
This is a repository copy of DRLCap: Runtime GPU Frequency Capping with Deep
Reinforcement Learning.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/209061/

Version: Accepted Version

Article:

Wang, Y. orcid.org/0000-0003-3298-5134, Hao, M. orcid.org/0000-0003-0043-4370, He, H.
orcid.org/0000-0002-6494-775X et al. (4 more authors) (2024) DRLCap: Runtime GPU
Frequency Capping with Deep Reinforcement Learning. IEEE Transactions on Sustainable
Computing. ISSN 2377-3782

https://doi.org/10.1109/tsusc.2024.3362697

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

DRLCAP: Runtime GPU Frequency Capping with

Deep Reinforcement Learning
Yiming Wang, Meng Hao, Hui He, Weizhe Zhang, Senior Member, IEEE, Qiuyuan Tang, Xiaoyang Sun, and

Zheng Wang, Member, IEEE

Abstract—Power and energy consumption is the limiting fac-
tor of modern computing systems. As the GPU becomes a
mainstream computing device, power management for GPUs
becomes increasingly important. Current works focus on GPU
kernel-level power management, with challenges in portability
due to architecture-specific considerations. We present DRLCAP,
a general runtime power management framework intended to
support power management across various GPU architectures.
It periodically monitors system-level information to dynamically
detect program phase changes and model the workload and GPU
system behavior. This elimination from kernel-specific constraints
enhances adaptability and responsiveness. The framework lever-
ages dynamic GPU frequency capping, which is the most widely
used power knob, to control the power consumption. DRLCAP

employs deep reinforcement learning (DRL) to adapt to the
changing of program phases by automatically adjusting its power
policy through online learning, aiming to reduce the GPU power
consumption without significantly compromising the application
performance. We evaluate DRLCAP on three NVIDIA and
one AMD GPU architectures. Experimental results show that
DRLCAP improves prior GPU power optimization strategies
by a large margin. On average, it reduces the GPU energy
consumption by 22% with less than 3% performance slowdown
on NVIDIA GPUs. This translates to a 20% improvement in the
energy efficiency measured by the energy-delay product (EDP)
over the NVIDIA default GPU power management strategy. For
the AMD GPU architecture, DRLCAP saves energy consumption
by 10%, on average, with a 4% percentage loss, and improves
energy efficiency by 8%.

Index Terms—GPUs, deep reinforcement learning, power and
energy optimization, GPU power optimization

I. INTRODUCTION

G
RAPHICS processing units (GPUs) are the mainstream

computing devices on many computing systems. They

are used to accelerate a wide range of tasks, from traditional

high-performance applications [1], [2] to emerging workloads

like deep learning models [3]. However, the high power

consumption of GPUs significantly impacts their reliability,

economic viability and operational cost. This is a particular

issue for GPU clouds and high-performance computing (HPC)

systems, where the GPU power and cooling infrastructures

contribute to a large part of the operational cost [4]. As a

Yiming Wang, Meng Hao, Hui He and Weizhe Zhang are with the School of
Cyberspace Science, Harbin Institute of Technology, Harbin 150001, China.
E-mail:{yimingw, haomeng, hehui, wzzhang}@hit.edu.cn.

Qiuyuan Tang is with the Bili Bili Technology Co., Ltd. Shanghai, China.
E-mail:tangqiuyuan@bilibili.com.

Xiaoyang Sun and Zheng Wang are with the School of Computing, Uni-
versity of Leeds, LS29JT Leeds, U.K. E-mail: {scxs, z.wang5}@leeds.ac.uk.

Manuscript received XX XX, 2023; revised XX XX, 2023.

result, there is a critical need to reduce GPU power con-

sumption without significantly compromising the application

performance.

Power management can be achieved through frequency

capping on commercial off-the-shelf GPUs. This is done by

limiting the maximum GPU clock frequency to implicitly

control the GPU power consumption [5], [6]. There is a

wide range of power management schemes proposed in the

CPU space to exploit dynamic voltage and frequency scaling

(DVFS) through e.g., machine learning [7], [8], expert-crafted

heuristics [9]–[12] or analytical models [13]–[15]. However,

many of the CPU-specific techniques are not transferable to

the GPUs because of the complex non-linear relationship

between processor frequency and application performance.

Additionally, several studies [16]–[19] utilize overclocking

and undervolting to conserve power in HPC. However, these

works may potentially introduce faults. As such, it remains

an outstanding challenge to trade application performance for

energy efficiency on GPUs.

Most recent works on GPU energy rely on profiling infor-

mation at the kernel level of the application for the targeted

GPU architecture [20], [21]. Such a strategy can incur signif-

icant profiling overhead or necessitate the instrumentation of

the GPU kernel, and it cannot easily adapt to the changing

workload behavior resulting from dynamic inputs (which are

often hard to anticipate ahead of time). Some other works

attempt to choose a power setting during program execution

time [22], [23], but they focus on iterative workloads, such

as Convolution Neural Networks training. As such, these

approaches are ineffective if there are dynamically changing

behaviors across program phases during an iterative work-

load, e.g., moving from a computation-intensive kernel to a

memory-intensive kernel where the optimal power configu-

ration is likely to be different. In addition, these works at

the kernel level face challenges in portability to GPUs with

different architectures due to variations in instruction sets,

memory hierarchies, and hardware features inherent to each

architecture.

To address these challenges, this paper presents DRLCAP, a

general GPU power management system designed to optimize

GPU power consumption through dynamic GPU frequency

capping (and memory capping if the underlying architecture

supports it, or power capping if the architecture supports very

few frequency caps). One of the key challenges in dynamic

power management is detecting GPU workload changes and

adapting to such changes. DRLCAP addresses this chal-

lenge by adopting an application-transparent, low-overhead

2

and system-level profiling mechanism that monitors the GPU

core and memory utilization and runtime power readings.

This approach utilizes system-level information, making it

more portable and eliminating the need for any kernel-level

information. It then leverages the recent advance of deep rein-

forcement learning (DRL) to develop a runtime optimization

framework to adjust and apply frequency capping based on the

runtime system-level information. Built on DRL, DRLCAP

learns directly from raw data without the need for manual

feature extraction. It autonomously develops an adaptive power

policy through interaction with the GPU system, enhancing its

portability. DRLCAP is decentralized, where we can employ

a DRL agent for each GPU in multi-GPU systems to monitor

the workload and manage power on the local GPU.

We formulate the problem of finding the optimal GPU

frequency setting as a single-player game. In this game,

the player (DRLCAP) chooses a set of frequency settings

given the current system status, aiming to improve the overall

energy efficiency of the system. The goal of DRLCAP is to

minimize the GPU energy consumption without significantly

compromising the performance by dynamically changing the

GPU frequency gap based on the current program status (or

phase). DRLCAP does not only focus on immediate GPU

energy efficiency but also considers the integrated impact of

potential future GPU energy efficiency.

Compared to traditional supervised-learning methods [23]–

[25], DRLCAP does not require an extensive training dataset,

which is expensive to collect for program optimization due

to the overhead of profiling. DRLCAP addresses the scarcity

of data and minimizes the runtime overhead by combining

offline and online learning. It is first trained offline on training

benchmarks, and the trained network can then be applied

to any new, unseen applications. As the policy network of

DRLCAP also gets updated during runtime, the optimization

strategy is gradually tailored for the target program under a

specific input. Such a strategy is useful for long-running GPU

applications where power consumption is more likely to be

an issue than short-running ones. As we will show later in

the paper, the use of a deep learning policy network and

DRLCAP’s ability to continuously learn and adapt lead to

better performance for dynamic GPU power optimization than

prior work.

We have implemented a prototype of DRLCAP
1. We eval-

uate DRLCAP by applying it to an NVIDIA Tesla V100S.

To verify the hardware portability, we also apply DRL-

CAP to NVIDIA RTX 3080 Ti, NVIDIA RTX 2080 Ti and

AMD Radeon RX 6700 XT GPUs. We compare DRLCAP

against four alternative schemes: a state-of-the-art GPU power

coordination approach [26], our previous RL-based power

optimization system designed for multicore CPUs [7], and

two implementation variants that rely on power capping and a

combination of frequency and power cappings. Experimental

results show that DRLCAP consistently outperforms the al-

ternative scheme when optimizing for GPU energy efficiency

measured by the energy-delay product (EDP). On average,

1Code and data will be released at https://github.com/yiminga/DRLCap
upon acceptance.

it reduces GPU energy consumption by 22% with a modest

3% slowdown in the application execution time on three

NVIDIA GPUs compared to the default GPU power manage-

ment scheme. For AMD GPU, the average energy saving and

percentage loss are 10% and 4% respectively. Additionally,

our decentralized decision-making is scalable and adaptable

to larger distributed environments with multiple GPUs.

This paper makes the following contributions:

• It presents the first universal DRL framework for dynamic

GPU power and energy optimization, autonomously dis-

covering a near-optimal power-performance tradeoff con-

trolled by a user-defined parameter (Section IV-A);

• It shows how a low-overhead and system-level approach

can be integrated with DRL to detect changes in pro-

gram behavior, enabling portability across different GPU

architectures (Section IV-B);

• It demonstrates how offline and online learning can be

combined in a DRL framework for dynamic GPU power

optimization, enhancing the adaptability and efficiency of

DRLCAP (Section IV-D);

• It evaluates DRLCAP across both NVIDIA and AMD

GPUs, providing an assessment of its performance and

adaptability on different architectures (Section VI-D).

II. BACKGROUND AND RELATED WORK

A. GPU Power Optimization

Modern GPU architectures provide a large number of pro-

cessing units and computation sources like specialized cores

for floating-point and integer numbers as well as register files

and share memory and caches. Depending on the applica-

tion workloads, not all these computation resources are fully

utilized at any given time. This provides an opportunity for

a runtime system to dynamically limit the maximum GPU

frequency for energy optimization.

Our work is a general-purpose GPU energy efficiency opti-

mization solution. It not only can be applied to NVIDIA GPU

architectures but also supports AMD GPU architectures. In this

work, we evaluate our techniques on the NVIDIA and AMD

GPU architectures. GPU supports two power management

knobs: power capping and frequency capping. Power capping

automatically recovers the unused power budget and moves

it to another component, e.g., from memory to cores. By

contrast, frequency capping is finer-grained since we can set

different frequencies for the GPU core and memory, where the

memory frequency can be adjusted independently of the core

frequency by DVFS. In this paper, we consider dynamically

tuning the GPU frequency cap to improve GPU energy effi-

ciency. Thus, we compare the frequency capping scheme with

the power capping scheme and the hybrid scheme of frequency

and power capping in Section VI-B. Note, there are very few

frequencies that can be manually adjusted on AMD GPUs,

such as RX 6700 XT and hence on the AMD GPU, we only

perform power capping. We use NVIDIA System Management

Interface (nvidia-smi) and Pynvml to enforce the NVIDIA

GPU caps for the power and frequency respectively. Both

tools are based on NVIDIA Management Library (NVML).

The user invokes NVML API functions, prompting the GPU

3

driver to send corresponding instructions to the GPU, thereby

achieving the intended functionality. For instance, the NVML

function nvmlDeviceSetApplicationsClocks can be employed

to dynamically adapt GPU clock frequencies. We use ROCm

System Management Interface Library (rocm-smi) to control

AMD GPU power and frequency cap.

B. Deep Reinforcement Learning

Reinforcement learning (RL) is a framework in which an

agent interacts with the environment to learn a policy. The

agent observes the state st, takes an action at at timestep

t, immediately receives a reward rt, and the environment

transfers to the next state st+1. The goal of the agent is to

maximize the cumulative reward over time. The action value

function (Q-value) is a measure of the expected cumulative

reward when taking a specific action in a given state.

Recently, deep reinforcement learning approximates the Q-

value function using a deep neural network (DNN), address-

ing the challenge of processing Q-values in traditional rein-

forcement learning. However, using a DNN has been shown

to be prone to instability or even divergence. To enhance

stability, prioritized experience replay and target networks

were introduced, that is prioritized experience replay Double

Deep Q-network (DDQN) [27], [28]. The prioritized DDNN

is updated sampling a mini-batch from experience replay

buffer storing state transitions. Transitions with higher priority

are sampled more frequently, leading to improved sample

efficiency and faster convergence. Moreover, by decoupling

the target and online networks, DRL uses a separate DDNN

that is periodically updated to approximate the Q-values used

in the target calculation. This helps mitigate the issues of

overestimation bias and enhances the stability of the training

process.

The DRL agent can be learned through combining offline

training with online deep Q-learning. During the offline train-

ing phase, the agent accumulates a substantial dataset of state-

action pairs (s, a) through interactions with the environment.

This dataset is used to construct an initial DNN. Subsequently,

in the online deep Q-learning phase, the agent continuously

refines its policy through real-time interactions with the en-

vironment, updating the DNN parameters to adapt to dy-

namic changes and improve decision-making. In this work,

we propose a DRL framework that combines offline training

with online deep Q-learning, enhancing learning efficiency

by leveraging a substantial dataset during initial training and

continuously adapting to real-time interactions for improved

decision-making.

C. Related Work

Our work builds upon the following previous foundations,

but quality differs from each.

Dynamic power management. The majority of previous

efforts in dynamic power and performance optimization have

been focused on multicore CPUs [7], [10], [11], [15]. For

example, our prior work on multi-core systems [7] employs

a reinforcement algorithm, Double Q-learning, which involves

maintaining two state-action tables. However, when attempting

to port this CPU-specific approach to GPUs, as demonstrated

in Section VI-B, the results were not satisfactory. Existing

efforts [20], [29]–[31] on GPU power management mainly is

GPU kernel-level performance and power modeling. Arafa et

al. [29] utilized instrumentation tools to capture the behavior

of the kernels to predict GPU performance. Kandiah et al. [30]

utilized Parallel Thread Execution (PTX) and Source And

Assembly (SASS) for GPU power modeling. COORD [26] is a

static category-based heuristic for adjusting the GPU core and

memory power. It coordinates the power allocation between

the GPU core and GPU memory to balance computation and

memory access. It requires knowing if the target program

is compute- or memory-bound ahead of time. We compare

our approach against COORD in Section VI-B. Several works

[22], [23], [23], [32], [33] have employed power and perfor-

mance models to proactively optimize for the present timestep

by anticipating future occurrences to maximize the energy

efficiency. However, these works focus on iterative or periodic

applications and ignore future kernel behavior. In contrast to

prior approaches, our approach is efficient for non-iterative

programs on GPUs and focuses on incorporating long-term

returns. Several works [34]–[39] assign multiple tasks with

heuristic scheduling algorithms to improve energy efficiency

on heterogeneous systems. Our DRL-based approach automat-

ically adapts to the dynamic environment without an expert-

crafted mechanism.

DRL-based power optimization. Machine learnins based

power managers [7], [40]–[43] learn to improve their judg-

ments over time by leveraging feedback from the system

environment. PowerCoord [42] coordinates the power bud-

get among the various power domains using reinforcement

learning. However, this work needs prior knowledge of the

application behavior. For example, job deadlines must be

collected ahead of time for each task. The work [43] utilizes

reinforcement learning to improve the energy efficiency of

the field programmable gate array (FPGA). The work [41]

provides a Double-Q power management approach to scale

operating frequency for mobile devices. Our previous work [7]

also used double Q-learning to adjust CPU power configura-

tion to reduce the power consumption of multicore systems. As

we have shown in Section VI-B, however, this approach fails to

save more energy. Thus, to save more GPU energy, DRLCAP

employs double deep Q-network with prioritized experience

replay instead of double q-learning to dynamically scale the

GPU frequency, which can adapt to the high dimensional input

vector and avoid large-size storage.

III. MOTIVATION

As a motivation example, we consider applying GPU fre-

quency and power capping for energy optimization on an

NVIDIA V100S. On this platform, the GPU core frequency

cap is modulated from 1597 MHz (default) to 135MHz (min)

in steps of 150 MHz. The memory frequency cap supports a

static setting of 1107 MHz. The GPU power cap is modulated

from 250 W (default) to 100 W (min) in steps of 15 W. In this

experiment, we apply frequency and power cappings to four

4

0.90
0.92
0.94
0.96
0.98
1.00

En
er

gy
 n

or
m

TeaLeaf
QE

CoMD
miniBUDE

0.6
0.7
0.8
0.9
1.0

Ti
m

e
no

rm

TeaLeaf
QE

CoMD
miniBUDE

1597
1485

1335
1185

1035 885 735 585 435 285 135

GPU Frequency Capping [MHz]

0.80
0.85
0.90
0.95
1.00

ED
P

no
rm

TeaLeaf
QE

CoMD
miniBUDE

Fig. 1. Impact of GPU frequency capping on NVIDIA V100S across
benchmarks.

0.94

0.96

0.98

1.00

En
er

gy
 n

or
m

TeaLeaf
QE

CoMD
miniBUDE

0.90
0.92
0.94
0.96
0.98
1.00

Ti
m

e
no

rm

TeaLeaf
QE

CoMD
miniBUDE

250 235 220 205 190 175 160 145 130 115 100
GPU Power Capping [W]

0.97
0.98
0.99
1.00

ED
P

no
rm

TeaLeaf
QE

CoMD
miniBUDE

Fig. 2. Impacts of GPU power capping on NVIDIA V100S across bench-
marks.

benchmarks with diverse workload characteristics: TeaLeaf

[44], miniBUDE [45], CoMD [46] and Quantum ESPRESSO

(QE) [47]. TeaLeaf and CoMD are memory-bound programs,

miniBUDE is compute-bound, and Quantum ESPRESSO

switches between multiple memory- and compute-bounded

phases. In the evaluation, we report the measured program

execution time (in seconds), energy consumption (in Joules),

and the energy-delay product (EDP) - computed by multiply-

ing the execution time with the energy consumption. The EDP

is a lower-is-better metric that measures the trade-off between

performance and energy consumption and is a widely used

metric for quantifying energy efficiency [48]. We scale the

number into the [0,1] range using a log function.

Figs. 1 and 2 report the normalized energy saving, runtime

slowdown and EDP (with respect to running the application

with the maximum frequency) when running an application

under different GPU core frequency caps and power caps

respectively. Reducing the GPU core frequency cap can have a

significant impact on the execution time, but a lower frequency

cap does not always lead to lower energy consumption as a

135 285 435 585 735 885
1035

1185
1335

1485
1597

GPU Frequency [MHz]

50
100
150
200

GP
U

Po
we

r [
W

]

TeaLeaf
QE

CoMD
miniBUDE

Fig. 3. Frequency-wattage curve on NVIDIA V100S across benchmarks.

Workload
Monitor

Power
Controller

GPU Hardware

Application

Environment DRL Agent

Energy Efficiency
Evaluator

Power Configuration
Optimizer

Fig. 4. Overview of DRLCAP framework.

longer execution time can result in more energy consumption.

If we look at power capping in Fig. 2, we see that the

energy consumption decreases and runtime increases as we

lower the maximum power consumption. However, reducing

the power cap has few impacts on the execution time of the

memory-bound program CoMD. By contrast, power capping

has a greater impact on the execution time for compute-bound

programs like miniBUDE. We also observe the sweat spot of

EDP (lower is better) varies across benchmarks.

The results show that the optimal frequency and power cap

setting can vary across programs. For example, while QE

achieves the minimum energy consumption at 1035 MHz,

the performance loss is 13% compared with the default

(1597 MHz). Thus, finding the right trade-off between energy

consumption and performance is non-trivial. DRLCAP is de-

signed to efficiently trade performance for energy consumption

through DRL and dynamic adaptation. Moreover, as illustrated

in Fig 3, the connection between GPU frequency and power

consumption typically exhibits nonlinearity. This nonlinearity

stems from a multitude of factors that impact GPU power

usage, including voltage, temperature, and power management

mechanisms. For instance, as frequency escalates, the require-

ment for higher voltages to maintain stability results in an

exponential surge in power consumption. Hence, conventional

heuristic approaches may encounter difficulties in uncovering

the intricate non-linear connection between GPU frequency

and power consumption. In contrast, our reinforcement learn-

ing model can reveal this relationship and identify the ideal

equilibrium for frequency settings, aiming to maximize perfor-

mance while concurrently minimizing power consumption.

IV. OUR APPROACH

A. Overview of DRLCAP

DRLCAP is a general runtime system that automatically

manages the GPU power configuration by interacting with

the environment. It aims to reduce GPU energy consumption

without dramatically compromising performance.

5

0

50

100
GP

U-
Ut

il
[%

]

0

50

100

M
em

-U
til

 [%
]

80
160
240
320

Po
we

r [
W

]

1200

1400

1600

FR
Q

[M
Hz

]

0 10 20 30 40 50 60 70 80
Timeline [Seconds]

30

40

50

TE
M

P
[

]

Fig. 5. Workload changes in Quantum ESPRESSO.

As depicted in Fig. 4, DRLCAP consists of four compo-

nents. The workload monitor measures the workload charac-

teristics of GPU applications through lightweight system-level

profiling information. It uses hardware resource utilization and

power traces to detect phase changes in the GPU workload.

This process is entirely transparent to applications. The run-

time measurements are sent to the DRL agent for runtime

power management. The DRL framework consists of two

components, an energy efficiency evaluator and a power con-

figuration optimizer. The energy efficiency evaluator quantifies

the quality of the current power configuration by considering

the change in GPU power consumption and frequency (Section

IV-C) for the current phase. Based on the evaluation, the power

configuration optimizer then chooses a power configuration

for the current state. The power configuration is adjusted by

GPU frequency capping. Note that DRLCAP is a decentralized

system that applies these four components on each GPU in a

distributed environment.

B. Detecting Phase Changes

DRLCAP uses DRL to choose a GPU power setting accord-

ing to the current environment state, aiming to maximize the

cumulative reward. Specifically, in DRLCAP, the environment

state is represented by a vector of five numerical values,

including GPU core utilization, GPU memory utilization,

power, GPU frequency, and temperature. Our rationale for

using these metrics is described as follows.

These metrics obtained through low-cost system-level pro-

filing do not necessitate any modifications to the source code

of applications, nor do they require instrumentation of the GPU

kernels. Additionally, many applications exhibit two distinct

phases, compute-bound and memory-bound. For the compute-

bound phase, a commonly used performance metric is the GPU

core utilization. In this work, we compute the GPU utilization

by measuring the percentage of time that one or more kernels

were running on the GPU during the sampling period. A high

GPU core utilization rate indicates that the kernels spend

0
25
50
75

100

Ut
iliz

at
io

n
[%

]

(a) TeaLeaf

Core Utilization
Memory Utilization

0
25
50
75

100

Ut
iliz

at
io

n
[%

]

(b) miniBUDE

Core Utilization
Memory Utilization

1597
1485

1335
1185

1035 885 735 585 435 285 135

GPU Frequency Capping [MHz]

0
25
50
75

100

Ut
iliz

at
io

n
[%

]

(c) CoMD

Core Utilization
Memory Utilization

50
100
150
200

Ti
m

e
[S

ec
on

ds
]

Execution Time

250
500
750

Ti
m

e
[S

ec
on

ds
]

Execution Time

50

75

100

Ti
m

e
[S

ec
on

ds
]

Execution Time

Fig. 6. Impact of GPU frequency capping on GPU hardware utilization and
performance.

most of their time on GPU processing. Moreover, we use

memory utilization to assess how frequently a GPU kernel

accesses the global (device) memory to model the behavior

of memory-bound workloads. Memory utilization is computed

as the percentage of time that the GPU global memory was

read or written during a sampling period. Since the number

of memory accesses each period increases as the memory

utilization rate rises, the kernel workload becomes increasingly

memory-bound. Like the hardware utilization, the real-time

frequency also provides similar contributions. Last but not

least, power consumption and temperature are direct power

indicators.

Fig. 5 shows the hardware utilization, power profile, cur-

rent frequency and temperature of the Quantum ESPRESSO

benchmark. We can observe several phases with distinct mea-

surements across the metrics. By monitoring these metrics,

DRLCAP can model the state of applications and the GPU.

For example, we can observe long compute-bound phases

characterized by high GPU core utilization, high power and

high GPU frequency. The phase change can be detected by

GPU hardware state information.

C. Evaluate the Energy Efficiency

Reinforcement learning is an online learning algorithm that

can adjust and adapt its decision over time using feedback

from the environment. For each state, the RL agent takes

action and uses a feedback measurement to evaluate the

quality of the actions taken so far. The feedback is given

by a reward function that takes the change of GPU power

consumption and frequency measured at runtime, the GPU

core utilization and memory utilization as input and produces

a single instantaneous reward value.

1) Reward function: We propose a heuristic method to

build a reward function to trade off performance and energy

consumption to maximize energy efficiency. In this work, we

use EDP to model the trade-off between performance and

energy consumption, but other metrics can be used too. Our

6

Algorithm 1: Heuristic Reward Function

Input: power consumption p, frequency f , core

utilization ucore, memory utilization umem

Output: Reward r(s, a)
1 Initialize p1 < p2 < p3, r1 > r2 > r3 > r4;

2 Take action a;

3 Observe next power consumption p′, frequency f ′;

4 △p = p′ − p, △f = f ′ − f ;

5 if umem == 0 then

6 if ucore == 100 then ⊲ case A

7 Set frequency caps to the max value;

8 Measure the power consumption p′;
9 △p = p′ − p;

10 if △p ≤ p1 then r(s, a) = r1;

11 elseif p1 < △p ≤ p2 then r(s, a) = r2 ;

12 elseif p2 < △p ≤ p3 then r(s, a) = r3 ;

13 else r(s, a) = r4;

14 end

15 else if ucore == 0 then ⊲ case B

16 r(s, a) = 1/action ∗ c;
17 end

18 else ⊲ case C

19 Compute score g based on △p and △f ;

20 r(s, a) = g/ucore;

21 end

22 end

23 else ⊲ case D

24 Compute score g based on △p and △f ;

25 r(s, a) = g × umem;

26 end

reward function is designed to maximize the EDP. Here, we

use the GPU utilization as the performance indicator and the

energy reading to compute the EDP.

Fig. 6 shows GPU core and memory utilization and program

execution time for three representative programs running at

different GPU frequencies. Here, the x-axis gives different

GPU frequency settings. We can observe that lowering the

GPU frequency does not necessarily lead to a slowdown in

the program execution time. Slowdown only starts occurring

when the GPU frequency is lower than a certain threshold,

and the threshold varies across programs. We also observe a

strong correlation between runtime and memory utilization. In

general, a lower memory utilization leads to longer execution

times. This is because it takes longer to access the GPU

memory under a lower frequency, leading to fewer memory

accesses with a given sampling period and low memory

utilization. We also observe that the GPU core utilization

varies across programs. For Tealeaf and miniBUDE, the core

utilization is largely independent of the GPU frequency, while

for the memory-intensive CoMD benchmark, the core utiliza-

tion is low with a high frequency. Our reward function is

designed to model these program characteristics using low-

cost runtime measurements.

Algorithm 1 outlines our reward function. To compute

the reward, we first check the GPU utilization, power and

frequency. We then consider four scenarios based on the

utilization of the GPU core and memory.

A. For highly computation-intensive cases, we set the fre-

quency capping to the maximum value. We then check

the power consumption again and compute the reward

value according to the change in the power consumption

(lines 10 to 13 in Algorithm 1).

B. When the GPU is idle (e.g., no GPU kernel is running),

we compute the reward as the reciprocal of action to

minimize the frequency.

C. For other non-memory access cases, we compute the

change of power and frequency to give a score g to reduce

power consumption while maintaining the frequency. For

this case, the reward is equal to this score divided by the

core utilization.

D. Finally, for the remaining scenarios, we compute the

change of power and frequency to get a score g, and

then the reward is equal to this score multiplied by the

memory utilization.

To compute the score g in cases C and D based on the

changes in power and frequency, the steps are as follows. Let

△power and △freq be the change in GPU power consump-

tion and GPU frequency, respectively, during the current and

the previous sample period.

a. If △power is less than or equal to zero, it indicates

a decline and stabilization in GPU power, respectively.

For these scenarios, our reward function should give a

high instantaneous score. To minimize the impact on the

application performance, we also compare the change of

GPU core frequency, △freq. We use the well-known

clock and power formula, P ∝ FV 2, to model the

relation between GPU power and frequency. Here, F
is the GPU clock frequency and V is the GPU supply

voltage. Since that power and frequency are positively

correlated, △freq is generally less than or equal to

zero when △power is less than or equal to zero. This

change in frequency indicates a decrease in GPU activity,

but the tradeoff between power consumption and clock

frequency can be non-trivial. In this work, we leverage

the piecewise linear regression method to assign scores at

a fine-grained level. The △freq is divided into different

levels. The lower the value of △freq, the greater the

score is set. Therefore, when △power is less than or

equal to zero, DRLCAP obtains scores g by the piecewise

linear regression function as follows:

g(s, a) =



















g1 − n× step ≤ △freq

g2 − 2× n× step ≤ △freq < −n× step

g3 − 3× n× step ≤ △freq < −2× n× step

g4 △freq < −3× n× step
(1)

where g1 > g2 > g3 > g4 are the numerical scores

that determine how much the magnitude of reward and

penalty, n is a positive integer, and step is the step of

GPU frequency depending on the hardware environment.

For example, in this work, we set step to a multiple of

15 on our NVIDIA V100S GPU because of a step of 7

MHz alternating with 8 MHz on this GPU architecture.

7

Algorithm 2: DRL-based GPU Power Optimization

Input: GPU applications K
Output: Action (GPU power configuration) a

1 Initialize Iteration epochs T , minibatch size k,

exponents α and β, step-size η, replay memory

sumtree = ∅, △ = 0, p1 = 1, action-value function

Q with random weights θ, target action-value

function Q− with weights θ− = θ;

2 Execute GPU applications K;

3 for t = 1, 2, . . . , T do

4 Observe GPU state s;

5 With probability ε, select a random action a;

6 With probability 1− ε, select

a = argmaxa′Q (s, a′; θ);
7 Set GPU power capping or GPU frequency

capping a;

8 Observe reward r and the next state s′ and is end;

9 Store transition (s, a, r, s′) in sumtree with

maximal priority p = max pi;
10 Sample minibatch of k

transitions (sj , aj , rj , s′j) from sum-tree

based priority P (j) =
pα
j∑
i
pα
i

;

11 Compute importance-sampling weight

wj = (N · P (j))
−β

/maxiwi ;

12 Compute the current Q value yj

yj =

{

rj is end is true

rj + γQ−(s′j , argmaxa′Q
(

s′j , a; θ
)

; θ−)

13 Compute TD-error

δj =
1

k

∑k

j=1
(yj − Q(sj−1, aj−1; θ))

2
;

14 Update transition priority pj ← |δj |;
15 Update weights θ ← θ + η · △, reset △ = 0;

16 Every C steps copy weights into the target network

θ− ← θ;

17 end

b. If △power is greater than zero, it indicates a rise in

GPU power, and the reward calculator should give a low

score. We then also compare △freq. △freq is usually

higher than zero, which is an indication of an increase

in CPU activity. The smaller of △freq, the greater the

score. When △power is greater than zero, DRLCAP also

obtains score g by piecewise linear regression function

similar to the case greater than zero.

D. Implementation

Our power optimization framework is based on a prioritized

experience replay DDQN-based algorithm, as described in

Algorithm 2. We initialize the related hyper-parameters and

the double deep Q-networks with random weights. Then, we

train the prioritized experience replay DDQN policy according

to the following steps.

The workload monitor periodically measures workload char-

acteristics and uses the measurement to detect workload

store (s,a,r,s')
with TD-error priority p

copy parameters

DRL Agent

(s,a)

s'

r, p
Q(s,a;θ)

Q(s',argmaxa'Q(s',a;θ);θ-)

argmaxaQ(s,a; θ)

gradient

every C steps

Workload
Monitor Environment

Sumtree Loss

current
Q network

target
Q network

Power
Controller

Fig. 7. Architecture of our power configuration optimizer.

changes. These workload characteristics will be preprocessed

and discretized into a state set s (line 4 in Algorithm 1). For

the current state s, the action with the maximum value is

chosen as the optimal power configuration by the ǫ− greedy
strategy, where 0 < ǫ < 1 is a parameter that controls

how much exploration vs. exploitation is done (lines 5 and

6 in Algorithm 1). Exploration is chosen with probability

ǫ, and action is selected uniformly at random. Alternatively,

exploitation is chosen with probability 1 − ǫ, and the agent

selects the action that it considers will have the best long-

term consequence (ties between actions are broken uniformly

at random). During the offline training stage, we update ǫ
following a schedule to make the agent explore progressively

less. However, during the online deployment stage, we fix ǫ
the best-performing value found during offline training.

The energy efficiency evaluator computes the reward r for

the current power configuration taken in a given state (line 8

in Algorithm 1). As shown in Fig. 7, to perform experience

replay, we store the experience transitions (current state s,

action a, reward r, next state s′) in sumtree, a data structure

in which each node is the sum of its children, with the leaf

nodes serving as the priorities (line 9 in Algorithm 1), to

replay critical transitions more frequently, and therefore learn

more efficiently. The priority of transitions is measured by

the magnitude of their temporal-difference (TD) error (lines

13 and 14 in Algorithm 1). New transitions arrive with no

known TD error, thus we prioritize them to ensure that every

experience is observed at least once.

This algorithm then leverages the stochastic sampling

method to choose k transitions to avoid the loss of diver-

sity (line 10 in Algorithm 1). The probability of sampling

transition j as P (j) = pαj /
∑

i p
α
i , where α determines how

much prioritization is used, with = 0 corresponding to the

uniform case. Furthermore, this algorithm corrects the bias

introduced by prioritized replay by using importance-sampling

weights wj = (1/(N · P (j)))
β

, which fully compensates for

the non-uniform probabilities P (j) if β = 1. For stability

reasons, this algorithm normalizes weights by 1/maxiwi,

so that they only scale the update downwards (line 11 in

Algorithm 1).

According to the environmental state representation, the

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. XX, NO. X, AUGUST 2023 8

Input
layer

Hidden
layer Output

layer

...

Prioritized
sample
(s,a,r,s')

Q(sn,a1)

Q(sn,a2)

Q(sn,am)

...

...

Fig. 8. Three-layer fully connected neural network model.

DRL agent selects the GPU power configuration with the

biggest Q value according to the optimal action-value (also

known as Q) function. We parameterize an approximate value

function Q(s, a) using the neural network. The agent uses

two asynchronous neural networks, Q and Q−, with the same

structure and parameters, as shown in Fig. 8. In our work, the

fully connected neural network (FCNN) is applied to both

the current network and the target network. The extracted

prioritized samples (s, a, r, s′) are used as the inputs.

The DDQN with prioritized experience replay algorithm uses a

three-layer fully connected neural network to output Q values

corresponding to all m action values. The choice of a simple

three-layer fully connected neural network is driven by the

need to minimize computational overhead, as DRLCAP dy-

namically adjusts GPU power. Furthermore, our environment

is relatively straightforward, with only a five-dimensional input

state and one-dimensional output action. Therefore, in such

uncomplicated environments and tasks, overly complex neural

network architectures can lead to overfitting or increased

training difficulty.

The parameter θ− of the target network Q− is applied

to evaluate the Q value of the optimal action, while the

parameter θ of the current network Q is applied to choose

the action corresponding to the largest Q value. To avoid

overestimating the Q value, we separate the process for the

action chosen and policy evaluation. Specifically, the target

value is rj + γQ− (sj
′, argmaxa′Q (sj

′ , a′; θ) ; θ−) (line

12 in Algorithm 1). The target network, with parameters θ−,

is identical to the online network except that its parameters

are replicated from the online network every C steps. For each

transition, the algorithm updates the network parameters (i.e.,

weights) using stochastic gradient ascent.

V. EXPERIMENTAL SETUP

A. Platforms

We evaluate DRLCAP on three NVIDIA and one AMD

GPU architectures, listed in Table I. Our main evaluation

platform is an NVIDIA V100S GPU with Intel Xeon Silver

4210 CPU and 128 GB DDR4 memory. This GPU supports

196 frequency levels from 1597 MHz to 135 MHz, with a step

of 7 MHz or 8 MHz. The power consumption of the entire

GPU can be capped between 100 W and 250 W. To evaluate

the portability of our approach, we also apply DRLCAP to

NVIDIA RTX 3080 Ti GPU with Intel Xeon CPU E5-2680

v3 and 32 GB DDR4 memory, NVIDIA RTX 2080 Ti with

Intel Xeon CPU E5-2697 v4 and 256 GB DDR4 memory, and

TABLE I
LIST OF SPECIFICATIONS OF THE NVIDIA AND AMD GPUS.

Device V100S 3080 Ti 2080 Ti 6700 XT

Architecture Volta Ampere Turing RDNA2
TDP (W) 250 350 257 211
Min Power
Limit (W)

100 100 100 0

Max Power
Limit (W)

250 380 280 211

Min
Freq (MHz)

135 210 300 0

Max
Freq (MHz)

1579 2130 2100 2855

Freq
Step (MHz)

7/8 15 15 500,2855

Memory
freq(MHz)

1107
405,810,5001,
9251,9501

405,810,5000,
6800,7000

96,456,
675,1000

Max
Temp (C)

83 93 89 110

TABLE II
LIST OF BENCHMARKS USED IN THE TESTING PHASE.

Benchmark Suite
Memory

access
Category Input

LULESH LLNL regular memory 150
CloverLeaf UK-MAC irregular memory 3840
TeaLeaf UK-MAC irregular memory 4000
miniBUDE UoB-HPC regular compute 65536
CoMD NVIDIA irregular compute 100
Quantum
ESPRESSO

Quantum
ESPRESSO

irregular memory ausurf112

GROMACS GROMACS irregular memory water-0768
miniFE Mantevo regular memory 400
VggNet-16 CNN regular compute cifar-100
GoogleNet CNN regular compute cifar-100

AMD Radeon RX 6700 XT with Intel Xeon CPU E5-2698

v3 and 32 GB DDR4 memory. RTX 3080 Ti supports 126

core frequency levels and RTX 2080 Ti supports 120 core

frequency levels.

We deploy the DRLCAP as a process on the CPU. The

process uses nvidia-smi and Pynvml to adjust the NVIDIA

GPU caps for the power and frequency respectively. For AMD

GPU, the process uses rocm-smi to adjust the AMD GPU

power and frequency cap. Note that NVIDIA RTX 2080 Ti and

V100S do not support memory frequency capping and hence

on these two GPUs, we do not perform memory frequency

cappings. AMD RX 6700 XT only supports two core manual

frequencies and four memory manual frequencies hence on

this GPU, we replace perform frequency capping with power

capping.

B. Training and Testing Benchmarks

During our evaluation, we train DRLCAP offline using

training benchmarks and then test the trained model on new

benchmarks that are not seen at the training stage. Specif-

ically, DRLCAP is trained on five GPU benchmark suites:

Rodinia [1], Parboil [2], SHOC [49], Polybench [50], and

NVIDIA CUDA SDK. The trained model is then applied

to ten representing benchmarks given in Table II. These

benchmarks come from different suits, with distinct memory

access patterns, program types, and input sizes. Our testing

9

TABLE III
LIST OF TWO PRIOR SCHEMES AND THREE IMPLEMENTATIONS OF

DRLCAP.

Schemes Describe Dynamic

COORD Heuristics based on program classification No
RL Based on Double Q-learning, frequency

capping
Yes

Frequency DRLCAP based on Double Deep Q-
Network, frequency capping

Yes

Power DRLCAP based on Double Deep Q-
Network, power capping

Yes

Hybrid DRLCAP based on Double Deep Q-
Network, frequency and power capping

Yes

TABLE IV
LIST OF ACTION CANDIDATES ON V100S, 3080 TI, 2080 TI AND 6700

XT.

Configuration Platform Min Max Step

Power (W)
V100S 100 250 1

6700 XT 60 211 3

Frequency (MHz)

V100S Core 1035 1597 7/8

3080 Ti
Core 1625 1925 15
Memory 9501 9251 5001

2080 Ti Core 1635 2115 15

TABLE V
LIST OF HYPER-PARAMETERS OF DRLCAP.

Name Value Name Value

Batch size 32 Replay buffer size 512
Learning rate (α) 0.001 Discount factor (γ) 0.95
Initial epsilon (ǫ) 0.3 Final epsilon (ǫ) 0.1
Training iteration 5000 Target network update frequency 8

benchmarks include LULESH [51], CloverLeaf, TeaLeaf [44],

miniFE [52], CoMD [46], miniBUDE [45], two popular atomic

and molecular applications (i.e., Quantum ESPRESSO (QE)

and GROMACS [53]) and two CNN models (VggNet-16 and

GoogleNet) training. All of these benchmarks are implemented

in CUDA.

C. Competitive Schemes and DRL Configurations

We compare DRLCAP with four methods, as discussed in

Section II. Table III provides a comprehensive list of these

approaches. COORD is a static category-based heuristic for

adjusting the GPU power. The RL-based approach employs the

Double Q-learning to store two state-action tables to manage

power. We also compare two variants of DRLCAP by using

power capping and a combination of frequency and power

capping (i.e., the hybrid scheme).

Table IV lists the power or frequency configurations con-

sidered by the DRL framework. In our implementation, we

set the minimum value of the frequency cap to a higher value

supported by the power management knobs since the lower

capping can significantly negatively impact the application per-

formance, as shown in Section III. Hyperparameter settings for

DRLCAP are listed in Table V. All the code for reinforcement

learning algorithms is written in Python 3.9 using TensorFlow

2.11. The code extends over 1000 lines.

LULESH

CLoverLeaf
TeaLeaf

miniBUDE
CoMD QE

GROMACS
miniFE

GoogleNet

VggNet-16

GEOMEAN
0
5

10
15
20
25
30
35

Pe
rc

en
ta

ge
 [%

]

Energy Savings Performance Loss Energy Efficiency

Fig. 9. Energy savings, the resulting slowdowns, and energy efficiency of
DRLCAP with respect to the baseline scheme on V100S.

D. Performance Report

We report energy reduction and performance slowdown

(loss) by comparing them to the default GPU power man-

agement strategy, where the GPU cap and memory cap run

at the maximum frequency and are adjusted by the hardware

according to the thermal constraint. We use the energy-delay

product (EDP) to quantify the energy efficiency, computed as

delay (seconds) × energy consumption. The EDP is a lower-

is-better metric, and we show the reduction of EDP over the

baseline. We run each test case 10 times on an unloaded

machine. We then report the geometric mean across runs. We

found the variance across runs is small, less than 1%.

VI. EXPERIMENTAL RESULTS

In this section, we first show that DRLCAP achieves

consistently good performance across a broad spectrum of

parallel applications on NVIDIA V100S. Then, we compare

DRLCAP against the four alternative schemes described in

Section V-C. Next, we evaluate the overhead of DRLCAP,

including sampling overhead and computation and memory

cost. Finally, we extend DRLCAP to two other NVIDIA GPU

architectures and one AMD GPU to assess the portability.

A. Overall Results

Fig. 9 reports the energy saving and performance loss

relative to the NVIDIA default scheme across benchmarks

for DRLCAP on NVIDIA V100S. Our goal is to maximize

energy saving (higher is better) with minimal performance

loss (lower is better) for a high improvement of energy

efficiency (measured by EDP - lower is better). Overall,

DRLCAP achieves a geomean energy saving, performance

loss and energy efficiency improvement are 27%, 2.4% and

23%, respectively, over the NVIDIA baseline.

For most test applications, DRLCAP reduces the GPU

energy consumption at the cost of marginal performance

losses. It can effectively improve energy efficiency for both

computation-bounded and memory-bound programs. The only

exception is miniBUDE, which has a low energy saving. This

application is highly compute-bound which is very sensitive to

the change of frequency capping as shown in Fig. 1. Further

reducing the energy consumption with a lower frequency can

lead to a high-performance loss for miniBUDE. For other

computation-bounded applications, namely CoMD, VggNet-

16 and GoogleNet, we can observe that the performance losses

10

0
5

10
15
20
25
30
35

En
er

gy
 S

av
in

gs
 [%

]
Frequency Power Hybrid COORD RL

0

5

10

15

20

Pe
rfo

rm
an

ce
 L

os
s [

%
]

Frequency Power Hybrid COORD RL

LULESH

CLoverLeaf
TeaLeaf

miniBUDE
CoMD QE

GROMACS
miniFE

GoogleNet

VggNet-16

GEOMEAN
0
5

10
15
20
25
30
35

En
er

gy
 E

ffi
cie

nc
y

[%
]

Frequency Power Hybrid COORD RL

Fig. 10. Energy savings, the resulting slowdowns and EDP of five power
management approaches with respect to the baseline scheme.

are higher than memory-bound applications since DRLCAP

privatizes energy saving by reducing the GPU core frequency.

For memory-bound applications, reducing the GPU core fre-

quency has few impacts on performance. Additionally, due to

DRLCAP being transparent to the applications, it saves energy

for both regular and irregular applications.

B. Compare to Alternative Schemes

We now compare DRLCAP against the other four power

management methods described in Table III. The results are

given in Fig. 10, which shows that DRLCAP gives the best

trade-off between energy saving and performance slowdown.

The baseline is the NVIDIA default strategy.

COORD leads an average energy saving of 25% with

an average performance slowdown of 5%, which translates

to an improvement of energy efficiency of 21%. However,

COORD needs to perform each program ahead of time to

classify the program to assign a static power budget to be

used through the program execution. Additionally, a static

power strategy is inadequate for applications with frequent

dynamic phase changes, such as Quantum ESPRESSO (QE).

Compared to COORD, DRLCAP can adapt well to phase

changes, leading to an 8% improvement in energy efficiency

over COORD. However, in some cases, such as with CoDM,

COORD outperforms our method. This is because COORD

categorizes the CoDM as a memory-intensive application

and configures its frequency to 1200 MHz. As shown in

Fig. 2, the optimal frequency for the CoDM is 1185 MHz.

Therefore, COORD has achieved the optimal configuration

for this program. Additionally, COORD analyzes the program

in advance without incurring any additional overhead during

program execution, whereas our approach does incur some

overhead.

The RL baseline gives an average energy saving of 5%,

with an average performance slowdown of 1%, and an energy

efficiency improvement of 4%. This is our previous approach

targeting the multicore CPU. It can monitor hardware per-

formance counters with low overhead on the CPU, like the

Instruction Per Cycle (IPC). Thus, the scheme uses a simple

RL algorithm, the double Q-learning, by using two tables to

store all samples. However, this strategy fails as the number of

states and actions increases because it is increasingly unlikely

that the agent would visit a certain state or take a specific

action. Therefore, although this scheme has adopted the same

action candidates and reward function as DRLCAP, because

of the large space of state and action, it fails to achieve

similar energy conservation.DRLCAP leverages deep learning

to progressively extract higher-level features from the raw

state. In addition, two Q-tables occupy a large amount of

memory space, which in reality does not make sense.

The mean energy savings of the DRLCAP variants when

using power capping and the hybrid scheme are 20% and 22%,

respectively. The corresponding mean performance losses are

8.5% and 5%, respectively. The mean energy efficiency im-

provements are 14% and 17%, respectively, over the NVIDIA

baseline. Our chosen frequency capping scheme provides the

best balance of energy savings and performance degradation

for energy optimization. The main reason is that the NVIDIA

V100S supports frequencies from 1597 MHz to 135 MHz,

while the range of power limit is from 250 W to 100 W.

Thus, the minimum frequency is well below the minimum

power limit, DRLCAP with frequency capping can save more

energy with lower hardware configurations. The power scheme

shows significant energy savings for some benchmarks, such

as LULESH, cloverleaf, Tealeaf, and miniBUDE. However,

we also observed high performance losses for these programs,

with LULESH, cloverleaf, and miniBUDE all exceeding 5%.

The observation arises from the heightened sensitivity of these

programs to fluctuations in power. As depicted in Fig. 2,

TeaLeaf and miniBUDE show significant fluctuations in both

energy consumption and performance as power varies, com-

pared to QE and COMD. Conversely, as illustrated in Fig. 1, all

programs exhibit consistent sensitivity to frequency changes.

The optimization of the hybrid scheme is slightly worse than

that of the frequency capping scheme because of the interac-

tion of the power and frequency capping and the large hybrid

action space. In real-world scenarios, the relationship between

GPU power consumption and frequency is typically nonlinear

as shown in Fig. 3. This means that reducing the frequency

does not result in a linear reduction in power consumption.

The hybrid scheme can sometimes lead to a scenario in which

the frequency decreases, but the power consumption remains

relatively high. This situation can hinder the achievement of

optimal energy efficiency. Additionally, the hybrid scheme

may occasionally result in overly conservative adjustments,

which in turn restrict the GPU performance potential.

C. Overhead Analysis

The overhead of DRLCAP when applied comes from two

sources: the cost of online sampling for workload change de-

tection, and the cost of running the system for computation and

memory. Additionally, we explore the variations in overhead

introduced by different neural network architectures.

11

LULESH

CLoverLeaf
TeaLeaf

miniBUDE
CoMD QE

GROMACS
miniFE

GoogleNet

VggNet-16

GEOMEAN
0.0

0.2

0.4

0.6

0.8
Sa

m
pl

e
Ov

er
he

ad
 [%

]
Time Energy

Fig. 11. Energy and time overhead with respect to the baseline scheme without
sampling on V100S.

LULESH

CLoverLeaf
TeaLeaf

miniBUDE
CoMD QE

GROMACS
miniFE

GoogleNet

VggNet-16

GEOMEAN
0

5

10

15

En
er

gy
 O

ve
rh

ea
d

[%
]

CPU
DRAM

Fig. 12. Energy overhead of CPU and memory with respect to the baseline
scheme.

Firstly, we evaluate the overhead of our sampling approach

which is determined by the vendor software nvidia-smi. Fig. 11

illustrates the sampling overhead of time and energy provided

by the interval of 300 ms to the baseline that does not incur

sampling overhead. As can be seen from the diagram, the

geometric means of time overhead and energy overhead are

0.2% and 0.3%.In this work, we choose 300 ms as the sam-

pling interval that has a negligible negative influence on energy

and time. After the sampling is completed, DRLCAP updates

the GPU frequency cap if the best action has changed. If the

sampling window is too large, the phase change detection may

not be timely, and too small may cause the calculation of

DRLCAP to be too dense and the overhead to be large.

Another overhead depends on the complexity of our DRL-

based GPU energy efficiency optimization algorithm. Since

DRLCAP is deployed in the host (CPU), we now evaluate

the CPU and memory energy overhead. Fig. 12 illustrates the

CPU and memory energy overhead with respect to the case

without sampling. The NVIDIA V100S is fitted with one 40-

core Intel Xeon Silver 4210 CPU and 128G DDR4. As can

be seen from the diagram, the geomean CPU and memory

energy overhead with DRLCAP are 4% and 6%. Since the

power consumption is low when the CPU is unloaded, slight

CPU activity will also result in a higher percentage of power

consumption. We also evaluate the energy consumption of the

overall system including CPU, memory and GPU. Fig. 13

shows the energy saving and energy efficiency improvement

of the overall computing system. DRLCAP with frequency

causes energy overhead, while it still achieves an average

overall energy saving of 17%, a performance loss of 2.4%

and an improvement of energy efficiency of 12%. The DRL

algorithm results in a certain amount of energy overhead

from CPU and memory, however, DRLCap achieves energy

efficiency optimization across the entire computing system.

LULESH

CLoverLeaf
TeaLeaf

miniBUDE
CoMD QE

GROMACS
miniFE

GoogleNet

VggNet-16

GEOMEAN
0
5

10
15
20

Ov
er

al
l S

ys
te

m
 [%

]

Energy Saving Energy efficiency

Fig. 13. Overall energy saving and energy efficiency with DRLCAP.

0 1 3 6 9 12 24
Number of FCNN hidden layers

30

40

50

60

70

Po
we

r C
on

su
m

pt
io

n
[W

]

Fig. 14. Power consumption with different number of hidden layers.

In this study, we utilize a relatively simple FCNN structure,

specifically a three-layer fully connected neural network. This

choice is made due to the dynamicity of DRLCAP, necessi-

tating consideration of system overhead at runtime. Fig. 14

depicts the power consumption of the computer system both

without and with DRLCAP, equipped with various neural

networks. The X-axis represents the hidden layer of the neural

network, with 0 denoting the case without DRLCAP, while

the Y-axis indicates the average power consumption over

10 measurements for 2 minutes. We can observe that the

power consumption increases as the number of neural network

layers increases. For instance, with a single hidden layer,

power consumption reaches 40 W, compared to 33 W without

DRLCAP. With three hidden layers, power consumption rises

to 58 W, which is deemed intolerable. Consequently, for this

study, we selected a neural network with a simple structure,

featuring only one hidden layer.

D. Portability

So far, all our experiments have been performed on NVIDIA

V100S GPU. In this evaluation, we also applied our approach

to the NVIDIA GeForce RTX 3080 Ti, NVIDIA GeForce RTX

2080 Ti and AMD Radeon RX 6700 XT GPUs(Section V-A).

We need to re-train the DRL model when moving to a new

architectural GPU. Figs. 15 and 16 show the result on the

three NVIDIA GPUs and one AMD GPU targeted in this

paper respectively. Once again, the results are normalized to

the default baseline.

For the NVIDIA Ampere architecture (RTX 3080 Ti), the

average energy reduction, performance slowdown and energy

efficiency improvement are 19%, 3% and 17%, respectively.

We also observe similar results on the NVIDIA Tuning

architecture (RTX 2080 Ti). The average energy reduction,

performance loss and improvement of energy efficiency are

22%, 4.5% and 19% on RTX 2080 Ti. Across the three GPU

architectures, DRLCAP saves the energy consumption, on

12

0
5

10
15
20
25
30
35

En
er

gy
 S

av
in

gs
 [%

]
V100S 3080Ti 2080Ti

0

5

10

15

Pe
rfo

rm
an

ce
 L

os
s [

%
]

V100S 3080Ti 2080Ti

LULESH

CLoverLeaf
TeaLeaf

miniBUDE
CoMD QE

GROMACS
miniFE

GoogleNet

VggNet-16

GEOMEAN
0
5

10
15
20
25
30
35

En
er

gy
 E

ffi
cie

nc
y

[%
]

V100S 3080Ti 2080Ti

Fig. 15. Energy savings, the resulting slowdowns and EDP with DRLCAP

on three NVIDIA GPUs

LULESH

CLoverLeaf
TeaLeaf

miniBUDE
CoMD

ResNet50

GROMACS
miniFE

GoogleNet

VggNet-16

GEOMEAN

0

5

10

15

20

Pe
rc

en
ta

ge
 [%

]

Energy Savings
Performance Loss
Energy Efficiency

Fig. 16. Energy savings, the resulting slowdowns and EDP with DRLCAP

on AMD Radeon RX 6700 XT GPU.

average, by 22%, reduces performance by 3%, and improves

energy efficiency by 20%. For the AMD RDNA 2 architecture

(RX 6700 XT), the average energy saving, performance loss

and energy efficiency improvement are 10%, 4% and 7.8%,

respectively. Since AMD GPUs only support manual tuning

at two frequency levels, we choose to adjust the power

capping. As a result, we achieve fewer energy savings on

AMD than we do on NVIDIA GPUs. The GPU version of

Quantum ESPRESSO (QE) requires the nvfortran compiler

from the NVIDIA HPC SDK. Therefore, instead of QE, we use

ResNet50, which is also a convolutional neural network like

GoogleNet and VggNet. We also observe that energy savings

are poor at CoMD and miniFE. The energy saving potential

of these two benchmarks is very low as we statically traverse

all the power caps and the achieved energy savings are very

low. In general, DRLCAP exhibits good portable performance

across the evaluation platforms.

VII. DISCUSSION AND FUTURE WORK

DRLCap is among the first work that tries to apply deep

reinforcement learning to optimize GPU energy consumption

by frequency capping during dynamic runtime. Nevertheless,

there is still space for development and more work should be

done.

Model interpretability. Machine learning generally works

as a black box. This is just as true for the DRL technique

used in this work. Three distinct challenges of explainable

reinforcement learning, namely, environmental interpretation,

task interpretation, and strategy interpretation, are defined

according to the characteristics of RL. The environment is a

given black-box system with specific internal rules, and how

to obtain these rules from the environment is the first problem

facing reinforcement learning. A task is an objective function

fitted by an agent to maximize its average reward. However,

the reward function based on prior human knowledge is

usually subjective and sparse and cannot accurately represent

task goals. The strategy interpretation needs to be presented in

an interpretable manner so that the human predictions of the

model’s actions are as close as possible to the model’s actual

actions. It is an interesting future work direction to understand

the DRL learning mechanism.

GPU Performance metrics. One of the challenges for GPU

energy efficiency optimization is how to accurately and low-

overhead measure the runtime performance. There are two

major approaches in the existing research. The first is based

on hardware performance counters [54]. This method mea-

sures hardware performance count through the performance

profiling tools. However, until the GPU kernel terminates,

these profiling tools return measurements, which means that

the approach is offline technology because the GPU kernel

must be executed at least once. In addition, the overhead of

obtaining these indicators is usually high. The second approach

is based on code instrumentation, such as CUDAAdvisor [55],

to measure statistics about the control flow. Although the code

instrumentation has little performance effect than the former, it

changes the actual behavior of GPU kernels and requires extra

effort made by developers and the system administrator in code

changes and maintenance. In this work, DRLCAP utilizes the

hardware utilization provided by nvidia-smi based on NVML

as performance metrics. Although it avoids the disadvantages

of the two popular methods mentioned above, it is coarse-

grained and fails to accurately reflect the performance of the

program. As a result, it is an interesting future work to capture

accurate and low-overhead performance metrics.

Global optimization. DRLCAP can allocate one agent to

each GPU, and the deployed agent takes choices indepen-

dently on the local GPU. Our solution can be scalable to

a large, distributed environment thanks to this decentralized

design. To increase cluster throughput and energy efficiency,

certain lightweight approaches to coordinate executions and

optimizations among distributed computing nodes would be in-

teresting to develop. For example, we can leverage GEOPM’s

tree-hierarchical optimization framework [10] to propagate

data and leverage feedback from each computing node to

coordinate power optimization. Particularly, DRLCAP with

power capping is useful for a power constraint distributed

environment since the feedback in our scheme may be used to

distribute the power budget in a distributed environment under

an overall power limit.

13

Frequency and Voltage. Most current DVFS methods focus

on the frequency while disregarding the voltage, which limits

their ability to fully maximize energy savings. DVFS just

lowers the voltage to comply with frequency reduction in

the slack from load imbalance, communication delay, memory

access latency, etc. The neglected undervolting technology is

advantageous in several ways: (a) it allows for a decrease in

the voltage supplied to the component without changing its

frequency which means that the computational throughput can

be maintained at a similar level as before, ensuring that the

performance of the system is not significantly affected. (b) it

can be universally used for both slack and non-slack phases of

HPC runs. By reducing the voltage during these phases, under-

volting helps in achieving power reduction across the entire

workload, regardless of the level of computational intensity.

Hence, in future research, we can combine undervolting and

frequency capping to further improve GPU energy efficiency.

Note that undervolting can lead to an increased system failure

rate. Consequently, we need to implement various resilience

techniques to mitigate and tolerate these failures in future

work.

VIII. CONCLUSION

We have presented DRLCAP, a general deep reinforcement

learning-based online GPU power management scheme cross

various GPU architectures. DRLCAP aims to reduce the GPU

energy consumption without significantly compromising the

application runtime by adjusting the GPU frequency caps at

program execution time, which is achieved by the RL reward.

DRLCAP adapts to dynamic workload behaviors and updates

its decision process during execution time by considering both

immediate and prospective future feedback of power optimiza-

tion, aiming to maximize the long-term reward throughout the

program execution. We evaluate DRLCAP by applying it to

three NVIDIA and one AMD GPU architectures using ten

GPU benchmarks. Experimental results show that DRLCAP

can reduce the GPU energy consumption by 22%, on average,

at the cost of 3% slowdown of the application runtime on

NVIDIA GPUs. For the AMD GPU, DRLCAP saves energy

consumption by 10%, on average, with 4% performance loss.

ACKNOWLEDGMENT

This work was supported in part by the National Natural

Science Foundation of China (Grant No. 62202123) and in

part by the Joint Funds of the National Natural Science

Foundation of China (Grant No. U22A2036). Prof. Zhang is

the corresponding author.

REFERENCES

[1] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Proc. 2009 IEEE Int. Symp. Workload Charact. IEEE, 2009, pp.
44–54.

[2] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
Cent. Reliable High Perform. Comput., vol. 127, p. 27, 2012.

[3] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised
learning using graphics processors,” in Proc. 26th Annu. Int. Conf. Mach.

Learn., 2009, pp. 873–880.

[4] T. Patki, N. Bates, G. Ghatikar, A. Clausen, S. Klingert, G. Abdulla,
and M. Sheikhalishahi, “Supercomputing centers and electricity service
providers: A geographically distrib. perspective on demand management
in europe and the united states,” in Int. Conf. High Perform. Comput.

Springer, 2016, pp. 243–260.

[5] T. Patki, Z. Frye, H. Bhatia, F. Di Natale, J. Glosli, H. Ingolfsson, and
B. Rountree, “Comparing gpu power and frequency capping: A case
study with the mummi workflow,” in Proc. 2019 IEEE/ACM Workflows

Support Large-Scale Sci. IEEE, 2019, pp. 31–39.

[6] Q. Zhu, B. Wu, X. Shen, L. Shen, and Z. Wang, “Co-run scheduling
with power cap on integrated cpu-gpu systems,” in Proc. 31st IEEE Int.

Parallel Distrib. Process. Symp. IEEE, 2017, pp. 967–977.

[7] Y. Wang, W. Zhang, M. Hao, and Z. Wang, “Online power management
for multi-cores: A reinforcement learning based approach,” IEEE Trans.

Parallel Distrib. Syst., vol. 33, no. 4, pp. 751–764, 2022.

[8] M. Hao, W. Zhang, Y. Wang, G. Lu, F. Wang, and A. V. Vasilakos,
“Fine-grained powercap allocation for power-constrained systems based
on multi-objective machine learning,” IEEE Transactions on Parallel

and Distributed Systems, vol. 32, no. 7, pp. 1789–1801, 2020.

[9] L. Chen, P. Wu, Z. Chen, R. Ge, and Z. Zong, “Energy efficient parallel
matrix-matrix multiplication for dvfs-enabled clusters,” in 2012 41st

International Conference on Parallel Processing Workshops. IEEE,
2012, pp. 239–245.

[10] J. Eastep, S. Sylvester, C. Cantalupo, B. Geltz, F. Ardanaz, A. Al-Rawi,
K. Livingston, F. Keceli, M. Maiterth, and S. Jana, “Global extensible
open power manager: a vehicle for hpc community collaboration on co-
designed energy management solutions,” in Proc. 32nd Int. Conf. High

Perform. Comput. Springer, 2017, pp. 394–412.

[11] C. Ortega, L. Alvarez, M. Casas, R. Bertran, A. Buyuktosunoglu,
A. E. Eichenberger, P. Bose, and M. Moreto, “Intelligent adaptation of
hardware knobs for improving performance and power consumption,”
IEEE Trans. Comput., vol. 70, no. 1, pp. 1–16, 2020.

[12] Y. Luo, L. Pu, and C.-H. Liu, “Cpu frequency scaling optimization
in sustainable edge computing,” IEEE Transactions on Sustainable

Computing, 2022.

[13] L. Tan, Z. Chen, Z. Zong, D. Li, and R. Ge, “A2e: Adaptively aggressive
energy efficient dvfs scheduling for data intensive applications,” in 2013

IEEE 32nd International Performance Computing and Communications

Conference (IPCCC). IEEE, 2013, pp. 1–10.

[14] B. Salami, H. Noori, and M. Naghibzadeh, “Fairness-aware energy
efficient scheduling on heterogeneous multi-core processors,” IEEE

Trans. Comput., vol. 70, no. 1, pp. 72–82, 2020.

[15] S. Kumar, A. Gupta, V. Kumar, and S. Bhalachandra, “Cuttlefish: library
for achieving energy efficiency in multicore parallel programs,” in Proc.

Int. Conf. High Perform. Comput., Networking, Storage Anal., 2021, pp.
1–14.

[16] J. Leng, A. Buyuktosunoglu, R. Bertran, P. Bose, and V. J. Reddi, “Safe
limits on voltage reduction efficiency in gpus: a direct measurement
approach,” in Proceedings of the 48th International Symposium on

Microarchitecture, 2015, pp. 294–307.

[17] H. Zamani, Y. Liu, D. Tripathy, L. Bhuyan, and Z. Chen, “Greenmm:
energy efficient gpu matrix multiplication through undervolting,” in
Proceedings of the ACM International Conference on Supercomputing,
2019, pp. 308–318.

[18] H. Zamani, D. Tripathy, L. Bhuyan, and Z. Chen, “Saou: safe adaptive
overclocking and undervolting for energy-efficient gpu computing,” in
Proceedings of the ACM/IEEE International Symposium on Low Power

Electronics and Design, 2020, pp. 205–210.

[19] L. Tan, S. L. Song, P. Wu, Z. Chen, R. Ge, and D. J. Kerbyson,
“Investigating the interplay between energy efficiency and resilience in
high performance computing,” in 2015 IEEE International Parallel and

Distributed Processing Symposium. IEEE, 2015, pp. 786–796.

[20] J. Guerreiro, A. Ilic, N. Roma, and P. Tomas, “Gpgpu power modeling
for multi-domain voltage-frequency scaling,” in Proc. 24th IEEE Int.

Symp. High Perform. Comput. Archit. IEEE, 2018, pp. 789–800.

[21] L. Braun, S. Nikas, C. Song, V. Heuveline, and H. Fröning, “A simple
model for portable and fast prediction of execution time and power
consumption of gpu kernels,” ACM Trans. Archit. Code Optim., vol. 18,
no. 1, pp. 1–25, 2020.

[22] P. Zou, A. Li, K. Barker, and R. Ge, “Indicator-directed dynamic power
management for iterative workloads on gpu-accelerated systems,” in
Proc. 20th IEEE/ACM Int. Symp. Cluster, Cloud Internet Comput. IEEE,
2020, pp. 559–568.

[23] F. Wang, W. Zhang, S. Lai, M. Hao, and Z. Wang, “Dynamic gpu
energy optimation for machine learning training workloads,” IEEE

Trans. Parallel Distrib. Syst., vol. 33, no. 11, pp. 2943–2954, 2022.

14

[24] J.-G. Park, N. Dutt, and S.-S. Lim, “An interpretable machine learning
model enhanced integrated cpu-gpu dvfs governor,” ACM Trans. Em-

bedded Comput. Syst., vol. 20, no. 6, pp. 1–28, 2021.
[25] D. Moolchandani, A. Kumar, and S. R. Sarangi, “Performance and power

prediction for concurrent execution on gpus,” ACM Trans. Archit. Code

Optim., vol. 19, no. 3, pp. 1–27, 2022.
[26] R. Ge, X. Feng, T. Allen, and P. Zou, “The case for cross-component

power coordination on power bounded system,” IEEE Trans. Parallel

Distrib. Syst., vol. 32, no. 10, pp. 2464–2476, 2021.
[27] H. Hasselt, “Double q-learning,” Adv. Neural Inf. Process. Syst., vol. 23,

2010.
[28] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience

replay,” in Proc. 4th Int. Conf. Learn. Represent., 2015.
[29] Y. Arafa, A.-H. Badawy, A. ElWazir, A. Barai, A. Eker, G. Chennupati,

N. Santhi, and S. Eidenbenz, “Hybrid, scalable, trace-driven performance
modeling of gpgpus,” in Proc. Int. Conf. High Perform. Comput.,

Networking, Storage Anal., 2021, pp. 1–15.
[30] V. Kandiah, S. Peverelle, M. Khairy, J. Pan, A. Manjunath, T. G. Rogers,

T. M. Aamodt, and N. Hardavellas, “Accelwattch: A power modeling
framework for modern gpus,” in Proc. 54th Annu. IEEE/ACM Int. Symp.

Microarchit., 2021, pp. 738–753.
[31] A. Li, S. L. Song, M. Wijtvliet, A. Kumar, and H. Corporaal, “Sfu-

driven transparent approximation acceleration on gpus,” in Proc. 2016

Int. Conf. Supercomput., 2016, pp. 1–14.
[32] A. Majumdar, L. Piga, I. Paul, J. L. Greathouse, W. Huang, and

D. H. Albonesi, “Dynamic gpgpu power management using adaptive
model predictive control,” in Proc. 23rd IEEE Int. Symp. High Perform.

Comput. Archit. IEEE, 2017, pp. 613–624.
[33] I. Paul, W. Huang, M. Arora, and S. Yalamanchili, “Harmonia: Balancing

compute and memory power in high-performance gpus,” Proc. 42nd

Annu. Int. Symp. Comput. Archit., vol. 43, no. 3S, pp. 54–65, 2015.
[34] S. Z. Sheikh and M. A. Pasha, “Energy-efficient cache-aware scheduling

on heterogeneous multicore systems,” IEEE Transactions on Parallel

and Distributed Systems, vol. 33, no. 1, pp. 206–217, 2022.
[35] Q. Wang, X. Mei, H. Liu, Y.-W. Leung, Z. Li, and X. Chu, “Energy-

aware non-preemptive task scheduling with deadline constraint in dvfs-
enabled heterogeneous clusters,” IEEE Transactions on Parallel and

Distributed Systems, vol. 33, no. 12, pp. 4083–4099, 2022.
[36] L. Gu, D. Zeng, W. Li, S. Guo, A. Y. Zomaya, and H. Jin, “Intelligent vnf

orchestration and flow scheduling via model-assisted deep reinforcement
learning,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 2, pp. 279–291, 2019.

[37] D. Zeng, J. Zhang, L. Gu, S. Guo, and J. Luo, “Energy-efficient
coordinated multipoint scheduling in green cloud radio access network,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 10, pp. 9922–
9930, 2018.

[38] L. Gu, D. Zeng, S. Guo, and B. Ye, “Leverage parking cars in a two-tier
data center,” in 2013 IEEE Wireless Communications and Networking

Conference (WCNC). IEEE, 2013, pp. 4665–4670.
[39] L. Gu, D. Zeng, S. Tao, S. Guo, H. Jin, A. Y. Zomaya, and W. Zhuang,

“Fairness-aware dynamic rate control and flow scheduling for network
utility maximization in network service chain,” IEEE Journal on Se-

lected Areas in Communications, vol. 37, no. 5, pp. 1059–1071, 2019.
[40] Z. Tian, Z. Wang, J. Xu, H. Li, P. Yang, and R. K. V. Maeda,

“Collaborative power management through knowledge sharing among
multiple devices,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
vol. 38, no. 7, pp. 1203–1215, 2018.

[41] H. Huang, M. Lin, L. T. Yang, and Q. Zhang, “Autonomous power man-
agement with double-q reinforcement learning method,” IEEE Trans.

Ind. Inform., vol. 16, no. 3, pp. 1938–1946, 2019.
[42] R. Azimi, C. Jing, and S. Reda, “Powercoord: Power capping coordina-

tion for multi-cpu/gpu servers using reinforcement learning,” Sustainable

Comput.: Inf. Syst., vol. 28, p. 100412, 2020.
[43] E. Kwon, S. Han, Y. Park, J. Yoon, and S. Kang, “Reinforcement

learning-based power management policy for mobile device syst.” IEEE

Trans. Circuits Syst., vol. 68, no. 10, pp. 4156–4169, 2021.
[44] “Uk mini-app consortium.” https://uk-mac.github.io/.
[45] A. Poenaru, W.-C. Lin, and S. McIntosh-Smith, “A performance anal-

ysis of modern parallel programming models using a compute-bound
application,” in Proc. 36th Int. Conf. High Perform. Comput. Springer,
2021, pp. 332–350.

[46] J. Mohd-Yusof, S. Swaminarayan, and T. C. Germann, “Co-design for
molecular dynamics: An exascale proxy application,” LA-UR 13-20839,
pp. 88–89, 2013.

[47] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni,
D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo et al., “Quantum
espresso: a modular and open-source software project for quantum

simulations of materials,” J. Phys.: Condens. Matter, vol. 21, no. 39,
p. 395502, 2009.

[48] V. Spiliopoulos, S. Kaxiras, and G. Keramidas, “Green governors:
A framework for continuously adaptive DVFS,” in 2011 Int. Green

Comput. Conf. Workshops. IEEE Comput. Society, 2011, pp. 1–8.
[49] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,

K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous
computing (shoc) benchmark suite,” in Proc. 3rd Workshop General-

purpose Comput. Graphics Process. Units, 2010, pp. 63–74.
[50] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,

“Auto-tuning a high-level language targeted to gpu codes,” in Proc. 2012

Innovative Parallel Comput. Ieee, 2012, pp. 1–10.
[51] I. Karlin, J. Keasler, and J. R. Neely, “Lulesh 2.0 updates and changes,”

Lawrence Livermore National Lab.(LLNL), Livermore, CA (United
States), Tech. Rep., 2013.

[52] “Ecp proxy applications.” https://proxyapps.exascaleproject.org/.
[53] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and

E. Lindahl, “Gromacs: High performance molecular simulations through
multi-level parallelism from laptops to supercomput.s,” SoftwareX, vol.
1-2, pp. 19–25, 2015.

[54] Y. Abe, H. Sasaki, S. Kato, K. Inoue, M. Edahiro, and M. Peres, “Power
and performance characterization and modeling of gpu-accelerated sys-
tems,” in 2014 IEEE 28th Int. Parallel Distrib. Process. Symp. IEEE,
2014, pp. 113–122.

[55] D. Shen, S. L. Song, A. Li, and X. Liu, “Cudaadvisor: Llvm-based
runtime profiling for modern gpus,” in Proc. 2018 Int. Symp. Code

Gener. Optim., 2018, pp. 214–227.

Yiming Wang received the MS degree in software
engineering from Harbin Institute of Technology,
China, in 2019. She is currently working toward
a Ph.D. degree in Harbin Institute of Technology.
Her research interests include high-performance
computing, per-formance optimization, and energy
efficiency.

Meng Hao received the BS and Ph.D. degree in
computer science and engineering from Harbin In-
stitute of Technology, China, in 2014 and 2020
respectively. He is currently an assistant professor in
Harbin Institute of Technology. His research
interests include high-performance computing,
performance modeling, and parallel optimization.

Hui He received the B.Eng, M.Eng, and Ph.D.
degrees from the Harbin Institute of Technology,
Harbin, China, in 1997, 1999, and 2006, respec-
tively, all in computer science and technology. She
is a Professor in Harbin Institute of Technology.
Her current research interests include distributed
computing, the Internet of Things, and big data
analysis.

15

Weizhe Zhang (Senior Member, IEEE) received
B.Eng, M.Eng and Ph.D. degree of Engineering in
computer science and technology in 1999, 2001 and
2006 respectively from Harbin Institute of Technol-
ogy. He is currently a professor at Harbin
Institute of Technol-ogy, China. His research
interests are primarily in parallel computing,
distributed computing, cloud and grid computing,
and computer network.

Qiuyuan Tang received the BS degree in computer
science and engineering from the Harbin Institute
of Technology, China, in 2022. She is currently
working in Shanghai Bili Bili Technology Co., Ltd.

Xiaoyang Sun is a Ph.D. student of the Distributed
Systems and Services Group at the University of
Leeds. He has completed research internships in
Alibaba Group, working on efficient resource man-
agement in the data center and deep learning ac-
celeration in a resource-restricted environment. His
primary research interests include edge computing,
system optimization for deep learning, etc.

Zheng Wang is a professor of intelligent software
technology at the University of Leeds. His research
interests include compilers, programming models,
parallel computing, runtime systems, and systems
security.

