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A Feedback Interpretation of the

Doyle-Fuller-Newman Lithium-ion Battery Model
R. Drummond, A. M. Bizeray, D. A. Howey and S. R. Duncan

Abstract—The Doyle-Fuller-Newman ‘psuedo-2D’
electrochemical model of a lithium ion battery is shown
to have a feedback structure when electric-double layer
effects are included. This opens the possibility for the
model to be rigorously analysed using input-output
systems theory. Several immediate consequences of the
feedback structure are discussed, including observabil-
ity and well-posedness issues, and an application to
reduced order modelling is described.

Index Terms—Li-ion batteries , Nonlinear Systems,
Energy Storage, Absolute Stability.

I. Introduction

A formulation of the classic Doyle-Fuller-Newman
(DFN) electrochemical model for a lithium ion battery
[10, 14, 30] that includes a feedback structure and a state-
space is proposed. The formulation is derived by incor-
porating fast double-layer capacitance dynamics into the
model [31]. Recognising the inherent feedback structure of
the nonlinear battery model opens the possibility for its
analysis using input-output systems theory [9, 19]. A key
feature of the model analysis is that it is robust, as it does
not rely on the exact knowledge of the model nonlinearities
such as the open-circuit potential (OCP) curves. As such,
this formulation could allow a “generalised” analysis which
would be suitable for all instances of the passive nonlinear-
ities. The focus of the paper is to facilitate the use of the
underlying DFN model by considering the structure in its
model equations, not by proposing new electrochemistry.
It is hoped that the results developed here will enable
the DFN model to be used for wider applications, such
as has been observed with the single particle model [8],
and will reveal the key features of the model to promote
its development and to understand its predictions about
the internal electrochemistry.
Lithium ion batteries are a near ubiquitous energy stor-

age technology that combine excellent power and energy
density into one device. This has led to their successful
application in many areas, including hybrid vehicles, per-
sonal electronics and grid storage. However, these batteries
still suffer from several limitations, including the onset of
ageing after several hundred charge cycles, stability issues
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leading to thermal runaway and uncertainty in the state-
of-charge estimation. To overcome these issues, methods
from control theory, such as parameter estimation and
observer design, have been developed [7]. Central to the
successful application of these methods is an underlying
model suitable for the application.

This paper is concerned with electrochemical models
that use conservation and diffusion relationships to de-
scribe the various chemical reactions and ionic flows oc-
curring within the battery [7]. Typically, these models de-
scribe effects such as the intercalation of lithium ions in the
solid particles and ionic diffusion in the electrolyte. The
added detail of current and potential spatial distributions
within the battery from these models can be exploited
to create improved battery management systems (BMS)
that will allow batteries to be used more effectively [8].
Compared to other models, such as equivalent circuits,
these models are also more suitable for design purposes,
allowing novel batteries to be developed using fewer ex-
periments. A benchmark electrochemical Li-ion battery
model is the Doyle-Fuller-Newman model considered in
this paper [10, 14, 30]. This model has seen extensive
development and is regarded as being relatively accurate,
provided the correct parameters are used [30].

The cost of increased model fidelity is complexity, with
electrochemical models generally being in the form of a
set of nonlinear partial differential equations coupled with
algebraic constraints. Consequently, to apply these models
in real time, such as in a battery management system,
simplified versions are often used. These include the single
particle model (SPM) and its many variants, including
electrolyte dynamics [29] and temperature effects [16, 35].
Whilst making the model analysis tractable, these simpli-
fied methods often lose or obscure the description of the
underlying electrochemistry that they describe and lose
accuracy at high C-rate charging. An example where this
becomes an issue is in the optimal design of electrodes
with structure [17], where resolving the question on how
to adapt the lumped particles to characterise the heteroge-
neous electrode structures is not clear. In this context, the
aim of this paper is to address the open issue of developing
an analytical framework for the analysis of the full DFN
model.

Contribution

A formulation of the DFN model is proposed that can
be interpreted using feedback. The key element of the
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Figure 1: Domain geometry of the DFN model. Electrode
particles are treated as being cylindrical in shape, with
the spatial co-ordinate x traversing both electrodes and
the separator. Within each electrode there is a circular
particle at each point x, with the co-ordinate r going from
the particle centre to the perimeter. This figure shows a
2D projection of the domain as well as a typical electrode
particle.

formulation is the inclusion of double layer capacitance
dynamics within the DFN model [31]. This formulation
allows the DFN model to be rigorously analysed using
systems theoretic concepts without the need for signifi-
cant simplifying assumptions. A feature of the proposed
analysis is that it is robust, being applicable when the
nonlinearities (such as the OCP curves) are unknown. This
is due to the consideration of the model as a Lurie system
that can be analysed from an input-output perspective
[9]. Some immediate consequences of this formulation
are discussed, including issues regarding observability of
the electrolyte concentration, the well-posedness of the
model and its non-dimensional form. As an application of
the model formulation, a method to reduce the spatially
discretised model’s dimension using balancing is proposed.
This nonlinear model order reduction scheme retains the
nonlinearities (including the reaction rate expression and
the OCP curves) within the reduced order system by
exploiting the feedback structure.

II. Doyle-Fuller-Newman Model

This section introduces the DFN Li-ion battery model
[10, 14] which is reformulated in the subsequent sections.
A detailed description of the model can be found in [30]
and the various terms in the model are described in Table
I. For the sake of presentation, we may drop the parameter
subscripts for their domain association.

The geometry of the model domain is described in
Figure 1, with the model often referred to as a pseudo two-
dimensional (P2D) model. This is because it is formed of
a macro-scale co-ordinate x accounting for ion transport
from one current collector to the other as well as a micro-
scale co-ordinate r for the intercalation of lithium ions into
the particles. It is assumed that at each point in space x
there is also a particle (giving the second dimension). The
model variables are the concentration of ions in the elec-
trolyte ce(x, t) and the solid particles cs(x, r, t), electrode
current is(x, t), electrolyte current ie(x, t), potential in the

Spatial Variables

x Battery spatial variable. m

r Particle spatial variable. m

Variables

cs(x, r, t) Particle Li concentration. mol m−3.

csurfs (x, t) Li surface concentration. mol m−3.

ce(x, t) Li electrolyte concentration. mol m−3.

us(x, r, t) Transformed concentration. mol m−2.

usurf
s (x, t) Transformed surface conc. mol m−2.

φs(x, t) Potential in the solid. V.

φe(x, t) Potential in the electrolyte. V.

φdl(x, t) φs(x, t)− φe(x, t). V.

is(x, t) Current in the solid. A m−2

ie(x, t) Current in the electrolyte. A m−2.

j(x, t) Reaction rate. A m−3.

η(x, t) Overpotential. V.

U(usurf
s ) Open circuit potential. V.

i(t) Applied current density. A m−2.

V (t) Measured Voltage V.

Parameters

cmax
s Max. Li particle concentration. mol m−3.

Ds Particle dffusion coefficient. m2 s−1.

Rs Spherical radius of the particles. m.

Lk Length. m.

Lbat Total length of the battery. m.

ǫe Porosity coefficient.

b Bruggeman coefficient.

Deff
e Effective diffusion coefficient. m2 s−1.

as Specific Interfacial area. m−1.

t+ Transference number.

F Faraday’s constant. C mol−1.

αc/αc Anode/Cathode transfer coefs.

R Universal gas Constant. mol−1 K−1.

T Temperature. K.

k Exchange Rate Parameter. m2.5mol−0.5s−1.

σeff Effective electrode conductivity. S m−1.

κeff Effective electrolyte conductivity. S m−1.

Rctc Contact resistance. Ω.

Sub and super scripts

1 Denotes anode parameters.

2 Denotes separator parameters.

3 Denotes cathode parameters.

12 Anode/separator boundary.

23 Cathode/Separator boundary.

Table I: Nomenclature of the DFN model.

electrolyte φe(x, t) and in the solid φs(x, t) as well as the
current I(t) and voltage V (t).

Lithium intercalation in the particles is modeled by a
spherical diffusion equation

∂cs(x, r, t)

∂t
=

1

r2
∂

∂r

(

r2Ds
∂cs(x, r, t)

∂r

)

, (1)

subject to the flux boundary conditions,

∂cs(x, 0, t)

∂r
= 0 and Ds

∂cs(x,Rs, t)

∂r
= −j(x, t). (2)



The concentration at the surface of the particle plays
an important role in the transfer of ions between
the particles and the electrolyte and is denoted by
csurfs (x, t) = cs(x,Rs, t). Under the change of variables
us(x, r, t) = rcs(x, r, t), this spherical diffusion equation
becomes

∂us(x, r, t)

∂t
= Ds

∂2us(x, r, t)

∂r2
(3)

subject to us(x, 0, t) = 0 and

1

Rs

∂us(x,Rs, t)

∂r
−
us(x,Rs, t))

R2
s

=
−j(x, t))

Ds

. (4)

The value of us(x, r, t) at the particle surface is denoted
by usurfs (x, t) = us(x,Rs, t).
Electroneutrality is assumed, implying that the concen-

tration of positive c+(x, t) and negative ions c−(x, t) in the
solution are the same, that is c+(x, t) = c−(x, t) = ce(x, t).
Ion transport in the electrodes is governed by

ǫe
∂ce(x, t)

∂t
=

∂

∂x

(

ǫeD
eff
e (ce(x, t))

∂ce
∂x

)

+as (1− t+) j(x, t)),

(5)
with the effective Fickian diffusivity given by Deff

e = Deǫ
b
e,

b being the Bruggeman coefficient accounting for porosity
effects, and ce(x, t) subject to homogeneous flux boundary
conditions on both sides. The actual concentration con-
sidered is the volume averaged concentration ǫece. In the
separator, j(x, t) = 0, with the ions diffusing according to

ǫe
∂ce(x, t)

∂t
=

∂

∂x

(

ǫeD
eff
e (ce(x, t))

∂ce
∂x

)

. (6)

The boundary conditions of ce(x, t) are ∂ce(x, t)/∂x = 0 at
the boundary between the current collector and electrode
and ǫe1/3D

eff
e1/3∂ce(x, t)/∂x = ǫe2D

eff
e2∂ce(x, t)/∂x at the

boundary of the separator and the electrodes. Here the
subscript 2 refers to the value in separator while 1/3 refers
to either the value in the anode or cathode, depending
upon the boundary.
The overpotential, the perturbed local electric potential

relative to the open circuit potential, is

η(x, t) = φs(x, t)− φe(x, t)− U(usurfs (x, t)), (7)

with open-circuit potential (OCP) as U(usurfs (x, t)). The
OCP is usually an experimentally fitted function of the
stoichiometry xsurfs (x, t) = csurfs (x, t)/cmax

s , which can be
transformed into a function of usurfs (x, t) via a change of
variables.
Reaction rate kinetics at the boundary of the particles

satisfy the Butler-Volmer equation

j(x, t) =
i0(x, t)

F

[

exp

(

αaF

RT
η(x, t)

)

− exp

(

−αcF

RT
η(x, t)

)]

(8)
where the exchange current density i0(x, t) is

i0(x, t) = kF
(

cmax
s − csurfs (x, t)

)αa
(

csurfs (x, t)
)αc

(ce(x, t))
αa .

(9)
It is assumed that Ohm’s law holds in the solid phase

is(x, t)

σeff
= −

∂φs(x, t)

∂x
(10)

Figure 2: A block diagram representation of the stan-
dard formulation of the DFN model. Dynamical blocks
are white, nonlinear functions are red and algebraic con-
straints are blue.

and MacInnes’ equation holds in the liquid phase

ie(x, t)

κeff (ce(x, t))
= −

∂φe(x, t)

∂x
+
2 (1− t+)RT

F

χ

cTV̄0

∂ ln ce(x, t)

∂x
,

(11)
with the effective ionic conductivity given by κeff = κǫbe.
We make the approximation that the solvent concentration
is only weakly dependent on concentration, which implies
that χ/

(

cTV̄0
)

≈ 1 and omit this term from the equations
thereafter.

Current conservation is imposed by Kirchhoff’s law

is(x, t) + ie(x, t) = i(t) (12)

with ie = 0 at the current collectors and ie = i(t) at the
electrode separator interfaces, as well as in the separator
domain.

The divergence of the ionic current is related to the
reaction rate by

∂ie(x, t)

∂x
= asFj(x, t) (13)

with the specific interfacial surface area given by as =
3ǫs/Rs.

Voltage is given by:

V (t) = φs(Lbat, t)− φs(0, t)−Rctci (14)

with Rctc the contact resistance at the current-
collector/electrode interfaces, given in its normalised form
in Ω cm2. The combination of these terms within the DFN
model is shown in Figure 2, which highlights how each
component interacts with the other.

III. Doyle-Fuller-Newman Model with Double

Layer Capacitance Dynamics

The main results of the paper are contained within this
section where the DFN model is augmented to include dou-
ble layer capacitance effects. This augmented form of the
model is then shown to lead to a feedback interpretation
which is defined by a state-space model.



A. Model Formulation

A double layer is a charge separating region formed
at the interface between a charged electrode and the
electrolyte [26]. Across this layer, the separation of charge
between the electrode and the ions in the electrolyte leads
to a capacitance, which is exploited by supercapacitors
[26].

The inclusion of double-layer capacitance models in Li-
ion batteries models has been comprehensively studied and
in this paper, the model proposed by Ong and Newman
in [31] is adopted. Here, double layer effects are included
by augmenting the divergence equation (13) to

aC
∂φdl(x, t)

∂t
=
∂ie(x, t)

∂x
− asFj(x, t) (15)

where φdl(x, t) = φs(x, t)− φe(x, t) is the potential differ-
ence across the double layer. This is the only equation that
is adapted from the standard DFN model given in Section
II. Other double layer models that have been developed
for Li-ion batteries include [24] and [27]. The double layer
potential φdl(x, t) satisfies the boundary conditions

∂φdl(x, t)

∂x
= −

i(t)

σeff
(16)

at the current collector/electrode boundary and

∂φdl(x, t)

∂x
=
i(t)

κeff
+

K

κeff
∂ ln ce(x, t)

∂x
(17)

at the electrode/separator boundary. K = 2(1−t+)RT
F

χ

cTV̄0

is introduced to simplify the notation. These boundary
condition are obtained by noting that all the current is
carried in the solid phase at the current collector boundary
ie = 0 and by the electrolyte in the separator ie = i(t).

In most implementations of the DFN model, double
layer effects are neglected as these dynamics are typi-
cally much faster than those of the other dynamical phe-
nomenon occurring within the battery. In particular, the
time constant of the double layer (τ = L2aCσκ/(σ + κ))
is typically ≈ 10−3 s [31] while that associated with the
intercalation of lithium into the particles (τ = R2

s/Ds) is
typically ≈ 103 s [4]. The intercalation is then the rate
limiting step in this system, which explains the relative
accuracy of the SPM for non-aggressive charging. However,
it is argued in this section, that the inclusion of these
fast dynamics greatly changes the structure of the battery
model, permitting it to be analysed using input-output
systems theory [9].

With double layer capacitance effects included, a state-
space of x = {ce(x, t), us(x, r, t), φdl(x, t)} is proposed
as these variables are associated with dynamics in (3),
(5) and (15). The currents in the solid is(x, t) and the
electrolyte ie(x, t) represent auxiliary variables that have
to be removed if the model is to be given a concise state-
space form. To achieve this, it is noted that ie(x, t) =

i− is(x, t) = i+ σeff ∂φs(x,t)
∂x

and that by adding and sub-
tracting κeff∂φs(x, t)/∂x from the RHS of the expression

for ie(x, t) in (11), then it can be equivalently expressed
as

ie(x, t) =

(

σeffκeff

σeff + κeff

)

∂φdl(x, t)

∂x
(18)

+

(

1

σeff + κeff

)

i(t) +

(

Kσeff

σeff + κeff

)

∂

∂x
ln(ce(x, t)).

The spatial derivative of electrolyte current is then

∂ie(x, t)

∂x
=

(

σeffκeff

σ + κeff

)

∂2φdl(x, t)

∂2x
(19)

+

(

Kσeff

σeff + κeff

)

∂2

∂x2
ln(ce(x, t)).

Using this expression, the DFN model can be written
solely in terms of the state-space x as

ǫe
∂ce(x, t)

∂t
= ǫeD

eff
e

∂2ce(x, t)

∂x2
+ as (1− t+) j(x, t)

(20a)

∂us(r, t)

∂t
= Ds

∂2us(r, t)

∂r2
(20b)

aC
∂φdl(x, t)

∂t
=

(

κeffσeff

σeff + κeff

)

∂2φdl(x, t)

∂x2
(20c)

− asFj(x, t) +

(

Kσeff

σeff + κeff

)

∂2

∂x2
ln(ce(x, t)).

Here, we have assumed that De and κ
eff are independent of

ce, which greatly simplifies the analysis of the proceeding
sections as it permits the feedback form. However, if
these variables are allowed to vary with ce(x, t), then the
model should be interpreted in terms of linear parameter
varying systems [6]. The system (20) is defined entirely
by operators acting on the state-space and has eliminated
the need for algebraic variables such as is(x, t) and ie(x, t).
The dynamics in the separator region remain unchanged
from (6).

The essence of this formulation is that the inclusion of
the double layer forces the spatio-temporal variables to
evolve along a manifold of feasible solutions, while in the
original form of the DFN model, the algebraic constraints
ensure that the solutions remain on the manifold.

B. Re-centering the Variables

A change of co-ordinates is proposed to re-centre the
nonlinearities around the origin, allowing the model to
be expressed in terms of feedback signals. To achieve
this, the electrolyte concentration is defined as ce(x, t) =
c̃(x, t) + c0 where c̃(x, t) is the deviation of the concentra-
tion away from the static equilibrium c0. The negative of
the OCP is defined as U−(usurfs (x, t)) = −U(usurfs (x, t))
and which is also re-centred around the origin by
U−(usurfs (x, t)) = U−

0 + Ũ−(usurfs (x, t)) where Ũ−(0) = 0.
Similarly, the potential difference across the double layer
is re-centred according to φdl(x, t) = φ̃dl(x, t) − U−

0 .



The dynamics (20) defined around these new co-ordinates
are

ǫe
∂c̃e(x, t)

∂t
= ǫeD

eff
e

∂2c̃e(x, t)

∂x2
+ as (1− t+) j(x, t),

(21a)

∂us(r, t)

∂t
= Ds

∂2us(r, t)

∂r2
, (21b)

aC
∂φ̃dl(x, t)

∂t
=

(

κeffσeff

σeff + κeff

)

∂2φ̃dl(x, t)

∂x2
(21c)

− asFj(x, t) +

(

Kσeff

σeff + κeff

)

∂2

∂x2
ln(1 + c̃e(x, t)/c0).

with the overpotential defined as

η = φ̃dl(x, t) + Ũ−(usurfs (x, t)). (22)

These new variables are subject to the same boundary
conditions as in their untransformed cases.

C. A Non-Dimensional Form

A non-dimensionalised form of the model is now given,
with the non-dimensional spatial lengths as x̄ = x/Lbat ∈
[0, 1] and r̄ = r/Rs ∈ [0, 1]. The non-dimensional form of
the dynamics is

ǫe
∂c̃e(x̄, t)

∂t
=
ǫeD

eff
e

L2
bat

∂2c̃e(x̄, t)

∂x̄2
+ as (1− t+) j(x̄, t)

(23a)

∂us(x̄, r̄, t)

∂t
=
Ds

R2
s

∂2us(x̄, r̄, t)

∂r̄2
(23b)

aC
∂φ̃dl(x̄, t)

∂t
=

1

L2
bat

(

κeffσeff

σeff + κeff

)

∂2φ̃dl(x̄, t)

∂x̄2
(23c)

− asFj(x̄, t) +
1

L2
bat

(

Kσeff

σeff + κeff

)

∂2

∂x̄2
ln(1 + c̃e(x̄, t)/c0).

The non-dimensionalised boundary conditions can be eas-
ily obtained from before. Normalised diffusion coefficients
can then be extracted

τus
=
Ds

R2
s

, τce =
Deff
e

L2
bat

, τφdl
=

(

κeffσeff

L2
bataC(σ

eff + κeff)

)

,

(24)

where, typically, τus
≪ τce ≪ τφdl

, with τus
≈ 1 ×

10−4 s−1, τce ≈ 1× 10−1 s−1 and τφdl
≈ 1× 104 s−1.

D. Voltage Expression

The use of a state-space involving the potential differ-
ence across the double layer φdl(x, t), instead of φs(x, t)
and φe(x, t) individually, complicates the expression for
the voltage, which is defined in (14) by the difference in
the potentials in the solid phase between the two current

collectors. The following is used to express V (t) as a
function of the new state-space.

V (t) = φs(Lbat, t)− φs(0, t)−Rctci (25a)

= φdl(Lbat, t)− φdl(0, t) + φe(Lbat, t)− φe(0, t)−Rctci
(25b)

= φdl(Lbat, t)− φdl(0, t) +

∫ Lbat

0

∂φe(x, t)

∂x
dx−Rctci.

(25c)

Substituting the expression for ∂φe(x, t)/∂x from
MacInnes’ equation (11) gives

V (t) = φdl(Lbat, t)− φdl(0, t) (25d)

+

∫ Lbat

0

−ie(x, t)

κeff
+

K

κeff
∂ ln(1 + c̃e(x, t)/c0)

∂x
dx−Rctci.

Finally, using (18) to define ie(x, t),

V (t) = φ̃dl(Lbat, t)− φ̃dl(0, t) (25e)

−
σeff
1

κeff1 + σeff
1

(

φ̃dl(L12, t)− φ̃dl(0, t)
)

−
σeff
3

κeff3 + σeff
3

(

φ̃dl(Lbat, t)− φ̃dl(L23, t)
)

−

(

1

κeff1 (κeff1 + σeff
1 )

+
1

κeff3 (κeff3 + σeff
3 )

+
1

κeff2
−Rctc

)

i(t)

−K

((

σeff
1

κeff1 (κeff1 + σeff
1 )

− 1

)

(ln ce(L12, t)− ln ce(0, t))

−
1

κeff2
(ln ce(L23, t)− ln ce(L12, t))

−

(

σeff
3

κeff3 (κ3eff + σeff
3 )

− 1

)

(ln ce(Lbat, t)− ln ce(L23, t))

)

.

Referring to Table I, the subscripts 1,2 and 3 respectively
refer to the parameters in the anode, separator and cath-
ode and the lengths x = 0, x = L12, x = L23, x = Lbat
refer to the anode/current collector boundary, the an-
ode/separator boundary, the separator/cathode boundary
and the cathode/current collector boundary.

IV. Nonlinear Feedback Systems

The notion of a feedback interpretation of a nonlinear
system is described in this section [9], with the DFN
model of (23) being considered a Lurie system [19, 6]. As
described below, this class of system is represented by the
feedback interconnection of a linear system with static,
(locally) sector bounded nonlinearities of a certain class.
Even though these systems are nonlinear, they can be
analysed using many of the techniques from linear systems,
making their analysis feasible.

A. Sector Bounded Nonlinearities and Lurie Systems

Consider the class of nonlinear functions ψ(y) : Y ⊆
R
m → R

m satisfying the following properties: zero at zero
ψ(0) = 0, decentralised

ψ(y) =
[

ψ1(y1), ψ2(y2), . . . , ψnp
(ym)

]T
, (26a)



and locally sector bounded

ψj(yj)

yj
∈ [0, τj ] ∀y ∈ Y ⊆ R

m. (26b)

These nonlinearities represent sign-preserving operators
acting on Y and in the language of circuits, they represent
passive nonlinear components. An example of a nonlinear
function that satisfies these conditions is given in Figure
3.

A Lurie system is a particular class of nonlinear system
with the structure











ẋ = Ax + Bψ(y) + Bii(t)

y = Cx +Dψ(y) +Dii(t)

V = Czx +Dzψ(y) +Dzii(t)

(27)

with {A, B, Bi, C, D, Di, Cz,Dz, Dzi} being linear opera-
tors. The nonlinear terms ψ(y) enter the Lurie system in
an affine manner in both the output signals y and the
dynamics. It is this affine nature that gives the Lurie sys-
tem its feedback interpretation, with the typical feedback
representation shown in Figure 4.

The outputs that the feedback nonlinearities act on are
termed y while the output of the system that is measured
by a physical sensor is the voltage V . This distinction
between the measured output (V ) and those defining the
feedback loops (y) is standard for Lurie systems [6] as
it separates the signals used in the analysis and those
that are measured. The current i(t) represents an external
disturbance while the nonlinearities represent feedback
actions, with ψj(yj) =

ψj(yj)
yj

· yj being the classic no-
tion of a feedback signal with nonlinear feedback gain
ψj(yj)
yj

∈ [0, τj ] ∀y ∈ Y ⊆ R
np . It is stressed that the

input and output signals, y and ψ(y), which define the
feedback structure of the Lurie system do not need to be
physically measurable.

The dynamical analysis of Lurie systems can be framed
in either the time domain or the frequency domain, with
time domain results typically involving the construction
of Lyapunov functions [19]. A key feature of the analysis
of these systems is that it is robust, in the sense that
stability guarantees, and other system properties, hold for
all nonlinearities satisfying the sector conditions (26). It
is this generality that has led to the extensive interest in
these systems since their introduction over 50 years ago.
Robustness is a key benefit offered by this approach, as
the model nonlinearities, such as the OCP curve, are only
approximately known at a given point in time, and may
change during a cell’s lifetime due to ageing [3].

V. Feedback Interpretation of the DFN Model

It is now shown that the DFN model of (23) has the
feedback structured of a Lurie system. The model has four
nonlinearities, each of which are shown to satisfy the sector
conditions (26). These four nonlinearities are plotted in
figure 5.

Figure 3: A decentralised nonlinearity ψj(yj) that satisfies
the sector conditions.











ẋ = Ax + Bψ(y) + Bii(t)

y = Cx +Dψ(y) +Dii(t)

V = Czx +Dzψ(y) +Dzii(t).

i(t) V (t)i(t) V (t)

ψ(y)
y

Figure 4: A typical representation of a Lurie system ex-
pressed in terms of feedback.

A. Open Circuit Potential

The first nonlinearity is the OCP curve U−(usurfs (x, t))
which appears in the expression for the overpotential
η(x, t) in (22). The presence of U−(usurfs ) in the expres-
sion for the reaction rate j(x, t), causes j(x, t) to be a
nested nonlinearity, being nested in U−(usurfs (x, t)). This
is equivalent to stating there exists the term D in the
state-space feedback matrices of (27). Due to its assumed
monotonicity, the OCP curve is sector bounded from each
point on the curve. The condition ψ(0) = 0 is achieved
for the OCP curve by the change of co-ordinates from
U(usurfs (x, t)) → U−(usurfs (x, t)). As the OCP curve is only
locally defined, the analysis must be contained to some
finite region of the state-space such that y ∈ Y0 ⊆ Y ⊆
R
m, and as such, the geometrical properties of Lyapunov

functions [19] represent more suitable tools for analysis
than the functional analysis approach, which is posed in
the frequency domain [9].

B. Reaction Rate

The second nonlinearity is the chemical reaction
rate j(x, t), appearing in (8). This nonlinearity is
not decentralised due to the polynomial ion exchange
rate current i0(x, t) of (9). This lack of decentral-
isation can be overcome by considering the rep-
resentation j(x, t) = i0(x, t)j0(x, t) where j0 =
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Figure 5: The various nonlinearities of the DFN model
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1
F

[

exp
(

αaF
RT

η(x, t)
)

− exp
(

−αcF
RT

η(x, t)
)]

and is both de-
centralised and sector bounded. The mapping j0(x, t) →
j(x, t) involves the multiplication by a positive term
i0(x, t) ≥ 0, which can be treated as a multiplicative
disturbance i0(x, t) = β(x, t) ≥ 0. Abstracting i0(x, t) to
simply be a positive gain in this manner means that a
decentralised mapping from η(x, t) → j(x, t) is obtained.
The key aspect is that i0(x, t) is always positive and so
can be considered to be a sign preserving gain acting on
j0(x, t). The abstraction of i0(x, t) to simply be a positive
multiplier, rather than a polynomial operator on the states
as in (9), may lead to a conservative analysis, which could
be alleviated by considering a smaller local domain, giving
tighter bounds on i0(x, t) = β(x, t) ∈ [0, β].

C. Logarithmic term

The third nonlinearity is the shifted logarithm stemming
from MacInnes’ equation ln(1 + c̃e(x, t)/c0). This nonlin-
earity lies in the sector [0,∞) but crucially is only locally
defined [38].

D. Feedback form

With these nonlinearities, the feedback form of the
DFN model has the structure of figure 6, where x =
{ce(x, t), us(r, t), φdl(x, t)} is the state, ψ = {j(x, t), ln(1+
ce(x, t)/c0), U(usurfs (x, t))} is the nonlinear feedback and
y = {η(x, t), usurfs , ce(x, t)} are the output signals.

VI. Model Implementation: Spatial

Discretisation

For implementation, the partial differential equations
(PDEs) of the DFN model with capacitance effects in-











ẋ = Ax + Bψ(y) + Bii(t)

y = Cx +Dψ(y) +Dii(t)

V = Czx +Dzψ(y) +Dzii(t).

i(t) V (t)

j (·)

ln(1 + c̃e(x, t)/c0)

Ũ− (·)

usurfs (x, t)

c̃e(x, t)

φ̃dl(x, t)
+

Figure 6: Feedback interconnection of the DFN model with
double layer effects included.

cluded (23) are discretised in space to give a finite dimen-
sional realisation. In this paper, Chebyshev polynomials
of the first kind are used as interpolation functions of
the solutions to the PDEs, with the spatial domain being
a grid of Chebyshev nodes [37]. Details of this discreti-
sation procedure for the DFN model are given in [5],
with a similar procedure applied to an electrochemical
supercapacitor model in [11]. By expanding the solution
using “global” interpolation functions such as Chebyshev
polynomials, the discretised system can be both low-order
and accurate when compared against other discretisation
methods, such as finite-difference. The discretised form of
the model equations (23) is







˙̃ce
u̇s
˙̃φdl






=





Dce 0 0
0 Dus

0
0 0 Dφdl









c̃e
us
φ̃dl



 (28)

+





a1 0 0
b2 0 0
b3 b4 0









j(η)
ln (1 + c̃e/c0)
U(usurf

s )



+





0
0
bi



 i(t)

where the boundary conditions of the states have been
incorporated and bold face is used to denote finite di-
mensional vectors and matrices. The matrices Dζ are
known as discretisation matrices. The discrete version of
the feedback system outputs are





η
c̃e
usurf
s



 =





0 0 c1
c2 0 0
0 0 c3









c̃e
us
φ̃dl



 (29)

+





0 0 d1
0 0 0
d2 0 0









j(η)
ln (1 + c̃e/c0)
U(usurf

s )





and the voltage is approximated by

V (t) = Czx+Dzψ(y) +Dzii(t). (30)



The associated finite dimensional Lurie system is










ẋ = Ax+Bψψ(y) +Bii(t)

y = Cyx+Dyψ(y) +Dii(t)

V (t) = Czx+Dzψ(y) +Dzii(t).

(31)

where x = [c̃Te , u
T
s , φ̃

T
dl]

T , y = [ηT , c̃Te , u
surf T
s ]T and

ψ(y) = [j(η)T , ln (1+ c̃e/c0)
T , U(usurf

s )T ]T , A ∈ R
n×n,

B ∈ R
n×m, Bi ∈ R

n×1, Cy ∈ R
m×n, Dy ∈ R

m×m, Di ∈
R
m×1, Cz ∈ R

1×n, Dz ∈ R
1×m and Dzi ∈ R

1×1. These
systems matrices are defined as

A =





Dce 0 0
0 Dus

0
0 0 Dφdl



 , (32a)

Bψ =





a1 0 0
b2 0 0
b3 b4 0



 , Bi =





0
0
bi



 , (32b)

Cy =





0 0 c1
c2 0 0
0 0 c3



 , Cz =
[

cz 0 0
]

, (32c)

Dy =





0 0 d1
0 0 0
d2 0 0



 , Di =





0
0
0



 , (32d)

Dz =
[

0 dz 0
]

, Dzi =
[

dzi
]

. (32e)

Even though no algebraic equations are present in
the model dynamics (31), an implicit algebraic equation
still exists due to the feed-through matrices Dy in the
output signals y. More specifically, upon inspection of
the boundary conditions (4) on usurfs (x, t), it follows that
usurfs (x, t) is a function of j(x, t), which is itself a function
of usurfs (x, t) via the nesting OCP curve U(usurfs (x, t)). A
circular argument then emerges on obtaining usurfs (x, t)
which must be resolved by solving an algebraic equation.
The dynamics of the model used for simulation are then

[

ẋ
0

]

=

[

A 0
[

0 0 c3
]

−I

] [

x
usurf
s

]

(33)

+

[

B
[

d2 0 0
]

]

ψ(y) +

[

Bi

0

]

i(t)

which is a differential algebraic equation (DAE) system.
DAE systems can be challenging to simulate, however, the
analysis can still be posed in terms of the feedback system
(28).
Figures 7 compares the DFN model with and without

double layer capacitance effects for a combined ARTEMIS
drive cycle [1]. Shown in the figure are the two voltage
responses, the voltage error between the two simulations,
the state-of-charge (SoC) in the anode and the applied
current density. The model parameters were obtained
from [5] and describe a battery with a lithium cobalt
oxide cathode and a mesocarbon microbead anode with
1M LiPF6 in propylene carbonate, ethylene carbonate
and dimethyl carbonate (PC/EC/DMC) electrolyte. The
capacitance value aC = 22.61× 103 F m−2 from [31] was
used and the ion exchange current i(x, t) satisfied (9) for

these simulations. The error between the two simulations is
plotted in Figure 7b, with the normalised error as defined
using the RSME

‖Verror‖ =

√

∑N
k=1(V

DFN
k − V DLk )2

N
= 0.0197V (34)

where N is the number of simulation time steps , V DFNk is
the kth element of the voltage vector from the simulation
of the full DFN model whilst V DLk is that with double
layer effects included. This simulation reinforces the notion
that accuracy improvements offered by including double
layer capacitance effects can often be small (the difference
in SoC was less than 1%), but these effects give a more
complete system structure.

VII. Some Implications of the formulation

Several properties of the feedback DFN model which can
be immediately obtained from its feedback interpretation
are now discussed.

A. Observability of Electrolyte Concentration

One of the key applications for electrochemical based
Li-ion battery models is observer design [7]. An observer
is used to predict the internal state of the battery using
only sensor information of the current and voltage. For a
battery application, one of the main tasks of an observer
is to obtain an accurate estimate of the state-of-charge,
a property that reflects the remaining charge that can
be drawn from the device. Typically, observers that are
based on electrochemical models use the SPM due to its
relative simplicity [29, 35, 5]. Critical to the performance
of an observer is the “observability” of the system which
for a nonlinear system can be regarded as a measure of
how well the states can be reconstructed from voltage
measurements (paraphrased from [40]). A state is unob-
servable if it does not affect the voltage, so that there is a
fundamental limitation on obtaining an accurate estimate
of these unobservable states.
Inspecting the model of (23), it follows that if t+ = 1

and i0(x, t) is set to be independent of ce(x, t), then the
electrolyte concentration is unobservable with regards to
the voltage. This stems from the fact that the choice
of transference number eliminates the logarithmic term
from the dynamics (as K = 0), with the dynamics for
ce(x, t) then being completely hidden from the voltage
sensor measurements. A rigorous observability analysis of
the model could be implemented using the Lie derivative
approach described in [40].

B. Well-Posedness of the Feedback Loop

An essential requirement for feedback systems is that
they are well posed, i.e. the feedback admits a unique
solution. The question of well-posedness is decoupled from
that of stability, and is an essential feature for the existence
of a system theoretic representation of the model [9].
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Figure 7: Simulations of the DFN model with and without double layer capacitance under the ARTEMIS drive cycle
discharging current.

The well-posedness of a feedback loop containing a
feedthrough term, as in (31), is guaranteed if it can be
shown that there exists a unique solution to the implicit
equation F (µ) := µ−Dyψ(µ). Following [38], this condi-
tion can be equivalently stated as requiring the Jacobian of
F (µ) to belong to a compact and convex set of invertible
matrices for almost all values of µ, which is satisfied if the
following condition holds.

Proposition 1 (Well-posedness [38]): Define
Γ = diag(max(dψ1(y1)/dy1), . . . , max(dψm(y,)/dymt))
and Γ = diag(min(dψ1(y1)/dy1), . . . , min(dψm(y,)/dymt)).
The feedback system (28) is well posed if there exists
a matrix W ∈ D

m
≥0, with D

m
≥0 being the set of positive

semi-definite matrices of dimension m, such that

2W −He(W (I −DyΓ)
−1Dy(Γ− Γ)) > 0. (35)

This condition was satisfied by the discretised model for
Γ = 0 and Γ exceeding 108, implying its well-posedness.

VIII. Robust analysis of parameter variations

Amain assumption of the formulation of the DFN model
considered in Section II is that the model parameters, such
as the electrolyte diffusion coefficient, remain constant
during a charge. However, experimental data has shown
that this assumption is violated for deep and high C-
rate charging, with temperature and concentration effects
being highlighted as being particularly important. For
instance, it is typically assumed that κ varies linearly
with concentration ce [39] while diffusivity follows an
Arrhenius type relation with temperature [21, 36]. This
section discusses how these parameter variations can also
be included in the robust feedback framework.

A general setting is adopted to highlight how the analy-
sis remains valid for parameter perturbations correspond-
ing to different electrochemical phenomena. Consider a
parameter θ(x, t) that is allowed to vary in both space and
time and could represent the effective diffusion coefficient
of the electrolyte for example. Expanding this parameter



value around an equilibrium value θ0 gives

θ(x, t) = θ0 + θ̃(x, t). (36)

If this parameter represents the diffusion coefficient of a
species w(x, t), such as for the electrolyte dynamics in (5),
then the resulting diffusion equation becomes

∂w

∂t
=

∂

∂x

(

θ(x, t)
∂w

∂x

)

, (37a)

= θ0
∂2w

∂x2
+ θ̃(x, t)

∂2w

∂x2
+
∂θ̃(x, t)

∂x

∂w

∂x
, (37b)

= θ0
∂2w

∂x2
+ Γw. (37c)

In such circumstances, the parameter variations are incor-

porated within the operator Γ = θ̃(x, t) ∂
2

∂x2 + ∂θ̃(x,t)
∂x

∂
∂x

.
This system then represents a linear-parameter varying

system whose discretisation can be analysed using the
methods of [28] for example. In such circumstances, the
dynamics become

ẇ = Aw + Γ(θ)w (38)

with state w ∈ R
nw , parameters θ ∈ R

nθ and with the
operator Γ becoming a vector Γ ∈ R

n. If bounds on
the variations of the parameters are known, then Γ takes
values within the compact set

Γk ∈ [Γk,Γk]. (39)

There then exists nw sector conditions

(Γkwk − Γkwk)(Γkwk − Γkwk) ≥ 0 (40)

from which one can then apply the same robust analysis
as employed in Section V for the DFN model using abso-
lute stability techniques. Using this approach, parameter
variations, from temperature and concentration influences
on the diffusion coefficient Deff

e , can then be incorporated
into the analysis.

IX. Reduced Order DFN Model

One of the main limitations of electrochemical models,
such as the DFN model, is that the large number of
states after spatial discretisation makes them unsuitable
for online implementation within a battery management
system and other control applications. Typically, the dis-
cretised DFN model has around 100 states, while online
systems, in general, are suitable for models with less
than 10 states [25]. To overcome this issue, reduced order
versions of electrochemical models have been proposed in
the literature, including the control orientated models of
Smith et al. [33, 20, 34, 18] and the discrete time realisation
algorithm of Plett et al. [32, 23, 22, 15]. All of these
methods involve linearisation at some stage, and typically
involve approximations of transfer functions.
A method for obtaining reduced order realisations of the

feedback based DFN model that retains the nonlinearities
is proposed here. The model order reduction is performed
by exploiting the feedback structure of the system. The
proposed approach can be considered as an approximation

of a transfer function by a lower order form, but in this
method, the transfer function is MIMO and involves all of
the feedback nonlinearities discussed in section V.

The model order reduction is based upon a bal-
anced truncation of the linear state-space matrices
(A, B, C, D), with these matrices characterising the
Lurie system (31) with

B =
[

Bψ Bi

]

, C =

[

Cy
Cz

]

, D =

[

Dy Di

Dz Dzi.

]

(41)

The MIMO transfer function for this state-space
realisation is G(s) = C(sI − A)−1B + D
which maps the extended inputs ue =
[

j(η)T , ln(1 + c̃e/c0)
T , U(usurf

s )T , i(t)
]T

to the extended

outputs ye =
[

ηT ,̃ cTe , u
surf T
s , V (t)

]T
in the frequency

domain.
The balancing method is just one of many model order

reduction methods but is popular due to its relative sim-
plicity, its intuitive concept and its error bounds, see [13]
for a comprehensive summary of the balancing method.
The application of balancing to Lurie systems was devel-
oped in [2], where theoretical bounds on the accuracy of
the reduced order models were given. Unfortunately, these
bounds are not valid for the system considered here as the
nonlinearities of the DFN model are only defined locally
for y ∈ Y, whereas a global analysis was considered in [2].
Consistent initial conditions xr(0) for the reduced order

system can be obtained by noting that ye should be the
same for both the reduced and full order models. Defining
Cr as the reduced order form of the matrix C, the reduced
order initial condition xr(0) can be obtained from

x0,red =
(

CT
rCr

)−1 (

CT
r ye(0)−Due(0)

)

(42)

under the assumption that
(

CT
rCr

)−1

exists. Here, ye(0)

and ue(0) are the values of the extended input and output
signals of the full order model at time 0s.

An issue with applying the balancing method to reduce
the order of the DFN model is that the matrix A is, in
general, not Hurwitz as some of its eigenvalues are at the
origin. To overcome this issue, an eigen-decomposition can
be applied to the state-space matrices, with the model
order reduction only being applied to the Hurwitz states. A
similar procedure was adopted in [12] for supercapacitors.
The circuit interpretation of the non-Hurwitz states is that
they represent a set of capacitors connected in parallel
which can be combined to form a single capacitor, so that
these states can be represented by a single combined state.
In this manner, a one state version of the DFN model with
feedback can be obtained, with the dynamics of the single
state being an integrator.

Using this model order reduction technique, the feed-
back structure of the model is retained, but the model
states no longer have a physical interpretation; these states
become mechanisms by which energy is transferred from
the inputs to the output, and are a combination of the
different physical phenomena present in the battery model.
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Figure 9: A constant current discharge, with current den-
sity at 20 A m s−2 for both the full order DFN model
of (28), a reduced form with only one dynamic state and
another with only integrators (no dynamic states).

The accuracy of the reduced order model is compared
in Figures 8 and 9. In Figure 8, the full DFN model with
double layer effects and varying i0(x, t) is simulated with
the combined ARTEMIS drive cycle [1] against a reduced
order model with only one dynamical state. In Figure 9,
both the full order model, a reduced order model with only
non-Hurwitz states, and a reduced model with the non-
Hurwitz states and one dynamic state, is discharged at a
rate of 1C. In general, the reduced order model captures
the dynamical response of the full order model, especially
after the initial transients of the simulations due to the
initial conditions had passed. In the drive cycle simulation,
after the initial transient phase, the reduced order model

was found to be less responsive than the full order model.
This is due to the balancing procedure eliminating the
states with fast dynamics. In the constant current sim-
ulation, the reduced order models failed prematurely at
t ≈ 3000s due to their states no longer resembling those
of the full order model and leaving the region where the
model nonlinearities are defined.

X. Conclusions

By including double-layer capacitance effects with the
classic DFN electrochemical model for a lithium ion bat-
tery, the model was shown to exhibit a nonlinear feedback
structure. This structure allows the model to be analysed
rigorously using input-output systems theory. Exploiting
this feedback structure leads to a deeper understanding
of the model behaviour and could lead to observers and
optimal charging profiles being designed for the DFN
model. Some relevant consequences of the model formu-
lation are discussed, including its non-dimensional form,
its well-posedness and the observability of the electrolyte
concentration. As an application, a novel reduced order
form of the model is proposed that retains the nonlinearity.
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