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a b s t r a c t

This paper studies the class of logarithmically completely monotonic (LCM) functions. These functions
play an important role in characterizing externally positive linear systems which find applications in
important control problems such as non-overshooting reference tracking. Conditions are proposed to
ensure a rational function is LCM, a result that enables the known space of linear continuous-time
externally positive systems to be enlarged and an efficient and optimal pole-placement procedure for
the monotonic tracking controller synthesis problem to be developed. The presented conditions are
shown to be less conservative than existing approaches whilst being computationally tractable.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The class of completely monotonic functions (Widder, 2015)
play an important role in diverse application areas, ranging from
probability theory (Kimberling, 1974) and physics (Stanislavsky
& Weron, 2020) to combinatorics (Ball, 1994; Chen & Qi, 2005).
In automatic control, complete monotonicity of transfer functions
characterizes the class of externally positive systems, that is,
systems whose impulse responses are non-negative for all times,
mapping non-negative inputs to non-negative outputs (Blanchini,
Samaniego, Franco, & Giordano, 2018). Systems that preserve
positivity in this way are often encountered in physical sys-
tems operating on ‘‘positive quantities’’ like ion concentrations
and population sizes, as encountered in, for example, chemi-
cal systems (Leenheer, Angeli, & Sontag, 2007), biological sys-
tems (Blanchini et al., 2018) and transportation systems (Schwab
& Lunze, 2020a). Many practical control systems also have to be
designed to ensure the positivity of certain signals. For example,
many important transient response control problems require the
appropriate transfer functions to be externally positive (Malik,
Darbha, & Bhattacharyya, 2009). Therefore, studying externally
positive systems has the potential to improve the capabilities
of many control problems. For each of these problems, their
solutions are currently limited by our inability to fully character-
ize the class of externally positive systems. As remarked earlier,
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externally positive systems can be characterized as completely
monotonic transfer functions (Bryan, 1999). Therefore, the class
of logarithmically completely monotonic (LCM) rational functions
introduced in Ball (1994) become relevant, as all these functions
are also completely monotonic. In this paper, we build upon
this work and present several novel results for LCM functions.
In particular, we provide a set of conditions that characterize a
larger family of LCM rational functions than what was previously
available, and present generalizations of the results in Ball (1994)
to systems with complex zeros and poles.

It appears that no simple condition can be obtained for char-
acterizing all externally positive systems in terms of their transfer
function coefficients or pole-zero locations (Schwab & Lunze,
2020b). In spite of such difficulties, several sufficient conditions
that ensure that a given transfer function is externally positive
have been developed (see, e.g., Drummond, Turner, & Duncan,
2019; Liu & Bauer, 2008; Schwab & Lunze, 2020a; Taghavian &
Johansson, 2022, 2023), all of which have some degree of conser-
vatism. In this paper, sufficient conditions for guaranteeing that
a transfer function is externally positive are also developed, but
the framework of LCM rational functions is exploited to reduce
the conservatism of earlier results. This reduced conservatism is
demonstrated through both relaxed assumptions on the system
and better performance in numerical examples. For example, in
contrast to Drummond et al. (2019), the conditions provided
in this paper are applicable to systems with multiple dominant
poles and expose all externally positive systems of up to order
two. Furthermore, as opposed to Liu and Bauer (2008), Schwab
and Lunze (2020a), Taghavian and Johansson (2022), the pre-
sented conditions can also be applied to transfer functions with
complex-conjugate zeros and poles.

By using the developed LCM conditions to enlarge the class
of systems that can be guaranteed to be externally positive,
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our results are expected to offer improved solutions to sev-
eral problems in control theory, including transient response
control (Malik, Darbha, & Bhattacharyya, 2012), Zames–Falb mul-
tiplier search methods (Turner & Drummond, 2019) and the
problem of synthesizing controllers that ensure non-overshooting
reference tracking (Taghavian & Johansson, 2020). Like the char-
acterization problem, designing output feedback control loops
with a non-negative closed-loop impulse response is an open
problem in control theory (Schwab & Lunze, 2020b), even though
it plays an important role in application areas such as traffic con-
trol (Schwab & Lunze, 2020a) and robotics (El-Khoury, Crisalle,
& Longchamp, 1993). Specifically, it was shown in Schwab and
Lunze (2021) that designing adaptive cruise control systems
based on this property instead of string stability can guarantee
collision avoidance in vehicle platoons. Furthermore, imposing
non-negativity on the impulse response samples of the closed
loop system is a popular way to eliminate both overshoots and
undershoots in the system response (Taghavian, Johansson et al.,
2021). The importance of non-overshooting reference tracking
has led to the development of several interesting techniques
to address this problem, such as the state-feedback controllers
of Schmid and Ntogramatzidis (2010), the two-parameter con-
troller structures of Darbha (2003) and the integrating controllers
of Schwab and Lunze (2020b) to name just a few. In this paper,
we introduce a pole-placement technique to synthesize feedback
controllers that can minimize a general convex objective function
whilst ensuring the closed-loop system to be externally positive,
hence guaranteeing non-overshooting reference tracking. The
proposed design technique has many advantages compared to the
state-of-the art. Contrary to Schmid and Ntogramatzidis (2010),
the presented conditions can be used to design output feedback
controllers; in contrast to Darbha (2003), it is a computationally
tractable and constructive approach based on convex optimiza-
tion; and different from Schwab and Lunze (2020b), the plant
under control is not required to have a non-negative impulse
response.

The paper is organized as follows. We clarify the relationship
between LCM functions, completely monotonic functions and
externally positive transfer functions in Section 2. In Section 3,
we derive a number of conditions that characterize LCM transfer
functions. These conditions are either necessary or sufficient or
both. In Section 4 we focus on the implication of the obtained
results in control theory. In particular, we use the LCM conditions
to characterize the family of externally positive systems and
design optimal output feedback controllers ensuring a monotonic
tracking. Finally conclusive remarks are presented in Section 5.

1.1. Notation

We use the following notation. The set of negative numbers
is R<0 and the set of n-dimensional vectors with negative com-
ponents is R

n
<0. The Laplace transform is denoted by L{·} and its

inverse by L
−1{·}. The kth derivative of function H(s) is denoted

by H (k)(s), while the mth power of H(s) is denoted by Hm(s). For
z ∈ C, Re(z) denotes the real part, Im(z) denotes the imaginary
part and ̸ (z) denotes its angle. Assuming x, y ∈ R

n, weak
majorization of y by x is denoted by x ≻w y and vector x with
the same components sorted in descending order is denoted by
x↓. The n-fold Cartesian product of a set I with itself is denoted
by In = I × I · · · × I . The degree of a polynomial is denoted by
Deg(.).

2. Preliminaries

We focus on rational functions of the form

H(s) =
B(s)

A(s)
= K

∏m

i=1(s− zi)
∏n

i=1(s− pi)

=
b0s

n + b1s
n−1 + · · · + bn

sn + a1sn−1 + · · · + an
(1)

where K ̸= 0. For convenience, we introduce the vectors z ∈ C
m

and p ∈ C
n whose components are the zeros zi and the poles

pi, respectively. Note that in this notation, b0 = b1 = · · · =

bn−m−1 = 0 and bn−m = K .

2.1. (Logarithmically) completely monotonic functions

We begin by introducing the classes of completely monotonic
and logarithmically completely monotonic functions and clarify
the relations between the two.

Definition 1 (Widder, 2015). A function H : C → C is called
completely monotonic (CM) on I ⊆ R if

(−1)kH (k)(s) ≥ 0 (2)

holds for all k ∈ N0 and s ∈ I .

Definition 2 (Qi & Chen, 2004). A function H : C → C is said
to be logarithmically completely monotonic (LCM) on I ⊆ R, if
H(s) > 0 and

(−1)k[logH(s)](k) ≥ 0

holds for all k ∈ N and s ∈ I .

It can be shown that LCM functions form a proper subset of CM
functions (Qi & Chen, 2004). In particular, a function H : C→ C

is LCM if and only if H1/k is CM for all k ∈ N (Berg, 2004).

2.2. Externally positive systems

Logarithmic complete monotonicity is used in this paper to
characterize systems with non-negative impulse responses.

Definition 3 (Blanchini et al., 2018). The system with transfer
function H : C → C is called externally positive if its inverse
Laplace transform satisfies h(t) = L

−1{H(s)} ≥ 0 for all t ∈

[0,+∞).

A linear time-invariant continuous-time system with an ex-
ternally positive transfer function has a non-negative impulse
response. Externally positive functions are closely related to CM
functions through the Bernstein theorem (Schilling, Song, & Von-
dracek, 2012). In particular, if we choose I = (r0,+∞) where
r0 ≥ σ (H) and σ (H) = maxi {Re(pi)} is the pole abscissa, then the
transfer function H(s) given by (1) is completely monotonic on
I if and only if it is externally positive (Bryan, 1999; Taghavian
& Johansson, 2021). This means that every CM function is the
Laplace transform of a non-negative function in the time domain
and vice versa.

Most importantly, if H(s) is LCM, then it is CM, and hence
externally positive. Therefore in this paper, we are interested in
algebraic conditions on the zeros and poles of rational functions
H : C → C of the form (1) that ensure that H(s) is LCM. These
conditions also ensure the transfer function H(s) is externally pos-
itive and, therefore, help characterize a large family of externally
positive systems.
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2.3. Majorization theory

Our novel characterizations of LCM functions are derived
based on majorization theory. Majorization theory, determines
how ‘‘spread out’’ the components of two vectors are with respect
to each other and is an important tool in the study of mathe-
matical inequalities (Marshall, Olkin, & Arnold, 2010). Notably,
as shown in Drummond et al. (2019), majorization can be used
to derive an elegant characterization of a subset of externally
positive rational functions in terms of their zeros and poles.

Definition 4. For a vector z ∈ R
n, let z↓ be the vector of the

same components sorted in descending order. We say that x ∈ R
n

weakly majorizes y ∈ R
n, denoted x ≻w y, if

k
∑

i=1

x
↓

i ≥

k
∑

i=1

y
↓

i

for all k = 1, 2 · · · , n.

The following proposition presents operators that preserve a
majorization relation.

Proposition 1 (Marshall et al., 2010, Theorem A.2). Let I ⊆ R,
x, y ∈ In and g : I → R be convex and increasing on I. If x ≻w y,
then

g(x) ≻w g(y)

where g(x) =
[

g(x1), . . . , g(xn)
]T
.

A special case of Proposition 1 is the celebrated Karamata’s
inequality:

Proposition 2 (Weyl, 1949). Let I ⊆ R, x, y ∈ In and g : I → R be
convex and increasing on I. If x ≻w y, then

n
∑

i=1

g(xi) ≥

n
∑

i=1

g(yi)

Propositions 1 and 2 will be used in the next section to derive
conditions under which (1) is LCM.

3. LCM conditions

In this section, we are interested in conditions under which
rational functions H : C → C of the form of (1) are LCM. Since
(1) is uniquely determined by K ∈ R, z ∈ C

m and p ∈ C
n, we seek

such conditions in terms of the function’s zeros, poles and static
gain. We begin by introducing conditions that are both necessary
and sufficient for (1) to be LCM.

3.1. A full characterization

The following lemma offers a characterization for when (1) is
LCM in the general case where z ∈ C

m and p ∈ C
n.

Lemma 1. H : C→ C defined in (1) is logarithmically completely
monotonic if and only if K > 0 and

n
∑

i=1

exp(pit) ≥

m
∑

i=1

exp(zit) (3)

holds for all t ∈ [0,+∞).

Proof. First note that H(s) > 0 holds for all s > σ (H) if and only
if K > 0. Calculating the successive derivatives of logH(s) reveals
that (1) is LCM if and only if

(−1)k[logH(s)](k)

= (k− 1)!

(

n
∑

i=1

1

(s− pi)k
−

m
∑

i=1

1

(s− zi)k

)

= (−1)k−1G(s)(k−1) ≥ 0 (4)

holds for all k ∈ N, where

G(s) =

n
∑

i=1

1

s− pi
−

m
∑

i=1

1

s− zi
(5)

According to (2), this is equivalent to G(s) being completely
monotonic or equivalently, externally positive (Bryan, 1999; Tagha-
vian & Johansson, 2021). This is realized if and only if g(t) =
L
−1{G(s)} is non-negative which yields inequality (3). □

Lemma 1 is a significant improvement of a corresponding
result in Ball (1994), which only proved the ‘if’ part in the special
case when z ∈ R

m
<0 and p ∈ R

n
<0. The lemma immediately nar-

rows down the family of LCM transfer functions (1) by revealing
a few trivial cases in which the function cannot be LCM.

Proposition 3. The following conditions are necessary for H : C→

C of the form (1) to be LCM:

(a) n ≥ m.

(b) maxRe(pi) ≥ maxRe(zi).
(c)

∑n

i=1 pi ≥
∑m

i=1 zi whenever n = m.

Proof. Condition (a) follows by setting t = 0 in (3).
Condition (b) is proved by contradiction. Assume that max

Re(zi) > maxRe(pi). Dividing both sides of (3) by exp(max Re(zi)t)
would violate the inequality as t → +∞. Hence, if (1) is LCM,
then max Re(zi) ≤ maxRe(pi) holds true.

Condition (c) has also been mentioned in Ball (1994). Here, we
use an alternative way to show its necessity: When n = m, both
sides of (3) are equal at t = 0. Therefore, for (3) to hold for all
t ≥ 0, it has to hold for the derivatives at t = 0 as well, namely
for
n
∑

i=1

pi exp(pit) ≥

n
∑

i=1

zi exp(zit)

at t = 0. This proves the third inequality. □

The main drawback of Lemma 1 is that it requires validating
inequality (3) on the infinite range t ∈ [0,∞). In practice,
checking (3) is often implemented (naively) by sampling t ∈

[0,∞) and evaluating the condition at the chosen time instants.
But this procedure does not provide any formal guarantees of the
inequality holding in the semi-infinite range. A potential solution
to this problem involves restricting the poles p and zeros z to
some subsets. For example, it can be shown that if z and p have
only real commensurable components i.e. assuming that there is
some γ ∈ (0,+∞) such that zi/γ , pi/γ ∈ N0, one may convert
(3) to the following polynomial inequality

P(x) =

n
∑

i=1

xpi/γ −

m
∑

i=1

xzi/γ ≥ 0, ∀x ∈ [1,+∞) (6)

after applying the change-of-variables x = exp(γ t). For fixed
poles and zeros, Condition (6) can be readily checked via semi-
definite programming using the Markov–Lukács theorem (Bil-
ligheimer, Polya, & Szegö, 1997; Malik et al., 2009). However, in
addition to restricting the zeros and poles to be real commen-
surable, this method does not allow for any convenient way to
optimize over the pole and zero locations.

3
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3.2. Sufficient conditions

The aim of this section is to obtain sufficient conditions for
(1) to be LCM. In contrast with Lemma 1, these conditions are no
longer necessary for logarithmic complete monotonicity, but they
can be checked using a finite number of inequalities which makes
them useful for control synthesis.

3.2.1. Real zeros and poles

In Ball (1994), it was shown that a rational transfer function
(1) with K > 0 is LCM if

p, z ∈ (−∞, 0]n and p ≻w z. (7)

This is an elegant condition, but it can sometimes be conservative
and it is restricted to systems with real zeros and poles. In the
following theorem, we present a sufficient condition for LCM
functions which is always less conservative than (7) and has a
straight-forward extension to complex zeros and poles. Compared
to (7), the main point of differentiation with this theorem is the
inclusion of the terms µ and δ, with µ helping to reduce the
conservatism by scaling the conditions and δ simply introducing
a translation of the poles and zeros to allow positive values to be
considered.

Theorem 1. The function H(s) in (1) with zi, pi ∈ R, m = n and

K > 0 is LCM if

(p+ δ)µ ≻w (z + δ)µ

and

n
∑

i=1

(pi + δ)
k ≥

n
∑

i=1

(zi + δ)
k ∀k ∈ {1, . . . , µ− 1} (8)

holds for some µ ∈ N and some δ > −mini,j{pi, zj}.

Proof. Since n = m, inequality (8) is satisfied with equality for
k = 0. By assumption, the inequality also holds for 1 ≤ k ≤ µ−1.
To show that (8) is met for k ≥ µ, recall that Proposition 2 states
that the relation (p+ δ)µ ≻w (z + δ)µ implies that

n
∑

i=1

g ((pi + δ)
µ) ≥

n
∑

i=1

g ((zi + δ)
µ) (9)

for every convex and increasing function g : I → R. Choosing
I = [0,+∞) and g(x) = xk/µ in (9) proves inequality (8) for all
k ∈ {µ,µ + 1, . . .}, because for these values of k, g is convex
and increasing on I and (zi + δ), (pi + δ) ∈ I holds for all i as
δ > −mini,j{pi, zj}. Hence, since (8) holds for all k ≥ 0, one may
write

n
∑

i=1

(pi + δ)
ktk

k!
≥

n
∑

i=1

(zi + δ)
ktk

k!
(10)

for all k ∈ N0 and t ∈ [0,∞). Summing both sides of (10) over
k ∈ N0 results in (3), and, therefore the function H : C → C of
the form (1) is LCM due to Lemma 1. □

Considering µ = 1 in Theorem 1 recovers Ball’s condition (7).
The following proposition indicates that the conditions in The-
orem 1 are, in general, less conservative than the condition (7)
from Ball (1994).

Proposition 4. Increasing µ in Theorem 1 enlarges the set of

rational functions (1) that can be proven to be LCM.

Proof. Let µ2 > µ1 and p and z satisfy the hypotheses of
Theorem 1 with µ = µ1. Then, (p+δ)

µ1 ≻w (z+δ)µ1 and invoking

Fig. 1. LCM regions found in Example 1, by using different values of µ in
Theorem 1.

Proposition 1 with I = [0,+∞) and g(x) = xµ2/µ1 establishes
that (p+ δ)µ2 ≻w (z + δ)µ2 . In addition, using Proposition 2 with
g(x) = xk/µ1 reveals that (8) holds for k ∈ {µ1, . . . , µ2 − 1}.
We can thus conclude that p and z also satisfy the hypothesis
of Theorem 1 with µ = µ2. This indicates that the set of rational
functions (1) satisfying Theorem 1 with µ = µ1 is a subset of that
with µ = µ2. □

We will now evaluate the sufficient conditions obtained in
Theorem 1 in a numerical example. This example demonstrates
that the conservatism can disappear even with a finite value of
µ.

Example 1. Consider the following transfer function

H(s) =
(s+ 2)(s+ 3)(s+ 5)(s+ 6)(s+ 8)

(s− p1)(s− p2)(s+ 1)(s+ 4)(s+ 7)

The values of p1 and p2 for which the conditions in Theorem 1
guarantee the system to be LCM are shown in Fig. 1, as the
transparent colored regions on the right side of the specified
boundaries. As anticipated by Proposition 4, increasing µ enlarges
the set of LCM functions detected by Theorem 1. Interestingly,
the conservatism disappears with µ = 3 and the set of LCM
functions characterized by the sufficient conditions of Theorem 1
coincides with the exact set of LCM functions (and externally
positive transfer functions). This is evident in Fig. 1 as the region
specified with µ = 3 (red) includes all the pairs (p1, p2) that
satisfy

n
∑

i=1

pi ≥

n
∑

i=1

zi (11)

which is known to be necessary for H(s) to be externally posi-
tive (Ball, 1994).

3.2.2. Complex zeros and poles

Extension of the condition (7) from Ball (1994) to strictly
proper systems (m < n) is straightforward by assuming that the
missing zeros are located at z = −∞. Yet, (7) is only applicable to
systems with real zeros and poles. Below, we extend Theorem 1,
which contains (7) as a special case, to strictly proper transfer

4
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functions as well as to complex zeros and poles. To this aim, we
introduce θ ∈ R

n, φ ∈ R
m, w, v ∈ R

n+m based on z and p:

θi = ̸ (pi + δ), 1 ≤ i ≤ n

φi = ̸ (zi + δ), 1 ≤ i ≤ m

wi =

{

(pi + δ)
µ, 1 ≤ i ≤ nr

0, nr + 1 ≤ i ≤ n

0, n+ 1 ≤ i ≤ n+m

vi =

{

0, 1 ≤ i ≤ nr

|pi + δ|
µ, nr + 1 ≤ i ≤ n

|zi + δ|
µ, n+ 1 ≤ i ≤ n+m

(12)

Here, p1, . . . , pnr are assumed to be real and pnr+1, . . . , pn are the
complex-conjugate poles. Note that w contains all the (shifted
and scaled) poles except the complex-conjugate ones and v con-
tains the absolute values of all the zeros and complex-conjugate
poles. The next corollary constitutes our most general sufficient
condition for a transfer function to be LCM.

Corollary 1. Let z ∈ C
m, p ∈ C

n, m ≤ n and K > 0. The function
H(s) is LCM if w ≻w v and

n
∑

i=1

w
k/µ

i +

n
∑

i=1

v
k/µ

i cos(θik) ≥

n+m
∑

i=n+1

v
k/µ

i cos(φi−nk) (13)

holds for all k ∈ {1, 2, . . . , µ − 1} and some µ ∈ N and some
δ > −mini,j{Re(pi), Re(zj)}, where θ, φ,w, v are defined in (12).

Proof. We start by expanding the condition (3) as

+∞
∑

k=0

n
∑

i=1

(pi + δ)
ktk/k! ≥

+∞
∑

k=0

m
∑

i=1

(zi + δ)
ktk/k! (14)

where t ∈ [0,∞). According to Lemma 1, logarithmic complete
monotonicity can be assured by requiring the inequality (14) to
hold term-by-term for all corresponding powers of k ∈ N0, i.e.

n
∑

i=1

(pi + δ)
k ≥

m
∑

i=1

(zi + δ)
k (15)

This is equivalent to (13) noting the variable change (12) and
therefore, it holds for k ≤ µ − 1 by assumption and it holds for
k = 0 because n ≥ m. In order to show that (15) also holds for
k ≥ µ, we first write

n
∑

i=1

(pi + δ)
k ≥

n
∑

i=1

w
k/µ

i −

n
∑

i=1

v
k/µ

i (16)

Since w ≻w v, it is deduced by Proposition 2 that

n
∑

i=1

w
k/µ

i −

n
∑

i=1

v
k/µ

i ≥

n+m
∑

i=n+1

v
k/µ

i (17)

as the function g(x) = xk/µ is convex and increasing on x ∈
[0,+∞) when k ≥ µ. Together, inequalities (16) and (17) imply
that
n
∑

i=1

(pi + δ)
k ≥

n+m
∑

i=n+1

v
k/µ

i

=

m
∑

i=1

|zi + δ|
k ≥

m
∑

i=1

(zi + δ)
k

Thereby we have shown that condition (15) holds for all k ∈ N0

and hence, that H(s) is LCM. □

Note that Corollary 1 recovers Theorem 1 when m = n and
pi, zi ∈ R for all i = 1, 2, . . . , n.

4. Applications in control theory

The sufficient condition for logarithmic complete monotonic-
ity that we have derived in Corollary 1 also ensures that a given
transfer function is externally positive. In this section, we ex-
ploit this fact to characterize externally positive systems and
propose a controller design procedure which guarantees that the
closed-loop system has a monotonic step response.

4.1. Characterization of externally positive systems

A linear time-invariant system is externally positive if and only
if its transfer function is externally positive. Finding a complete
characterization of the pole-zero patterns for which (1) is exter-
nally positive is still an open problem (Schwab & Lunze, 2020b).
However many sufficient conditions have been derived in the
literature and for lower-order systems, most of the externally
positive transfer functions are exposed using a combination of
these results. For the sake of convenience, we provide conditions
that characterize the full family of first- and second-order exter-
nally positive functions. Since these functions are a superset of
the LCM functions, these conditions are necessary for a function
to be LCM.

Proposition 5. Let n = 1. The transfer function (1) is externally

positive if and only if K > 0 and B(p↓1 ) ≥ 0.

Proof. When m = 0, the condition B(p↓1 ) ≥ 0 is already
satisfied as B(p↓1 ) = K and when m = 1, it can be written as
K (p↓1 − z1) ≥ 0. In either case, the system is externally positive,
according to Schwab and Lunze (2020a). □

Proposition 6. Let n = 2 with no zero-pole cancellations. The

transfer function (1) is externally positive if and only if p1, p2 ∈ R,

K > 0, B(p↓1 ) ≥ 0, B′(p↓1 ) ≥ 0 and B(p↓1 ) ≥ B(p↓2 ) where B′(.) is the

numerator derivative.

Proof. According to Darbha (2003), H(s) is not externally positive
if it has complex-conjugate poles. Therefore, we assume p1, p2 ∈

R and split the proof in two cases:

Case 1: p1 ̸= p2. Following the partial fraction expansion and
inverse Laplace transform, one has

h(t) = Kδ(t)1[n=m] + k1 exp(p
↓

1 t)+ k2 exp(p
↓

2 t) (18)

where 1 is the indicator function. Assuming t > 0 in (18) and
dividing both sides by exp(p↓1 t) indicates that h(t) ≥ 0 is met if
and only if

k1 + k2 exp((p
↓

2 − p
↓

1 )t) ≥ 0 (19)

The supremum and infimum of the left hand side of (19) are
achieved at t = 0 and t → +∞. Hence, (19) is satisfied for all
t > 0 if and only if it is satisfied for t = 0 and t → +∞. This
is equivalent to requiring that k1 ≥ 0 and k1 + k2 ≥ 0 hold true,
where the residues k1 and k2 can be written as

k1 = B(p↓1 )/(p
↓

1 − p
↓

2 ), k2 = B(p↓2 )/(p
↓

2 − p
↓

1 ) (20)

This gives the conditions B(p↓1 ) ≥ 0 and B(p↓1 ) ≥ B(p↓2 ).
In case n = m, condition K > 0 is also required for (1) to

be externally positive according to (18) and condition B′(p↓1 ) ≥ 0
is automatically satisfied when B(p↓1 ) ≥ B(p↓2 ). In case n > m,
both K > 0 and B′(p↓1 ) ≥ 0 are implied from B(p↓1 ) ≥ 0 and
B(p↓1 ) ≥ B(p↓2 ).

Case 2: p1 = p2. The proof is similar to the previous case. Follow-
ing the partial fraction expansion and inverse Laplace transform,

5
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one has

h(t) = Kδ(t)1[n=m] + k1 exp(p
↓

1 t)+ k2t exp(p
↓

2 t) (21)

Assuming t > 0 in (21) and dividing both sides by exp(p↓1 t) =
exp(p↓2 t) indicates that h(t) ≥ 0 is equivalent to k1 + k2t ≥ 0,
which is satisfied for all t > 0, if and only if both k1 and k2
are non-negative. This gives the conditions k1 = B′(p↓1 ) ≥ 0 and
k2 = B(p↓1 ) ≥ 0. Condition K > 0 is also required for (1) to be
externally positive according to (21) when n = m. Otherwise in
case n > m, K > 0 is implied from B(p↓1 ), B

′(p↓1 ) ≥ 0. □

Characterization of higher-order externally positive systems
(n ≥ 3) is complicated and no general conditions exist that do
not impose additional assumptions (Jiang, Gu, Chen, et al., 2001).
Corollary 1 provides sufficient conditions for a transfer function
to be LCM. Since all LCM functions are externally positive, these
conditions characterize a family of externally positive systems of
arbitrary order with a simple set of conditions. But how conser-
vative is such an approach? We try to answer this question in the
following Proposition.

Proposition 7. All LCM transfer functions are externally positive.

All externally positive transfer functions with n ≤ 2 are LCM, but

there are externally positive transfer functions with n ≥ 3 that are

not LCM.

Proof. To prove the equivalence of externally positive and LCM
transfer functions for n ≤ 2, we show that when H(s) in (1)
satisfies the hypothesis of Proposition 5 or Proposition 6, it also
satisfies that of Lemma 1. This is straight-forward for n = 1 and
for m < n = 2. For n = m = 2 the conditions in Proposition 6
can be written as
{

p1 + p2 ≥ z1 + z2

(p↓1 − z1)(p
↓

1 − z2) ≥ 0
(22)

we split the rest of the proof in two cases:

Case 1: z1, z2 ∈ R. In this case, condition (22) is equivalent to
p ≻w z. Thereby, using Proposition 2 with g(x) = exp(xt) results
in (3) and therefore, when function H(s) is externally positive, it
is also LCM.

Case 2: z1 = z̄2 ∈ C\R. For the right hand side of (3) one has

exp(z1t)+ exp(z2t) = 2 exp(Re(z1)t) cos(Im(z1)t)

≤ 2 exp(Re(z1)t)

≤ 2 exp((p1 + p2)t/2) (23)

≤ exp(p1t)+ exp(p2t) (24)

where in the steps (23) and (24) we have used (22) and the Jensen
inequality. This proves (3) and therefore, we conclude that when
n ≤ 2, the sets of externally positive functions and LCM functions
coincide.

The second fact for higher-order systems with n > 2 can be
shown by noting that there exist transfer functions with complex-
conjugate zeros on the right side of the dominant pole which
are externally positive but not LCM. One such example is the
third-order transfer function

H(s) = (s+ 0.5− i)(s+ 0.5+ i)/(s+ 0.8)(s+ 1)(s+ 1.2)

which is externally positive according to Lin and Fang (1997) but
is not LCM, since condition (b) in Proposition 3 asserts that LCM
functions cannot have zeros with real parts greater than their
dominant pole(s). □

Given this one-sided relation between LCM and externally
positive functions, we can only hope for the sufficient conditions

provided in Theorem 1 and Corollary 1 to expose a proper subset
of externally positive systems.

This subset can, however, be very sharp. For example, Corol-
lary 1 with µ = 1 exposes all the first and second-order exter-
nally positive systems with real zeros and poles. To see this, it
is enough to show that if a first or second-order function with
real zeros and poles is LCM, it also satisfies the conditions in
Corollary 1, according to Proposition 7. Here, we show this in the
case n = m = 2 and the other cases can be proved in a similar
way. Firstly, assuming t → +∞ yields

∑2
i=1 exp(pit) ∼ exp(p↓1 t)

and
∑2

i=1 exp(zit) ∼ exp(z↓1 t), using which in (3) implies

p
↓

1 ≥ z
↓

1 (25)

In addition, when function (1) is LCM, condition (c) in Proposi-
tion 3 also holds true. This together with (25) gives w ≻w v with
µ = 1 and any δ, where w and v are defined in (12). Therefore,
the conditions in Corollary 1 are also satisfied.

For higher-order systems (n ≥ 3), although Corollary 1 may
not expose all the externally positive systems, one can increase µ
to get a tight characterization of the parameters that result in an
externally positive system, as shown by the following example.

Example 2. Consider the transfer function

H(s) =
(s+ 10)(s+ 15)(s+ 30)

(s+ 5)(s− p2)(s− p3)

We are interested in the values of p2 and p3 such that H(s) is
externally positive. First consider the case in which p2 and p3 are
real. Without loss of generality, we assume

−35 ≤ p
↓

3 ≤ p
↓

2 ≤ p
↓

1 = −5

and use Theorem 1 with δ = 35. Choosing µ = 1 in Theorem 1
gives the same conditions as in Ball (1994) which results in the
yellow region shown in Fig. 2(a). Choosing µ = 2, however,
expands the region to coincide with the exact region associated
with non-negativeness of the impulse response, revealing all the
possible poles that make H(s) externally positive in the real poles
case. This is evident in Fig. 2(a) as the region corresponding to
µ = 2 (red) is equivalent to all the pairs (p↓2 , p

↓

3 ) satisfying
condition (11) which is known to be necessary for H(s) to be
externally positive. Fig. 2(a) also features the sufficient condi-
tions for a system to be externally positive offered by Liu and
Bauer (2008) and Schwab and Lunze (2020a) in blue and gray
colors respectively. Assuming the poles p2 and p3 to be complex-
conjugates, we can use Corollary 1 to reveal the regions where
system H(s) is externally positive. Note that the conditions in Ball
(1994), Liu and Bauer (2008), Schwab and Lunze (2020a) are not
applicable to complex-conjugate poles.

4.2. Controller synthesis for monotonic tracking

In Section 4.1, it was shown that Corollary 1 (and its special
case Theorem 1) is able to define a relatively sharp inner ap-
proximation of the set of externally positive systems represented
by their zeros and poles. We will now show how these results
can be used to develop an output-feedback synthesis procedure
that guarantees monotonic tracking of reference changes with no
steady-state error.

In order to also optimize the closed-loop system performance,
it is preferable to have a convex characterization of LCM func-
tions, so that the optimal controller synthesis problem can be
solved using reliable numerical routines. While the conditions
in Theorem 1 are not generally convex in z, p (see Fig. 1), they
become so by means of a variable change, as shown in the
following proposition.

6
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Fig. 2. Externally positive regions in Example 2.

Proposition 8. Let δ be a fixed number. The set of vectors π =

(p+ δ)µ↓ ∈ (0,+∞)n and z ∈ (−δ,∞)n that satisfy the hypothesis

of Theorem 1 is a convex set.

Proof. See Appendix A.1. □

Next, we remark the convexity of the set of LCM functions
described by Corollary 1.

Proposition 9. Let the shifted zeros and poles angles be fixed in

the range

|θi|, |φj| <

{

π/2, µ = 1
π/2(µ− 1), µ > 1

(26)

for all i = 1, . . . , n and j = 1, . . . ,m. Then for a fixed δ, the set

of variables π = w↓ ∈ [0,+∞)n+m, vi ≥ 0 (1 ≤ i ≤ n) and

ζi = v
1/µ
n+i > 0 (1 ≤ i ≤ m) that satisfy the conditions in Corollary 1

is a convex set.

Proof. See Appendix A.2. □

Note that the requirement (26) can always be satisfied by
increasing δ. Proposition 9 makes it possible to use the obtained
LCM conditions in a controller synthesis procedure based on
convex optimization without any relaxation or additional conser-
vatism.

Fig. 3. Output feedback control scheme. N(s) = Kc and D(s) = G(s) are
considered in this paper.

Fig. 4. An alternative implementation of the same control structure in Fig. 3. In
this paper we set N(s) = Kc and D(s) = G(s).

Consider the set-up in Fig. 3, where a plant H(s) = B(s)/A(s)
in (1) is controlled using the two-parameter compensator

U(s) =
N(s)

D(s)
R(s)−

F (s)

G(s)
Y (s). (27)

This controller structure has been considered in Taghavian, Drum-
mond et al. (2021), Taghavian and Johansson (2023) for discrete-
time systems with similar objectives. Fig. 3 is used for represen-
tational purposes. In practice, the controller (27) is implemented
as Fig. 4 where Q (s) is any stable polynomial with Deg(Q ) =
Deg(D)+ Deg(G). One advantage of the implementation in Fig. 4
over that of Fig. 3 is that internal stability is preserved when G(s)
is unstable (Vidyasagar, 2011, p.102). In this paper, we set

N(s) = Kc and D(s) = G(s)

and follow the control synthesis, by choosing the polynomials

F (s) =

nc
∑

k=0

fks
nc−k, G(s) =

nc
∑

k=0

gks
nc−k (28)

and the gain Kc ∈ R such that the closed-loop system

Hcl(s) =
Bcl(s)

Acl(s)
=

KcB(s)

B(s)F (s)+ A(s)G(s)

=
bcl0 s

n+nc + bcl1 s
n+nc−1 + · · · + bcln+nc

sn+nc + acl1 s
n+nc−1 + · · · + acln+nc

= KcK

∏m

i=1(s− zi)
∏n+nc

i=1 (s− pcli )
(29)

is stable and has a non-negative impulse response with zero
steady-state tracking error.

As can be observed from (29), the controller leaves the closed-
loop zeros at the locations of the (open-loop) plant. Therefore, by
assuming

nc = n− 1

and that B(s) and A(s) are relatively prime, Sylvester’s theorem
(see e.g. (Goodwin, Graebe, Salgado, et al., 2001, Lemma 7.1))
ensures that we can place the 2n−1 closed-loop poles arbitrarily
without affecting the closed-loop zeros. We first choose

δ > −min
j
{Re(zj)}

7
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to determine the region

pcli ∈ {z ∈ C | − δ < Re(z) < 0}, i = 1, 2, . . . , 2n− 1

in which we would like to place the closed-loop poles. This region
is chosen such that it is neither too restrictive (small δ), nor does
it allow modes that are too fast (large δ) leaving the closed-loop
system sensitive to noise. Next, we choose µ ∈ N in a trade-
off between conservatism of the LCM conditions (small µ) and
computational complexity (large µ). After that, we choose the
shifted closed-loop poles angles θi = ̸ (pcli + δ) as θi = 0 for
i = 1, 2, . . . , nr and

|θi| <

{

π/2, µ = 1
π/2(µ− 1), µ > 1

for i = nr + 1, . . . , 2n − 1, where nr is the desired number
of real-valued closed-loop poles. For the non-real poles to be
complex-conjugates, we make sure that 2n − 1 − nr is an even
number (i.e., nr is odd) and that

θnr+2j−1 = −θnr+2j

holds where j = 1, 2, . . . (2n− nr − 1)/2. Then, we proceed with
the variables w, v ∈ R

2n+m−1 in (12) instead of pcl in the synthesis
procedure. This is because while the conditions in Corollary 1 are
not convex in the poles, they are convex in the variables v,w↓.
This requires enforcing the following affine constraints to the
synthesis to ensure a correct change of variables:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

wi, vi ≥ 0, i = 1, 2, . . . , 2n− 1+m

w
↓

i = 0, i = nr + 1, . . . , 2n− 1+m

vi = 0, i = 1, . . . , nr

vnr+2i−1 = vnr+2i, i = 1, . . . (2n− nr − 1)/2
v2n−1+i = |zi + δ|

µ, i = 1, 2, . . . ,m

(30)

We are then ready to choose the poles magnitudes

|pcli + δ| =

{

w
1/µ
i , 1 ≤ i ≤ nr

v
1/µ
i , nr + 1 ≤ i ≤ n

to optimize an appropriate convex objective function ψ(w, v),
such that the closed-loop transfer function is stable and LCM
according to Corollary 1. The cost function ψ(w, v) can be chosen
to meet an additional performance objective. For example, one
may choose

ψ(w, v) = |w↓1 −max
zi∈R

(zi + δ)
µ| (31)

which matches the low frequency plant zero with the corre-
sponding closed-loop pole, which helps to achieve a low com-
plementary sensitivity function norm (Åström & Murray, 2010).

Finally, the whole synthesis process can be formulated as
the following standard convex optimization problem with the
decision variables w↓ and v:

minimize
w↓,v

ψ(w↓, v)

subject to w
↓

1 ≤ δ
µ − ϵ

w ≻w v

(w, v, θ, φ) satisfies (13)
(w, v) satisfies (30)

(32)

Here, the first constraint ensures closed-loop stability while the
second and third constraints ensure a closed-loop monotonic
response. In (32), ϵ is a fixed positive number added to make the
inequality non-strict, because most, if not all, convex optimization
solvers only support non-strict inequalities. Finally, note that to
verify the third constraint, n is replaced by 2n−1 in (13) adapting
to the closed-loop system order. The optimal solution w⋆, v⋆ to
(32) can be converted back to the zero-pole domain using (12):

pclj =

{

(w⋆↓j )1/µ − δ, j = 1, . . . , nr

(v⋆j )
1/µ exp(iθj)− δ, j = nr + 1, . . . , 2n− 1

(33)

and the corresponding closed-loop characteristic equation coeffi-
cients acl can be determined via the identity

2n−1
∑

k=0

aclk s
2n−1−k =

2n−1
∏

i=1

(s− pcli ) (34)

We are now ready to compute the controller coefficients in (28),
by solving the following linear algebraic equation

M

[

f

g

]

= acl (35)

where M ∈ R
2n×2n has the elements

[M]ij =

{

bi−j, 1 ≤ j ≤ n j ≤ i ≤ j+ n

ai−j+n, n+ 1 ≤ j ≤ 2n j− n ≤ i ≤ j

0, otherwise

Eq. (35) has always a unique solution f , g (Goodwin et al., 2001,
Lemma 7.1.). Finally, the static gain Kc is set to

Kc = (B(0)F (0)+ A(0)G(0)) /B(0) (36)

to give the closed-loop system from R to Y a stationary gain of
one. The proposed synthesis procedure is summarized in Algo-
rithm 1.

Although the proposed design procedure uses the same con-
troller structure as Taghavian, Drummond et al. (2021) and places
the closed-loop poles to ensure the closed-loop system is exter-
nally positive, it is different in all other respects. The approach
in Taghavian, Drummond et al. (2021) considers discrete-time
systems, relies on decomposing the closed-loop system into a
series connection of first and second-order transfer functions, and
proposes a manual procedure for placing the closed-loop poles
on the real axis. The approach in this paper optimizes the closed-
loop poles jointly based on the novel LCM conditions and allows
for complex closed-loop poles.

Algorithm 1 Optimal pole-placement for monotonic controller
synthesis:

Require: K ∈ R, z ∈ R
m, p ∈ R

n ▷ Input data
Require: µ ∈ N, δ, θ , ψ(.) ▷ Tuning parameters
w⋆, v⋆ ←(32) ▷ solve (32)
pcl ← w⋆, v⋆ ▷ restore the poles via (33)
f , g ← pcl ▷ via (34) and (35)
Kc ← f , g ▷ via (36)

The next example demonstrates the power of the proposed
synthesis method.

Example 3. We are interested in stabilizing the second-order
plant (Malik et al., 2012)

H(s) =
s+ 2

s2 + 0.8s− 0.2
(37)

using output-feedback. First, we consider cascade compensators
C(s) following the control law

U(s) = C(s) (R(s)− Y (s)) (38)

In order to also obtain a critically-damped closed-loop system,
two proportional controllers can be designed as

C ′0(s) = 6.1665 and C0(s) = 0.2335 (39)

Note that monotonic tracking is not taken into account by the
controllers (39). In order to achieve a monotonic closed-loop step
response instead, the first-order controllers

C ′1(s) =
s+ 76.6311

s+ 10.4821
and C1(s) =

s+ 10.4501

s+ 59.581
(40)

8
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Fig. 5. The step responses of the closed-loop system in Example 3 using different
controllers.

were proposed in Malik et al. (2012). Yet, the controllers (40)
were derived based on a necessary condition for externally posi-
tive and therefore, cannot guarantee monotonic tracking before-
hand. Nevertheless, instead of (38), we can use the control design
presented in Section 4.2 with δ = 5, µ = 1 and θi = 0 for all
i = 1, 2, 3 to ensure a monotonic tracking. As the cost function,
we choose (31). The resulting closed-loop step response is plotted
in Fig. 5. For comparison, the closed-loop step responses obtained
by using the controllers in (39) and (40) are also shown in the
same figure, which are either non-monotonic or more sluggish.
In addition, the controller designed in this paper yields a smaller
sensitivity peak (Ms = 1) compared to the controllers C0(s), C

′
1(s)

and C1(s) which respectively result in Ms = 1.1678, 1.3403 and
1.2127. The sensitivity peak given by C ′0(s) is also equal to Ms = 1.

5. Conclusions

We have investigated the class of logarithmically completely
monotonic (LCM) rational transfer functions. Several conditions
to determine when a transfer function is LCM were provided and
expressed in terms of the transfer function’s zeros and poles.
This includes conditions that are sufficient (Theorem 1 and Corol-
lary 1), necessary (Proposition 3) and both necessary and suffi-
cient (Lemma 1). It was shown that LCM rational functions are a
subset of the space of externally positive transfer functions. As
such, the LCM property was shown to be useful for providing
strong and computationally tractable conditions to ensure that
a transfer function has a non-negative impulse response. These
results were then used to design output-feedback control loops
that monotonically track reference changes without steady-state
errors. Compared to existing approaches for non-overshooting
reference tracking, the presented approach offered a monotonic
closed-loop response guarantee in an output-feedback setting by
blending pole-placement with convex optimization. Future work
will explore relaxing the conservatism of the conditions further
and applying the synthesis procedure to practical problems.

Appendix

A.1. Proof of Proposition 8

Define the following variables in R
n:

π
def
= (p+ δ)µ↓, ζ

def
= (z + δ)µ

where the order of components is only fixed for π , i.e.,

π1 ≥ π2 ≥ · · · ≥ πn (A.1)

The majorization inequality (p + δ)µ ≻w (z + δ)µ can be equiv-
alently expressed in terms of π and ζ using the following inter-
section of n conditions
⎧

⎪

⎪

⎨

⎪

⎪

⎩

π1 ≥ max{ζ1, ζ2, . . . , ζn}
π2 + π2 ≥ max{ζ1 + ζ2, ζ1 + ζ3, . . . , ζn−1 + ζn}
...

π1 + π2 + · · · + πn ≥ ζ1 + ζ2 + · · · + ζn

(A.2)

Moreover, δ > −mini,j{pi, zj}, can be expressed as

zi + δ > 0 and pi + δ > 0, i = 1, 2, . . . , n (A.3)

In the range x ∈ (0,+∞), the monomial function xµ is convex
in x. Therefore, ζi = (zi + δ)µ is a convex function of z. As
the point-wise maximum of convex functions is also convex, the
right-hand side of each inequality in (A.2) is a convex function of
z. In addition, as the left side of each inequality in (A.2) is linear
in π , all the conditions in (A.2) are convex in the variables π and
z. Next we show that (8) is also a convex condition in the same
variables. Inequality (8) can be written as

n
∑

i=1

π
k/µ

i ≥

n
∑

i=1

(zi + δ)
k (A.4)

where k ∈ {1, 2, . . . , µ − 1}. From (A.3) and the fact that the
monomial function xk/µ is concave in the range x ∈ (0,+∞),
the left-hand side of (A.4) is a concave function of π . Using a
similar argument, from (A.3) and the fact that the monomial
function xk is convex in the range x ∈ (0,+∞), we conclude
that the right-hand side of (A.4) is a convex function of z. This
proves that inequality (A.4) is also a convex condition in π and z.
As the intersection of several convex conditions (A.4), (A.1) and
(A.2), the condition given by Theorem 1 is convex in the variables
π = (p+ δ)µ↓ and z. □

A.2. Proof of Proposition 9

Define the variables π ∈ R
n+m and ζ ∈ R

m where:

π
def
= w↓,

ζi
def
= v

1/µ
n+i , i = 1, 2, . . . ,m

where the order of components is only fixed for π , i.e.,

π1 ≥ π2 ≥ · · · ≥ πn+m

We will show that the condition of Corollary 1 is convex in the
variables π , vi (i = 1, 2, . . . , n) and ζ . First, inequality (13) can
be equivalently written as

n
∑

i=1

π
k/µ

i +

n
∑

i=1

v
k/µ

i cos(θik) ≥

m
∑

i=1

ζ ki cos(φik) (A.5)

Since δ > −mini,j{Re(pi), Re(zj)}, we have

πi ≥ 0, i = 1, 2, . . . , n+m

vi ≥ 0, i = 1, 2, . . . , n

ζi ≥ 0, i = 1, 2, . . . ,m

Also, the monomial function xk/µ (k ∈ {1, 2, . . . , µ−1}) is concave
in the range x ∈ [0,+∞). Therefore, both the functionals π k/µ

i

and vk/µi are concave, where i = 1, 2, . . . , n. On the other hand,
Condition (26) ensures

cos(θik), cos(φik) ≥ 0 (A.6)

9
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in (A.5). Therefore, the left side of (A.5) is a concave function
of π and vi (1 ≤ i ≤ n). For the right side, we note that the
monomial function xk (k ∈ {1, 2, . . . , µ − 1}) is convex in the
range x ∈ [0,+∞). Hence all the functionals ζ ki (i = 1, 2, . . . ,m)
are convex. This along with (A.6) proves that the right-hand side
of inequality (A.5) is a convex function of ζ . Thus, we conclude
that inequality (A.5) is a convex condition in the variables π , vi
(1 ≤ i ≤ n) and ζ . Next, we show that inequality w ≻w v is also
a convex condition. This inequality can be written as

k
∑

i=1

w
↓

i ≥ max
ω∈Ωk

{

n+m
∑

i=1

ωivi

}

(A.7)

for k = 1, 2, . . . , n+m, where

Ωk =

{

ω ∈ {0, 1}n+m|

n+m
∑

i=1

ωi = k

}

which, in terms of π , vi (1 ≤ i ≤ n) and ζ is given by

k
∑

i=1

πi ≥ max
ω∈Ωk

{

n
∑

i=1

ωivi +

m
∑

i=1

ωn+iζ
µ

i

}

(A.8)

The right-hand side of (A.8) is a convex function of vi (1 ≤
i ≤ n) and ζ because it is the point-wise maximum of several
convex functions, each represented by an ω ∈ Ωk. Since the
left-hand side of (A.7) is linear in π , inequality (A.7) is also a
convex condition. Hence, the intersection of conditions (A.5) and
(A.7) is convex and therefore, the set of variables that satisfy the
conditions in Corollary 1 is a convex set. □
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