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Analysis of systems with slope restricted
nonlinearities using externally positive Zames-Falb

multipliers
Matthew C. Turner, Member, IEEE, Ross Drummond

Abstract—This paper proposes an approach for assessing the
stability of feedback interconnections where one element is a
static slope-restricted nonlinearity and the other element is a
linear system. The approach is based on the use of Zames-
Falb multipliers where the dynamic portion of the multiplier
is chosen as an externally positive non-causal transfer function.
By restricting attention to a sub-set of these multipliers, a set
of pure LMI conditions is obtained which requires no initial
paramterisation by the user. A useful by-product of using
externally positive systems is that the results are applicable to
non-odd slope restricted nonlinearities, which is not the case for
all classes of Zames-Falb multipliers.

I. INTRODUCTION
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Fig. 1. System under consideration

This paper considers the stability of the interconnection de-
picted in Figure 1 where P (s) ∈ RH∞ is a single-input-

single-output (SISO) linear time invariant system and φ(.) is

a static, time-invariant, slope-restricted nonlinearity. Various
approaches have been proposed for the analysis of Figure 1.

These tend to be either Lyapunov-based (recent references

are [19], [12], [26], [31] - see also the book [14]) or input-
output stability based, where the Circle and Popov Criteria

are popular. Perhaps the most general method for studying
the stability of the system in Figure 1 is using so-called

Zames-Falb multipliers which were introduced by [18] (see

[6] for a perspective on this), with the precise technical
conditions finalised shortly afterwards [33]. After years in the

research wilderness, researchers, emboldened by the greater

computational facilities of today, have recently begun to look
at Zames-Falb multipliers again ([9], [1], [10]).

The main difficulty in the analysis of systems using Zames-
Falb multipliers is the troubling mixture of time and frequency

domain conditions which arise: the multipliers must be chosen

such that a passivity (actually positivity) condition is satisfied,
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whilst also meeting a time domain L1 bound on their impulse
response. It appears to be challenging to satisfy these condi-

tions simultaneously, non-conservatively and efficiently. Some

interesting examples, inspired by [18], are discussed in [6].

Several searches for Zames-Falb multipliers satisfying (simul-

taneously) positivity and L1 bounds have been proposed and
these depend on the parametrisation of the multiplier used. The

first and most popular of these was proposed by [8], where the

multiplier was chosen to have a transfer function consisting of
a sum of first order terms; the user was required to choose pole

locations and order. This approach has been advocated and

refined [32], but as illustrated in [6] there are some instances
for which the approach is inherently unsuitable, and in some

cases analysis using this approach can be unsatisfactory.

An alternative parametrisation of Zames-Falb multipliers was

proposed in [28] and developed in [5], [27]. This approach

fixed the order of the multiplier to that of the plant, and
used a bound on the L1 norm proposed in [24]. The resulting

procedure required no user-defined choices but did require a
line search over a scalar parameter; in addition, the L1 norm

bound used was well-known to be conservative. A further

down-side to this approach was that the analysis was only
valid for odd nonlinearities.

Another approach is that of [11] where a search over non-
rational multipliers was proposed. This approach was further

developed in [7]. As shown in [5], [6], this approach can be

competitive, but sometimes it is conservative and numerically
unreliable. The extensions of the Zames-Falb analysis tools

to multivariable systems have been discussed in [23], [15]

and tools for the search over the class of MIMO Zames-
Falb multipliers have been proposed in [9], [29], [10]. It is

probably fair to say that a complete solution to the problem

originally considered by O’Shea some fifty years ago - that of
finding a multiplier rendering a system with a slope restricted

nonlinearity stable - is not yet available.

This paper uses the parametrisation of the multiplier suggested

in [28], [5] but enforces the L1 bound in a more convenient

manner. The work takes advantage of recent results on positive

systems, and in particular external positivity. This allows one

to replace the line search which appears in the algorithms of
[28], [5] by a linear matrix inequality (LMI). Consequently

the arising stability analysis algorithm is completely convex,

leading in many cases to significantly shorter computational
times compared with other Zames-Falb based approaches. In

addition, in some examples the results offered by the approach

proposed here are competitive with the state-of-the-art.
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A. Notation

Notation is standard. For a square matrix M the notation M >
0 (≥ 0) means the matrix is symmetric and positive (semi-)
definite. Negative definiteness is defined similarly. I denotes

the identity matrix, of appropriate dimensions; Im denotes the

identity matrix of size m.

This paper mainly considers scalar-valued signals. The convo-

lution of two scalar signals x(t) and y(t) is denoted x(t)⋆y(t).
For scalar signals, x(t) ∈ R, the L1 norm is defined as

‖x‖1 :=

∫ ∞

−∞

|x(t)|dt (1)

With some abuse of notation, ‖H(s)‖1 also denotes the

L1 norm of the impulse response associated with the transfer

function H(s). A signal x(t) ∈ L1 if ‖x‖1 is finite.

The L2 norm of a signal x(t) ∈ R is defined as

‖x‖2 :=

∫ ∞

−∞

|x(t)|2dt (2)

x(t) ∈ L2 if ‖x‖2 is finite. Signals x(t) which are zero for all

t < 0 belong to the subspace L2[0,∞).

For scalar signals x(t) ∈ R, the L∞ norm is defined as

‖x‖∞ := sup
t∈(−∞,∞)

|x(t)| (3)

The space of real rational transfer functions bounded on the
imaginary axis is denoted by RL∞, with norm defined as

‖G‖L∞
= sup

ω∈(−∞,∞)

|G(jω)| (4)

The subspace RH∞ (RH⊥
∞) ⊂ RL∞ denotes those transfer

functions analytic in the open right (left) half plane.

A system G(s) with impulse response g(t) is causal (anti-

causal) if g(t) = 0 for all t < 0 (t > 0). A system G(s)
is said to be bounded if its impulse response, g(t) ∈ L1. If

G(s) ∈ RH∞ it is interpreted as a bounded causal operator;

G(s) ∈ RH⊥

∞ is a bounded anti-causal operator. G∼(s) =
G(−s) is the adjoint of the transfer function G(s); G(s) ∈
RH∞ implies G(−s) ∈ RH⊥

∞.

II. STABILITY ANALYSIS USING ZAMES-FALB

MULTIPLIERS

Consider Figure 1 in which P (s) is a finite dimensional linear
time invariant (FDLTI) system with state-space realisation

P (s) ∼

[
Ap Bp

Cp Dp

]
(5)

where Ap ∈ R
np×np , Bp ∈ R

np×1, Cp ∈ R
1×np , Dp ∈ R.

The nonlinear element φ(.) : R 7→ R is assumed to be slope

restricted; its slope (generalised derivative) is assumed to be

confined to a certain interval, that is

0 ≤
φ(x) − φ(y)

x− y
≤ α ∀x, y ∈ R, α > 0 (6)

For brevity, the notation ∂φ ∈ [0, α] means that the nonlin-

earity satisfies inequality (6). It is assumed that appropriate

loop-shifting has been carried out on the system such that the

lower bound on the slope is zero. Formally, the nonlinearity
belongs to one of the classes of nonlinearity defined below.

Definition 1: φ(.) : R 7→ R is said to belong to NS
[0,α] if

i) It is bounded.
ii) It has slope restriction ∂φ ∈ [0, α], α > 0.

φ(.) is said to belong to NS,odd
[0,α] if, in addition, it is odd.

Unlike in some foregoing work ([28]), φ(.) may not be odd.
The slope bound, ∂φ ∈ [0, α] implies the sector bound, φ ∈
Sector[0, α] if φ(0) = 0 (e.g. [27]), meaning Circle and Popov

multipliers may be included in the analysis of such systems.

Zames-Falb multipliers are used to establish stability con-

ditions for the system in Figure 1. A convenient way of
viewing the main results of [33] is through the use of integral-

quadratic-constraints (IQC’s) [16]. This enables Zames-Falb
multipliers to be augmented with other stability multipliers,

such as those of the Popov and Circle Criteria, and also enables

one to cast the search for non-causal multipliers in the same
framework as a purely causal search [25], [20]. This is not

obvious from the original results of [33] and will be exploited

in this paper.

It is well-known ([16]) that if φ ∈ NS
[0,α], it satisfies the IQC

∫ ∞

−∞

[
û(jω)

φ̂(u)(jω)

]⋆
Π(jω)

[
û(jω)

φ̂(u)(jω)

]
dω ≥ 0 (7)

where û(jω) and φ̂(u)(jω) are the Fourier Transforms of u(t)
and φ(u(t)) respectively, and Π(s) = ΠZF (s) is given by

ΠZF (s) =

[
0 αM∼(s)

αM(s) −M∼(s)−M(s)

]
(8)

The transfer function M(s) is the so-called “Zames-Falb

multiplier” ([33]). The class of Zames-Falb multipliers is not
restricted to rational transfer functions in general (see [33]) but

for this paper the rational subset of these, MR is sufficient.

Definition 2: A transfer function M(s) := H0−H(s) ∈ RL∞

is said to belong to the set Modd
R if H0 > 0 and H(s) ∈ L1 is

such that ‖H(s)‖1 ≤ H0. If, in addition, the impulse response
of H(s), h(t) ≥ 0 for all t ∈ (−∞,∞), M(s) is said to belong

to the set MR.

When M(s) ∈ MR, the IQC (7)-(8) captures the largest class

of rational multipliers for φ(.) ∈ NS
[0,α]. For the case when φ(.)

is vector valued, the reader is referred to [9], [15]. The class
of MR is large and includes multipliers M(s) of arbitrarily

high order. In practice, lower order multipliers are used.

A. Stability and IQC factorisation

The main stability result of Zames and Falb [33] is stated in

the IQC framework for the reasons set out earlier. Generally,
Zames-Falb multipliers may include both causal and anti-

causal terms. However, in the IQC framework, it is possible

to factorise the IQC so that all anti-causal terms appear
together [25]. Then, because the main IQC stability condition

is evaluated on the imaginary axis, it effectively allows the

anti-causal terms to be handled using the causal approach of
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[28], [30]. In this paper “stability of Figure 1” means that,

for all exogenous signals v, w ∈ L2[0,∞), the loop signals
u, y ∈ L2[0,∞). Under mild conditions, this is equivalent to

asymptotic stability in the state-space context.

Theorem 1 (Adapted from [16]): Consider Figure 1 where

P (s) ∈ RH∞ and φ ∈ NS
[0,α] satisfies the IQC defined by

(7) and (8) where M(s) ∈ MR. Assume that the closed loop

system is well-posed. Then the system is stable if there exists

an ǫ > 0 such that
[

P (jω)
I

]⋆
ΠZF (jω)

[
P (jω)

I

]
< −ǫI ∀ω ∈ R (9)

Thus stability of the system essentially reduces to finding

suitable M(s) ∈ MR such that inequality (9) holds. This
means: (i) in order to test (9) one has to search for an

appropriate, and potentially high-order, M(s) ∈ MR, which

may be computationally challenging; and (ii) finding a suitable
M(s) ∈ MR involves a combination of frequency-domain (9)

and time domain (‖H‖1 ≤ H0 and h(t) ≥ 0) conditions. The

initial approach to this [8] was to choose a basis of H(s)
for which the L1 bound was known and then to calculate

the associated gains to ensure that ‖H‖1 ≤ H0 and (9) is
satisfied. For low-order choices of M(s) this can be useful but

the approach is essentially ad hoc. A more recent approach has

been to choose M(s) to be either causal [28], or anti-causal
[5], but plant order. Then, via a change of variables, a suitable

M(s) can be chosen using LMI’s and a line search.

Although the plant-order searches advocated in [28], [27], [5]

are entirely systematic, all suffer from conservatism: the search

is conducted over either causal or anti-causal multipliers.
These searches can be useful, and sometimes produce tight

results, but their restriction to causal or anti-causal multipliers
is limiting. Noting the observations of [25] this problem can

be surmounted by using an alternative factorisation of the

multiplier. Consider again the multiplier Π(s) = ΠZF (s):

ΠZF (s) =

[
0 αM∼(s)

αM(s) −M∼(s)−M(s)

]
(10)

Let M(s) ∈ MR have the following structure

M(s) = H0−Hc(s)−H∼
a (s), Hc(s), Ha(s) ∈ RH∞ (11)

In the above equation, Hc(s) ∈ RH∞ represents the causal

part of the multiplier and H∼
a (s) ∈ RH⊥

∞ its anti-causal part.

Grouping causal and anti-causal terms, it follows that

ΠZF (s) = Y (s) + Y ∼(s) (12)

where Y (s) ∈ RH∞ is defined as

Y (s) :=

[
0 −αHa(s)

α(H0 −Hc(s)) −(H0 −Ha(s)−Hc(s))

]

(13)

Setting Ψ(s) = [Y (s) I]′ ∈ RH∞ it then follows that

ΠZF (s) = Ψ∼(s)WΨ(s) W =

[
0 I2
I2 0

]
(14)

With this factorisation of ΠZF (s), Theorem 1 can then be

re-written as Corollary 1 below.

Corollary 1: Consider Figure 1 where P (s) ∈ RH∞ and

φ ∈ NS
[0,α] satisfies the IQC defined by (7) and (14) where

M(s) ∈ MR is given by (11). Assume that the closed loop

system is well-posed. Then the system is stable if there exists
an ǫ > 0 such that

L(jω)∗WL(jω) < −ǫI ∀ω ∈ R (15)

where

L(s) =




−αHa(s)
(H0 −Hc(s)(αP (s) − 1) +Ha(s)

P (s)
1


 (16)

Proof: The factorisation (14) in Theorem 1 provides the result
after some algebra. Note that L(s) contains no anti-causal

terms.

B. Externally positive systems

This subsection introduces several facts about positive systems
which will be used subsequently. Positive systems have gained

popularity because some problems which are intractable for

arbitrary linear systems become tractable for positive systems
([22]). Throughout this section we consider a FDLTI system,

G(s), with state-space representation

G(s) ∼

[
A B

C D

]
(17)

It is assumed that G(s) is SISO, with A ∈ R
n×n, B,C′ ∈ R

n

and D ∈ R. An externally positive system is defined below.

Definition 3: [22] G(s) is said to be externally positive if its

impulse response g(t) ≥ 0 ∀t ∈ (−∞,∞).

Fact 1: A causal linear system G(s) ∼ (A,B,C,D) is

externally positive if its impulse response g(t) is non-negative
for all t ∈ [0,∞); that is

g(t) = CeAtB +Dδ(t) ≥ 0 ∀t ≥ 0 (18)

Determining whether a given linear system is externally posi-

tive is, generally, not trivial [17], [2]. Much of the literature on

positive systems considers internally positive systems which
means that for any non-negative initial condition, the state

remains non-negative thereafter. This requires A to be a Met-

zler matrix (i.e. the off-diagonal elements are non-negative)
and all elements of B to be non-negative. If, in addition, all

elements of C and D are non-negative, this is sufficient for

G(s) ∼ (A,B,C,D) to be externally positive. Unfortunately,
internal positivity is a fragile property which is generally not

preserved by a state-similarity transformation. Therefore, we
note the following fact which ensures external positivity.

Fact 2: Assume G(s) ∈ RH∞ with state-space realisation

(A,B,C,D). Let A = A′, B = C′ and D ≥ 0, then G(s) is

an externally positive linear system.



4

Proof: G(s) ∈ RH∞ only has a non-zero impulse response

on t ∈ [0,∞) i.e.

g(t)=CeAtB +Dδ(t) = CeAt/2eAt/2C′ +Dδ(t) (19)

= CeAt/2eA
′t/2C′ +Dδ(t) (20)

= ‖CeAt/2‖2 +Dδ(t) (21)

��

One of the key advantages of positive systems is the fact that

their norms are bounded by their D.C. gains. The following

result for causal positive systems is essentially a re-statement
of part of Proposition 3 from [22].

Lemma 1: Let G(s) ∈ RH∞, and have state-space realisation

(A,B,C, 0). If G(s) is externally positive then:

‖G(s)‖1 = −CA−1B = G(0)

Proof: The proof is repeated for convenience. Note that the

L∞ gain of G(s) is equivalent to the L1 norm of its impulse
response, g(t). Taking y(t) = g(t) ⋆ w(t), we have

‖y(t)‖∞ = sup
t

∣∣∣∣
∫ ∞

0

g(τ)w(t − τ)dτ

∣∣∣∣ (22)

≤ sup
t

∫ ∞

0

|g(τ)||w(t − τ)|dτ (23)

≤

∫ ∞

0

|g(τ)|dτ ‖w‖∞ (24)

=

∫ ∞

0

g(τ)dτ ‖w‖∞ (25)

= [CA−1eAtB]∞0 ‖w‖∞ (26)

Now, because G(s) ∈ RH∞, then A is Hurwitz so

[CA−1eAtB]∞0 = −CA−1B = G(0) ≥ ‖G(s)‖1

However, there exists a w(t) (a constant) such that ‖y(t)‖∞ =
G(0)‖w(t)‖∞, hence equality holds: G(0) = ‖G(s)‖1 ��

A parallel lemma can be derived for the case where G(s) is

anti-causal, i.e. G(s) ∈ RH⊥
∞.

Lemma 2: Let G(s) ∈ RH⊥

∞, and have state-space realisation

(A,B,C, 0). If G(s) is externally positive then:

‖G(s)‖1 = −CA−1B = G(0)

Proof: Let G∼(s) = G(−s) be the adjoint of G(s). Then

G(s) ∈ RH⊥

∞ implies G∼(s) ∈ RH∞. As ‖G(s)‖1 =
‖G∼(s)‖1, it remains to apply Lemma 1 to ‖G∼(s)‖1. Note

that

G∼(s) = −C(sI +A)−1B (27)

so G∼(0) = −CA−1B = G(0), which proves the lemma ��

Zames-Falb multipliers are, in general non-causal. The follow-

ing lemma shows how the L1 norm of an externally positive
but non-causal system can be bounded by the L1 norm of an

externally positive causal system. This lemma will be used in

establishing the main results of the paper.

Lemma 3: Let H(s) = Hc(s)+H∼
a (s) be a non-causal transfer

function where Hc(s), Ha(s) ∈ RH∞ and where Hc(s) and
H∼

a (s) are both externally positive. Then H̄(s) := Hc(s) +
Ha(s) is also externally positive and, furthermore,

‖H(s)‖1 ≤ ‖H̄(s)‖1

Proof: If H∼
a (s) is externally positive, this implies that

h∼
a (t) ≥ 0 ∀t ∈ (−∞, 0], which implies that ha(t) ≥ 0 ∀t ∈

[0,∞). Hence Ha(s) is externally positive. Together with

external positivity of Hc(s), this implies H̄(s) is externally
positive. To see the L1 bound note that

‖H(s)‖1 = ‖Hc(s) +H∼
a (s)‖1 (28)

≤ ‖Hc(s)‖1 + ‖H∼
a (s)‖1 (29)

= Hc(0) +H∼
a (0) (30)

= Hc(0) +Ha(0) (31)

= ‖Hc(s) +Ha(s)‖1 = ‖H̄(s)‖1 (32)

where the penultimate equality follows because H̄(s) ∈ RH∞

and is externally positive. ��

III. MAIN RESULTS

A. Stability using external positivity

The aim of this section is to translate the frequency inequality

in Corollary 1 to an LMI; and to replace the L1 condition

appearing in the same corollary with another LMI. The main
result is preceded by an intermediate result for clarity.

Proposition 1: Assume, P (s) ∈ RH∞, φ(.) ∈ NS
[0,α] and that

the multiplier, M(s) is structured as described in equation
(11) with Hc, Ha ∈ RH∞. Assume the following state-space

realisations:

Hc(s) ∼

[
Ac Bc

Cc 0

]
(33)

Ha(s) ∼

[
Aa Ba

Ca 0

]
(34)

Assume further that ‖Hc + H∼
a ‖1 < H0 and the impulse

response of H(s) = Hc(s) + H∼
a (s) is positive for all

t ∈ (−∞,∞). Then if there exists a real symmetric matrix
P = P ′ satisfying the following matrix inequality

[
Ã′P + PÃ+ C̃′WC̃ PB̃ + C̃′WD̃

⋆ D̃′WD̃

]
< 0 (35)

where W is given in (14) and Ã, B̃, C̃ and D̃ are given by

[
Ã B̃

C̃ D̃

]
=




Ap 0 0 Bp

αBpCp Ac 0 −Bc

0 0 Aa Ba

0 0 −αCa 0
αH0Cp −Cc Ca H0(αDp − 1)
Cp 0 0 Dp

0 0 0 1




(36)
the system in Figure 1 is stable.

Proof: The proof is essentially an application of the KYP

Lemma [21] to Corollary 1. Noting M(s) = H0 − Hc(s) −
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H∼
a (s), it follows that L(s) (given in equation (16) of Corol-

lary 1) has a state-space realisation L(s) ∼ (Ã, B̃, C̃, D̃)
where the state-space matrices are defined in equation (36).

Applying the KYP Lemma to inequality (15) in Corollary

1 results in the (nonlinear) matrix inequality (35). Stability

follows by noting the assumptions ‖Hc(s) +H∼
a (s)‖1 ≤ H0

and h(t) ≥ 0 ∀t ∈ (−∞,∞) imply M(s) belongs to MR

and thus the conditions of Corollary 1 are satisfied. ��

Remark - properness. As noted in [4], without loss of

generality, Hc(s) and Ha(s) are assumed strictly proper. �.

The next step is to re-write both the matrix inequality (35) and
the L1 condition on the multiplier as LMI’s. This is achieved

by using a high-order Zames-Falb multiplier approach [30],

and also the positive systems theory of Section II-B.

Proposition 2: Assume P (s) ∈ RH∞ and that φ(.) ∈ N S
[0,α].

Then the system in Figure 1 is stable if there exist positive

definite matrices S11,P11 and N, Ac and Aa, a positive
scalar H0 and unstructured matrices Cc and Ca such that

inequalities (37), (39) and (40) below hold.



H0 Cc

′
Ca

′

⋆ Ac 0
⋆ 0 Aa


 ≥ 0 (39)

P11 − S11 −N > 0 (40)

Proof of Proposition 2: The proof of this proposition, similar

to [28], [5], has two main parts: the translation of the matrix

inequality (35) into (37); and the translation of the requirement
that M(s) ∈ MR to inequality (39), plus a final part to verify

that an assumption of positive definiteness indeed holds. The

derivation of the matrix inequalities requires an assumption
on the structure of the multiplier. From Proposition 1, the

multiplier is assumed to have the structure of M(s) given in

equation (11) with causal part Hc(s) ∈ RH∞ and anti-causal

part H∼
a (s) ∈ RH⊥

∞. It is also assumed that both the causal

and anti-causal parts have order equal to that of the plant, viz
ord[Hc(s)] = ord[Ha(s)] = np.

Part 1: Main inequality. Consider inequality (35) where the

state-space matrices (Ã, B̃, C̃, D̃) are given in equation (36).
Due to the structure of the multiplier described above, it

follows that the symmetric matrix P ∈ R
3np×3np . Under the

additional assumption that P > 0, let P and Q := P−1 be
partitioned into np × np sub-matrices:



Q11 Q12 Q13

Q′
12 Q22 Q23

Q′
13 Q′

23 Q33






P11 P12 P13

P ′
12 P22 0

P ′
13 0 P33


=




I 0 0
0 I 0
0 0 I




(41)

where, P12, P13, Q12 and Q13 are full rank. Later it will

be verified that the inequalities in the theorem do indeed
ensure that P > 0.This particular structure of P is assumed

to enable convex conditions to be obtained; its limitation will

be discussed subsequently. Thus, introducing the matrices

Π1 :=




Q11 I 0
Q′

12 0 0
Q′

13 0 I


 Π2 :=




I 0 0
P11 P12 P13

P ′
13 0 P33




(42)

it follows that Π′
1P = Π2. This can be considered to be an

extension of Scherer’s change of variables introduced in [24].

Applying, the congruence transformation diag(Π′
1, I) to in-

equality (35) gives the following equivalent inequality
[

Π′
1Ã

′Π′
2 +Π2ÃΠ1 +Π′

1C̃
′WC̃Π1 Π2B̃ +Π1C̃

′

⋆ D̃′WD̃

]
< 0

(43)

Applying a further congruence transformation

diag(S11, I, I, I) S11 := Q−1
11 (44)

to inequality (43) yields, after some algebra [28], inequality

(38) where the following matrix variables have been defined:

Ac := P12AcQ
′
12S11 (45)

Bc := P12Bc (46)

Cc := CcQ
′
12S11 (47)

Aa := −P13AaP
−1
33 P ′

13 (48)

Ba := −P13Ba (49)

Ca := CaP
−1
33 P ′

13 (50)

N := P13P
−1
33 P ′

13 (51)

In the above derivation, it is useful to note, from identity (41),

that Q13 = −Q11P13P
−1
33 . Setting Bc = −Cc

′, Ba = −Ca

′,

Ac = Ac

′ and Aa = Aa

′ then yields inequality (37) in the
proposition; this choice will be justified in part 2 of the proof.

Part 2: The L1 condition. This part of the proof gives an
L1 bound on the norm of H(s), thereby ensuring that it

belongs to MR. This LMI is derived under the assumption
that H(s) is externally positive; it is then proved for the choice

made that this is indeed the case.

It is convenient to work with the transfer function H̄(s) =
Hc(s)+Ha(s), where Hc, Ha ∈ RH∞. Using equations (45)

- (50), a state-space realisation of H̄(s) is given as

H̄(s) ∼

[
AH̄ BH̄

CH̄ 0

]
=

[
UAH̄V UBH̄

CH̄V 0

]
(52)

where

[
AH̄ BH̄

CH̄ 0

]
=




Ac 0 Bc

0 Aa Ba

Cc Ca 0


 (53)

U =

[
P−1
12 0
0 −P−1

13

]
V =

[
(Q′

12S11)
−1 0

0 (P−1
33 P ′

13)
−1

]

(54)

Using the similarity transformation

T =

[
−P ′

12 0
0 P−1

13 N

]−1

(55)

an equivalent realisation of H(s) is then

H̄(s) ∼

[
TUAH̄V T−1 TUBH̄

CH̄V T−1 0

]
(56)

Using the identity (41), the following expressions arise:

0 =Q11P12 +Q12P22 (57)

0 =Q11P13 +Q13P33 (58)

I =Q11P11 +Q12P
′
12 +Q13P

′
13 (59)
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























S11Ap+A
′

pS11+
α(C′

pCa +Ca
′Cp)

S11Ap+A
′

pP11+Ac
′+Aa

′

−α(C′

pCc−Ca
′Cp)

A′

pN+Aa
′

−αC′

pCa

S11Bp−Cc
′+αC′

pH0

+Ca
′(αDp − 1)

⋆
A′

pP11+P11Ap

−α(Cc
′Cp+C

′

pCc)
A′

pN−Aa

−αC′

pCa

P11Bp+Ca
′+Cc

′

+αC′

pH0

⋆ ⋆ −2Aa

NBp +Ca
′

−Ca
′(αDp − 1)

⋆ ⋆ ⋆ 2H0(αDp − 1)

























< 0 (37)

























S11Ap+A
′

pS11+
α(C′

pCa +Ca
′Cp)

S11Ap+A
′

pP11+Ac
′+Aa

′

+α(C′

pBc+Ca
′Cp)

A′

pN+Aa
′

−αC′

pCa

S11Bp−Cc
′+αC′

pH0

+Ca
′(αDp − 1)

⋆
A′

pP11+P11Ap

+α(BcCp+C
′

pBc
′)

A′

pN−Aa

−αC′

pCa

P11Bp−Ba−Bc

+αC′

pH0

⋆ ⋆ −Aa −Aa
′ NBp −Ba

−Ca
′(αDp − 1)

⋆ ⋆ ⋆ H0(αDp − 1) + (αDp − 1)′H0

























< 0 (38)

Setting P22 = I and recalling that S11 = Q−1
11 then yields

Q12 = −Q11P12 (60)

S11Q13 = −P13P
−1
33 (61)

P12P
′
12 = P11 − S11 −N (62)

Using these equations,it then follows that

H̄(s) ∼

[
−XAH̄ −XBH̄

CH̄ 0

]
(63)

where

X :=

[
(P11 − S11 −N) 0

0 N

]
(64)

Temporarily assume that H̄(s) is externally positive. Then,
because H̄(s) is causal, it follows from Lemma 1, and the

realisation (63) that ‖H̄(s)‖1 ≤ H0 if

−CH̄A
−1
H̄

X−1XBH̄ ≤H0 (65)

⇔ H0 +CH̄A
−1
H̄

BH̄ ≥0 (66)

Now, setting AH̄ = A
′

H̄
and BH̄ = −CH̄ (which implies

Bc = −Cc
′, Ba = −Ca

′, Ac = Ac
′ and Aa = Aa

′ as

mentioned in Part 1) gives

H0 −CH̄A
−1
H̄

CH̄ ≥ 0 (67)

This inequality implies that ‖H̄(s)‖1 ≤ H0 and thus, by

Lemma 3, if H(s) is also externally positive, ‖H(s)‖1 < H0.

Inequality (67) then gives LMI (39) in the proposition.

The temporary assumption of external positivity of H̄(s) and

H(s) is now removed. LMI (40) in the proposition implies that

X is positive definite and hence that X
1

2 exists. Thus using

X
1

2 as a similarity transformation, an equivalent state-space

realisation of H̄(s) is

H̄(s) ∼

[
ÂH̄ B̂H̄

ĈH̄ 0

]
=

[
−X

1

2AH̄X
1

2 −X
1

2BH̄

CH̄X
1

2 0

]

(68)

Therefore, with the choices BH̄ = −CH̄ and AH̄ = A
′

H̄
, it

is clear that ÂH̄ = Â′

H̄
and B̂H̄ = Ĉ′

H̄
; by Fact 2, H̄(s) is

indeed externally positive. Finally because H̄(s) = Hc(s) +
Ha(s) where Hc(s), Ha(s) ∈ RH∞, are externally positive, it

follows that H(s) = Hc(s)+H∼
a (s) is also externally positive.

Part 3: Nonsingularity of P

In Part 1 of the proof it was assumed that P > 0. Here,

we show that satisfaction of the LMI’s in the proposition
guarantees that this is indeed the case. P > 0 is equivalent to

Π′
1PΠ1 = Π2Π1 > 0, which can be written as

Π2Π1 =




Q11 I 0
I P11 P13

0 P ′
13 P33


 > 0 (69)

By the Schur Complement this is equivalent to
[

Q11 I

I P11 − P13P
−1
33 P ′

13

]
> 0 (70)

Applying the Schur Complement again and noting equation
(51) this is equivalent to inequality (40) as required. ��

Remark - tractability. Proposition 2 gives entirely convex

conditions for stability analysis using Zames-Falb multipliers
and requires no line search (which appears in the conditions

of [28], [5]) and no choice of multiplier pole locations and

order (which is required in the conditions of [8], [10]). �

Remark - conservatism. There are several sources of con-

servatism present in Proposition 2. The first is the constraint

on the multiplier: H(s) = Hc(s) + H∼
a (s) is constrained

to be externally positive. This is not only a fundamental

constraint on the multiplier, but also its enforcement using

Fact 2 requires the matrices Ac and Aa to be symmetric, and
that Bc = −Cc

′ and Ba = −Ca
′; these are sufficient but

not necessary conditions for H(s) to be externally positive.

Conservatism also arises from the structure of the matrix
P because P23 is assumed zero. This structure is assumed

because it allows Proposition 2 to be expressed entirely in
convex conditions: if P23 6= 0, these conditions become non-

convex. The size of of P ∈ R
3np×3np is also specific and

again is assumed to enable convex and elegant conditions to be
obtained. Of course, both of these structural conditions could

be dropped, but this would result in considerable complication

of Proposition 2: conservatism is traded for tractability. �

mct6


mct6


mct6
Add transpose

mct6
Add transpose

mct6


mct6
Add transpose
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Remark - multiplier. H̄(s) can be constructed as H̄(s) =
Hc(s) +Ha(s) using equation (68). As both Aa and Ac are
positive definite, the realisation (68) implies Hc(s), Ha(s) ∈
RH∞ as expected. Therefore H∼

a (s) = Ha(−s) ∈ RH⊥

∞,
again as expected, which allows the construction of the mul-

tiplier M(s) = H0 −Hc(s)−H∼
a (s). �

B. Including Popov Multipliers

Frequently the nonlinearity φ(.) may satisfy an additional
sector condition; that is

φ ∈ Sector[0, β] (71)

This is certainly the case when φ(0) = 0 because the slope-
restriction then directly implies a sector bound: φ ∈ NS

[0,α] ⇒
φ ∈ Sector[0, α]. More generally a tighter bound on the

sector might be available: β < α. In either case, it may be
possible to reduce the conservatism of the stability analysis by

augmenting the Zames-Falb multiplier with a Popov multiplier

[27]. In the IQC framework,the Popov multiplier is given by

ΠP (s) =

[
0 (βν + ηs)∼

(βν + ηs) −2ν

]
(72)

Thus, with a Popov multiplier, φ(.) satisfies the IQC given in

equation (7) but with Π(s) given by [13], [27]:

Π(s) = ΠZF (s) + ΠP (s) (73)

=

[
0 (νβ+ηs+αM(s))∼

(νβ+ηs+αM(s)) −2ν−M∼(s)−M(s)

]
,

ν ∈ R+, η ∈ R, M(s) ∈ MR (74)

Following a similar procedure to that described in Section

III-A then yields the following result.

Proposition 3: Assume P (s) ∈ RH∞ with Dp = 0 and that

φ(.) ∈ N S
[0,α] and φ ∈ Sector[0, β]. Then the system in Figure

1 is stable if there exist positive definite matrices S11,P11,

N, Ac, Aa, positive scalars H0 and ν, unstructured matrices
Cc and Ca, and an indefinite scalar η, such that inequalities

(39) - (40) from Prop. 2 hold and in addition inequality (75)

overleaf also holds.

Proof: The proof is omitted but follows along the same lines

as described in Section III-A. The noteworthy features of
the proof are the addition of the Popov terms in the fourth

row/column in inequality (75), which are incorporated in a

similar manner as described in [27]. ��

Remark - improvements. The Popov multiplier was added

to the Zames-Falb multiplier in [27] in order to improve the

effectiveness of the search. As noted in [3], [6] the addition of
the Popov multiplier in an otherwise causal search (see [27])

can be viewed as an extra anti-causal element; the addition of
the Popov multiplier in an otherwise anti-causal search (see

[5]) can be viewed as an extra causal element. However, in the

non-causal search proposed here, it may be anticipated that the
Popov terms may not yield improvements because the search,

by its nature, features both causal and anti-causal elements;

this will be verified later. �

IV. NUMERICAL EXAMPLES

Despite some complacency in the literature, determining which

approach to Zames-Falb multiplier computation is “best” is not
trivial [6]. Perhaps the most widely used search is that of [8]

and indeed this is useful for many examples. However, often

its success depends on the use of a high-order multiplier which
may create numerical problems and limits its use in practice.

The examples used here are, as in [6], inspired by those
suggested by [18]. They show that in some cases the search

over externally positive Zames-Falb multipliers can be both

attractive and competitive. The plants considered have the form

Pi(s) =
1

(s2 + 2ζiωns+ ω2
n)

2
(76)

with ωn = 10 and ζi ∈ {0.05, 0.1, 0.15}. For simplicity the

sector and slope bounds are assumed identical: α = β.

Table I shows the results obtained. Comparisons are made with

the work of [19], the causal/anti-causal searches of [28], [5]
and also those of [8]. Popov multipliers have been included

in the causal/anti-causal searches of [27], [5] and [8]. For the

results of [8], an 18th order Zames-Falb was used with half
the poles located at s = −1 and half at s = 1, as in [6]. The

set-up used was an Intel i7 920 PC equipped with 6GB RAM,
running Linux Mint 13, Matlab 15a and using the LMI solver

from the Robust Control Toolbox. It is interesting to note that

• For these examples the bounds on α offered by Proposi-

tions 2 and 3 are less conservative than the results given

by [8] with a Popov multiplier.
• The results of [28], [27], [5] offer superior results to

Propositions 2 and 3 for ζ = 0.05 and ζ = 0.1, but

are valid only when the nonlinearity φ(.) is odd.
• Propositions 2 and 3 offer the least conservative results

(narrowly) for the case when ζ = 0.15.
• As mentioned earlier, because the search proposed in

Proposition 2 contains causal and anti-causal terms, one

would not expect a search which, in addition, features a
Popov multiplier (Proposition 3) to provide any improve-

ments [3]. This is indeed the case, with Popov multipliers

not offering any improvement, at least for the case when
the slope and sector bound are identical i.e. α = β.

• The square brackets in Table I show the computational

time required to compute the largest slope size (α) for
each method. It can be seen that the calculations involving

the positive Zames-Falb multipliers require the least com-

putation time in all cases, except for the results obtained
from Park’s approach [19]. It is anticipated that this trend

would be more evident for higher-order systems.

V. CONCLUSION

The properties of externally positive linear systems have been
exploited in Zames-Falb multiplier analysis. The main appeal

of the work is that the search over this class of multipliers is

purely convex, with no additional choices required from the
user. The analysis is valid, by the nature of the multipliers, for

non-odd nonlinearities. In some instances, the results obtained

using this approach are competitive with the state-of-the-art.
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



















S11Ap+A
′

pS11+
α(C′

pCa +Ca
′Cp)

S11Ap+A
′

pP11+Ac
′+Aa

′

−α(C′

pCc−Ca
′Cp)

A′

pN+Aa
′

−αC′

pCa

S11Bp−Cc
′
−Ca

′

+αH0C
′

p + βνC′

p + ηA′

pC
′

p

⋆
A′

pP11+P11Ap

−α(Cc
′Cp+C

′

pCc)
A′

pN−Aa

−αC′

pCa

P11Bp+Cc
′+Ca

′

+αH0C
′

p + βνC′

p + ηA′

pC
′

p

⋆ ⋆ −2Aa NBp + 2Ca
′

⋆ ⋆ ⋆ −2(H0 + ν) + η(CpBp +B′

pC
′

p)





















< 0 (75)

TABLE I
MAXIMUM SLOPE SIZES, α, FOR WHICH STABILITY IS GUARANTEED. THE SQUARE BRACKETED FIGURE INDICATES THE NUMBER OF SECONDS

COMPUTATION TIME REQUIRED.

Method Example Class of φ(.)
ζ = 0.05 ζ = 0.10 ζ = 0.15

Park [19] 799.9995 [0.50] 3199.9981 [0.59] 7199.9767 [0.40] NS
[0,α]

Z-F (causal plant order) [28] 1819.9832 [53.19] 4972.3331 [51.51] 7495.5867 [50.51] N
S,odd

[0,α]

Z-F (causal plant order) + Popov [27] 1944.9471 [287.09] 5721.7948 [263.05] 8679.4280 [275.70] N
S,odd

[0,α]

Z-F (anti-causal plant order) [5] 1819.9832 [53.67] 4972.3331 [51.70] 7495.5867 [50.63] N
S,odd

[0,α]

Z-F (anti-causal plant order) + Popov [5] 1944.9471 [286.47] 5721.7948 [263.30] 8679.4280 [275.62] N
S,odd

[0,α]

Z-F (non-causal, positive) Prop.2 920.8806 [8.79] 4091.6504 [5.75] 8736.7144 [4.75] NS
[0,α]

Z-F (non-causal, positive) + Popov Prop.3 920.8806 [22.78] 4091.6504 [22.42] 8736.7144 [14.97] NS
[0,α]

Z-F Chen and Wen [8] + Popov 871.2747 [67.04] 3620.8743 [64.32] 8043.6727 [64.72] NS
[0,α]
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