frequency
𝜔𝑚𝑛, and total modal impulse 𝐼𝑚𝑛 given by

𝑐 =

√
2√
3

𝜎0

𝜌
(4.2)

𝜙𝑚𝑛(𝑥, 𝑦) = sin

(
𝑚𝜋𝑥

𝐿𝑥

)
sin

(
𝑛𝜋𝑦

𝐿𝑦

)

𝜔𝑚𝑛 =
𝜋𝑐

𝐿𝑥𝐿𝑦

√
(𝐿𝑦𝑚)

2 + (𝐿𝑥𝑛)
2 (4.3)

𝐼𝑚𝑛 = ∫
𝐿𝑥

0 ∫
𝐿𝑦

0

𝑖(𝑥, 𝑦) sin

(
𝑚𝜋𝑥

𝐿𝑥

)
sin

(
𝑛𝜋𝑦

𝐿𝑦

)
𝑑𝑦 𝑑𝑥. (4.4)

The pair (𝑚, 𝑛) defines a particular mode with mode shape 𝜙𝑚𝑛(𝑥, 𝑦).
It is known that the modes are orthogonal over the membrane domain,
and hence they are independent. Thus, to fulfill the requirement of
a monotonic deformation path (and hence obey the plastic work’s
non-negativity), a strategy is adopted to enforce the termination of a
particular mode when the associated (modal) velocity reaches zero for
the first time. This occurs when

𝑡 = 𝑡𝑚,𝑛 =
𝜋

2𝜔𝑚𝑛

. (4.5)

From 𝜔𝑚𝑛, see Eq. (4.3), it is clear that the sequence of turning off
the modal contributions is ordered from highest to lowest modes in
terms of frequency. The notion of sequential terminations of the modes
was previously used in [43,45]. The last contributing mode is the first,
i.e. with (𝑚 = 𝑛 = 1). Thus, the whole membrane ceases motion at no
later than 𝑡 = 𝑡1,1, which is given by

𝑡1,1 =
𝐿∗

2𝑐
(4.6)

where 𝐿∗, defined for convenience, is the ratio of the membrane area
to the length of its diagonal and given by

𝐿∗ ≡ 𝐿𝑥𝐿𝑦√
𝐿2
𝑥
+ 𝐿2

𝑦

. (4.7)

Note that if 𝑡1,1 is less than three times the duration of blast load, the
global response is less likely to be impulsive, based on [7], since 𝑡1,1 is
an upper bound on the response time. The actual time of maximum
response is the modal time 𝑡𝑚,𝑛 of the dominant mode (whose total
modal impulse is 𝐼𝑚𝑛) of the membrane under a particular distribution
of specific impulse 𝑖. If there are several dominant modes, then the
maximum time is the largest 𝑡𝑚,𝑛 among these modes.

The permanent shape, 𝑤𝑝(𝑥, 𝑦), of the membrane is given by 𝑤(𝑥, 𝑦, 𝑡)

when 𝑡 ≥ 𝑡1,1, or

𝑤𝑝(𝑥, 𝑦) =
4

𝜋𝜌𝑐ℎ

∞∑
𝑚,𝑛=1

𝐼𝑚𝑛√
(𝐿𝑥𝑛)

2 + (𝐿𝑦𝑚)
2

𝜙𝑚𝑛(𝑥, 𝑦). (4.8)

For all cases in which the specific impulse distribution is symmetric
about the membrane’s centre, the peak displacement is located at the
centre. The central permanent displacement, 𝑤𝑐 ≡ 𝑤𝑝(𝐿𝑥∕2, 𝐿𝑦∕2), is

𝑤𝑐 =
4

𝜋𝜌𝑐ℎ

∞∑
𝑚,𝑛=1

𝐼𝑚𝑛√
(𝐿𝑥𝑛)

2 + (𝐿𝑦𝑚)
2

sin
(
𝑚𝜋

2

)
sin

(
𝑛𝜋

2

)
. (4.9)

According to Pannell et al. [56], the specific impulse distribution
from a near-field spherical charge blast is of a Gaussian form as a
function of the angle of incidence. However, it was not possible to
evaluate 𝐼𝑚𝑛 symbolically for a specific impulse distribution, 𝑖(𝑥, 𝑦), as
predicted by Pannell et al. Hence, numerical integration is needed.
A practical Matlab code for calculating 𝐼𝑚𝑛 using the Fast Fourier
Transform (FFT) is given in Appendix B.

Fig. 3 shows the normalised permanent displacement, 𝑤𝑝, profiles
along 𝑦 = 𝐿𝑦∕2 due to three impulse distributions with constant ampli-
tudes applied over varying central areas of a rectangular membrane. In
the figure, the legends indicate the ratios of the loaded to total areas. It
is, thus, evident that a localised impulse induces localised displacement
shape, i.e. with central dishing, while the case of uniform impulse
applied over the whole area of the membrane results in global uniform
dishing.

In practice, a finite number of modes is used to numerically evaluate
the permanent, 𝑤𝑝(𝑥, 𝑦), and permanent central, 𝑤𝑐 , displacements.
To maintain sufficient accuracy while truncating the infinite series in
Eqs. (4.8) and (4.9), the error estimate given in Appendix A can be
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Fig. 3. Permanent displacement profile for rectangular membrane under three sets of
impulses of constant amplitudes applied over central rectangular regions with loaded-
to-total area ratios of (1) 0.062, (2) 0.25, and (3) 1.0. Curve (1) is associated with
localised impulse, and (3) results from a uniform impulse over the entire membrane.

used. The error relates the sum of modal impulses (included in the
approximation) to the energy-equivalent total impulse, 𝐼𝑘 which is

𝐼𝑘 =

√
𝐴∫𝐴 𝑖2 𝑑𝐴

in which 𝐴 is the area of the membrane. The absolute importance
of a particular mode is shown to be indicated by the measure 0 ≤
(2𝐼𝑚𝑛∕𝐼𝑘)

2 ≤ 1, which can also be used to identify the dominant
mode(s); dominant modes have values closer to unity.

4.2. Uniform specific impulse case — rectangular membrane

For the case where the specific impulse has a constant distribution,
i.e. 𝑖(𝑥, 𝑦) = 𝑖0, the modal impulse, 𝐼𝑚𝑛, simplifies to

𝐼𝑚𝑛 =

{
4𝑖0𝐿𝑥𝐿𝑦

𝜋2 𝑚𝑛
when (𝑚, 𝑛) are odd

0 otherwise

which suggests that the first mode is the most dominant.
The peak displacement is located at the plate’s centre and is given

by

𝑤𝑐 =
16𝑖0𝐿𝑦

𝜋3𝜌𝑐ℎ

∞∑
𝑚,𝑛=1,3,5

sin
(
𝑚𝜋

2

)
sin

(
𝑛𝜋

2

)

𝑚𝑛

√
𝑛2 + 𝑚2(𝐿𝑦∕𝐿𝑥)

2

. (4.10)

In Eq. (4.10), the summand depends only on the membrane’s aspect
ratio 𝐿𝑦∕𝐿𝑥. Denoting the sum by 𝑆0, it was observed to converge. The
value of 𝑆0 for any aspect ratio in the range [0.1−1.0] can be read from
Fig. 4, in which 𝐿𝑦 ≤ 𝐿𝑥.

With 𝑆0 known, the central displacement of a membrane due to a
uniform impulse (with intensity 𝑖0) is given by

𝑤𝑐 =
16𝑖0𝐿𝑦

𝜋3𝜌𝑐ℎ
𝑆0. (4.11)

Or, using the total impulse 𝐼0 = ∫
𝐴
𝑖(𝑥, 𝑦) 𝑑𝐴 = 𝐴 𝑖0, the last expression

becomes

𝑤𝑐 =
16𝑆0

𝜋3𝜌𝑐ℎ𝐿𝑥

𝐼0 ≡ 𝑘0𝐼0 (4.12)

where a structural parameter 𝑘0 was introduced and defined as

𝑘0 =
16𝑆0

𝜋3𝜌𝑐ℎ𝐿𝑥

. (4.13)

It should be re-emphasised that 𝐿𝑦 is the shorter side’s length, i.e. 𝐿𝑦∕

𝐿𝑥 ≤ 1, when 𝑆0 is estimated from Fig. 4.

Fig. 4. The converged value of truncated sum, 𝑆0, for the rectangular membrane
associated with uniform impulse case as a function of the membrane aspect ratio,
𝐿𝑦∕𝐿𝑥, where 𝐿𝑦 ≤ 𝐿𝑥.

5. Circular membrane

5.1. Response of circular membrane

As stated in Section 3, axisymmetric conditions are assumed for
the circular membrane problem. Eq. (3.14) was solved by the modal
decomposition technique. The solution is presented below, Eq. (5.1),
which gives the displacement of a circular rigid-perfectly plastic mem-
brane of radius 𝑅, mass density 𝜌, characteristic yield strength 𝜎0, and
thickness ℎ, due to a specific impulse (impulse per unit area), 𝑖(𝑟).

𝑤(𝑟, 𝑡) =
2

𝜌𝑐𝑅ℎ

∞∑
𝑚=1

𝐼𝑚

𝑗0,𝑚𝐽1(𝑗0,𝑚)
2
𝜙𝑚(𝑟) sin

(
𝜔𝑚𝑡

)
, (5.1)

where

𝜙𝑚(𝑟) = 𝐽0

(
𝑗0,𝑚

𝑅
𝑟

)
, (5.2)

𝜔𝑚 =
𝑐𝑗0,𝑚

𝑅
, (5.3)

𝐼𝑚 = ∫
𝑅

0

𝑖(𝑟) 𝐽0

(
𝑗0,𝑚

𝑅
𝑟

)
𝑟𝑑𝑟 (5.4)

𝐼𝑚 is the total modal impulse per unit radian, 𝑐 is the wave speed
given in Eq. (4.3), 𝜙𝑚(𝑟) is the 𝑚th mode shape, and 𝜔𝑚 is the corre-
sponding frequency. In above, 𝐽0(𝑥) and 𝐽1(𝑥), respectively, are Bessel
functions of the first kind of order zero and one, while the scalar value
𝑗0,𝑚 is the 𝑚th root of 𝐽0(𝑥) = 0, i.e. 𝐽0(𝑗0,𝑚) ≡ 0. The solution does
not involve Bessel functions of the second kind to avoid infinite (non-
physical) response at the origin (plate’s centre). Furthermore, the modal
solution depends only on the zeroth order Bessel function due to the
axisymmetry of the problem. Again, the 𝑚th mode shape is 𝐽0(𝑗0,𝑚𝑟∕𝑅),

and the square of its norm (per unit radian) is (1∕2)𝑅2
[
𝐽1(𝑗0,𝑚)

]2
.

The modes, 𝜙𝑚(𝑟), are orthogonal to each other, and thus they are
independent.

Similar to the rectangular case, the contribution from a given mode
in the solution is valid until the corresponding modal velocity reaches
zero when 𝑡 ≥ 𝑡𝑚, where 𝑡𝑚 = 𝜋𝑅∕(2𝑐𝑗0,𝑚). Thus, the modes will be
switched off sequentially in descending order with respect to frequency.
Thus, the whole membrane motion terminates at or before 𝑡 = 𝑡1 =

𝜋𝑅∕(2𝑐𝑗0,1), where 𝑗0,1 = 2.405.
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Table 2
The first seven roots of the zeroth-order Bessel function 𝐽0(𝑥) and their related quantities, computed using [72].

𝑚 1 2 3 4 5 6 7

𝑗0,𝑚 2.4048 5.5201 8.6537 11.7915 14.9309 18.0711 21.2116
𝐽1(𝑗0,𝑚)

2 0.2695 0.1158 0.0737 0.0540 0.0427 0.0352 0.0300
𝐽1(𝑗0,𝑚)∕𝑗0,𝑚 0.2159 −0.0616 0.0314 −0.0197 0.0138 −0.0104 0.0082

Fig. 5. Permanent displacement profile of an axisymmetric circular membrane sub-
jected to a uniform impulse which is applied over a localised region (1) with a
loaded-to-total area ratio of 0.062 and over the whole area (2) of the membrane as
predicted by the present solution.

The permanent membrane profile, 𝑤𝑝(𝑟), is obtained from Eq. (5.1)
for 𝑡 ≥ 𝑡1 and is given by

𝑤𝑝(𝑟) =
2

𝜌𝑐𝑅ℎ

∞∑
𝑚=1

𝐼𝑚

𝑗0,𝑚𝐽1(𝑗0,𝑚)
2
𝜙𝑚(𝑟). (5.5)

Since the problem is axisymmetric, the central displacement is the
peak. Using the fact that 𝐽0(0) = 1, the central permanent displacement,
𝑤𝑐 ≡ 𝑤𝑝(𝑟 = 0), is

𝑤𝑐 =
2

𝜌𝑐𝑅ℎ

∞∑
𝑚=1

𝐼𝑚

𝑗0,𝑚𝐽1(𝑗0,𝑚)
2
. (5.6)

Some available tools, e.g. Matlab native function besselj() and the
user-built Matlab function in [72], can be utilised to evaluate Bessel
quantities appearing in the above expressions. Table 2 is provided for
quick estimation purposes.

Similar to the rectangular case, it was not possible to evaluate
the integral 𝐼𝑚 for a specific impulse distribution, 𝑖(𝑟), of the type
predicted by Pannell et al.’s [56] model. Thus, 𝐼𝑚 needs to be computed
numerically.

Experiments indicate that when a circular membrane is subjected to
localised impulse, say, over the membrane’s central region, then central
dishing results, see Curry and Langdon [18]. Thus, to qualitatively test
the developed solution, such a loading case was simulated that results
in the permanent shape depicted in Fig. 5 by curve (1), in which a
central bulging can be seen.

5.2. Uniform specific impulse case — circular membrane

When the specific impulse (impulse per unit area) is spatially uni-
form with intensity 𝑖0, the total modal impulse 𝐼𝑚 simplifies to 𝐼𝑚 =

[𝑖0𝑅
2𝐽1(𝑗0,𝑚)]∕𝑗0,𝑚.
In this case, the permanent central displacement of a circular mem-

brane is

𝑤𝑐 =
2𝑅𝑖0

𝜌𝑐ℎ

∞∑
𝑚=1

[
𝑗2
0,𝑚

𝐽1(𝑗0,𝑚)
]−1

=
2𝑅𝑖0

𝜌𝑐ℎ
𝑆0 (5.7)

in which the numerical value of the infinite sum is denoted with 𝑆0

and evaluates to 0.2674. Hence, the central permanent displacement
of a circular membrane due to a uniform specific impulse (of intensity
𝑖0) is

𝑤𝑐 =
2𝑅𝑖0

𝜌𝑐ℎ
× 0.2674. (5.8)

Alternatively, in terms of total impulse 𝐼0 = 𝜋𝑅2𝑖0, the central
displacement becomes

𝑤𝑐 =
2 × 0.2674

𝜋𝑅𝜌𝑐ℎ
𝐼0 ≡ 𝑘0 × 𝐼0 (5.9)

with the circular structural parameter 𝑘0 defined as

𝑘0 =
2 × 0.2674

𝜋𝑅𝜌𝑐ℎ
. (5.10)

The model predicts the normalised permanent membrane profile
for the uniform specific impulse case as shown by curve (2) in Fig. 5,
presented earlier.

6. Model verification

6.1. Rectangular model verification

6.1.1. Uniform impulse
The solution 𝑤𝑐 for the uniform impulse case, as given by Eq. (4.12),

is validated using experimental data obtained from the literature as
detailed in this section. Nurick, Martin, and Pearce [13] carried out
82 experiments using rectangular and square thin plates made of steel,
and the specimens were loaded impulsively by distributed sheets of ex-
plosives. The authors suggest that the impulse distributions are uniform
over the specimens’ exposed surfaces. The sides measured 113 mm and
70 mm for the rectangular plates, and a side length of 89 mm was given
for the square plates. The thickness and static yield strength were given
as 1.6 mm and 296 MPa, respectively; the mass density is assumed to
be 7830 kg/m3. In the tests, the amounts of explosives were varied,
resulting in different values of total impulses measured using a ballistic
pendulum. The permanent central displacements were measured and
given in the paper, and further details can be found there.

Nurick et al. [13] data is used to validate the solution, Eq. (4.12).
The static yield strength reported in the experiments is taken as 𝜎0 in
the model. The results of the comparisons are shown in Figs. 6 and 7.

Nurick et al. experiments were simulated numerically using LS-
DYNA [16], in which the plates were subjected to uniform initial
velocity fields. The steel material was modelled using the *Mat_Simplif-
ied_Johnson_Cook model, available in LS-DYNA [73], which accounts for
strain-hardening and strain-rate effect on the current yield stress. Ther-
mal softening and strain-based failure were neglected in the analyses.
The material parameters, except the static yield strength, were taken
from [8,17]. The rectangular plates were modelled as fully integrated
shell elements using *Element_Shell and *Section_Shell keywords with
Elform = 16 (free of hourglass modes) and three through-thickness in-
tegration points, NIP = 3, (to incorporate flexural effects). The uniform
initial velocities were prescribed using the *Initial_Velocity_Node key-
word. Nodes on the plates’ peripheries were restrained in all (including
the rotational) degrees of freedom.

The peak displacement at the plate’s centre was used to determine
an appropriate element mesh density, which was then held fixed in
subsequent analyses. The permanent displacement was determined by
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Fig. 6. Comparison of model predictions to experimental data [13] and LS-DYNA
numerical results in terms of central residual displacement 𝑤𝑐 of rectangular and square
membranes under uniform impulse of total magnitude of 𝐼0; 𝑘0 is the membrane’s
parameter defined in Eq. (4.13).

averaging (through time integration) the displacement time history
beyond the first peak over a small number of vibration cycles.

LS-DYNA results are compared to the experiments and the analytical
predictions for the rectangular and square tests (separately) as shown
in Fig. 7.

Aune and his team at SIMlab presented experimental and numerical
studies on the response of thin plates under free-air blasts [62,63] and
blasts produced in a shock tube facility [64]. Additional air-blast exper-
iments are also reported by Spranghers et al. [65,66]. The rectangular
plates are made of ductile materials (structural steel and aluminium).
Some specimens are seen to respond impulsively and plastically. From
the span-to-thickness ratios of some experiments and the intensity
of the generated blast loads, the targets are thought to respond in
membrane mode. Therefore, their experiments can, in general, be used
to further assess the accuracy of the present model. However, few tests
should be excluded from the validation analysis in which the plates:
(1) experienced complete fractures, (2) had pre-formed cracks or holes,
or (3) experienced a (counterintuitive) bifurcation or rebound buckling
due to their ultra thinness when combined with low blast intensity. The
validation of the model against the above experiments is not presented
herein because the original works, cited above, did not provide quanti-
tative information about the distribution of the blast-generated specific
impulses, which the present model requires.

6.1.2. Discussion and model limitations
Figs. 6 and 7 exhibit a reasonable accuracy of the analytical model,

Eq. (4.12), although the model accounts only for membrane behaviour,
rigid-perfectly plastic material model, and idealised impulsive load.

However, as can be seen in the figures, the analytical model ap-
pears to be vertically offset when compared to the data. The offset
is attributed to the fact that the model equation passes through the
origin of 𝑤𝑐 versus 𝐼0, which is a shortcoming of the model since one
expects a negative intercept on the 𝑤𝑐 -axis (note that 𝑤𝑐 is a plastic
displacement).

From the other hand, it should be noted that Nurick et al. [13]
measured (indirectly) the total impulse, and the actual specific impulse
distribution (which is assumed uniform herein) was not reported. The
slight discrepancy between the present model prediction and the ex-
perimental data could then be attributed to the implied lack of precise
data.

Furthermore, the slight discrepancy can also be linked to the perfect
plasticity assumption on the material behaviour. The model excludes
strain-hardening and strain-rate effects, and for simplicity the static
yield strength is taken as the perfectly plastic limit. However, many
practical ductile materials exhibit various levels of yield enhancement
due to these plastic effects. Heat-treated metals, e.g., typically possess
substantial work-hardening where the current yield strength progresses
gradually from the (less distinct) initial yield stress up to the ultimate
strength that could be as twice as the initial yield strength [68]. A cer-
tain class of steel, which has been used in blast environments, exhibits
different hardening-ductility characteristics depending on the material
composition, heat-treatment, and manufacturing processes [64]. Ideal-
ising plates made of hardening materials as perfectly plastic would then
result in overestimations of the responses under large dynamic loads.
Therefore, it is important that such plastic characteristics are incorpo-
rated in computer numerical analyses since mathematical complexity
is not a barrier.

The perfect plasticity assumption is adopted in the present work
to obtain a ‘‘first-order approximation’’ model. Addition of the two
mentioned effects into the model was found, by the authors, to lead
to a nonlinear equation of motion. Therefore, the solution given by the
present perfectly plastic model should be regarded as an upper-bound
solution for structures made of materials that (in practice) deviate from
the perfect plasticity behaviour.

If desirable, we propose that the yield strength to be used in the
model might be adjusted (e.g. amplified) to compensate for large strain-
hardening strengthening. For example, the actual area under the plastic
part of the engineering stress–strain curve could be converted to a rect-
angular area, and by maintaining the ultimate strain, the characteristic
(or effective) yield strength can then be determined. This procedure
should give better predictions while maintain the upper-bound sense.
However, in the foregoing validation work, the model is evaluated
using the ‘‘static’’ yield strength because it was found to agree with
the data.

A simplified study to assess the effect of work-hardening on the
response of a single-degree-of-freedom (SDOF) due to blast-type loading
is presented in Appendix C. Few representative numerical cases are
given in which the ratios of the constant hardening moduli to elastic
stiffness are in a range of practical values. Furthermore, a numerical
parametric study using LS-DYNA of the effect of strain-hardening on
the residual response of thin plates is also given in Appendix C; in
addition, the corresponding predictions by the present analytical model
are compared to LS-DYNA results.

The experiments in [62–66], discussed earlier, can be used to
quantify the effect of neglecting the work-hardening in the model
as some uniaxial tensile specimens show a significant presence of
strain-hardening.

Finally, it should be re-emphasised that values of the material
parameters, except the static yield strength, used in the LS-DYNA sim-
ulations are assumed. The source papers reported neither the Johnson–
Cook (JC) parameters nor re-usable stress–strain data to enable iden-
tifications of the constitutive plastic parameters. For example, Nurick
et al. [13] present the engineering stress–strain data at different strain
rates. Using their data, it was attempted to obtain digitally converted
true stress–strain curves and determine the material parameters by
curve-fitting the data to JC model. However, this was not possible
due to precision issues associated with the strain axis resolution. Thus,
practical JC parameters (except the static yield strength) were adopted
from [8,17], as mentioned already. Curry, in [17], pointed out that
when quasi-static stress–strain data are fitted to JC model, the resulting
static yield stress (𝐴𝐽𝐶 ) underestimates the value observed experimen-
tally, due to the hardening power-law in JC model. Although, the
used material parameters were found to give reasonable predictions
when compared to the experiments. Example techniques to determine
such parameters are explained in [17,74], and validated JC material
parameters for some commonly used ductile materials are given in [8,
26,61,63,66].
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Fig. 7. Comparison of model predictions to experimental data [13] and LS-DYNA numerical results in terms of central residual displacement 𝑤𝑐 of (a) rectangular and (b) square
membranes under uniform impulse of total magnitude of 𝐼0. LS-DYNA data are for permanent displacements. The data was separated for visual convenience.

Fig. 8. Comparison of model predictions to experimental data [13] and LS-DYNA
results in terms of central residual displacement 𝑤𝑐 of circular membranes under
uniform impulse of total magnitude of 𝐼0; 𝑘0 is the circular structural parameter defined
in Eq. (5.10).

6.2. Circular model verification

6.2.1. Uniform impulse

In this section, we compare the predictions of the circular model for
uniform specific impulse, as given by Eq. (5.9), to experimental data
and numerical LS-DYNA predictions. Nurick, Martin, and Pearce [13],
discussed in Section 6.1.1, also report experimental data for the per-
manent displacements of circular membranes of fixed diameters of
100 mm when subjected to uniform impulses of varying amplitudes.
The membrane material properties and thickness are as described for
the rectangular membrane, see Section 6.1.1. The data are compared
to predictions from the model for the uniformly loaded circular mem-
branes, Eq. (5.9). The characteristic yield strength 𝜎0 is taken as the
static yield strength in [13]. The results are shown in Fig. 8.

In addition, LS-DYNA was used to replicate the tests of Nurick
et al. [13] for the circular membrane case. Axisymmetric conditions
were assumed in the simulations, and hence the problems were solved

using beam elements along the radial axis of the plates using *Elem-
ent_Beam and *Section_Beam keywords with Elform = 8 and three through-
thickness integration points, IR/QR = 3. With this set-up, it is unneces-
sary to specify the conditions at the axis of symmetry. Because the ax-
isymmetric solver was utilised, the *Mat_Modified_Johnson_Cook model
was used; it should be noted that the ‘‘modified’’ and ‘‘simplified’’
Johnson–Cook models differ in describing the strain-rate sensitivity.
Again, applicable material parameters (except the static yield strength)
were adopted from [8,17]. Motion is induced by a uniform initial
velocity field calculated from the uniform specific impulse, and the
periphery node was fully restrained. Finally, the central displacement
was chosen to carry out mesh convergence study to determine the
appropriate mesh density, which was then maintained throughout.

The finite element results for the permanent displacement are com-
pared to the present analytical model and the experimental data of
Nurick et al. [13], as shown in Fig. 8.

Gharababaei and Darvizeh [14] report results from 86 experiments
on circular plates. The authors measured the central permanent dis-
placements of steel, copper, and aluminium thin plates and the total
impulses they were subjected to using a ballistic pendulum. All spec-
imens had circular exposed areas with a fixed diameter of 100 mm.
Among the experiments, 42 tests are assumed to generate spatially
uniform specific impulse based on the following. The blast loads were
generated by detonating thin (cylindrical) disks of C4 explosives lo-
cated at a stand-off distance of 300 mm from the plates’ centres for
the 42 tests. The smallest scaled distance was Z = 1.12 m/kg1/3, and a
9.5◦ angle of incidence at the plates’ periphery was held constant for
the tests. Furthermore, the authors used a rigid circular tube of equal
diameter as that of the specimens to guide the propagation of the shock
waves along its axis. Further details can be found in the original paper.

The predictions from the present model, Eq. (5.9), and LS-DYNA
simulations are compared to the experimental data of Gharababaei and
Darvizeh. Again, the static yield strengths reported in experiments are
taken as the characteristic yield strengths in the model calculations.
The data for the aluminium plates were excluded due to numerical
difficulties in simulating their behaviour as the material is not strain-
rate sensitive, and there is no available material data given in [14]
regarding its strain-hardening parameters. The results are given in
Fig. 9.

As shown in Fig. 9, the model does not accurately predict the
experimental outcomes of Gharababaei and Darvizeh [14], in particular
for 𝑘0 × 𝐼0 larger than 0.03 m. The model overpredicts the permanent
displacement by at most a factor of two.

Fig. 10 compares the model to data from LS-DYNA alone, which
combines data already shown in Figs. 8 and 9. In the validation data
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Fig. 9. Comparison of model predictions to experimental data [14] and LS-DYNA
results in terms of central residual displacement 𝑤𝑐 of circular membranes under
uniform impulse. In [14], the total impulse 𝐼0 was measured by ballistic pendulum;
however, it was generated from thin disks of explosives with charge-to-target radius
ratios of 0.2 and 0.30, but with a stand-off distance to plate’s diameter ratio of 3.0.
Experimental data for specimens with diameter-to-thickness ratio, (𝐷∕ℎ), less than 50
are highlighted with filled red markers. 𝑘0 is the circular structural parameter defined
in Eq. (5.10).

Fig. 10. Comparison of model predictions to results from LS-DYNA simulations
corresponding to the experimental set-ups in [13,14] in terms of central residual
displacement 𝑤𝑐 of circular membranes under uniform impulse of total magnitude
of 𝐼0. Numerical material parameters (except the static yield strength) were taken
from [8] for the steel plates. Notice that LS-DYNA simulations account for elasticity,
strain-hardening, strain-rate sensitivity, bending and shear effects, which the present
analytical model completely ignores. 𝑘0 is the circular structural parameter defined in
Eq. (5.10).

in Fig. 10, yield strength, plate thickness and density are variables in
addition to the total impulse. As the model properly captures the trend
of LS-DYNA predictions, it is concluded that the functional form of 𝑤𝑐

in terms of these structural parameters is accurate.
Nurick, Gelman and Marshall [15] present additional 162 exper-

iments on circular steel plates, of varying diameters, loaded with
uniform impulses. All had 1.6 mm thickness and assumed density of
7850 kg/m3. For plates with diameters 60, 80, 100, 120 mm, the
corresponding static yield strengths were given as 251, 220, 270, 220

Fig. 11. Comparison of model predictions to experimental data [15] in terms of
central residual displacement 𝑤𝑐 of circular membranes under uniform impulse of total
magnitude of 𝐼0. 𝑘0 is the circular structural parameter defined in Eq. (5.10).

MPa, respectively. These specimens were clamped with sharp edges.
Two additional sets of specimens with filleted clamping supports had
diameters of 100 mm and yield strength of 251 MPa each. All data,
including the total impulses and central residual displacements, are
tabulated in Nurick et al. [15], and further details can be found
there. Their data, excluding five tests for which displacements are not
reported, are used to verify the circular membrane solution, Eq. (5.9),
as shown in Fig. 11.

So far, the experimental tests used for the validation involve limited
ranges of plates’ thicknesses. To further assess the performance of the
model under combined variations of total impulse and plate thickness
in broader ranges, the input data presented in Rigby et al.’s [8] was
used in additional LS-DYNA simulations. The set-ups are similar to
those described earlier. From a sample simulation run, the central
displacement time history is shown in Fig. 12. The results of the latter
investigation are depicted in Fig. 13, which demonstrates the accuracy
of the present model under varying plate thicknesses.

6.2.2. Discussion and limitations
The discussion and limitations presented in Section 6.1.2 for the

rectangular case are also applicable to the validation of the uniform
circular model against the experiments of Nurick et al. [13,15]. In
general, the model slightly deviates from the experimentally observed
measurements.

However, there is a pronounced discrepancy when comparing the
uniform model to Gharababaei and Darvizeh’s [14] data. This required
a reappraisal of the model, the input data, and the testing set-up to
trace the source of discrepancy. As previously discussed, the authors
used a rigid tube as a blast wave guide that (when combined with the
moderate stand-off distance) could produce wave reflection effects due
to the interaction near the tube’s wall. However, the assumption of
uniformity of the impulse is ruled out. If the resulting specific impulse
was indeed non-uniform, then according to [5,8], the displacement
would then be even larger than that induced by a uniform impulse.

Although the model is built to predict membrane behaviour of thin
plates, it performs better for the relatively thicker plates in [14] than
it does for specimens with diameter-to-thickness ratios greater than 50.
This can be seen in Fig. 9, in which the markers for thicker specimens
are filled in red to highlight such observation. Furthermore, the trend
of the experimental data deviates from the expected behaviour that
moderately thicker plates are stiffer. This is because: (1) extra resisting
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Fig. 12. Time history of the central displacement 𝑤𝑐 from LS-DYNA simulation for a
sample problem using input parameters given in [8]. Negative values on the ordinate
𝑦-axis correspond to downward displacements. It is seen that the resulting displacement
is mainly plastic.

Fig. 13. Comparison of model predictions to LS-DYNA results in terms of central
residual displacement 𝑤𝑐 of circular membranes under uniform impulse of total
magnitude of 𝐼0. In the numerical simulations, input parameters were obtained from
the parametric study in [8] to investigate the model performance for a wide range of
plate’s thickness. Peak (p) and residual (r) displacements from LS-DYNA analyses are
shown.

modes are involved, i.e. bending and shear, that also contribute to
absorb (or dissipate) the initial kinetic energy; and (2) due to in-
creased mass per unit area, thicker plates attenuate the initial velocity
generated by the (externally) imparted impulse according to Rigby
et al.’s [8].

However, since an increase in the impulse leads to increase in
initial velocity (for a given plate), the dynamic yield stress increases
(due to strain-rate effects), which in turn would reduce the permanent
displacement. Thus, the discrepancy between the model predictions and
the experimental displacements for the range of larger impulses can
be partly attributed to neglecting the strain-rate sensitivity of the yield
strength and possibly, as discussed in Section 6.1.2, the work-hardening
of the specimens (in particular made of copper).

Table 3
Comparison of the present model against the modified Nurick and Martin’s model
proposed by Yuen et al. [19].

Geometry: 𝛼 𝛽

Yuen et al. Present Yuen et al. Present

Circular 0.241 0.281 0.298 0.0
Rectangular 0.253 0.480 × 𝑆0(𝐿𝑦∕𝐿𝑥)

1∕2 −0.158 0.0
Square 0.253 0.270 −0.158 0.0

Furthermore, similar to the discussion in Section 6.1.2, the authors
in [14] measured the total impulse indirectly using a ballistic pendu-
lum. Rigby et al. [55] pointed out that targets typically experience
∼ 67% of the total impulses calculated from the ballistic pendulum
measurements. Their conclusion can explain the observed discrepancy
between the model predictions and Gharababaei and Darvizeh’s [14]
data.

6.3. Comparison of uniform circular and rectangular models to the modified
Nurick and Martin model

Yuen et al. [19] proposed modifications to Nurick and Martin’s [54]
model. In their model, the normalised permanent displacement (i.e.
displacement-thickness ratio), 𝑤𝑐∕ℎ, of circular or rectangular thin
plates with exposed areas, 𝐴, is linearly related to the non-dimensional
impulse, �̂�,

�̂� =
𝐼0

ℎ2
√
𝜌𝜎0𝐴

,

by the following empirical relation, see [19],

𝑤𝑐

ℎ
= 𝛼�̂� + 𝛽

where 𝛼 and 𝛽 are correlation coefficients given in Yuen et al. [19] and
presented in Table 3 for convenience. Note that we divided 𝛼 (reported
in Yuen et al. [19]) by

√
𝜋 and 2, respectively, for the circular and

rectangular models to unify the form of �̂� for the two geometries, as
given above.

Their empirical models were shown to reasonably predict the re-
sponse of the thin plates compared to 699 (circular) and 356 (rect-
angular) experiments. Thus, it is of interest to compare the present
model, developed herein, to their findings. For the present model,
the coefficients 𝛼 and 𝛽 are obtained from the previously developed
solutions by rewriting them in terms of �̂�.

The comparisons are summarised in Table 3. The values 𝑆0 = 0.5627

and
√
𝐿𝑦∕𝐿𝑥 = 1 were used to calculate 𝛼 for the square geometry using

the expression of 𝛼 for the rectangular model, given in Table 3. Note
that 𝛽 is zero for all cases of the present model. While Yuen et al.’s 𝛼
and 𝛽 are identical for the rectangular and square plates, the present
model’s 𝛼 depends on the aspect ratio, 𝐿𝑦∕𝐿𝑥, (the parameter 𝑆0 also
depends on the aspect ratio). Since the value of 𝛽 from Yuen et al. is
small and will be multiplied by the plate’s thickness to give a fraction
of 𝑤𝑐 , 𝛽 can be neglected for our purpose of comparison. Overall, the
present model overestimates the displacement by around 7∽17% (based
on 𝛼) compared to the predictions of Yuen et al. [19].

From the comparisons of the present model against data from
experiments and LS-DYNA simulations, presented in Sections 6.1.1 and
6.2.1, it is concluded in overall that the model is reasonably accurate
in predicting the permanent displacements of rectangular and circular
membranes under uniformly distributed specific impulses. The compar-
ison of the uniform model to the already validated predictions of Nurick
and Martin [54] and Yuen et al. [19], presented in this section, also
supports this conclusion.
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7. Limitations

Despite the relative accuracy of the present model, it has several
shortcomings.

First, during the development of the equation of motions, the mem-
brane is assumed to be already yielding as long as there is motion. That
is, there is no rigid body motion. The whole membrane experiences
(non-uniformly) distributed plasticity.

Second, ‘‘plastic’’ motion is assumed to be initiated by initial ve-
locity, which is directly given by the imposed specific impulse. Hence,
the model cannot determine the amount of impulse to be elastically
absorbed. Therefore, any amount of given impulse leads immediately
to an onset of ‘‘plastic’’ deformation. The model indicates that kinetic
energy is at maximum at the initial time state, which gradually and
monotonically decays as plasticity evolves. The model assumes com-
plete removal of the external load (that induced the specific impulse)
before motion, and hence the decreasing rate of kinetic energy is
identical to the increasing rate of plastic work; the time history of
plastic work is of an inverted form of the kinetic energy history.

Third, the yield strength is independent of the evolution of the mem-
brane’s motion. That is, enhancement (or hardening) of the yield stress
due to strain-hardening and strain-rate sensitivity are not (correctly)
incorporated. This is due to the perfect plasticity assumption, and a
detailed discussion was given earlier in Section 6.1.2.

Fourth, the displacement components along the in-plane coordi-
nates of the undeformed membrane are assumed negligible as com-
pared to the out-of-plane component. In fact, the in-plane components
are set identically to zero throughout. Hence, the longitudinal Green–
Lagrange strains are merely due to the quadratic terms of the gradient
of the out-of-plane displacement. This, in turn, leads to zero membrane
strains at points where zero gradients occur, such as at the centre
of a symmetrically loaded membrane. Experiments often show that
this is not true; in fact, the peak membrane strains in uniformly and
impulsively loaded membranes are located near their central regions.
Despite this shortcoming, the model is able to predict thinning of
the membrane near its restraints (i.e. where it is supported). This is
directly due to the plastic incompressibility, which necessarily gives
the transverse longitudinal strain as the negative of the sum of the
other two longitudinal strains (which are always non-negative); thus,
thickness shortens in strained regions.

Finally, the model focuses on thin plates subjected to extreme
out-of-plane blast loads. The model excludes flexural and direct-shear
mechanisms. The model should, then, be limited to thin plates with
high span-to-thickness ratios and subjected to intense lateral forces.
Therefore, the model can only predict failure in the form of thinning-
induced splitting. Thus, the model does not apply to cases where
direct shear failures near the supports occur. Note that as the load
intensity becomes very low or the load duration increases significantly,
the model is not suitable since elastic and flexural effects become
important.

Attempts by the authors to incorporate as many sophistications as
needed to replicate the actual behaviour of the studied membrane
response would eventually lead to an incremental analysis of a non-
linear dynamic problem. We did not attempt to re-discover an already
existing problem which can be tackled by existing techniques (e.g. FE
analysis using LS-DYNA). Instead, we aimed to simplify the problem
using overall observations that capture the ‘‘dominant’’ behaviour to
ultimately obtain a model that rationally balances accuracy, simplicity,
and efficiency.

Further justifications of the model’s assumptions and the aim of the
work were given earlier in Sections 1 and 2.

8. Summary and conclusions

Analytical solutions were developed to predict the profile and peak
permanent displacement of thin plates under impulsive blast loads.
The plates’ materials were assumed rigid-perfectly plastic, obeying
von Mises’s yield criteria, and their motions were initiated from the
blast-induced specific impulse. This problem set-up led to a monotonic
deformation path, which was exploited in deriving the governing equa-
tion of motion systematically through the application of the extended
Hamilton’s principle. The equations of motion apply to thin plates
deforming mainly in membrane modes and plastically. Although the
obtained equations are general, solutions were given for two membrane
geometries, rectangular and circular, by the modal decomposition tech-
nique. The modal decomposition was supplemented with sequential
mode terminations, a strategy that is justified herein by Drucker’s
requirement of plastic work non-negativity.

The rectangular solution applies to any spatial distribution of spe-
cific impulses. A practical MATLAB code is proposed to efficiently
compute the total modal impulses involved in the general solutions for
non-uniform impulses. Moreover, a procedure to estimate the errors
from truncating the infinite series in the solutions was discussed in
connection to the concept of the upper bound kinetic energy of Rigby
et al. [8]. The circular solution is restricted to axisymmetric specific
impulses.

However, it was possible to provide simple closed-form solutions
for the case of uniform specific impulse. The closed-form solutions of
rectangular and circular thin plates were verified against experimental
data in the literature and results from LS-DYNA simulations performed
by the authors.

The present models for the rectangular and circular membranes
were shown to be reasonably accurate in comparison to the experi-
mental and numerical results. It should be emphasised that the models
account only for simplified idealisations: an impulsive blast load, a
rigid-perfectly plastic material behaviour, and a membrane mode of de-
formation. As a result, the obtained models are believed to be (already
validated) simple and fast-running tools. Thus, they can be used by
structural blast engineers for probabilistic-based analyses. Although the
analytical models were compared against cases with uniform imparted
impulsive loads, the general relations derived herein can readily model
non-uniform impulsive loads.
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Appendix A. Assessment of error due to series truncation

Unless the specific impulse distribution identically matches the
shape of a particular mode, the exact solution, as given by Eqs. (4.8)
and (4.9), requires taking an infinite number of terms in the sum.
However, in practice, a finite number of terms is used to approximate
the solution within reasonable accuracy. An appropriate measure to
evaluate the sufficiency of the approximation is the total kinetic energy.
Suppose that the kinetic energy computed by including a finite number
of modes is close to the ‘‘exact’’ kinetic energy, which is a strict upper
bound due to the non-negativity of kinetic energies. Then, the discarded
modes will be insignificant as their total contribution is bounded from
above by the implied error (or difference). It is the initial kinetic energy
that is referred to, which is

𝐸𝑘 = ∫
𝐿𝑥

0 ∫
𝐿𝑦

0

1

2
𝜌ℎ�̇�2

0
𝑑𝑦 𝑑𝑥

=
1

2𝜌ℎ ∫
𝐿𝑥

0 ∫
𝐿𝑦

0

𝑖(𝑥, 𝑦)2 𝑑𝑦 𝑑𝑥. (A.1)

Again, this is taken as the ‘‘exact’’ kinetic energy at time 𝑡 = 0, and it is
termed the ‘‘upper bound kinetic energy’’ uptake in Tyas and Pope [5]
and Rigby et al. [8].

Due to the assumption of deformation monotonicity, the total plastic
work is associated with the total strain at the final time (as the problem
is path-independent). That is, after 𝑡 ≥ 𝑡1,1, the plastic work 𝑊 ∗

𝑝
is

evaluated using the final displacement field, 𝑤𝑝(𝑥, 𝑦), and hence is given
by

𝑊 ∗
𝑝
=

2√
3
𝜎0ℎ ∫

𝐿𝑥

0 ∫
𝐿𝑦

0

[
1

2

(
𝜕𝑤𝑝

𝜕𝑥

)2

+
1

2

(
𝜕𝑤𝑝

𝜕𝑦

)2
]
𝑑𝑦 𝑑𝑥. (A.2)

By exploiting the modal orthogonality property and after some lengthy
algebraic simplifications, the plastic work evaluates to

𝑊 ∗
𝑝
=

1

2𝜌ℎ

4

𝐿𝑥𝐿𝑦

∞∑
𝑚,𝑛=1

𝐼2
𝑚𝑛
. (A.3)

The above, Eq. (A.3), is precisely the expression for the (initial)
kinetic energy if we would evaluate it by time differentiating the
general solution 𝑤(𝑥, 𝑦, 𝑡), Eq. (4.1), then set 𝑡 = 0, which confirms that
the initial kinetic energy is converted into (plastic) internal energy.

Now, when the expressions of the exact initial kinetic energy, 𝐸𝑘,
from Eq. (A.1), and the final plastic work, 𝑊 ∗

𝑝
, are set equal, the

following condition, known as Parseval’s formula [75], is obtained
∞∑

𝑚,𝑛=1

𝐼2
𝑚𝑛

=
𝐿𝑥𝐿𝑦

4 ∫
𝐿𝑥

0 ∫
𝐿𝑦

0

𝑖(𝑥, 𝑦)2 𝑑𝑦 𝑑𝑥 = ‖‖𝜙𝑚𝑛
‖‖2 ⋅ ‖𝑖‖2 (A.4)

where ‖𝑓 (𝑥, 𝑦)‖ =
√

∫
𝐴
𝑓 (𝑥, 𝑦)2 𝑑𝐴, is the norm of a function 𝑓 , and

‖‖𝜙𝑚𝑛
‖‖ is

√
(𝐿𝑥𝐿𝑦∕4).

Therefore,
∞∑

𝑚,𝑛=1

𝐼2
𝑚𝑛

=

(
𝐼𝑘

2

)2

(A.5)

in which 𝐼𝑘 is the energy-equivalent impulse due to Rigby et al. [8],
which, for a rectangular target with loaded area 𝐴 = 𝐿𝑥𝐿𝑦, is given by

𝐼𝑘 =

√
𝐴∫𝐴 𝑖(𝑥, 𝑦)2 𝑑𝐴 (A.6)

=
√
𝐴 × ‖𝑖‖ .

It should be noted that in [8], 𝐼𝑘 was derived directly from the
physical problem using equivalency between kinetic energies due to
non-uniform and uniform specific impulses.

Now, defining an angular parameter, which measures how much
the actual specific impulse field is along the direction of one particular
mode (in the inner product sense), by

cos 𝜃𝑚𝑛 =
2𝐼𝑚𝑛

𝐼𝑘
(A.7)

then, one reaches the following general condition
∞∑

𝑚,𝑛=1

cos2 𝜃𝑚𝑛 = 1. (A.8)

It is vital to recognise that there is no single component in the
infinite series above, Eq. (A.8), with a magnitude larger than unity since
each term is always positive while the right-hand side is one. Hence, if
one term is identically one, then all other terms must vanish, which is
the situation when the specific impulse field matches the shape of the
surviving (or resonating) mode.

Finally, if only a finite number of terms is used to calculate 𝑤𝑝 or 𝑤𝑐 ,
then it is sufficient to verify that the sum of cos2 𝜃𝑚𝑛, for those modes
included, is close to unity (from below). In other words, the error, 𝜖,
due to truncation at 𝑚 = 𝑀 and 𝑛 = 𝑁 , can be estimated as

𝜖𝑀𝑁 = 1 −

𝑀,𝑁∑
𝑚,𝑛=1

cos2 𝜃𝑚𝑛 ≡
∞∑

𝑀,𝑁

cos2 𝜃𝑚𝑛. (A.9)

The quantity cos 𝜃𝑚𝑛, on its own, gives the absolute physical im-
portance of the (𝑚, 𝑛)th mode in relation to all other modes since it
compares the modal energy (through 𝐼𝑚𝑛) to the strict upper bound
kinetic energy, 𝐸𝑘, (through 𝐼𝑘).

Appendix B. A practical method to compute 𝑰𝒎𝒏

For smoothly varying distribution of specific impulse, 𝐼𝑚𝑛 decreases
as 𝑚 and 𝑛 increase due to cancellations associated with high spatial
oscillations. Thus, practically a finite number of modes suffices to
estimate the displacement accurately.

In the expression for 𝑤𝑐 , instead of carrying out the numerical
integrations directly by the trapezoidal rule, it is observed that the two-
dimensional Fast Fourier Transform (FFT) could be utilised to reduce
the computational time. However, according to the form of 𝐼𝑚𝑛, the
specific impulse distribution should be slightly manipulated first. The
procedure is quite simple to derive, and it is briefly described below
and followed by a practical Matlab code for the implementation.

From the actual specific impulse, 𝑖(𝑥, 𝑦), defined on the actual
membrane that spans the domain [0, 𝐿𝑥] × [0, 𝐿𝑦], construct a fictitious
specific impulse 𝑖∗(𝑥, 𝑦) that covers an extended rectangular region
[−𝐿𝑥, 𝐿𝑥] × [−𝐿𝑦, 𝐿𝑦], which is defined as

𝑖∗(𝑥, 𝑦) =

⎧⎪⎪⎨⎪⎪⎩

𝑖(𝑥, 𝑦), (𝑥, 𝑦) ∈ [0, 𝐿𝑥] × [0, 𝐿𝑦],

−𝑖(−𝑥, 𝑦), (𝑥, 𝑦) ∈ [−𝐿𝑥, 0] × [0, 𝐿𝑦],

−𝑖(𝑥,−𝑦), (𝑥, 𝑦) ∈ [0, 𝐿𝑥] × [−𝐿𝑦, 0],

𝑖(−𝑥,−𝑦), (𝑥, 𝑦) ∈ [−𝐿𝑥, 0] × [−𝐿𝑦, 0].

(B.1)

Now, the real components of the two-dimensional discrete Fourier
transform of 𝑖∗(𝑥, 𝑦) is denoted by 𝑏𝑚𝑛 and given by

𝑏𝑚𝑛 =
1

𝐿𝑥𝐿𝑦
∫

𝐿𝑥

−𝐿𝑥
∫

𝐿𝑦

−𝐿𝑦

𝑖∗(𝑥, 𝑦) sin

(
2 𝑚𝜋𝑥

2𝐿𝑥

)
sin

(
2𝑛𝜋𝑦

2𝐿𝑦

)
𝑑𝑦 𝑑𝑥. (B.2)

It is important to note that the 𝑥-interval is 2𝐿𝑥 and that along 𝑦 is 2𝐿𝑦.
Next, 𝑏𝑚𝑛 = 𝑏(𝑚, 𝑛) is related to the complex Fourier coefficients by

𝑏𝑚𝑛 = −𝑐(𝑚, 𝑛) + 𝑐(−𝑚, 𝑛) + 𝑐(𝑚,−𝑛) − 𝑐(−𝑚,−𝑛) (B.3)

where 𝑚 and 𝑛 are indices corresponding to positive integers, and −𝑚

and −𝑛 are indices corresponding to negative integers. Then, using the
piecewise definition of 𝑖∗(𝑥, 𝑦), it can be shown that 𝑏𝑚𝑛 reads

𝑏𝑚𝑛 =
4

𝐿𝑥𝐿𝑦
∫

𝐿𝑥

0 ∫
𝐿𝑦

0

𝑖(𝑥, 𝑦) sin

(
𝑚𝜋𝑥

𝐿𝑥

)
sin

(
𝑛𝜋𝑦

𝐿𝑦

)
𝑑𝑦 𝑑𝑥

=
4𝐼𝑚𝑛

𝐿𝑥𝐿𝑦

. (B.4)

Finally,

𝐼𝑚𝑛 =
𝐿𝑥𝐿𝑦

4
[−𝑐(𝑚, 𝑛) + 𝑐(−𝑚, 𝑛) + 𝑐(𝑚,−𝑛) − 𝑐(−𝑚,−𝑛)] . (B.5)



International Journal of Impact Engineering 178 (2023) 104624

14

S.A.E. Alotaibi et al.

The values of 𝑐(𝑚, 𝑛), 𝑐(−𝑚, 𝑛), 𝑐(𝑚,−𝑛), and 𝑐(−𝑚,−𝑛) are the stan-
dard outputs of an FFT, to within a constant multiplier. FFT gives the
amplitudes of the modes, e.g. 𝑐(0, 0) reflects the amplitude of the mode
associated with 𝑚 = 0 and 𝑛 = 0. In Matlab, this is achieved using
the built-in function fft2(). Note that in Matlab, the output sorts the
number of modes in each direction in a special order: first, the zeroth
mode (which we do not need), followed by positive modes in ascending
order, and lastly negative modes in descending order.

The specific procedure to be implemented inMatlab is what follows.
Let the actual specific impulse, 𝑖(𝑥, 𝑦), be stored in 2D array I. Further,
let the plate lengths along 𝑥 and 𝑦 be Lx and Ly, respectively.

Then, denote 𝑖∗(𝑥, 𝑦) by Istar, which can easily be formed inMatlab
using the built-in function flip(). Finally, say the total modal impulse,
𝐼𝑚𝑛, will be stored in the array Imn and be evaluated using FFT. The
Matlab procedure is given in Script 1.

%% start of script

% I =specific impulse matrix (2D array)...

% rows of I --> variation along x

% cols of I --> variation along y

Istar=[flip(flip(I,1),2),-flip(I,1);-flip(I,2),I];

C0=fft2(Istar);

C0=real(C0);

C0=1/(numel(Istar))*C0; %undo multiplier

C1=C0(2:end,2:end); %skip zeroth mode

B=zeros(ceil((size(C1)-1)/2));

for i=1:size(B,1)

for j=1:size(B,2)

B(i,j) = -C1(i,j)+C1(end-i+1,j)+C1(i,end-j+1)-C1(end-i+1,end-j+1);

end

end

Imn=Lx*Ly*B/4;

% Imn stores total modal impulses, Imn.

% Use this directly in expressions for displacement w_p or w_c.

%% end of script.

Script 1: Matlab script to compute 𝐼𝑚𝑛 efficiently using FFT

By comparing the results (not shown herein) from computing 𝐼𝑚𝑛
via the trapezoidal rule for a large number of modes in each direction
to those using the FFT, the observations are FFT is superiorly efficient
and very reasonably accurate. Hence, the use of FFT to evaluate 𝐼𝑚𝑛
is recommended. This computational strategy is rarely pointed out in
the literature as an efficient method to compute the modal amplitudes
appearing in the displacement response of plates.

Appendix C. Effect of work-hardening on the response of an SDOF
and plate

C.1. Forced response - SDOF

In this section, an assessment of the effect of work-hardening is
presented based on the response of a single-degree-of-freedom (SDOF).
The system consists of a mass 𝑚, a massless spring with resistance 𝑅,
and an applied dynamic force, and its general equation of motion is

𝑚�̈� + 𝑅 = 𝐹

For simplicity, we are concerned with motion up to a half cycle
beyond the first maximum response. The SDOF is assumed as initially
at rest.

The resistance 𝑅 is of bilinear form during loading and has an elastic
unloading

𝑅 =

⎧⎪⎨⎪⎩

𝑘𝑥 𝑡 ≤ 𝑡𝑦,0,

𝑅𝑦,0 +𝐻(𝑥 − 𝑥𝑦,0) 𝑡𝑦,0 ≤ 𝑡 ≤ 𝑡𝑚,

𝑅𝑦,0 +𝐻(𝑥𝑚 − 𝑥𝑦,0) + 𝑘(𝑥 − 𝑥𝑚) 𝑡𝑚 ≤ 𝑡

Fig. C.1. Normalised residual displacement 𝑥𝑟∕𝑥𝑦,0 of elasto-plastic SDOF as function
of the ratios of load duration to elastic period 𝑡𝑑∕𝑇𝑒 and hardening modulus to elastic
stiffness 𝐻

𝑘
. The grey curves are for intermediate ratios of 𝐻∕𝑘, which are bounded

by the values of the blue and red curves.

where 𝑘 and 𝐻 are the elastic stiffness and the hardening modulus;
𝑅𝑦,0, 𝑥𝑦,0, and 𝑡𝑦,0 are the initial yield force, the corresponding yield
displacement, and the time at which first yielding occurs. The maxi-
mum displacement is 𝑥𝑚. The last expression for 𝑅 describes the elastic
unloading for sufficiently small-time interval after 𝑡 = 𝑡𝑚.

The applied force 𝐹 is assumed to be a rectangular pulse with
amplitude 𝐹0 and duration 𝑡𝑑 .

The elasto-plastic response of the SDOF was solved numerically
using an explicit time integration scheme. The solution is terminated
after completing a half cycle from the first occurrence of maximum
displacement (i.e. after sufficient time during the elastic unloading/re-
bound), in order to obtain sufficient response to compute the residual
displacement, 𝑥𝑟.

We considered the following input data. The elastic period 𝑇𝑒 =

2𝜋
√
𝑚∕𝑘 is 0.0811 s. The ratio of the external force to the initial yield

limit 𝐹0∕𝑅𝑦,0 is 5.0. The ratio of load duration to the elastic period 𝑡𝑑∕𝑇𝑒
and the ratio of hardening modulus to elastic stiffness 𝐻∕𝑘 are varied
independently; some practical ratios of 𝐻∕𝑘 are considered. The results
for the normalised residual displacement 𝑥𝑟∕𝑥𝑦,0 are given in Fig. C.1.

The Rigid-plastic response of the SDOF is obtained by substituting
𝑅 = 𝑅𝑦,0 in the equation of motion, which is valid since 𝐹0 > 𝑅𝑦,0, and
hence it is expected that �̇� ≥ 0. Therefore, the maximum displacement
is

𝑥𝑚,𝑟𝑝 = 𝑥𝑡𝑑
+ �̇�𝑡𝑑

(𝑡𝑚 − 𝑡𝑑 ) −
𝑅𝑦,0

2𝑚
(𝑡𝑚 − 𝑡𝑑 )

2

where,

𝑥𝑡𝑑
=

(
𝐹0 − 𝑅𝑦,0

2𝑚

)
𝑡2
𝑑
, (C.1)

�̇�𝑡𝑑
=

𝐹0𝑡𝑑

𝑚
−

𝑅𝑦,0𝑡𝑑

𝑚
, (C.2)

𝑡𝑚 =
�̇�𝑡𝑑(
𝑅𝑦,0

𝑚

) + 𝑡𝑑 (C.3)

The maximum rigid-perfectly plastic displacement 𝑥𝑚,𝑟𝑝 is plotted
in Fig. C.1 as a function of the ratio of load duration to elastic period
𝑡𝑑∕𝑇𝑒 and compared to the residual displacement of the elasto-plastic
problem.

It can be seen, from the figure, that the rigid-perfectly plastic solu-
tion gives reliable predictions as compared to the elasto-plastic solution
with various work-hardening, in particular as the load duration to
elastic period ratio 𝑡𝑑∕𝑇𝑒 becomes very small. In Fig. C.1, the difference
between the responses for the rigid-perfectly plastic (black) and elasto-
plastic with 𝐻∕𝑘 = 0.0001 (blue) is attributed to elastic deformations
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of the elasto-plastic SDOF. Such difference should decrease as the
external force to initial yield limit (𝐹0∕𝑅𝑦,0) increases while small 𝑡𝑑
is maintained.

C.2. Impulsive response - SDOF

In this section, we present additional assessment of the effect of
work-hardening on the response of the same SDOF as in the previous
section. However, we consider the system where the external force is
absent and assume the response to be driven by initial velocity. The
initial displacement is assumed zero.

We consider the initial velocity, �̇�0, to be large enough to cause
initial yielding.

Denoting the time of initial yielding by 𝑡𝑦,0, the response for (0 ≤ 𝑡 ≤
𝑡𝑦,0

)
is governed by 𝑚�̈� + 𝑘𝑥 = 0 with initial conditions 𝑥0 = 0 and

�̇�0 > 0. The response is

𝜔𝑒 =

√
𝑘

𝑚
,

𝑥(𝑡) =
�̇�0

𝜔𝑒

sin
(
𝜔𝑒𝑡

)

From which, the state at 𝑡 = 𝑡𝑦,0 is

𝑥𝑦,0 =
𝑅𝑦,0

𝑘
,

𝑡𝑦,0 =
sin−1

(
𝑥𝑦,0𝜔𝑒

�̇�0

)

𝜔𝑒

,

�̇�𝑦,0 = �̇�0 cos
(
𝜔𝑒𝑡𝑦,0

)

Denoting the time at maximum response (i.e. just prior to elastic
unloading) by 𝑡𝑚, the response for

(
𝑡𝑦,0 ≤ 𝑡 ≤ 𝑡𝑚

)
is governed by 𝑚�̈� +

𝑅𝑦,0 +𝐻(𝑥 − 𝑥𝑦,0) = 0 with initial conditions 𝑥(𝑡𝑦,0) = 𝑥𝑦,0 and �̇�(𝑡𝑦,0) =

�̇�𝑦,0. The response is

𝜔𝐻 =

√
𝐻

𝑚
,

𝑥(𝑡) =𝑥𝑦,0 cos
[
𝜔𝐻

(
𝑡 − 𝑡𝑦,0

)]
+

�̇�𝑦,0

𝜔𝐻

sin
[
𝜔𝐻

(
𝑡 − 𝑡𝑦,0

)]
+

(−1)

(
𝑅𝑦,0 −𝐻𝑥𝑦,0

𝐻

){
1 − cos

[
𝜔𝐻

(
𝑡 − 𝑡𝑦,0

)]}
.

By definition 𝑡𝑚 is the time when velocity becomes zero for the first
time, i.e. �̇�(𝑡𝑚) = 0. From which, the state at 𝑡 = 𝑡𝑚 is

𝛽 = tan−1

⎡
⎢⎢⎢⎣

�̇�𝑦,0

𝜔𝐻𝑥𝑦,0 +
(
𝑅𝑦,0+𝐻𝑥𝑦,0

𝑚𝜔𝐻

)
⎤⎥⎥⎥⎦
,

𝑡𝑚 =
𝛽

𝜔𝐻

+ 𝑡𝑦,0,

𝑥𝑚 = 𝑥𝑦,0 cos (𝛽) +
�̇�𝑦,0

𝜔𝐻

sin (𝛽) −

(
𝑅𝑦,0 −𝐻𝑥𝑦,0

𝐻

)
[1 − cos (𝛽)] .

For
(
𝑡 ≥ 𝑡𝑚

)
, the response is an elastic rebound, which is governed

by 𝑚�̈� + 𝑅𝑦,0 + 𝐻(𝑥𝑚 − 𝑥𝑦,0) + 𝑘(𝑥 − 𝑥𝑚) = 0, with initial conditions
𝑥(𝑡𝑚) = 𝑥𝑚 and �̇�(𝑡𝑚) = 0. The rebound response, for 𝑡 ≥ 𝑡𝑚, is

𝑥(𝑡) =𝑥𝑚 cos
[
𝜔𝑒(𝑡 − 𝑡𝑚)

]
+

(−1)

(
𝑅𝑦,0 +𝐻(𝑥𝑚 − 𝑥𝑦,0) − 𝑘𝑥𝑚

𝑘

){
1 − cos

[
𝜔𝑒(𝑡 − 𝑡𝑚)

]}
.

The residual (plastic) displacement, 𝑥𝑟, is obtained from the above
rebound solution when the vibration terms (i.e. the cosine terms) are
eliminated. With the elastic period

𝑇𝑒 = 2𝜋

√
𝑚

𝑘

the residual displacement is

𝑥𝑟 =
2

𝑇𝑒 ∫
𝑡𝑚+

𝑇𝑒
2

𝑡𝑚

𝑥(𝑡) 𝑑𝑡

which simplifies to

𝑥𝑟 = −

[
𝑅𝑦,0 +𝐻(𝑥𝑚 − 𝑥𝑦,0) − 𝑘𝑥𝑚

]
𝑘

The initial kinetic energy, 𝐸𝑘,0, of the SDOF is

𝐸𝑘,0 =
1

2
𝑚 �̇�2

0

and, the maximum (initial) elastic energy, 𝐸𝑒,𝑚, is

𝐸𝑒,𝑚 =
1

2
𝑘 𝑥2

𝑦,0

For a given ratio of 𝐸𝑘,0∕𝐸𝑒,𝑚 and a ratio of 𝐻∕𝑘, one can study the
response in terms of ratio of maximum (or residual) displacement 𝑥𝑚
(or 𝑥𝑟) to the initial yield displacement 𝑥𝑦,0. This gives direct assessment
of the influence of work-hardening.

The rigid-perfectly plastic solution is characterised by the maximum
response time 𝑡𝑚,𝑟𝑝 (when velocity reaches, and subsequently held
constant at, zero) and the corresponding maximum displacement 𝑥𝑚,𝑟𝑝.
These are defined by

𝑡𝑚,𝑟𝑝 =
�̇�0(
𝑅𝑦,0

𝑚

) ,

𝑥𝑚,𝑟𝑝 = �̇�0𝑡𝑚,𝑟𝑝 −
1

2

𝑅𝑦,0

𝑚
𝑡2
𝑚,𝑟𝑝

The rigid-perfectly plastic response 𝑥𝑚,𝑟𝑝 can be compared to the
response of the elasto-plastic with hardening solutions, the maximum
𝑥𝑚 or residual 𝑥𝑟 displacements, to assess the effects of both work-
hardening and elasticity.

We consider a particular case for which the ratio of initial kinetic

energy to maximum elastic energy is large,
𝐸𝑘,0

𝐸𝑒,𝑚
= 9.0. The elastic

period is 𝑇𝑒 = 0.0811 s. Also, the ratio of the hardening modulus to
the elastic stiffness 𝐻∕𝑘 is taken as (0.01). The comparison of the time
history responses of the elasto-plastic with hardening SDOF and the
corresponding rigid-perfectly plastic SDOF is shown for the present case
in Fig. C.2. The displacement 𝑥 is normalised by 𝑥𝑦,0, and the time axis
is normalised by 𝑡𝑦. The figure indicates that the rigid-perfectly plastic
solution is suitable and highly efficient for response of the SDOF for the
considered ratio of 𝐸𝑘,0∕𝐸𝑒,𝑚 = 9.0.

As a second example, we consider a problem with 𝐸𝑘,0∕𝐸𝑒,𝑚 = 25.0,
𝑇𝑒 = 0.1147 s, and 𝐻∕𝑘 = 0.002. The responses from the elasto-
plastic with hardening model and the rigid-perfectly plastic model are
compared in Fig. C.3.

C.3. Plate response - LS-DYNA

In this section, results from LS-DYNA simulations are presented to
assess the influence of work-hardening on the response of a ductile thin
plate loaded by a uniform impulse.

Flexural, shear, and membrane effects are all considered. Further-
more, a general elasto-plastic material behaviour is adopted. Plasticity
follows a von-Mises yield function in which the yielding stress is given
by Johnson–Cook (JC) model. In this study, the hardening saturation
stress 𝐵 is varied while all other material (and geometry and loading)
parameters fixed.

The plate is impulsively loaded using a prescribed uniform initial
transverse velocity �̇�0

�̇�0 =
𝑖0

𝜌ℎ

where the uniform specific impulse, density, and uniform thickness are
denoted by 𝑖0, 𝜌, and ℎ.
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Fig. C.2. Normalised displacement 𝑥(𝑡)∕𝑥𝑦,0 of elasto-plastic SDOF (with work-
hardening) as function of normalised time 𝑡∕𝑡𝑦,0; hardening modulus to elastic stiffness
ratio is 𝐻∕𝑘 = 0.01. The response is for an impulsively loaded SDOF, i.e. with nonzero
initial velocity and zero external force. The initial kinetic energy

(
𝐸𝑘,0 = 1∕2𝑚 �̇�2

0

)
is

nine times larger than the maximum elastic energy
(
𝐸𝑒,𝑚 = 1∕2 𝑘 𝑥2

𝑦

)
. Horizontal (blue)

dashed lines are drawn at 𝑥𝑦,0, 𝑥𝑟, and 𝑥𝑚 for the elasto-plastic response, and the
additional (red) dashed line corresponds to 𝑥𝑚,𝑟𝑝 for the rigid-plastic response.

Fig. C.3. Normalised displacement 𝑥(𝑡)∕𝑥𝑦,0 of elasto-plastic SDOF (with work-
hardening) as function of normalised time 𝑡∕𝑡𝑦,0; hardening modulus to elastic stiffness
ratio is 𝐻∕𝑘 = 0.002. The response is for an impulsively loaded SDOF, i.e. with non-zero
initial velocity and zero external force. The initial kinetic energy

(
𝐸𝑘,0 = 1∕2𝑚 �̇�2

0

)
is

25 times larger than the maximum elastic energy
(
𝐸𝑒,𝑚 = 1∕2 𝑘 𝑥2

𝑦

)
. Horizontal (blue)

dashed lines are drawn at 𝑥𝑦,0, 𝑥𝑟, and 𝑥𝑚 for the elasto-plastic response, and the
additional (red) dashed line corresponds to 𝑥𝑚,𝑟𝑝 for the rigid-plastic response.

According to JC model without Voce’s hardening, the current yield
stress 𝜎𝑦 is influenced by current effective plastic strain 𝜀eff, the instan-
taneous effective plastic strain rate �̇�eff, and the absolute temperature
𝑇 using

𝜎𝑦 =
(
𝐴 + 𝐵 𝜀𝑛eff

) [
1 +

(
�̇�eff

�̇�0

)]𝑐
(1 − 𝑇 ∗𝑚)

where 𝑇 ∗ is

𝑇 ∗ =
𝑇 − 𝑇𝑟

𝑇𝑚 − 𝑇𝑟

in which 𝑇𝑚 and 𝑇𝑟 are the (absolute) melting and room temperatures.
𝐵 and 𝑛 are power-law hardening parameters, 𝑐 is a strain-rate sensi-

tivity parameter. 𝐴 is the initial quasi-static yield stress at the threshold
strain rate �̇�0. Note that 𝑛 is typically in the range 0 ≤ 𝑛 ≤ 1, and then 𝐵

could be regarded as an increase in 𝜎𝑦 (from 𝐴) due to strain-hardening.
A further strengthening in the strain-hardened 𝜎𝑦 occurs at high strain

Table C.4
JC material parameters.

Parameter Value Unit

𝐸 206 × 109 Pa
𝜌 7830 kg/m3

𝜈 0.29 –
𝐴 296 × 106 Pa
𝑛 0.5597 –
𝑚 0 –
𝑐 0.032 –
�̇�0 1.4 × 10−6 1/s

Fig. C.4. Variation of JC current yield stress 𝜎𝑦 versus effective (von-Mises) plastic
strain 𝜀p,eff at the quasi-static plastic strain rate �̇�0. Curves correspond to different
amount of strain-hardening in terms of 𝐵∕𝐴 ratio.

rates. On the other hand, two softening mechanisms (thermal softening
when 𝑚 is non-zero and/or damage-induced softening) can lower 𝜎𝑦.
We assume that softening is absent for simplicity (i.e. 𝑚 = 0 and damage
threshold = ∞).

In the study, we considered the material input values as shown
in Table C.4. Three values of 𝐵 as multiples of 𝐴 are considered. In
particular, we consider ratios of 𝐵∕𝐴 of 1.7, 0.89, and 0.05. These ratios
correspond to the (true) yield stress-effective plastic strain curves in
Fig. C.4.

The other input parameters are the following. The plate is square
with a side length of 0.089 m and thickness of 1.6 mm. Additionally,
a total impulse of −16.1 N m. is applied uniformly to the plate to give
a uniform initial transverse velocity of −162.24 m∕s. The input values
correspond to the square plate tests of Nurick et al. cited and discussed
in Section 4.2. All boundary nodes are restrained in all translational
and rotational degrees of freedom. A fine element mesh is selected. The
plate is modelled with two-dimensional shell elements using ELFORM
= 7 (selectively-reduced integrated Hughes–Liu co-rotational formula-
tion) and 10 Gauss integration points to better represent the extent of
plasticity through the plate’s thickness.

Nodal, element, and energy databases are requested with fine sam-
pling rates. The transverse (z-) displacement and energy histories are
post-processed in MATLAB. The residual displacement is computed by
time integration averaging beyond the first peak response.

The history results obtained from LS-DYNA for the three ratios of
𝐵∕𝐴 are compared to the predictions of the present model. Namely,
the displacements at the plate’s centre, the time to maximum response,
and the evolution of different energies are analysed. In the model
predictions, the characteristic yield strength 𝜎0 is taken as the static
yield strength 𝐴.

The results are shown in Figs. C.5–C.8. It can be concluded that the
higher the degree of strain-hardening the smaller the peak and residual
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Fig. C.5. Central transverse displacement 𝑤 time history from LS-DYNA simulation (for
𝐵∕𝐴 = 1.7) and the corresponding model prediction.

Fig. C.6. Histories of global energies from LS-DYNA (for 𝐵∕𝐴 = 1.7), and the
corresponding kinetic (KE) and plastic internal (IE) energies predicted by the model.
From LS-DYNA, the internal (IE), kinetic (KE), total (TE), and hourglass energies and
external work (EW) are shown. The maximum response time 𝑡𝑚𝑎𝑥 predicted by the
model is shown as a vertical dashed line.

displacements are, as clearly depicted in Figs. C.7 and C.8. In addition,
Figs. C.5–C.7 indicate that the model predictions capture both the time
evolution of residual displacement and internal and kineitic energies,
in particular as compared to the case with the largest 𝐵∕𝐴 ratio.
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