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Social distance games have been extensively studied as a coalition formation model where the utilities

of agents in each coalition were captured using a utility function u that took into account distances in

a given social network. In this paper, we consider a non-normalized score-based definition of social

distance games where the utility function u~s depends on a generic scoring vector~s, which may be

customized to match the specifics of each individual application scenario.

As our main technical contribution, we establish the tractability of computing a welfare-maximi-

zing partitioning of the agents into coalitions on tree-like networks, for every score-based function u~s.

We provide more efficient algorithms when dealing with specific choices of u~s or simpler networks,

and also extend all of these results to computing coalitions that are Nash stable or individually ratio-

nal. We view these results as a further strong indication of the usefulness of the proposed score-based

utility function: even on very simple networks, the problem of computing a welfare-maximizing par-

titioning into coalitions remains open for the originally considered canonical function u.

1 Introduction

Coalition formation is a central research direction within the fields of algorithmic game theory and com-

putational social choice. While there are many different scenarios where agents aggregate into coalitions,

a pervasive property of such coalitions is that the participating agents exhibit homophily, meaning that

they prefer to be in coalitions with other agents which are similar to them. It was this observation that

motivated Brânzei and Larson to introduce the notion of social distance games (SDG) as a basic model

capturing the homophilic behavior of agents in a social network [14].

Brânzei and Larson’s SDG model consisted of a graph G = (V,E) representing the social network,

with V being the agents and E representing direct relationships or connections between the agents. To

capture the utility of an agent v in a coalition C ⊆ V , the model considered a single function: u(v,C) =
1
|C| ·∑w∈C\{v}

1
dC(v,w)

where dC(v,w) is the distance between v and w inside C.

Social distance games with the aforementioned utility function u have been the focus of exten-

sive study to date, with a number of research papers specifically targeting algorithmic and complexity-

theoretic aspects of forming coalitions with maximum social welfare [1, 2, 3, 28]. Very recently, Flam-

mini et al. [21, 22] considered a generalization of u via an adaptive real-valued scoring vector which

weights the contributions to an agent’s utility according to the distances of other agents in the coalition,

and studied the price of anarchy and stability for non-negative scoring vectors. However, research to date

has not revealed any polynomially tractable fragments for the problem of computing coalition structures
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Figure 1: A social network illustrating the difference of maximising social welfare in our model com-

pared to previous SDG models. (1) In Brânzei and Larson’s SDG model, the welfare-maximum outcome

is the grand coalition. (2) A welfare-maximum outcome in the normalized model of Flammini et al.

with a scoring vector of (1,0,0,0) is marked with dashed lines, while the same scoring vector in our

non-normalized model produces the grand coalition. (3) A scoring vector of~s = (1,0,−1) in our model

produces the welfare-maximizing outcome marked with bold lines, with a welfare of 18. (4) A ‘less

welcoming’ scoring vector of~s = (1,−3) leads to the welfare maximizing dash-circled partition with a

welfare of 14 (compared to only 12 for the bold-circled one).

with maximum social welfare (with or without stability-based restrictions on the behavior of individual

agents), except for the trivial cases of complete (bipartite) graphs [14] and trees [35].

Our Contribution. The undisputable appeal of having an adaptive scoring vector—as opposed to using

a single canonical utility function u—lies in the fact that it allows us to capture many different scenarios

with different dynamics of coalition formation. However, it would also be useful for such a model to be

able to assign negative scores to agents at certain (larger) distances in a coalition. For instance, guests

at a gala event may be keen to accept the presence of friends-of-friends (i.e., agents at distance 2) at a

table, while friends-of-friends may be less welcome in private user groups on social networks, and the

presence of complete strangers in some scenarios may even be socially unacceptable.

Here, we propose the study of social distance games with a family of highly generic non-normalized

score-based utility functions. Our aim here is twofold. First of all, these should allow us to better capture

situations where agents at larger distances are unwelcome or even unacceptable for other agents. At

the same time, we also want to obtain algorithms capable of computing welfare-maximizing coalition

structures in such general settings, at least on well-structured networks.

Our model considers a graph G accompanied with an integer-valued, fixed but adaptive scoring

vector ~s which captures how accepting agents are towards other agents based on their pairwise dis-

tance.1 The utility function u~s(v,C) for an agent v in coalition C is then simply defined as u~s(v,C) =

∑w∈C\{v}~s(dC(v,w)); we explicitly remark that, unlike previous models, this is not normalized with re-

spect to the coalition size. As one possible example, a scoring vector of (1,0,−1) could be used in sce-

narios where agents are welcoming towards friends, indifferent to friends-of-friends, slightly unhappy

about friends-of-friends-of-friends (i.e., agents at distance 3), and unwilling to group up with agents who

are at distance greater than 3 in G. A concrete example which also illustrates the differences to previous

SDG models is provided in Figure 1.

While non-normalized scoring functions have not previously been considered for social distance

games, we view them a natural way of modeling agent utilities; in fact, similar ideas have been success-

fully used in models for a variety of other phenomena including, e.g., committee voting [20], resource

allocation [13, 12] and Bayesian network structure learning [24, 36]. Crucially, it is not difficult to ob-

serve that many of the properties originally established by Brânzei and Larson for SDGs also hold for our

non-normalized score-based model with every choice of~s, such as the small-world property [14, 27] and

1Formal definitions are provided in the Preliminaries.
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the property that adding an agent with a close (distant) connection to a coalition positively (negatively)

impacts the utilities of agents [14]. In addition, the proposed model can also directly capture the notion

of enemy aversion with symmetric preferences [4, 34] by setting~s = (1).

Aside from the above, a notable benefit of the proposed model lies on the complexity-theoretic side

of things. Indeed, a natural question that arises in the context of SDG is whether we can compute an

outcome—a partitioning of the agents into coalitions—which maximizes the social welfare (defined as

the sum of the utilities of all agents in the network). This question has been studied in several contexts,

and depending on the setting one may also require the resulting coalitions to be stable under individ-

ual rationality (meaning that agents will not remain in coalitions if they have negative utility) or Nash

stability (meaning that agents may leave to join a different coalition if it would improve their utility).

But in spite of the significant advances in algorithmic aspects of other coalition formation problems in

recent years [9, 10, 16, 23], we lack any efficient algorithm capable of producing such a welfare-optimal

partitioning when using the utility function u even for the simplest types of networks.

To be more precise, when viewed through the refined lens of parameterized complexity [17, 19] that

has recently become a go-to paradigm for such complexity-theoretic analysis, no tractable fragments of

the problem are known. More precisely, the problem of computing a welfare-maximizing outcome under

any of the previously considered models is not even known to admit an XP algorithm when parameterized

by the minimum size of a vertex cover in the social network G—implying a significant gap towards

potential fixed-parameter tractability. This means that the complexity of welfare-maximization under

previous models remains wide open even under the strongest non-trivializing restriction of the network.

As our main technical contribution, we show that non-normalized score-based utility functions do

not suffer from this drawback and can in fact be computed efficiently under fairly mild restrictions on G.

Indeed, as our first algorithmic result we obtain an XP algorithm that computes a welfare-maximizing

partitioning of the agents into coalitions parameterized by the treewidth of G, and we strengthen this

algorithm to also handle additional restrictions on the coalitions in terms of individual rationality or

Nash stability. As with numerous treewidth-based algorithms, we achieve this result via leaf-to-root

dynamic programming along a tree-decomposition. However, the records we keep during the dynamic

program are highly non-trivial and require an advanced branching step to correctly pre-computed the

distances in the stored records. We remark that considering networks of small treewidth is motivated not

only by the fundamental nature of this structural graph measure, but also by the fact that many real-world

networks exhibit bounded treewidth [33].

In the next part of our investigation, we show that when dealing with simple scoring functions or

bounded-degree networks, these results can be improved to fixed-parameter algorithms for welfare-

maximization (including the cases where we require the coalitions to be individually rational or Nash

stable). This is achieved by combining structural insights into the behavior of such coalitions with a

different dynamic programming approach. Furthermore, we also use an entirely different technique

based on quadratic programming to establish the fixed-parameter tractability of all 3 problems under

consideration w.r.t. the minimum size of a vertex cover in G. Finally, we conclude with some interesting

generalizations and special cases of our model and provide some preliminary results in these directions.

2 Preliminaries

We use N to denote the set of natural numbers, i.e., positive integers, and Z for the set of integers.

For i ∈ N, we let [i] = {1, . . . , i} and [i]0 = [i]∪{0}. We assume basic familiarity with graph-theoretic

terminology [18].
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Social Distance Games. A social distance game (SDG) consists of a set N = {1, . . . ,n} of agents, a

simple undirected graph G = (N,E) over the set of agents called a social network, and a non-increasing

scoring vector~s = (s1, . . . ,sδ ) where a) for each a ∈ [δ ], sa ∈ Z and b) for each a ∈ [δ −1], sa+1 ≤ sa.

In some cases, it will be useful to treat~s as a function from N rather than a vector; to this end, we set

~s(a) = sa for each a ≤ δ and~s(a) = −∞ when a > δ . The value “−∞” here represents an inadmissible

outcome, and formally we set −∞+ z =−∞ and −∞ < z for each z ∈ Z.

A coalition is a subset C ⊆ N, and an outcome is a partitioning Π = (C1, . . . ,Cℓ) of N into coalitions;

formally,
⋃ℓ

i=1Ci = N, every Ci ∈ Π is a coalition, and all coalitions in Π are pairwise disjoint. We use Πi

to denote the coalition the agent i ∈ N is part of in the outcome Π. The utility of an agent i ∈ N for a

coalition Πi ∈ Π is

u~s(i,Πi) = ∑
j∈Πi\{i}

~s(distΠi
(i, j)),

where distΠi
(i, j) is the length of a shortest path between i and j in the graph G[Πi], i.e., the subgraph

of G induced on the agents of Πi. We explicitly note that if Πi is a singleton coalition then u~s(i,Πi) = 0.

Moreover, in line with previous work [14] we set distΠi
(i, j) := +∞ if there is no i- j path in G[Πi],

meaning that u~s(i,Πi) =−∞ whenever G[Πi] is not connected.

For brevity, we drop the superscript from u~s whenever the scoring vector~s is clear from the context.

To measure the satisfaction of the agents with a given outcome, we use the well-known notation of social

welfare, which is the total utility of all agents for an outcome Π, that is,

SW~s(Π) = ∑
i∈N

u~s(i,Πi).

Here, too, we drop the superscript specifying the scoring vector whenever it is clear from the context.

We assume that all our agents are selfish, behave strategically, and their aim is to maximize their

utility. To do so, they can perform deviations from the current outcome Π. We say that Π admits an IR-

deviation if there is an agent i∈ N such that u(i,C)< 0; in other words, agent i prefers to be in a singleton

coalition over its current coalition. If no agent admits an IR-deviation, the outcome is called individually

rational (IR). We say that Π admits an NS-deviation if there is an agent i and a coalition C ∈Π∪{ /0} such

that u(i,C∪{i})> u(i,Πi). Π is called Nash stable (NS) if no agent admits an NS-deviation. We remark

that other notions of stability exist in the literature [13, Chapter 15], but Nash stability and individual

rationality are the most basic notions used for stability based on individual choice [29, 38].

Having described all the components in our score-based SDG model, we are now ready to formalize

the three classes of problems considered in this paper. We note that even though these are stated as

decision problems for complexity-theoretic reasons, each of our algorithms for these problems can also

output a suitable outcome as a witness. For an arbitrary fixed scoring vector~s, we define:

~s-SDG-WF

Input: A social network G = (N,E), desired welfare b ∈ N.

Question: Does the distance game given by G and~s admit an outcome with social welfare

at least b?

~s-SDG-WF-IR and~s-SDG-WF-NASH are then defined analogously, but with the additional condi-

tion that the outcome must be individually rational or Nash stable, respectively.

We remark that for each of the three problems, one may assume w.l.o.g. that s1 > 0; otherwise

the trivial outcome consisting of |N| singleton coalitions is both welfare-optimal and stable. Moreover,
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without loss of generality we assume G to be connected since an optimal outcome for a disconnected

graph G can be obtained as a union of optimal outcomes in each connected component of G.

The last remark we provide to the definition of our model is that it trivially also supports the well-

known small world property [27] that has been extensively studied on social networks. In their original

work on SDGs, Brânzei and Larson showed that their model exhibits the small world property by estab-

lishing a diameter bound of 14 in each coalition in a so-called core partition [14]. Here, we observe that

for each choice of~s, a welfare-maximizing coalition will always have diameter at most δ .

Parameterized Complexity. The parameterized complexity framework [17, 19] provides the ideal

tools for the fine-grained analysis of computational problems which are NP-hard and hence intractable

from the perspective of classical complexity theory. Within this framework, we analyze the running

times of algorithms not only with respect to the input size n, but also with respect to a numerical pa-

rameter k ∈ N that describes a well-defined structural property of the instance; the central question is

then whether the superpolynomial component of the running time can be confined by a function of this

parameter alone.

The most favorable complexity class in this respect is FPT (short for “fixed-parameter tractable”)

and contains all problems solvable in f (k) · nO(1) time, where f is a computable function. Algorithms

with this running time are called fixed-parameter algorithms. A less favorable, but still positive, outcome

is an algorithm with running time of the form n f (k); problems admitting algorithms with such running

times belong to the class XP.

Structural Parameters. Let G = (V,E) be a graph. A set U ⊆ V is a vertex cover if for every edge

e ∈ E it holds that U ∩ e 6= /0. The vertex cover number of G, denoted vc(G), is the minimum size of a

vertex cover of G. A nice tree-decomposition of G is a pair (T ,β ), where T is a tree rooted at a node

r ∈V (T ), β : V (T )→ 2V is a function assigning each node x of T its bag, and the following conditions

hold:

• for every edge {u,v} ∈ E(G) there is a node x ∈V (T ) such that u,v ∈ β (x),

• for every vertex v ∈V , the set of nodes x with v ∈ β (x) induces a connected subtree of T ,

• |β (r)|= |β (x)| = 0 for every leaf x ∈V (T ), and

• there are only tree kinds of internal nodes in T :

– x is an introduce node if it has exactly one child y such that β (x) = β (y)∪ {v} for some

v /∈ β (y),

– x is a join node if it has exactly two children y and z such that β (x) = β (y) = β (z), or

– x is a forget node if it has exactly one child y such that β (x) = β (y)\{v} for some v ∈ β (y).

The width of a nice tree-decomposition (T ,β ) is maxx∈V (T ) |β (x)| − 1, and the treewidth tw(G) of a

graph G is the minimum width of a nice tree-decomposition of G. Given a nice tree-decomposition and a

node x, we denote by Gx the subgraph induced by the set V x =
⋃

y is a descendant of x β (y), where we suppose

that x is a descendant of itself. It is well-known that optimal nice tree-decompositions can be computed

efficiently [7, 30, 31].

Integer Quadratic Programming. INTEGER QUADRATIC PROGRAMMING (IQP) over d dimensions

can be formalized as the task of computing

max
{

xT Qx | Ax ≤ b, x ≥ 0, x ∈ Z
d
}

, (IQP)
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Figure 2: Social Network from Lemma 2.
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Figure 3: Social Network from Lemma 3.

where Q ∈ Z
d×d , A ∈ Z

m×d, b ∈ Z
m. That is, IQP asks for an integral vector x ∈ Z

d which maximizes

the value of a quadratic form subject to satisfying a set of linear constraints.

Proposition 1 ([32, 39], see also [25]). INTEGER QUADRATIC PROGRAMMING is fixed-parameter

tractable when parameterized by d+‖A‖∞ +‖Q‖∞.

3 Structural Properties of Outcomes

As our first set of contributions, we establish some basic properties of our model and the associated

problems that are studied within this paper. We begin by showcasing that the imposition of individual

rationality or Nash stability as additional constraints on our outcomes does in fact have an impact on

the maximum welfare that can be achieved (and hence it is indeed necessary to consider three distinct

problems). We do not consider this to be obvious at first glance: intuitively, an agent i’s own contribution

to the social welfare can only improve if they perform an IR- or NS-deviation, and the fact that the

distance function distΠi
is symmetric would seem to suggest that this can only increase the total social

welfare.

Lemma 2. There is a scoring vector~s and a social network G such that the single outcome achieving

the maximum social welfare is not individually rational.

Proof. Consider a scoring function~s such that~s = (1,1,−1,−1,−1,−1). Consider the social network G

in Figure 2 formed from a path P on 5 vertices and a clique K on 5 vertices by connecting the endpoints

of P to all vertices of K. Let x be the central agent of P. Let C be the grand coalition in G. The graph can

be viewed as a 6-cycle with K forming one “bold” agent. All vertices on the cycle contribute positively to

the agent’s utility, except for the one that is exactly opposite on the cycle. Hence, u(x,C) = 4−5 =−1,

while utility of all other agents is 8− 1 = 7 in C. This gives total social welfare of 62 for the grand

coalition.

However, if x leaves the coalition to form its own one, their utility will improve from −1 to 0, whereas

the total social welfare drops. Indeed, in C \{x} there are 2 agents with utility 6−2 = 4, 2 agents with

utility 7−1 = 6 and 5 agents with utility 8−0, giving total social welfare of 60. If any y 6= x was to be

excluded from C to form outcome {y},C \{y}, then y joining C improves social welfare, proving that it

was not optimal. Finally, if the outcome consists of several coalitions with the largest one of size 8, then

the welfare is at most 8 ·7+2 ·1 = 56, if the largest size is 7, then we get at most 7 ·6+3 ·2 = 48, for 6

it is 6 ·5+4 ·3 = 42 and for 5 it is 5 ·4+5 ·4 = 40.

Hence the grand coalition C is the only outcome with maximal social welfare, but it is not individually

rational (and therefore not Nash stable), as u(x,C) =−1.

Lemma 3. There is a scoring vector~s and a social network G such that the single individually rational

outcome achieving the maximum social welfare among such outcomes is not Nash stable.
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Proof. Consider again the scoring function ~s = (1,1,−1,−1,−1,−1). Similarly to previous lemma,

consider the social network G in Figure 3 formed from a path P on 5 vertices and a clique K on 4

vertices by connecting the endpoints of P to all vertices of K and adding a agent y only connected

to the central agent of P which we call x. Let C be the coalition containing all vertices of G except

for y. As in the previous lemma, G[C] can be viewed as a 6-cycle with K forming one “bold” agent.

Hence, ux(C) = 4− 4 = 0, while utility of other agents in C is 7− 1 = 6. Trivially uy({y}) = 0, hence

the outcome ({y},C) is individually rational. It has total social welfare of 48. However, it is not Nash

stable, as x wants to deviate to {x,y} giving them utility 1.

However, the outcome ({x,y},C \{x}), which is Nash stable, has total social welfare only 46. Note

that uz(C \ {x}) ≥ 3 for every agent z ∈ C \ {x}, so any outcome ({x,y,z},C \ {x,z}) cannot be Nash

stable. While the total social welfare of the grand coalition is 46, the utility of y is 3 − 6 = −3 in

this coalition, so this outcome is not even individually rational. From the computations in the previous

lemma, it follows, that to attain the social welfare of 48, the largest coalition in the outcome must be of

size at least 7. Moreover, if it is of size exactly 7, then these 7 vertices must be at mutual distance at

most 2. However, there are no 7 vertices in mutual distance at most 2 in G. Hence, in any outcome with

social welfare 48 the largest coalition must be of size at least 8. Agent y has only 3 agents in distance

at most 2 in G. Hence, for y to get a positive utility from some coalition, the coalition must be of size

at most 7, i.e., y cannot be part of the largest coalition in any outcome with social welfare at least 48.

However, for every z ∈ C, z joining the coalition C \ {z} improves the social welfare of the outcome,

proving that it was not optimal.

Hence the outcome ({y},C) is the only individually rational outcome with maximal social welfare,

but it is not Nash stable.

It should be noted that Lemmas 2 and 3 also contrast many other models where outputs maximizing

social welfare are stable for symmetric utilities [11, 6, 15].

As our next two structural results, we prove that on certain SDGs it is possible to bound not only

the diameter but also the size of each coalition in a welfare-maximum outcome. Notably, we establish

such bounds for SDGs on bounded-degree networks and SDGs which have a simple scoring vector on

a tree-like network. While arguably interesting in their own right, these properties will be important for

establishing the fixed-parameter tractability of computing welfare-optimal outcomes in the next section.

Lemma 4. For every scoring vector~s = (s1, . . . ,sδ ), if G is a graph of maximum degree ∆(G) and C is a

coalition of size more than (s1 +1) ·∆(G) · (∆(G)−1)δ−1, then for every i ∈C we have u(i,C)< 0.

Proof. Let i ∈ C. There are at most ∆(G) · (∆(G)− 1)δ−1 agents in distance at most δ from i. Each of

these agents contributes at most s1 to u(i,C). Every other agent contributes at most −1. Hence, if there

are more than (s1 + 1) ·∆(G) · (∆(G)− 1)δ−1 agents in C, then more than s1 ·∆(G) · (∆(G)− 1)δ−1 of

them have a negative contribution to u(i,C) and

u(i,C)< s1 ·∆(G) · (∆(G)−1)δ−1 −1 · s1 ·∆(G) · (∆(G)−1)δ−1 = 0.

Lemma 5. Let~s = (s1, . . . ,sδ ) be such that s2 < 0. If G is a graph of treewidth tw and C is a coalition of

size more than 2(s1 +1) · tw+1, then ∑i∈C u(i,C)< 0.

Proof. Each agent adjacent to i contributes s1 to u(i,C), whereas all the other agents contribute at

most −1. Since a graph of treewidth tw is tw-degenerate, there are |E(G[C])| ≤ |C| · tw pairs of ad-
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jacent agents and
(|C|

2

)

−|E(G[C])| pairs of non-adjacent agents. We have

∑
i∈C

u(i,C) = ∑
i, j∈C;i6= j

~s(dist(i, j))

≤ 2

(

s1 · |E (G[C])|−

((

|C|

2

)

−|E (G[C])|

))

= 2

(

(s1 +1) · |E (G[C])|−

(

|C|

2

))

≤ 2(s1 +1) · |C| · tw−|C|(|C|−1)

= |C|(2(s1 +1) · tw−(|C|−1))

< |C|(2(s1 +1) · tw−(2(s1 +1) · tw+1−1)) = 0.

4 Computing Optimal Outcomes

4.1 Intractability

As our first step towards an understanding of the complexity of computing a welfare-optimal outcome in

an SDG, we establish the NP-hardness of~s-SDG-WF,~s-SDG-WF-IR and~s-SDG-WF-NASH even for

a very simple choice of~s.

Theorem 6. Let~s = (s1) for any s1 > 0. Then~s-SDG-WF,~s-SDG-WF-IR and~s-SDG-WF-NASH are

NP-hard.

Proof Sketch. As our first step, we prove the NP-hardness of the intermediate problem called 3-COLO-

RING TRIANGLE COVERED GRAPH (3CTCG) via an adaptation of a known reduction from NOTALL-

EQUAL-3-SAT [37, Theorem 9.8]:

3-COLORING TRIANGLE COVERED GRAPH (3CTCG)

Input: An undirected graph G = (V,E) with |V | = 3n vertices such that G contains a

collection of n mutually vertex disjoint triangles.

Question: Does G have a 3-coloring?

Next, we reduce 3CTCG to our three problems via a single construction. Let G be an instance of

3CTCG with 3n vertices and T1, . . . ,Tn the corresponding collection of triangles. Let G be a complement

of G, let s1 = s1(~s) and let b = 3ns1 · (n− 1). To establish the NP-hardness of~s-SDG-WF, it suffices

to show that G is a Yes-instance of 3CTCG if and only if G admits an outcome with social welfare at

least b; for the remaining two problems, we additionally show that such an outcome will furthermore be

individually rational and Nash stable.

4.2 An Algorithm for Tree-Like Networks

We complement Theorem 6 by establishing that all three problems under consideration can be solved in

polynomial time on networks of bounded treewidth—in other words, we show that they are XP-tractable

w.r.t. treewidth. We first describe the “baseline” algorithm for solving~s-SDG-WF, and then prove that

this may be adapted to also solve the other two problems by expanding on its records and procedures

(see the appendix).
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Theorem 7. For every fixed scoring vector~s, the~s-SDG-WF,~s-SDG-WF-IR, and~s-SDG-WF-NASH

problems are in XP when parameterized by the treewidth of the social network G.

Proof Sketch. Our algorithm is based on leaf-to-root dynamic programming along a nice tree-decom-

position of the input social network with rather complicated structure. In each node x of the tree-

decomposition, we store a set Rx of partial solutions called records. Each record realizes a single

signature which is a triple (C,S,T ), where

• C is a partition of bag agents into parts of coalitions; there are at most tw+1 different coalitions

intersecting β (x) and, thus, at most twO(tw) possible partitions of β (x).

• S is a function assigning each pair of agents that are part of the same coalition according to C the

shortest intra-coalitional path; recall that for fixed~s, the diameter of every coalition is bounded by

a constant δ and, therefore, there are nO(δ ) = nO(1) possible paths for each pair of agents which

gives us nO(tw2) combinations in total.

• T is a table storing for every coalition P and every possible vector of distances to bag agents

that are in P the number of agents from P that were already forgotten in some node of the tree-

decomposition; the number of possible coalitions is at most tw+1, the number of potential distance

vectors is δ tw+1 = 2O(tw), and there are at most n values for every combination of coalition and

distance vector which leads to at most n2O(tw)
different tables T .

The value of every record is a pair (π,w), where π is a partition of V x such that SW(π) = w and π

witnesses that there is a partition of V x corresponding to the signature of the record, as described above.

We store only one record for every signature – the one with the highest social welfare. Therefore, in

every node x, there are at most n2O(tw)
different records.

Once the computation ends, we check the record in the root node r and based on the value of w,

we return the answer; Yes if w ≥ b and No otherwise. Moreover, as Gr = G, the partition π is also an

outcome admitting social-welfare w.

4.3 Fixed-Parameter Tractability

A natural follow-up question to Theorem 7 is whether one can improve these results to fixed-parameter

algorithms. As our final contribution, we show that this is possible at least when dealing with simple

scoring vectors, or on networks with stronger structural restrictions. To obtain both of these results, we

first show that to obtain fixed-parameter tractability it suffices to have a bound on the size of the largest

coalition in a solution (i.e., a welfare-optimal outcome).

Theorem 8. For every fixed scoring vector~s, the variants of~s-SDG-WF,~s-SDG-WF-IR,~s-SDG-WF-

NASH where we only consider outcomes consisting of coalitions of at most a prescribed size are FPT

parameterized by the treewidth of the network and the maximum coalition size combined.

Proof Sketch. Similar to the previous ones, we design a dynamic programming (DP) on a nice tree de-

composition, albeit the procedure and records are completely different.

Given a subset of agents X ⊆ N, let Π = (π1,π2, . . . ,πℓ) be a partition of a set containing X and some

“anonymous” agents. We use T(Π) to denote a set of graph topologies on π1,π2, . . . ,πℓ given X . That

is, T(Π) = {T(π1), . . . ,T(πℓ)} where T(πi) is some graph on |πi| agents, namely πi ∩X and |πi \X |
“anonymous” agents, for each i ∈ [ℓ]. The maximum coalition size of any welfare maximizing partition

is denoted by sz. Table, M, contains an entry M[x,C,T(Π)] for every node x of the tree decomposition,

each partition C of β (x), and each set of graph topologies T(Π) given β (x) where Π is a partition of
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at most sz · tw agents. An entry of M stores the maximum welfare in Gx under the condition that the

partition into coalitions satisfies the following properties. Recall that for a partition P of agents and an

agent a, we use Pa to denote the coalition agent a is part of in P.

1. C and Π are consistent, i.e., the partition of the bag agents β (x) in Gx is denoted by C and Ca =
Πa ∩β (x) for each agent a ∈ β (x).

2. The coalition of agent a∈β (x) in the graph Gx is Πa.

3. T(Π) is consistent with Gx i.e., the subgraph of Gx induced on the agents in coalition of a is T(Πa),
i.e., Gx[Πa] = T(Πa).

Observe that we do not store Π. We only store the topology of Π which is a graph on at most sz · tw
agents.

We say an entry of M[x,C,T(Π)] is valid if it holds that

1. C and Π are consistent, i.e., Ca = Πa ∩β (x) for each agent a ∈ β (x),

2. Either Ca =Cb, or Ca ∩Cb = /0 for each pair of agents a,b ∈ β (x),

3. T(Π) is consistent with Gx in β (x), i.e., for each pair of agents a,b ∈ β (x) such that Πa = Πb,

there is an edge (a,b) ∈ T(Πa) if and only if (a,b) is an edge in Gx.

Once the table is computed correctly, the solution is given by the value stored in M[r,C,T(Π)]
where C is empty partition and T(Π) is empty. Roughly speaking, the basis corresponds to leaves (whose

bags are empty), and are initialized to store 0. For each entry that is not valid we store −∞. To complete

the proof, it now suffices to describe the computation of the records at each of the three non-trivial types

of nodes in the decomposition and prove correctness.

Similarly to Theorem 7, we design a dynamic programming on a nice tree decomposition, albeit the

procedure and records are completely different.

From Lemma 5 it follows that if s2 < 0 and tw(G) is bounded, then the maximum coalition size of a

welfare maximizing outcome is bounded. Hence, using Theorem 8 we get the following.

Corollary 9. ~s-SDG-WF-NASH, ~s-SDG-WF-IR, and~s-SDG-WF are fixed-parameter tractable pa-

rameterized by the treewidth tw(G) if s2 < 0.

Turning back to general scoring vectors, we recall that Lemma 4 provided a bound on the size of

the coalitions in a welfare-optimal outcome in terms of the maximum degree ∆(G) of the network G.

Applying Theorem 8 again yields:

Corollary 10. ~s-SDG-WF-NASH,~s-SDG-WF-IR, and~s-SDG-WF are fixed-parameter tractable pa-

rameterized by the treewidth tw(G) and the maximum degree ∆(G) of the social network.

As our final contribution, we provide fixed-parameter algorithms for computing welfare-optimal out-

comes that can also deal with networks containing high-degree agents. To do so, we exploit a different

structural parameter than the treewidth—namely the vertex cover number of G (vc(G)). We note that

while the vertex cover number is a significantly more “restrictive” graph parameter than treewidth, it has

found numerous applications in the design of efficient algorithms in coalition formation, including for

other types of coalition games [5, 8, 26].

Theorem 11. ~s-SDG-WF-NASH,~s-SDG-WF-IR, and~s-SDG-WF are fixed-parameter tractable pa-

rameterized by the vertex cover number vc(G) of the social network.
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Proof Sketch. Let k = vc(G) and let U be a vertex cover for G of size k. Observe that in each solution

there are at most k non-singleton coalitions, since G has a vertex cover of size k and each coalition must

be connected. Furthermore, the vertices of G−U can be partitioned into at most 2k groups according

to their neighborhood in the set U . That is, there are nW vertices in G−U such that their neighborhood

is W for some W ⊆U ; denote this set of vertices IW .

We perform exhaustive branching to determine certain information about the structure of the coali-

tions in a solution—notably:

1. which vertices of U belong to each coalition (i.e., we partition the set U ); note that there are at

most kk such partitions, and

2. if there is at least one agent of IW in the coalition or not ; note that there are at most (22k

)k such

assignments of these sets to the coalitions.

We branch over all possible admissible options of the coalitional structure described above possessed

by a hypothetical solution. The total number of branches is upper-bounded by a function of the pa-

rameter value k and thus for the problems to be in FPT it suffices to show that for each branch we

can find a solution (if it exists) by a fixed-parameter subprocedure. To conclude the proof, we show

that a welfare-maximum outcome (which furthermore satisfies the imposed stability constraints) with a

given coalitional structure can be computed by modeling this as an Integer Quadratic Program where

d +‖A‖∞ +‖Q‖∞ are all upper-bounded by a function of k—such a program can be solved in FPT time

using Proposition 1.

The (integer) variables of the program are xC
W , which express the number of vertices from the set IW

in the coalition with C ⊆ U ; thus, we have xC
W ∈ Z and xC

W ≥ 1. Let C be the considered partitioning

of the vertex cover U . We use C ∈ C for the set C ⊆ U in the coalition and C+ for the set C and the

guessed groups having at least one agent in the coalition. We require that the vertices of G−U are also

partitioned in the solution, i.e.,

∑
C∈C

∑
W∈C+

xC
W = nW ∀W ⊆U. (1)

The quadratic objective expresses the welfare of the coalitions in the solution while the linear constraints

ensure the stability of the outcome; for the latter, we rely on the fact that it is sufficient to verify the

stability for a single agent from the group IW in each coalition.

5 Conclusions and Future Research Directions

In this work, we studied social distance games through the lens of an adaptable, non-normalized scoring

vector which can capture the positive as well as negative dynamics of social interactions within coalitions.

The main focus of this work was on welfare maximization, possibly in combination with individual-based

stability notions—individual rationality and Nash stability. It is not surprising that these problems are

intractable for general networks; we complement our model with algorithms that work well in tree-like

environments.

Our work opens up a number of avenues for future research. One can consider other notions of

individual-based stability such as individual stability [13, pp. 360–361][23], or various notions of group-

based stability such as core stability [13, p. 360][14, 34]. Furthermore, our results do not settle the com-

plexity of finding stable solutions (without simultaneous welfare maximization). Therefore, it remains

open if one can find a Nash stable solution for a specific scoring vector. Also, a more complex open
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problem is to characterize those scoring vectors that guarantee the existence of a Nash (or individually)

stable solution.

Finally, we remark that the proposed score-based SDG model can be generalized further, e.g., by

allowing for a broader definition of the scoring vectors. For instance, it is easy to generalize all our

algorithms to scoring vectors which are not monotone in their “positive part”. One could also consider

situations where the presence of an agent that is “far away” does not immediately set the utility of

other agents in the coalition to −∞. One way to model these settings would be to consider “open”

scoring vectors, for which we set~s(a) =~s(δ ) for all a > δ—meaning that distances over δ are all treated

uniformly but not necessarily as unacceptable.

Notice that if~s(δ ) ≥ 0 for an open scoring vector~s, the grand coalition is always a social-welfare

maximizing outcome for all three problems—hence here it is natural to focus on choices of~s with at

least one negative entry. We note that all of our fixed-parameter algorithms immediately carry over

to this setting for arbitrary choices of open scoring vectors~s. The situation becomes more interesting

when considering the small-world property: while the diameter of every welfare-maximizing outcome

can be bounded in the case of Nash stable or individually rational coalitions (as we prove in our final

Theorem 12 below), whether the same holds in the case of merely trying to maximize social welfare

is open and seems to be a non-trivial question. Because of this, Theorem 7 can also be extended to the

~s-SDG-WF-IR and~s-SDG-WF-NASH with open scoring vectors, but it is non-obvious for~s-SDG-WF.

Theorem 12. Let~s = (s1, . . . ,sδ ) be an arbitrary open scoring vector and G be a social network. Every

outcome Π containing a coalition C ∈ Π with diameter exceeding ℓ= 2 ·s1 ·δ can be neither Nash-stable

nor individually rational.

Proof Sketch. Consider a shortest path P in C whose length exceeds ℓ. We identify a set of edge cuts

along P and show that at least one such cut must be near an agent whose utility in C is negative, due to

the presence of a large number of agents that must be distant from the chosen edge cut.
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[34] Kazunori Ohta, Nathanaël Barrot, Anisse Ismaili, Yuko Sakurai & Makoto Yokoo (2017): Core Stability in

Hedonic Games among Friends and Enemies: Impact of Neutrals. In Carles Sierra, editor: Proceedings of

the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI ’17, ijcai.org, pp. 359–365,

doi:10.24963/ijcai.2017/51.

https://dl.acm.org/doi/10.5555/3398761.3399002
https://doi.org/10.1007/978-3-030-67731-2_12
https://doi.org/10.1609/aaai.v36i5.20435
https://doi.org/10.1609/aaai.v36i5.20435
https://proceedings.neurips.cc/paper/2021/hash/040a99f23e8960763e680041c601acab-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/040a99f23e8960763e680041c601acab-Abstract.html
https://doi.org/10.1016/j.disopt.2020.100596
https://doi.org/10.4230/LIPIcs.ESA.2022.64
https://doi.org/10.1515/9781400833993
https://doi.org/10.1007/978-3-319-99660-8_12
https://doi.org/10.1007/978-3-319-99660-8_12
https://doi.org/10.1016/j.mathsocsci.2011.03.004
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.48550/arXiv.1511.00310
https://arxiv.org/abs/1511.00310
https://doi.org/10.4230/LIPIcs.ICDT.2019.12
https://doi.org/10.24963/ijcai.2017/51


286 Maximizing Social Welfare in Score-Based Social Distance Games

[35] Masahiro Okubo, Tesshu Hanaka & Hirotaka Ono (2019): Optimal Partition of a Tree with Social Dis-

tance. In Gautam K. Das, Partha Sarathi Mandal, Krishnendu Mukhopadhyaya & Shin-Ichi Nakano, editors:

Proceedings of the 13th International Conference on Algorithms and Computation, WALCOM ’19, Lecture

Notes in Computer Science 11355, Springer, pp. 121–132, doi:10.1007/978-3-030-10564-8_10.

[36] Sebastian Ordyniak & Stefan Szeider (2013): Parameterized Complexity Results for Exact Bayesian Network

Structure Learning. Journal of Artificial Intelligence Research 46, pp. 263–302, doi:10.1613/jair.3744.

[37] Christos H. Papadimitriou (1994): Computational complexity. Addison-Wesley.

[38] Shao Chin Sung & Dinko Dimitrov (2007): On Myopic Stability Concepts for Hedonic Games. Theory and

Decision 62(1), pp. 31–45, doi:10.1007/s11238-006-9022-2.

[39] Kevin Zemmer (2017): Integer Polynomial Optimization in Fixed Dimension. Doctoral thesis, ETH Zurich,

Zurich, doi:10.3929/ethz-b-000241796.

https://doi.org/10.1007/978-3-030-10564-8_10
https://doi.org/10.1613/jair.3744
https://doi.org/10.1007/s11238-006-9022-2
https://doi.org/10.3929/ethz-b-000241796

	Introduction
	Preliminaries
	Structural Properties of Outcomes
	Computing Optimal Outcomes
	Intractability
	An Algorithm for Tree-Like Networks
	Fixed-Parameter Tractability

	Conclusions and Future Research Directions

