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Abstract

We study generalizations of stable matching in
which agents may be matched fractionally; this
models time-sharing assignments. We focus on the
so-called ordinal stability and cardinal stability, and
investigate the computational complexity of finding
an ordinally stable or cardinally stable fractional
matching which either maximizes the social wel-
fare (i.e., the overall utilities of the agents) or the
number of fully matched agents (i.e., agents whose
matching values sum up to one). We complete
the complexity classification of both optimization
problems for both ordinal stability and cardinal sta-
bility, distinguishing between the marriage (bipar-
tite) and roommates (non-bipartite) cases and the
presence or absence of ties in the preferences. In
particular, we prove a surprising result that finding
a cardinally stable fractional matching with maxi-
mum social welfare is NP-hard even for the mar-
riage case without ties. This answers an open ques-
tion and exemplifies a rare variant of stable mar-
riage that remains hard for preferences without ties.
We also complete the picture of the relations of the
stability notions and derive structural properties.

1 Introduction

“A joy shared is a joy doubled!” As we will see, this may
hold particularly true in matching markets. Such a market
is described by a set of agents who have preferences over
whom they want to have as a partner. Traditionally, the
goal is to find a stable integral matching [Gale and Shapley,
1962], i.e., to match the agents one-to-one such that no two
agents prefer to be with each other rather than with their
matched partners. Unfortunately, a stable integral matching
does not always exist. If however the agents are allowed
to share partners, then we will see that a stable matching
is guaranteed to exist and the social welfare may increase!
That is, we allow fractional matchings which are functions
that assign each pair of agents a value between 0 and 1 (as
opposed to integral matching which assigns either 0 or 1 to
each pair) such that for each agent, the sum of the matching
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values of all pairs containing this agent is at most one. In
this paper, we study structural properties of stable fractional
matchings and computational aspects of maximizing their
social welfare and the number of the fully matched agents.

Stable fractional matchings have been studied since the
90s [Vande Vate, 1989; Roth et al., 1993; Abeledo and
Rothblum, 1994; Teo and Sethuraman, 1998] and enjoy
continued interest [Biró et al., 2008; Kintali et al., 2013;
Doğan and Yıldız, 2016; Kesten and Ünver, 2015; Ishizuka
and Kamiyama, 2018; Aziz and Klaus, 2019; Caragiannis et
al., 2020]. They have applications in time-sharing assign-
ments and random assignments: For example, in a job market
the agents may be partitioned into two sets, freelancers and
companies. A fractional matching models the amount of time
a freelancer spends working for a company. The preferences
can model intensity of interest in working with the agents
of the other set, and then stability models an equilibrium in
such a job market. Similar scenarios are time-sharing assign-
ments between advisors and apprentices or between workers
and projects. An instance of the non-bipartite case occurs
when agents (e.g., nurses) work in multiple shifts, and each
shift is carried out by two workers. A fractional matching
determines the fraction of shifts that each worker carries out
with another worker over the total number of shifts for an
agent. The preferences can model the intensity of willingness
to work with each other, and then stability models the situa-
tion where no two workers want to change shifts to work more
with each other. Fractional matchings also find application in
random matching [Roth et al., 1993; Kesten and Ünver, 2015;
Aziz and Klaus, 2019]: In the bipartite case, by the Birkhoff-
von Neumann theorem, a fractional matching can be inter-
preted as a probability distribution over integral matchings.
Choosing an integral matching at random instead of deter-
ministically enables many desirable properties such as fair-
ness and increased expected welfare [Aziz and Klaus, 2019].

Stability for fractional matchings. While the definition
of stability in the integral case is straightforward, there are
several natural ways to define stability for fractional match-
ings. We consider the following three stability concepts
which have been recently discussed [Aziz and Klaus, 2019;
Caragiannis et al., 2020]. The setting is given by a graph G =
(V,E), where V is the set of agents, and a preference function
sat : V × V → Q≥0, where sat(u, v) specifies the satisfac-
tion of u towards v. A fractional matching M : E → [0, 1] is

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

89



a

b

cd

e

f
1

3
2

2

3

1
1

3
13

2

2

1

2
Decreasing Decreasing

Preferences Preferences

a : d ≻ c ≻ b, d : c ≻ e ≻ a,
b : a ≻ c, e : d ≻ f,
c : b ≻ a ≻ d, f : e.

ab ac ad bc cd de ef other edges
M1 0.5 0.5 0 0.5 0 1 0 0
M2 0.5 0 0.5 0.5 0.5 0 1 0

Figure 1: Left: Acceptability graph with 6 agents a, b, c, d, e, f . The
values on an edge denote the satisfactions of the endpoints of the
edge towards each other, e.g., a’s satisfaction towards b is 1 and b’s
satisfaction towards a is 3. Right: The ordinal preferences derived
from the satisfactions. Bottom: Fractional matchings M1 and M2.

cardinally, ordinally, or linearly stable if it does not admit a
blocking pair {u, v} ∈ E of the corresponding type:

A cardinally blocking pair for M models the situation
that the agents in the pair both obtain more utility from
being integrally matched to each other than from the as-
signment under M [Caragiannis et al., 2020]. Herein,
the utility of an agent v ∈ V under M is Usat,M (v) :=
∑

{v,u}∈E(G) sat(v, u) ·M({v, u}). If sat is clear from the

context, we omit it in Usat,M . Thus, pair {u, v} is cardinally
blocking M if UM (u) < sat(u, v) and UM (v) < sat(v, u).

An ordinally blocking pair concerns ordinal prefer-
ences: As the preferences of an agent v we consider
only the relative order of the agents u acceptable to v
that is induced by sat(v, u), but ignore the magnitude
of sat(v, u). An ordinally blocking pair {u, v} for M
models the case when u and v both are not satisfied
with M , i.e., u is matched by a fraction of less than one
to agents that she weakly prefers to v and analogously
for v [Aharoni and Fleiner, 2003]. For convenience, define
M(x,�y) :=

∑

y′∈V : sat(x,y′)≥sat(x,y) M(x, y′). Then,

{u, v} is ordinally blocking M if M(u,�v) < 1 and
M(v,�u) < 1. Ordinal stability has also been studied under
the name ex-ante weak stability [Kesten and Ünver, 2015].

Finally, {u, v} is a linearly blocking pair of M if
M(u,�v)+M(v,�u)−M(u, v) < 1. That is, linear stabil-
ity arises from the linear-programming formulation of com-
puting a stable (integral) matching by relaxing the integrality
constraints [Roth et al., 1993; Abeledo and Rothblum, 1994].

We give examples in Figure 1: Matching M1 (green) is
cardinally stable, ordinally stable, and linearly stable. Match-
ing M2 (red) is cardinally stable and every agent is fully
matched, i.e. each agent’s matching values sum up to one.
However, M2 is neither ordinally stable nor linearly stable,
due to {d, e}. Due to the agents a, b, c, no integral matching
is stable. Note that all three stability concepts are the same
when restricting to integral matchings. Figure 2 illustrates
the relations between all discussed stability concepts.

Our contribution. We first show that a stable fractional
matching for all three stability concepts always exists, even
when ties are present in the preferences and in the roommates
case (i.e. G is not necessarily bipartite); this extends previous
observations by Caragiannis et al. [2020] and Aharoni and

stable
integral

ordinally
stable

linearly stable

cardinally stable

Figure 2: Relation between the stability concepts, where “α → β”
means that “an α matching is also β”. No directed path between two
concepts means that neither implies the other.

Fleiner [2003] for more restricted cases.

Motivated by this positive result, we study the complexity
of two optimization problems. We aim to maximize (1) the
social welfare of the resulting matching, i.e., the sum of the
utilities of the agents obtained from the matching, or (2) the
number of fully matched agents. The second objective is
a natural generalization of checking for perfect matchings
and it is motivated by aims of being inclusive and avoiding
unspent resources, for example, the freelancers’ non-working
time in the introductory scenario.

For linear stability both optimization problems are poly-
nomial, because they can be formulated as linear programs.
For ordinal stability and cardinal stability, together with a
previous result [Caragiannis et al., 2020], we obtain a com-
plete complexity classification, distinguishing the marriage
(bipartite) and roommates (non-bipartite) cases and whether
ties are present in the preferences. See the summary in Ta-
ble 1. For ordinal stability both optimization problems are
polynomial in the marriage case without ties. The proof re-
lies on a decomposition of the optimal fractional matching
into integral matchings that consequently yields that an opti-
mal integral matching is also optimal for the fractional case.
Unfortunately, most of the other cases become NP-hard. We
found particularly interesting that maximizing the social wel-
fare remains NP-hard for cardinal stability in the marriage
case without ties because it stands in stark contrast to the in-
tegral stability and ordinal stability for which the problem is
tractable. This result thus reveals that the difficulty of com-
puting optimal stable fractional matchings depends not only
on ties or the fractionality but also on the cardinalities. NP-
hardness in the case without ties has been asked as an open
question by Caragiannis et al. [2020] and the influence of ties
on the complexity in the integral setting has been extensively
studied [Gusfield and Irving, 1989; Manlove, 2013].

Apart from the above complexity results we also study
the structure of the (families of) matchings under the three
stability notions. We show that the family of ordinally stable
matchings form a lattice in the marriage case and that they
adhere to the so-called median property in the roommates
case. Apart from being interesting insights into the structure
of the solution space, these properties are useful because
they can enable efficient algorithms that solve additional op-
timization goals or find matchings with additional desirable
properties. Omitted results and proofs marked with (⋆) are
available in a full version [Chen et al., 2020].

Related work. Roth et al. [1993] studied linear stabil-
ity (they called it fractional stability) in marriage markets
without ties, and showed that the set of linearly stable match-
ings enjoys a lattice structure. Abeledo and Rothblum [1994]

studied linear stability, but in roommates markets. They ob-
served that the set of linearly stable matchings in roommates
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cardinal stability ordinal stability
Marriage Roommates Marriage Roommates

no ties ties no ties ties no ties ties no ties ties

always exists? yes [♣] yes [♣] yes [P 3.5] yes [P 3.5] yes [♥] yes [P 3.5] yes [♥] yes [P 3.5]

max-#-fully-matched NP-c [T 5.9] NP-c [T 5.7] NP-c [T 5.9] NP-c [T 5.7] P [P 4.5] NP-c [T 5.1] P [P 4.5] NP-c [T 5.1]

max-welfare NP-c [T 5.7] NP-c [♣] NP-c [T 5.7] NP-c [♣] P [T 4.3] NP-c [T 5.1] NP-c [T 5.2] NP-c [T 5.2]

Table 1: New and known results for deciding a cardinally stable (resp. ordinally stable) matching with max. # of fully matched agents (resp.
max-welfare). Results marked with ♣ and ♥ are from Caragiannis et al. (2020) and Aharoni and Fleiner (2003), respectively. Results marked
in red and green are new; green means polynomial-time algorithms and red NP-completeness.

markets does not have a lattice structure in general, but are
closed under the so-called median operation. Following the
authors, we obtain the same results for ordinal stability.

Aziz and Klaus [2019] considered multiple fractional
stability concepts in marriage markets, including linear
stability and ordinal stability (which they called fractional
stability and ex-ante stability [Kesten and Ünver, 2015]),
but not cardinal stability. They showed that ordinal stability
implies linear stability. We strengthen their result by showing
the same for the roommates case.

Caragiannis et al. [2020] introduced the problem of
finding maximum-welfare cardinally stable matchings in
marriage markets. They showed that the problem is NP-hard
and hard to approximate even if each agent has at most
three different satisfaction values but may contain ties in her
preferences. We improve on this by showing NP-hardness
even when no ties are present and each agent finds at most
five agents acceptable. A subset of the structural results,
namely the ones about cardinal stability in the marriage
setting and for perfect matchings (see Observation 3.1)
has been observed independently in parallel in their recent
journal version [Caragiannis et al., 2020, Appendix A].

Aharoni and Fleiner [2003] studied ordinal stability in the
hypergraphic setting. They found that Scarf’s lemma from
game theory guarantees the existence of ordinally stable
matchings. For an overview on stable integral matchings
refer to Gusfield and Irving [1989] and Manlove [2013].

2 Preliminaries

Given an integer z, we use [z] to denote the set {1, 2, . . . , z}.
We consider instances (G, sat) where G = (V,E) is a

graph and sat : V × V → Q≥0 is a function, and where V
denotes a set of vertices (also called agents), E denotes a
set of edges such that an edge between two vertices means
that the corresponding agents find each other acceptable, and
sat specifies the cardinal preferences of an agent towards an-
other agent, i.e., for all u, v ∈ V , sat(u, v) specifies the sat-
isfaction of u towards v. We also refer to G as the accept-
ability graph underlying the cardinal preferences sat. We
assume throughout that (1) G contains no isolated vertices,
(2) ∀u ∈ V : sat(u, u) = 0, and (3) ∀u, v ∈ V : {u, v} ∈
E ⇔ (sat(u, v) > 0 or sat(v, u) > 0).

From the function sat for G we derive a preference list �v

over the neighborhood NG(v) = {u | {v, u} ∈ E} of
each v ∈ V as follows: Let �v denote a complete and
transitive binary relation of NG(v) such that for each two
acceptable agents x, y ∈ NG(v) it holds that x �v y if and
only if sat(v, x) ≥ sat(v, y); we say that v weakly prefers x

to y. We use x≻ vy to denote that sat(v, x) > sat(v, y), i.e.,
v (strictly) prefers x to y. We use P = (�v)v∈V to denote
the collection of the preference lists derived from sat. We
say that x is a most preferred agent of v if for each acceptable
agent y ∈ NG(v) we have x �v y.

We say that an instance (G, sat) has complete preferences
if G is a complete graph; otherwise it has incomplete
preferences, and that it contains (preferences with) ties if
there exists v ∈ V and two neighbors x, y ∈ NG(v) with
sat(v, x) = sat(v, y); otherwise it has strict preferences.

A fractional matching M : E → R≥0 is an assignment
of non-negative weights to each edge e ∈ E such that
∑

{v,u}∈E M({u, v}) ≤ 1 for each agent v ∈ V . If it

is not ambiguous we abbreviate “fractional matchings”
to “matchings”. By symmetry, for each edge {u, v} we
use M(u, v) (resp. M(v, u)) to refer to M({u, v}). An
agent v is fully matched (resp. matched) under M if
∑

u∈NG(v) M(v, u) = 1 (resp.
∑

u∈NG(v) M(v, u) > 0). M

is perfect if each agent is fully matched. M is integral (resp.
half-integral) if M(e) ∈ {0, 1} (resp. M(e) ∈ {0, 0.5, 1})
for each edge e. By the Birkhoff-von Neumann theorem a
fractional matching in a bipartite graph can be decomposed
into a convex combination of integral matchings [Horn and
Johnson, 1991, Theorem 3.2.6]:

Proposition 2.1. Let M be a fractional matching of a bipar-
tite graph G with n vertices. There is an integer k ∈ O(n2),
positive coefficients x1, . . . , xk ∈ R>0, and integral match-
ings M1, . . . ,Mk of G such that

∑

j∈[k] xj = 1 and for each

edge e ∈ E it holds that M(e) =
∑

j∈[k] xj ·Mj(e).

The integral matchings (Mj)j∈[k] constitute a support of the
matching M . There may be multiple supports of M .

The acronyms CSM, OSM, and LSM stand for cardinally
stable, ordinally stable, and linearly stable fractional match-
ing, respectively (see Section 1 for the definitions).

We focus on two classes of decision problems, one aim-
ing for maximizing the number of fully matched agents, and
the other for maximizing social welfare. Let G = (V,E)
be a graph, sat : V × V → Q≥0 a satisfaction function,
and M a fractional matching in G. Denote #fully(M) :=
|{x ∈ V |

∑

y∈NG(x) M(x, y) = 1}| and welfaresat(M) :=
∑

v∈V Usat,M (v). If sat is clear from the context then we
drop it in welfaresat. The problems are defined as follows,
where Π ∈ {OSM, CSM}1 :

1We omit linear stability since both problems for linear stabil-
ity can be formulated as linear programs and are hence solvable in
polynomial time.
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Algorithm 1: Compute an OSM for (G, sat).

1 Compute the preference lists P from sat

2 ˆsat← Break ties in sat arbitrarily

3 Compute π and Mπ for (G, ˆsat) (cf. Def. 3.2)
4 return Mπ

FULL Π MATCHING (FULL-Π)
Input: G = (V,E), sat : V × V → Q≥0, and τ ∈ N.
Question: Does (G,sat) admit a ΠM with #fully(M)≥τ?

WELFARE Π MATCHING (WELFARE-Π)
Input: G=(V,E), sat : V × V → Q≥0, and γ ∈ R≥0.
Question: Does (G,sat) admit a Π M with welfare(M)≥γ?

All problems are in NP since they reduce in polynomial time
to a very restricted variant of integer linear programs (⋆).

3 Structural Properties

We now discuss relations among (see Figure 2) and existence
of fractional matchings regarding the three stability concepts.

Observation 3.1 (⋆). (i) Every OSM is an LSM and a CSM.2

(ii) There exists a graph G with strict preferences sat s.t.
(G, sat) admits an LSM which is neither an OSM nor a CSM
and admits a CSM which is neither an LSM nor an OSM.

The following concept [Tan, 1991] turns out to be very use-
ful for showing the existence of ordinally stable matchings.
A stable partition of (G = (V,E), sat) with sat being strict
is a permutation π : V → V on the vertices, which satisfies
the following for each vi ∈ V : (1) if π(vi) 6= π−1(vi),
then {vi, π(vi)}, {vi, π

−1(vi)} ∈ E and sat(vi, π(vi)) >
sat(vi, π

−1(vi)); (2) for each vj ∈ NG(vi), if π(vi) = vi
or sat(vi, vj) > sat(vi, π

−1(vi)), then sat(vj , π
−1(vj)) >

sat(vj , vi). We call vi a singleton if π(vi) = vi. A stable
partition π can be decomposed into cycles, singletons, and
transpositions (i.e., disjoint edges).
We define a fractional matching for a stable partition.

Definition 3.2. Let π be a stable partition of (G =
(V,E), sat). Define a matching Mπ for G corresponding
to π as follows. (a) For each vi ∈ V with π(vi) 6= vi, if
π(vi)=π−1(vi), then let Mπ(vi, π(vi)) := 1; otherwise let
Mπ(vi, π(vi)) = Mπ(vi, π

−1(vi)) := 0.5. (b) For each re-
maining edge e, let Mπ(e) := 0. ⋄

Example 1. π = (a, b, c)(d, e)(f) is the only stable partition
for the instance in Figure 1. Since π contains (a, b, c) as
an odd cycle of length three this instance does not admit a
stable integral matching. The matching Mπ defined for π
according to Definition 3.2 is exactly M1. Recall that it is
ordinally stable, and hence cardinally and linearly stable.

We will see that each matching as defined by Definition 3.2
is ordinally stable. Note that the case without ties is observed
by Aharoni and Fleiner; Biró et al. [2003; 2008].

Proposition 3.5 (⋆). Each graph on n vertices and with car-
dinal preferences (and possibly ties) admits an OSM, and

2The result for perfect matchings in the marriage case was ob-
served independently in parallel by Caragiannis et al. [2020].

hence a CSM, that is half-integral and matches each matched
agent fully. Algorithm 1 finds such a matching in O(n2) time.

4 Algorithmic Results

The structural properties from Section 3 give rise to efficient
algorithms for finding optimal stable matchings. For bipartite
graphs, we utilize the fact that supports of OSMs consist of
stable integral matchings [Aziz and Klaus, 2019, Theorem 3].

Lemma 4.1. Let G be a bipartite graph with satisfaction sat,
M an OSM for (G, sat), and (Mj)j∈[k] a support for M .

Then, each Mj , j ∈ [k], is (integrally) stable.

We show that the welfare and the number of fully matched
agents of a fractional matching are a linear combination of
the corresponding values of the matchings in the support.

Lemma 4.2 (⋆). Let G be a bipartite graph with satisfac-
tions sat, M be a matching for (G, sat), and (Mj)j∈[k] be a
support of M with the coefficients x1, . . . , xk ∈ R>0. Then,
the following inequalities hold: welfare(M) =

∑

j∈[k]

(

xj ·

welfare(Mj)
)

and #fully(M) ≤ maxj∈[k] #fully(Mj).

From Lemma 4.2 it follows that there is an optimal
ordinally stable matching that is also integral since we
may swap out matchings in the support of a fractional
matching for integral matchings with maximum welfare or
with maximum number of fully matched agents in order
to decrease the number of matchings in the support until
only one matching remains in the support. Since finding an
optimal stable integral matching for bipartite graphs with
strict preferences is polynomial-time solvable [Irving et al.,
1987], we immediately obtain the same for ordinal stability.

Theorem 4.3 (⋆). For bipartite graphs with strict prefer-
ences, WELFARE-OSM and FULL-OSM are polynomial-
time solvable.

The above tractability result heavily utilizes the fact that
each fractional matching of a bipartite graph is a convex com-
bination of integral matchings. This fact, however, does not
hold for non-bipartite graphs. Nevertheless, we can extend
the polynomial-time result to the non-bipartite case. The cor-
rectness is based on the following.

Lemma 4.4 (⋆). Let G = (V,E) be a graph with cardinal
and strict preferences sat, and let M be an OSM of (G, sat).
The following statements hold for each agent y ∈ V :
(1) M(x,�y) = 1, where x is the most preferred agent of y.
(2) The following are equivalent: (i) y is matched in M ;

(ii) y is not a singleton in a stable partition of (G, sat);
(iii) y is fully matched in M .

Proof sketch. To show Statement (1), suppose to get a con-
tradiction that M(x,�y) < 1, where x is the most-preferred
agent of y. This implies M(y,�x) = M(y, x) < 1,
a contradiction to M being ordinally stable regarding
edge {x, y}. The equivalence of the statements in (2) is
based on Statement (1). We can perform the first phase
of Irving’s algorithm [Irving, 1985] (see Algorithm 2) to
guarantee that after phase 1: (a) an agent is a singleton (in any
stable partition) iff. her preference list is empty, and (b) every
(fully) matched agent in M has non-empty preference list.
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Algorithm 2: Irving’s phase-1 algo. on input (G, sat)

1 Compute the preference lists P from sat
2 while ∃y∈V (G) w. non-empty pref.

s.t. lastP(1stP(y)) 6=y do
3 D ← {{1stP(y), z} | 1stP(y) prefers y to z in P}
4 P ← P −D
5 return {v ∈ V (G) | v has empty pref. list in P}

Note: In Algorithm 2, we use 1stP(x) and lastP(x) to
refer to the most-preferred and least-preferred agents in the
list≻x∈ P of x, respectively. We then derive the equivalence
from the properties of Algorithm 2 and stable partitions.

Using Lemma 4.4 we can show that the OSM returned from
Algorithm 1 achieves the maximum number of fully matched
agents whenever no ties are present.

Proposition 4.5 (⋆). For n-vertex graphs with strict prefer-
ences, FULL-OSM is solvable in O(n2) time.

We close this section by observing that the OSM that we
obtain from Algorithm 1 is also a 2-approximate solution for
both cardinal stability and ordinal stability, even with ties.

Proposition 4.6 (⋆). Algorithm 1 is a 2-approx. algorithm for
the maximization variants of FULL-OSM and FULL-CSM.

Proof sketch. Let G = (V,E) denote a graph with cardinal
preferences sat with ties. We only show the case of cardi-
nal stability. Let MC be a CSM of (G, sat) with #fully(MC)
being maximum. By Proposition 3.5, Algorithm 1 returns
an OSM Mπ on input (G, sat) and the strict preference
lists P that are used to compute the corresponding sta-
ble partition π (see lines (2)–(3)). Recall that in Mπ ev-
ery matched agent is fully matched. Let Aπ denote the
set of (fully) matched agents in Mπ . To show that Al-
gorithm 1 is a 2-approx. algorithm for cardinal stability,
we observe that at least one agent of each pair of E must
come from Aπ because otherwise this pair is ordinally block-
ing Mπ . Thus, #fully(MC) ≤

∑

x∈Aπ,
y∈NG(x)

MC(x, y) +

∑

x∈V \Aπ,
y∈NG(x)∩Aπ

MC(x, y) ≤ 2|Aπ|.

5 Hardness Results

Optimal ordinally stable matchings. By Lemmas 4.1
and 4.2, FULL-OSM is equivalent to finding a stable integral
matching with maximum cardinality, and WELFARE-OSM
is equivalent to finding a stable integral matching with
minimum egalitarian cost. Since both problems are known to
be NP-hard [Manlove et al., 2002], we obtain the following.

Theorem 5.1 (⋆). When ties are allowed, FULL-OSM and
WELFARE-OSM are NP-complete, even for bipartite graphs.

Feder (1994) showed that finding a maximum-welfare stable
integral matching in non-bipartite graphs is APX-hard, even
for no ties. His idea can be adapted to the ordinal stability.

Theorem 5.2 (⋆). The maximization variant of WELFARE-
OSM is APX-hard and WELFARE-OSM is NP-complete,
even if no ties are present.
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5

2m2

9
2m2+7

2

2m2+6

3

2m2+5

4
7

5 eℓ : hℓ≻eiℓ≻ejℓ ,

fℓ : e
i
ℓ≻ejℓ ,

gℓ : e
i
ℓ≻hℓ≻ejℓ ,

eiℓ : eℓ≻ui≻fℓ≻gℓ,

ejℓ : eℓ≻uj≻gℓ≻fℓ,
hℓ : gℓ≻eℓ.

Figure 3: The edge-gadget for eℓ ∈ {vi, vj} ∈ E with i < j .
Left: The acceptability graph and the card. preferences of the 6 edge-

agents eℓ, fℓ, gℓ, hℓ, e
i
ℓ, and e

j

ℓ . When constructing a matching from
an independent set V ′, we integrally match the pairs corresponding
to the green edges if vi ∈ V ′. Right: The induced preference lists.

The instance constructed in Theorem 5.2 has incomplete
cardinal preferences, each of value at least one. By assigning
distinct cardinal preferences of value less than one to each
unmentioned pair of agents we obtain complete preferences:

Corollary 5.3 (⋆). For complete preferences without ties,
the maximization variant of WELFARE-OSM remains
APX-hard and WELFARE-OSM remains NP-complete.

Optimal cardinally stable matchings. We now prove
that WELFARE-CSM and FULL-CSM are NP-complete even
when the underlying acceptability graph G is bipartite and sat
has no ties. For both problems we give a polynomial-time
reduction from the NP-complete problem INDEPENDENT

SET (IS) [Garey and Johnson, 1979], wherein we are given a
graph G and an integer k and ask to find an k-vertex subset X
in G that is independent, that is, G[X] is edgeless. Both re-
ductions use the same edge-gadgets, which we now describe.

Let (G = (V,E), k) be an instance of IS, where V =
{v1, . . . , vn} is the vertex set and E = {e1, . . . , em} the edge
set. For each edge eℓ ∈ E we let {vi, vj} = eℓ where i < j
and we construct an edge-gadget which consists of a bipartite
graph Gℓ with preference function sat as shown in Figure 3.
The edge-gadget assumes that two vertex-agents ui and uj

are already present, which will be ensured by the full con-
struction later. The preference function sat of the agents ui

and uj from the vertex gadgets towards the edge-agents eiℓ
and ejℓ are bounded by 5m and will be defined later. The ver-
tex set V (Gℓ) of the edge gadget is the union of the sets Uℓ =

{eℓ, fℓ, gℓ} and Wℓ = {hℓ, e
i
ℓ, e

j
ℓ}; we call the vertices in Gℓ

edge-agents to distinguish them from the vertices in G.
Let GE = ∪ℓ∈[m]Gℓ, i.e., the union of the graphs in all

edge-gadgets. We now prove the essential property of the
edge-gadgets: For each edge eℓ ∈ E with eℓ = {vi, vj} at

least one of the edge-agents from{eiℓ, e
j
ℓ} is unsatisfied with

every CSM with sufficiently large social welfare. This asserts
that not both vi and vj are in an independent set.

Lemma 5.4 (⋆). Let M be a CSM for GE and ω denote
the welfare of M induced by the edge-agents. Then, (i)
ω ≤ 3m(2m2 + 9), and (ii) if there is an edge eℓ ∈ E
with eℓ = {vi, vj} such that UM (ui) < sat(ui, e

i
ℓ) and

UM (uj) < sat(uj , e
j
ℓ), then ω < 3m(2m2 + 9)− n.

Using the above we can give the full reduction.
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1

3n+4
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3n
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3n+2

1

3n+41

2
ui : wi≻[E(vi)]≻yi,
xi : yi≻wi,
wi : xi≻ui,
yi : ui≻xi.

Figure 4: The vertex-gadget for vertex vi ∈ V used in the proof
of Theorem 5.7. Left: The acceptability graph and the cardi-
nal preferences of agents ui, xi, wi, yi associated with vi. Here,
E(vi) = {eiℓ | eℓ ∈ E and vi is incident to eℓ} and [E(vi)] denotes
the order of the edge-agents E(vi) by increasing indices. The red
edges indicate the matching that signifies that vi is in the indepen-
dent set. Right: The induced preference lists of the vertex-gadget.

Theorem 5.7 (⋆). WELFARE-CSM is NP-complete, even for
bipartite graphs with strict preferences.

Proof. Let (G, k) be an instance of IS, where G = (V,E),
V = {v1, . . . , vn} and E = {e1, . . . , em}. We in-
deed reduce from IS in cubic graphs, i.e., each vertex
in G has degree three, as the problem remains NP-hard
for cubic graphs [Alimonti and Kann, 2000]. We con-
struct an instance (G′, sat, γ) of WELFARE-CSM where
γ = (3n+ 7)n+ k + 3m(2m2 + 9) and G′ = (U ∪W,E′)
is a bipartite graph with partite sets U and W .

– For each vi ∈ V , create 4 vertex-agents ui, xi, wi, yi, and
add ui, xi to U and wi, yi to W .

– For each eℓ ∈ E, add the edge-agents in Uℓ (resp. Wℓ)
to U (resp. W ), and add the acceptable edges of GE to E′.

– The remaining edges in E′ and the sat function are
described in Figure 4. In particular, for each vertex vi ∈ V
and each incident edge eℓ ∈ E, i.e., vi ∈ eℓ, the cardinal
preference of ui towards eiℓ is some value from {3n, 3n +
1, 3n+ 2}; recall that each vertex in G has degree three.

For each vertex vi ∈ V we call the subgraph of G′ together
with the cardinal preferences, induced by {ui, wi, xi, yi} the
vertex-gadget for vertex vi. Note that G′ is a bipartite graph
because all the introduced edges are between U and W . This
completes the construction of (G′, sat, γ) which clearly takes
polynomial time. In total, |U | = |W | = 6m+ 4n.

We construct the cardinal preferences for the vertex-agents
to ensure the following. When combined with Lemma 5.4,
there are essentially two possible ways of fractionally match-
ing the vertex agents ui, xi, wi, yi corresponding to the same
vertex vi ∈ V . The first one will have a higher welfare than
the second one, but it is not possible to use the first one for two
adjacent agents as this will induce a cardinally blocking pair.

Next, we prove (G, k) is a yes-instance of INDEPENDENT

SET iff. (G′, sat, γ) is a yes-instance of WELFARE-CSM.
The “if” direction amounts to a straightforward check of a
somewhat peculiar matching and is available in the long ver-
sion [Chen et al., 2020]. For the “only if” direction, let M be
a cardinally stable matching for (G′, sat) with welfare(M) ≥
γ. We show that the following vertex subset V ′ with
V ′ = {vi ∈ V |M(ui, yi) ≥ 1/n} is an independent set in G
and |V ′| ≥ k. We first show |V ′| ≥ k. For each i∈[n], define
muw

i :=M(ui, wi), mue
i :=

∑

e∈E(vi)

M(ui, e), muy
i :=M(ui, yi),

mxw
i :=M(xi, wi), m

xy
i :=M(xi, yi). Then,

n
∑

i=1

∑

z∈{ui,wi,xi,yi}

UM (z) ≤
n
∑

i=1

(

(3n+4)(muw
i +mue

i +muy
i )

+ 3(mxw
i +mxy

i )
)

+
n
∑

i=1

muy
i ≤ (3n+ 7)n+

∑n

i=1 m
uy
i . (1)

The last inequality holds since since the total matching val-
ues of the edges incident to ui and xi sum up to at most 1,
respectively. We show that ⌊

∑n

i=1 m
uy
i ⌋ ≤ |V

′|. Define
k1 := |{ui | i ∈ [n] and muy

i < 1/n}|. Then we have
∑n

i=1 m
uy
i < k1/n + |V ′|. Since k1 ≤ n, it follows that

|V ′| ≥ ⌊
∑n

i=1 m
uy
i ⌋. To see that |V ′| ≥ k it thus suffices to

show
∑n

i=1 m
uy
i ≥ k. Out of welfare(M) at most 3m(2m2+

9) stems from the edge-agents (see Lemma 5.4(i)). Hence, at
least (3n+4)n+3n+k must stem from the vertex-agents. By
the upper bound on the welfare of the vertex-agents derived
in eq. (1), thus indeed

∑n

i=1 m
uy
i ≥ k, as required.

It remains to show that V ′ is an independent set.
Towards a contradiction, suppose that there is an edge
eℓ ∈ E with eℓ = {vi, vj} such that vi, vj ∈ V ′.
By definition of V ′ we have for both ν ∈ {i, j} that
UM (uν) ≤ sat(uν , yν) ·m

uy
ν +sat(uν , wν) ·(1−m

uy
ν ) < 3n.

That is, UM (uν) < sat(uν , e
ν
ℓ ). By Lemma 5.4(i), the total

welfare received from M by vertices of the edge gadgets
is at most 3m(2m2 + 9) − n. By eq. (1), the total welfare
received from the vertex-agents is at most (3n + 8)n and
thus welfare(M) < γ, a contradiction.

The preferences constructed in Theorem 5.7 can be com-
pleted by assigning to each “unacceptable” pair of agents a
sufficiently small but distinct value. Such small satisfaction
values will not have any effect on a maximum-welfare CSM
as the sum of those utilities will never exceed one.

Proposition 5.8 (⋆). WELFARE-CSM is NP-complete, even
for bipartite graphs with complete and strict preferences.

Next, we turn to FULL-CSM. The hardness construction uses
the same edge gadgets as before, but with a different analysis.

Theorem 5.9 (⋆). FULL-CSM is NP-complete, even for bi-
partite graphs with strict preferences.

The construction also implies that FULL-CSM is W[1]-hard
wrt. parameter “#fully(M)−#fully(Mπ)”where M is a per-
fect CSM and Mπ is as defined in Definition 3.2.

6 Conclusion and Outlook

Studying optimal stable fractional matchings using the frame-
work of parameterized algorithmics [Niedermeier, 2006;
Cygan et al., 2015] may provide more insights into the
fine-grained complexity of the problem. Promising param-
eters are the number of fully matched agents and the social
welfare of the fractional matchings in the solution. Finally,
regarding preference restrictions [Bredereck et al., 2020],
it would be interesting to know whether assuming a special
preference structure can help in finding tractable cases for
optimal fractional stable matchings.
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[Doğan and Yıldız, 2016] Battal Doğan and Kemal Yıldız.
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A theory of school-choice lotteries. Theoretical Eco-
nomics, 10(2):543–595, 2015.

[Kintali et al., 2013] Shiva Kintali, Laura J. Poplawski, Raj-
mohan Rajaraman, Ravi Sundaram, and Shang-Hua Teng.
Reducibility among fractional stability problems. SIAM
Journal on Computing, 42(6):2063–2113, 2013.

[Manlove et al., 2002] David Manlove, Robert W. Irving,
Kazuo Iwama, Shuichi Miyazaki, and Yasufumi Morita.
Hard variants of stable marriage. Theoretical Computer
Science, 276(1-2):261–279, 2002.

[Manlove, 2013] David F. Manlove. Algorithmics of Match-
ing Under Preferences, volume 2 of Series on Theoretical
Computer Science. World Scientific, 2013.

[Niedermeier, 2006] Rolf Niedermeier. Invitation to Fixed-
Parameter Algorithms. Oxford University Press, 2006.

[Roth et al., 1993] Alvin E. Roth, Uriel G. Rothblum, and
John H. Vande Vate. Stable matchings, optimal assign-
ments, and linear programming. Mathematics of Opera-
tions Research, 18(4):803–828, 1993.

[Tan, 1991] Jimmy J.M. Tan. A necessary and sufficient
condition for the existence of a complete stable matching.
Journal of Algorithms, 12(1):154–178, 1991.

[Teo and Sethuraman, 1998] Chung-Piaw Teo and Jay
Sethuraman. The geometry of fractional stable matchings
and its applications. Mathematics of Operations Research,
23(4):874–891, 1998.

[Vande Vate, 1989] John H. Vande Vate. Linear program-
ming brings marital bliss. Operations Research Letters,
8(3):147–153, 1989.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

95


	Introduction
	Preliminaries
	Structural Properties
	Algorithmic Results
	Hardness Results
	Conclusion and Outlook

