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Abstract

Random sampling in high dimensions has successfully been applied to phenomena as diverse as nuclear
resonances, neural networks, and black hole evaporation. Here we revisit an elegant argument by the British
physicist Dennis Sciama, who demonstrated that were our Universe random, it would almost certainly have a
negligible chance for life. Under plausible assumptions, we show that a random universe can masquerade as
“intelligently designed,” with the fundamental constants instead appearing to be fined tuned to achieve the highest
probability for life to occur. For our Universe, this mechanism may only require there to be around a dozen
currently unknown fundamental constants. We speculate on broader applications for the mechanism we uncover.

Unified Astronomy Thesaurus concepts: Anthropic principle (48); Cosmology (343); Astrobiology (74); Search for
extraterrestrial intelligence (2127)

1. Introduction

Whatever might be eventually concluded about a universal
definition for life, we can certainly agree that the Universe we
inhabit has so far supported the emergence, evolution, and
continued sustenance of human beings. Despite our having
grown collectively more powerful than most known species,
within the Universe we are very fragile and maintain a
precarious hold on existence. We are carbon based, requiring a
planetary body to live on, which follows a comfortable and
steady orbit around a single and not too energetic star.

These constraints already place tight bounds on the
fundamental constants of the Universe. To ensure that a
population of yellow dwarf stars like our Sun exist, the fine
structure constant must be tuned to within a percent or two of
its current value (outside this narrow range almost all stars
would either be blue giants or red dwarfs; Thorne et al. 2000).
The cosmological constant must be between 120 and 124
orders of magnitude smaller than its naive quantum field
theoretic value. The upper bound ensures that bodies can form
gravitationally (Weinberg 1987; Martel et al. 1998) and the
lower bound ensures that nascent life will not be extinguished
by the proximity to gamma-ray bursts (Piran et al. 2016). To
ensure that nuclear reactions within stars can form carbon, but
not have the process bypassed leaving only oxygen, a
remarkable set of coincidences is required among the
fundamental constants so that one resonant energy level exists,
yet another level just fails to be resonant (Hoyle 1954). Many
of the fundamental constants therefore seem to be boxed into a
narrow range of values compatible with our existence
(Carter 1974). Of course, a less anthropocentric view would
considerably broaden this range (Adams 2019; see Section 4).

How can we understand our being in such a human-
compatible Universe? It has been suggested (Dicke 1961) that
the fundamental constants may have been selected “randomly”
among all possible values. If that were the case, then such

compatibility is merely a condition consistent with our being
here to observe it. Given enough potential universes to
randomly choose from almost anything could happen, and
the conditional probability for human compatibility would be
one. Equivalently, if these “random selections” were individual
universes within a multiverse, then our Universe being human
compatible would be the same as us being located in one of the
universes within the multiverse where humans are possible. In
other words, given enough potential universes almost anything
will happen. Such “explanations” are said to invoke the weak
anthropic principle (Carter 1974), yet they explain nothing and
fail to provide any real resolution. Are they at least predictive?
Dennis Sciama, considered to be one of the fathers of

modern cosmology, argued that were our Universe random, in
either sense given above, then it would almost certainly have a
low probability for life as we know it (Deutsch 2011; Wang &
Braunstein 2023).
Sciama assumed that the feature distinguishing different

potential universes was the set of specific values taken by the
fundamental constants; the underlying physical laws them-
selves being fixed. We can then envision the human-compatible
universes as an “island” within a “sea” of more general
possibilities. Each point on the island or in the sea describes a
unique universe that is described by a distinct set of
fundamental constants. The dimensionality of this space of
points is naively given by the number of fundamental
constants. Thus the human-compatible island of universes
corresponds to some shape in a space. The shoreline of the
island corresponds to the boundary separating universes with a
chance for human life to form from those where this is
impossible. Thus, the shoreline itself will be made up of
universes with an exactly vanishing probability for such life.
Assuming continuity, as one moves inland, this probability will
increase, reaching a maximum presumably somewhere far in
from the shoreline.
This probability landscape is different from the chance of

randomly selecting a universe. Because the range of parameters
consistent with human life is quite small, one might expect any
smooth measure for randomly selecting universes to be
approximately uniform across the island. Sciama’s argument
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now follows from a well-known concentration-of-measure
phenomenon (Milman 1988), described as follows.

Consider an n-dimensional cube (a hypercube) with side
length s and hence volume s× s×L× s= s n. Now suppose
you paint this hypercube, causing the side length to marginally
increase to s+ δ. The volume of the paint used is simply
(s+ δ)

n
−s n� n s n−1

δ. But even if the layer of paint is very
thin, so δ= s, in sufficiently high dimensions, n� s/δ, the
volume of the paint will exceed the volume of the original
hypercube. Thus, were we to grind up our thinly painted
hypercube and take a random sample, we would most likely
find paint!

This is not only true for hypercubes, but for any shape in
high dimensions (Milman 1988). The volume, and similarly the
weight, will be entirely concentrated within a thin layer at the
surface. Thus, figuratively, a high-dimensional orange is
essentially only its peel. See Figure 1.

Applied to the high-dimensional island of human-compatible
universes, a randomly selected universe will then almost
certainly be found in a narrow band on the shore. However,
since there is no chance for life at the shoreline or anywhere off
the island, the probability for life would be expected to be very
low for a typical random universe lying in this narrow band at
the shore.

This prediction is in contrast to that of intelligent design
where one might expect a universe further inland closer to, or
possibly achieving, the greatest chance for human life.

2. Method

Is this space of universes really high dimensional? In 1936
Eddington counted four fundamental constants (Edding-
ton 1936). This count excludes Newton’s gravitational
constant, the speed of light, Planck’s constant, and the
permittivity of the vacuum, all used to provide scales for
dimensional quantities like length, time, mass and electric
charge (Eddington 1936). Just a few years ago this count had
grown to 26 for the “standard model,” including the
cosmological constant for gravity (Siegel 2018). Today, if we
add three neutrino masses, the count would be 29. However,
our current model of the Universe hardly explains everything.
There remain numerous long-standing open questions, many
cosmological in nature, such as matter–antimatter asymmetry,

dark matter, dark energy, and more. Thus it would be surprising
if the total number of fundamental constants in a complete
theory of the Universe were not much larger.
Although it did not figure into Sciama’s original argument,

we shall see that the shape of the island plays a crucial role in
the possible apparent reversal of Sciama’s conclusion. Note
that the “orange peel” result itself is essentially independent of
this shape, which follows simply from the scaling of the
“hypervolume” with dimensionality. Thus, there is no question
about a randomly selected universe compatible with human life
having a set of fundamental constants that almost certainly lie
on the narrow shore, with a low chance for life like us.
Notwithstanding this, where on the island the Universe

appears to lie can depend on the island’s shape. This can be the
case whenever our knowledge of the list of fundamental
constants is incomplete. In this case, we would consider the
island and its surrounding sea to be a lower-dimensional space
than it actually is. Our view of the island would be one that
projects out the unknown constants. This may be visualized as
an “X-ray” of the actual n-dimensional island onto a lower m-
dimensional island describing the known constants. See
Figure 2.

3. Results

In the case that the island has the shape of a uniform-weight
n-dimensional cube (a hypercube), with independent bounds on
each constant, the X-ray is simply a lower-dimensional
uniform-weight hypercube. See Figure 2(a). Again the lower-
dimensional shore contains the greatest weight.
By contrast, for a uniform-weight hyperball-shaped island,

the X-ray, integrating out many dimensions, leads to a narrow
Gaussian with the weight concentrated at the center of the
island, far inland from the shoreline (see the Appendix A). See
Figure 2(b). Further, if the uniform-weight n-dimensional
hypercube is X-rayed along a skewed orientation (e.g., one
randomly chosen) the projected island is again well approxi-
mated by a Gaussian with the weight concentrated at the center
of the island (see the Appendix C). See Figure 2(c).
Surprisingly, the result we find for a hyperball-shaped island

shown in Figure 2(b), or equivalently, the skew-oriented
hypercube-shaped island shown in Figure 2(c), may well
represent the generic result.

Figure 1. An “unappealing” consequence of concentration-of-measure phenomena: (a) an n = two-dimensional “ball” has a 1 − (0.9)2 = 0.19 fraction of points
within 5% of the boundary; (b) an n = three-dimensional ball has fraction 1 − (0.9)3 = 0.271 within 5% of the boundary; for large n, the fraction 1 − (0.9)n

approaches unity. Therefore, (c) if you were to peel a high-dimensional orange, there would be almost nothing left behind!
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First, the human-compatible island will be formed by those
universes whose fundamental constants simultaneously satisfy
a series of human-compatible constraints. Each of these
constraints may be thought of as dividing the space of all
possible universes into two subsets: those that satisfy a specific
constraint for life and those that fail to. Now, as already
mentioned, the range of parameters consistent with human life
is quite small; the island itself is in some sense “small.”
Consequently, assuming each constraint is smooth, its action
constraining our island should be well approximated locally by
a separating hyperplane in the space of universes. Combining
the hyperplanes of these individual human-compatible con-
straints then yields a description of the human-compatible
universes as well approximated by a convex-faceted island.

Second, the various correlations and coincidences found
among the fundamental constants when determining the
human-compatible island’s shoreline (Eddington 1939;
Hoyle 1954; Carter 1974) suggest that the facets associated
with such correlations will be tilted with respect to the axes
given by the fundamental constants themselves. Combined,
these arguments yield a convex island whose facets have a
skewed orientation.

Finally, the projective central limit theorem (Diaconis &
Freedman 1984; Klartag 2007) ensures that virtually any
projection of such a high n-dimensional uniform-weight shape

will be well approximated by a Gaussian with variance scaling
as 1/n (with respect to a suitably chosen diameter).
However, the projective central limit theorem only tells us

that the distribution is peaked far inland from the accessible
(projected) shoreline as n→∞ (for the hyperball, in fact we
find that m/n= 1 is sufficient; see the Appendix A). What
about the probability for the accessible parameters nevertheless
being found on the projected shore near the boundary? We find
a universal behavior for the tail of the distribution of the
projected hyperball as m/n→ 1. In particular, in Figure 3 we
compute the probability to be within 5% of the projected
shoreline versus the fraction of accessible constants, m/n, when
an n-dimensional hyperball is projected down to m dimensions.
For n ä {42, 100, 250}, we see that if less than a threshold of
around 80% of the total number of fundamental constants are
accessible, then the chance of being near the boundary is less
than around 0.35. Thus, taking as the null hypothesis that our
Universe is random, there would be a low chance for finding
the fundamental constants of the Universe to be near the
shoreline until we had knowledge of the vast majority of all the
Universe’s parameters.

4. Discussion and Summary

In summary, Sciama’s reasoning suggests that were our
Universe random, there would be a statistical signature

Figure 2. Random sampling from the human-compatible island can look different dependent on its shape, if one has only limited access to the fundamental constants.
The high-weight region (typically the “shore”) is shown in white, with the remaining low-weight contribution in gray. The island of the accessible fundamental
constants is obtained by integrating out those constants which are unknown or unobserved; this is visualized as an “X-ray” of the actual island. (a) For an island which
is an n-dimensional hypercube (upper), an X-ray reduces to a uniform-measure hypercube in a lower dimension (lower). (b) For an island which is a uniformly
distributed n-dimensional ball (upper) with many unknown constants, its X-ray is well approximated by a narrow Gaussian concentrated at the center of the human-
compatible island (lower). (c) For an island which is an n-dimensional hypercube (upper), an X-ray along a randomly oriented direction is again well approximated by
a Gaussian concentrated at the center of the human-compatible island (lower).
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whereby the fundamental constants would almost certainly lie

near the boundary of human-compatible universes.
One might view Sciama’s result to be solely that a random

universe would lead to a scenario where life as we know it is

only barely possible. This “orange peel” argument stands firm

and may even explain the apparent scarcity of intelligent life in

the Universe, potentially resolving Fermi’s paradox (Deutsch

2011; Ćirković 2016). However, since the island of parameters

consistent with any type of life-form would appear to be

significantly larger (Adams 2019) than that considered solely for

the sake of humans, it is likely that life itself may be very

common in our Universe. This rough-and-ready prediction for a

random universe may well be falsifiable within the coming

years.
However, presuming that our knowledge of the fundamental

constants is incomplete, we have shown the signature for a

random universe can be reversed. For example, were our

Universe random with 42 fundamental constants (instead of the

merely 29 currently known), and taking the shape of the

human-compatible island of parameters as discussed above,

there would be only ;5.5% chance of the set of those 29

currently known constants to lie within 5% of the boundary

where human life becomes impossible. Instead, the greatest

likelihood would be to find these known constants to be far

within the “projected” human-compatible island of universes,

mimicking a universe built by intelligent design to create

intelligence.
Currently there is no direct evidence to support the claim that

Sciama’s statistical signature applies to our Universe (outside

of consistency with the null results from SETI; Overbye 2020).

However, this observation is in the context of fundamental

theories which cannot yet explain everything about our

Universe, so there is a widely accepted expectation that new

physics, along with additional fundamental constants, would be

needed. Further, our current best guess for a fundamental

theory, string theory, naturally contains a multiverse and hence

a random selection mechanism. Combined with our analysis

above, these reasoned expectations suggest the statistical

prediction that at least around a dozen fundamental constants,

and possibly many more, are yet to be discovered to explain
our Universe fully.
Can any wider scientific lesson be learned from our

arguments? Beyond the anthropic issues discussed here, they
may be relevant to astronomy and indeed any field when
viewed as a data science. After all, our analysis suggests
potential pitfalls when considering how to interpret data
sampled from constrained sets. In particular, unknown degrees
of freedom are common in some systems and the viewing of
low-dimensional “sections” of high-dimensional data is
virtually the sine qua non of any data science strategy.
Finally, humanity’s looking out to the stars has always had at

its heart a search for meaning. Curiously, it may well be that
our analysis here shows, not how to create meaning ‘out of
whole cloth,’ but how to enhance any scintilla greatly.
Indeed, if we consider the intelligent design of the Universe

as an artful act, whatever else it might be, then we have
uncovered a mechanism whereby even a random universe may
appear artful; or loosely speaking, whereby even an atheist
might say (Wilde 1889) “life imitates art.” Recalling that our
analysis is based on concentration-of-measure phenomena in
high-dimensional spaces, it is natural to ask whether this
mechanism for imitating art may not have grander application.
For example, could one enhance the artfulness of an almost
soullessly generated piece of “art” to make it mimic a true work
of art; not by slavish copying, but perhaps by so constraining
the work around with interconnections and correlations—the
coincidences constraining our fundamental constants—that one
may begin to find it harder to distinguish between such a piece
and an intelligently crafted work? These correlations acting to
“tilt the facets of our island” and so produce an apparent lower-
dimensional artful enhancement. For something complex,
having a sufficient number of working parts, it may not even
be necessary to hide part of the work; or as with our analysis
here, it may be crucial to first build the work and then make
large portions inaccessible—be they backstory, foundation,
milieu, history, whatever. And if anything like this can
succeed, why not look further, perhaps toward the imitation
of intelligence itself. Maybe the magic behind creating meaning
has “simply” been a matter of hiding much of the supporting
artifice from the audience, and even from ourselves.
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Appendix A
Projection of an (n− 1) Sphere to One Dimension

Consider a smooth convex n-dimensional geometric body with
a uniform probability distribution across and within it. The
projective central limit theorem claims that as n→∞, if we
project such a body to lower dimensions, the probability will
concentrate to a “center” of the lower-dimensional object
(Diaconis & Freedman 1984; Klartag 2007; Knaeble 2015). This
phenomenon has been proved for all smooth convex geometric
bodies and the limiting probability distribution is claimed to be a
Gaussian distribution with variance scaling as 1/n.
Here we compute this exactly for an (n− 1) sphere (the

surface of an n-dimensional ball) projected to m dimensions. We
find for large n−m that the resulting distribution is Gaussian

Figure 3. Probability for the m accessible constants of a random universe to be
within 5% of the life-denying boundary vs. the accessible fraction m/n. The
calculation assumes the island has the shape of a hyperball with n fundamental
constants, though the existence of only m is known. We consider n ä {42, 100,
250}. In each case, unless at least 80% of the total number of constants are
accessible (m/n � 0.8), the chance of being near the boundary is less
than ;0.35.
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with variance scaling as 1/n. This is in agreement with the more
general, though looser, claim of the projective central limit
theorem when n?m. Finally, combining the “orange peel”
concentration-of-measure result, we argue that the same limit to
a Gaussian with variance scaling as 1/n will hold for the
projection of an n-dimensional ball onto m dimensions.

Because the general calculation is rather complicated, we
start with the simpler case of projecting an (n− 1) sphere onto
a single dimension.

An (n− 1) sphere with unit radius in n-dimensional
Euclidean space (Cartesian coordinates) may be described as
satisfying + + + =x x x 1n1

2
2
2 2 . It may be transformed into

hyperspherical coordinates by

( )





j
j j

j j j
j j j
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=-

=-
=-
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where j1, j2,K,jn−2ä [0, π] and jn−1ä [0, 2π]. Here the

minus sign is just for future convenience; note that each xi is

not sensitive to such a minus sign.
Then in hyperspherical coordinates, the volume element of

such an (n− 1) sphere may be written as
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as is easily checked by computing the Jacobian for this
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sphere yields the standard result
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We now consider projecting the uniformly distributed
(n− 1) sphere onto a single dimension (i.e., the case m= 1).
Normalizing the measure of Equation (A2) by Sn−1, we may

compute the expectation of a general function of j1 as
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To see the probability distribution in Euclidean space, we

need to transform Equation (A6) back to the coordinate x1.

Since j= -x cos1 1, we have j j=dx dsin1 1 1 and ( )j =sin 1

- x1 1
2 , and hence we obtain
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We may also obtain an exact expression for the variance
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It is easy to see that this probability distribution gets
narrower and narrower as n increases. Using the result that

⎛
⎝

⎞
⎠

- =¥
-x

n
elim 1n

n
x we see that for sufficiently small x1

and large n Equation (A7) may be approximated by a Gaussian
with variance 1/n, for the case m= 1. This result is in exact
agreement with that given in previous work (Knaeble 2015),
and we shall see below that the exact result yields a subtly
different outcome for m> 1.

Appendix B
Projecting to m Dimensions

When projecting an (n− 1) sphere onto m Cartesian
dimensions, the logic is similar to that given in the previous
section but now we will need to integrate out the angles from
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the set {jm+1, jm+2,K,jn−1}. Thus, we find

( ) ( )

( ) ( ) ( ) ( )

( )

( )

( )

( )

( )

( )

( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( )

( )
( )

 

 

  

  

ò

ò ò

ò ò

ò ò

j j j j

j j j j j

p p j j j

p
j j j j j

p
j j j

j j j j j
p

j j j

á ¼ ñ = ¼ W

= ¼

´
G

- -

G
-

G
- -

G
- -

G

G

=
G

¼
G

-

= ¼
G

G
-

p p

p p

p p

-
-

-

- - - -

- -

- - - -
-

- - - -

f
S

f d

S
f

n m

n m

n m

n m
d d d

n

f n m d d d

f

n

n m d d d

, ,
1

, ,

1
, , sin sin sin

1

2

2

2

2
1

2

2

2
3

2

2

2

2
, , sin sin sin

2

2

, , sin sin sin 2

2

. B1

m
n

m n

n
m

n n n m
m

n m

m

n m
n n n m

m

n m

m

m
n n n m

m m m

1
1

1 1

1 0 0
1

2
1

3
2

1

2
2 1 2

2 0 0
1

2
1

3
2

1 2

1 2

0 0
1

2
1

3
2

1

2

1 2

Since the volume element described by two different coordinates systems may be connected by the Jacobian, we have

( ) j j j=dx dx dx d d dJ , B2m m1 2 1 2

where J is the Jacobian describes this volume transformation. From Equation (A1), we know that J may be written as

( )




   
   

j

j
j j j j

j j j j j j j j j j

=
¶
¶

=

- -

x
J

sin 0 0,

cos cos sin sin 0,

,

cos sin sin cos sin cos sin cos sin sin .

B3
i

j

m m m m m

1

1 2 1 2

1 2 1 1 2 1 1

Since terms in the upper triangle in the Jacobian, Equation (B3), are all zero, the Jacobian trivially reduces to

( ) ( ) ( ) ( )j j j= -J sin sin sin . B4m m
m1

1
2

Inserting Equation (B4) into Equation (B2) yields

( ) ( )

( ) ( )


 

j j
j j j j

= -dx dx dx

d d d

sin sin

sin , B5

m
m m

m m

1 2 1
1

2

1 2

and substituting Equation (B5) into Equation (B1) yields

⎛
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⎞
⎠

⎛
⎝

⎞
⎠

( )

( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( )
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j j
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= ¼

´
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-
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dx dx dx

, ,

, , sin sin sin

2

2

, B6
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1
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sin

sin sin

sin sin

1
2

1
2

2
2

2

1 2

m

m

1

1

1 1

1 1

where ( )jsin i is positive function of xi.

To simplify Equation (B6) further, let us first consider + + +x x xm1
2

2
2 2. From Equation (A1), this may be written as

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ( )) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

  
 

 

j j j j j j
j j j j j j

j j j j j

+ + + = + + +

= + - + +

= - + +

x x x cos sin cos sin sin cos

cos sin 1 sin sin sin cos

1 sin sin sin sin cos . B7

m m

m

m

1
2

2
2 2 2
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2
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2
2

2
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The above procedure can be repeated until we arrive at

( ) ( ) ( ) ( ) j j j+ + + = -x x x 1 sin sin sin . B8m m1
2

2
2 2 2

1
2

2
2
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Applying Equation (B8) to Equation (B6) then gives

⎜ ⎟
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⎛
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B9

f x x

f x x

n

f x x
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x dx dx dx

, ,
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2
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2

1 .

m

x

x

x x x
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m
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m
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1

1
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2 1
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2

1 2
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2

1
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2
2

1
2

1
2

2
2

1
2

By spherical symmetry, it is sufficient to compute the variance on x1, but this trivially reduces to the result already obtained, since

to compute it we may integrate out all the remaining coordinates x2,K,xm. Therefore we find exactly

( ) ( )d
d

á ñ =

á ñ= D =

x

x x x
n

0

. B10

i

i j ij i
ij2

From similar reasoning, for sufficiently large n the distribution becomes Gaussian.

Therefore, the probability distribution over this reduced m sphere reduces to

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( ) å
p

=
G

G
-

-
=

- -

x x x

n

n m
xP , , ,

2

2

1 , B11m
m

i

m

i

n m

1 2

2 1

2

2
2

with suitable limits on the xi. This is for the projection of an (n− 1) sphere to an m-dimensional subspace.

The limit of this distribution for n−m→∞ and sufficiently small xi, i ä {1,K,m}, may be approximated by a Gaussian with

mean zero and a variance in every direction of 1/n. This result agrees with previous work (Knaeble 2015), except on the condition

needed, i.e., n−m is large as opposed to merely n being large. The difference in this requirement means that as m→ n, where we

project out fewer and fewer coordinates and finally none, the Gaussian approximation is found to fail wholly.

Appendix C

Projection of a Rotated Hypercube to Two Dimensions

Our analysis, both analytic and numeric, has largely been based on the projection of high-dimensional hyperballs. Here we

consider the numerical projection of a randomly rotated high-dimensional hypercube to two dimensions. Although computing the

X-ray of such a hypercube is straightforward, computing the projection of the boundary very quickly becomes computationally

inaccessible. In particular, one needs to take the 2n corners of the hypercube and project them to the lower dimension of interest and

then compute the convex hull of those projected corners. This convex hull represents the “shadow” of the rotated hypercube under

ordinary light (which is assumed to be unable to penetrate the object itself). In Figure 4 we illustrate this computation, comparing

both the X-rays and shadows projected onto two dimensions of (a) a 33-dimensional hyperball and (b) a randomly rotated 20-

dimensional hypercube (the highest dimension we could compute in a reasonable amount of time).

As can be seen, in sufficiently high dimensions the shadow of the randomly rotated hypercube, Figure 4(b), looks remarkably like

that of the hyperball, Figure 4(a). Further, up to defining a suitable “diameter” to make a more rigorous comparison, the X-ray

Figure 4. Plots of both the X-ray (as a scatter plot of 2000 points) where a higher density of points represents a larger weight of material being X-rayed and the
“shadow” outline projection onto two dimensions of a (a) 33-dimensional hyperball and a (b) randomly oriented 20-dimensional hypercube. For the shadow of the
hypercube, the dots along the outline represent the location of the corners there.
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projection of such hypercubes appears remarkably similar to
that of the hyperball (again, see Figure 4). Consequently, in our
main manuscript we used a hyperball to compute the threshold
illustrated by Figure 3 in even higher dimensions than we can
manage for hypercubes.

Were much larger computational facilities available a more
careful comparison should be possible, though even only a 42-
dimensional hypercube entails over four trillion corners, so
computing the projected boundary into any dimension
greater than one (Knaeble 2015) would require major computa-
tional effort.
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