
This is a repository copy of Reduction of turbulent skin-friction drag by passively rotating 
discs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/209042/

Version: Accepted Version

Article:

Olivucci, P. orcid.org/0000-0001-7570-1301, Wise, D.J. orcid.org/0000-0002-0347-6827 
and Ricco, P. orcid.org/0000-0003-1537-1667 (2021) Reduction of turbulent skin-friction 
drag by passively rotating discs. Journal of Fluid Mechanics, 923. A8. ISSN 0022-1120 

https://doi.org/10.1017/jfm.2021.533

This article has been published in a revised form in Journal of Fluid Mechanics 
https://doi.org/10.1017/jfm.2021.533. This version is free to view and download for private 
research and study only. Not for re-distribution, re-sale or use in derivative works. © The 
Author(s).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



ar
X

iv
:2

10
6.

12
82

4v
1 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  2

4 
Ju

n 
20

21 Reduction of turbulent skin-friction drag by
passively rotating discs
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A turbulent channel flow modified by the motion of discs that are free to rotate under
the action of wall turbulence is studied numerically. The Navier-Stokes equations are
coupled nonlinearly with the dynamical equation of the disc motion, which synthesizes
the fluid-flow boundary conditions and is driven by the torque exerted by the wall-shear
stress. We consider discs that are fully exposed to the fluid and discs for which only half
of the surface interfaces the fluid. The disc motion is thwarted by the fluid torque in the
housing cavity and by the torque of the ball bearing that supports the disc. For the full
discs, no drag reduction occurs because of the small angular velocities. The most energetic
disc response occurs for disc diameters that are comparable with the spanwise spacing of
the low-speed streaks. A perturbation analysis for small disc-tip velocities reveals that
the two-way nonlinear coupling has an intense attenuating effect on the disc response.
The reduced-order results show excellent agreement with the nonlinear results for large
diameters. The half discs rotate with a finite angular velocity, leading to large reduction
of the turbulence activity and of the skin-friction drag over the spinning portion of the
discs, while the maximum drag reduction over the entire walls is 5.6%. The dependence of
the drag reduction on the wall-slip velocity and the spatial distribution of the wall-shear
stress qualitatively match results based on the only available experimental data.

Key words: turbulent drag reduction, rotating discs, flow control, wall turbulence

1. Introduction

Turbulent skin-friction drag reduction is a subject of great interest in fluid mechanics
research, due to the potential to produce significant reductions in fuel consumption and
carbon emissions in many industrial scenarios. Around 60% of the aerodynamic drag
of a typical airliner in cruise conditions is due to frictional drag, the other components
being form drag and induced drag (Leschziner et al. 2011). In the case of a typical
slow merchant ship, such as a tanker or a container ship, around 70% of the total hull
resistance is frictional drag, the remainder being form drag and wave drag (Larsson &
Raven 2010). For the aerospace industry, it has been estimated that a 1% reduction in
skin-friction drag for a long-range commercial aircraft would decrease fuel consumption
by approximately 0.45%. For a typical airline this change is equivalent to a reduction
in CO2 emissions of 5.4 million equivalent tonnes per year and an annual reduction in
operating costs of 0.2% (Reneaux 2004).

†Email address for correspondence: p.ricco@sheffield.ac.uk
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At the moderate Reynolds numbers considered in this study, the near-wall dynamics
is responsible for the largest contribution to the skin-friction drag (Quadrio 2011; de
Giovanetti et al. 2016). Wall-based drag reduction techniques therefore often aim at
altering the structure of the near-wall turbulence, producing an attenuation of the
ejections and sweeps that promote the transport of high-momentum fluid in the near-wall
region and lead to an increased skin-friction drag.

Wall-based flow control methods for drag reduction can be broadly classified as active
or passive. In active methods, the flow is often altered by wall-mounted devices that rely
on an external power supply to operate. For such methods, the power required to drive
the control devices must be accounted for because the net power consumption represents
a critical performance metric. Passive methods instead consist of modifications of the
wall surface geometry (Min & Kim 2004; Garćıa-Mayoral & Jiménez 2011) or compliant
surfaces where some regions of the wall are allowed to move under the action of the flow
(Choi et al. 1997). Passive methods do not necessitate an external power input, although
the interaction between the fluid and the complex geometry may constitute an additional
source of friction.

Jung et al. (1992) first introduced in-plane wall motion as a drag-reduction technique,
achieving an attenuation of the turbulent skin-friction drag by oscillating the wall in
the cross-flow direction. The oscillating wall technique has proven capable of generating
drag-reduction margins up to 40% (Quadrio & Ricco 2004), while its generalizations in
the form of steady and travelling waves of spanwise velocity at the wall have also led
to drag-reduction levels as high as 45% at low Reynolds numbers (Quadrio et al. 2009).
The mechanism by which the spanwise wall motion suppresses the turbulent activity
and leads to drag reduction has been the subject of several investigations (Choi 2002;
Quadrio 2011; Skote 2011; Ricco et al. 2012; Blesbois et al. 2013). An optimal oscillation
period of about T + = 100 (the superscript “+” denoting scaling in viscous units) was
found by Quadrio & Ricco (2004) to produce the maximum drag reduction because it
matches a characteristic temporal scale of the near-wall turbulent structures and an
optimal thickness of the generated Stokes layer.

Spinning circular actuators that are flush-mounted on the wall have also been demon-
strated numerically to lead to drag-reduction levels up to 23% and to net power savings
up to 10% (Ricco & Hahn 2013; Wise & Ricco 2014), where the latter is computed by
subtracting the power spent to move the discs from the power saved because of drag
reduction. The discs offer a few practical advantages with respect to wall oscillations and
travelling waves, i.e., the local character that avoids the motion of the whole solid wall and
the wider range of diameters leading to drag-reduction margins that are comparable to the
maximum value (Ricco & Hahn 2013; Wise et al. 2014). Wise et al. (2014) demonstrated
that rotating annular actuators can deliver similar levels of drag reduction while requiring
up to 20% less driving power. The ring actuators can be combined efficiently with other
passive and active techniques (Olivucci et al. 2019), attaining reductions of the skin-
friction drag as large as 27%.

In the present work, we carry out direct numerical simulations of a turbulent channel
flow over flush-mounted discs that are free to move under the action of the turbulent
wall-shear stress. We consider the full numerical modelling of the rotating actuators,
taking into account the coupled dynamics of the turbulent flow and the discs, and the
frictional losses occurring in a realistically designed disc housing.

Modelling of flow-control actuators is critical because it gives estimates of the power
expenditure that are closer to those in real-world settings. This approach also allows
studying the two-way coupling between the fluid mechanics and the actuators, which
leads to a more accurate prediction of the flow physics and therefore of the drag-reduction
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(a) (b)

Figure 1: Experimental apparatus of Koch & Kozulovic (2013) and Koch & Kozulovic
(2014). (a) Schematic of the disc and its supporting housing system. (b) Schematic of
the wind-tunnel wall, fitted with a half disc. Taken from Koch & Kozulovic (2013) with
permission from American Society of Mechanical Engineers.

performace. In the case of the discs, the two-way coupling is able to capture the detailed
physics of the stress and torque fluctuations to which a disc rotating under a turbulent
flow is subjected. Józsa et al. (2019) simulated the coupled fluid-body dynamics of passive,
shear-stress-driven cylindrical actuators as a compliant-wall technique able to generate
a finite in-plane wall velocity and give drag reduction. Mahfoze et al. (2018) simulated
suction and blowing in a boundary layer and used an empirical model of the frictional
losses in the electromagnetic speaker used to generate the wall-normal transpiration.
To the authors’ knowledge, there have been no attempts to model the coupled dynamics
between a fluid and in-plane flow-control actuators, and to estimate the mechanical losses
realistically.

The dynamics of freely-rotating full discs and half discs under the shearing action
of the wall turbulence is studied. The first case serves the purpose of analyzing the
unsteady response of a full disc to the wall turbulence and to verify the numerical
implementation of the two-way coupled dynamics between the fluid and the disc, thereby
allowing a detailed study of the fluid-structure interaction problem. The half-disc case
is subsequently investigated with the primary objective to explore the potential for
turbulent skin-friction drag reduction. The half discs are realized by preventing the left
spanwise halves of freely rotating discs to interact with the flow, thereby producing a
finite average shear-stress torque on the disc surfaces. The half discs thus rotate with
a finite angular velocity and introduce a slip velocity at the wall, thereby affecting the
wall-shear stress.

Our study is also motivated by the experimental boundary-layer study of two configu-
rations of half discs by Koch & Kozulovic (2013) (KK13) and Koch & Kozulovic (2014)
(KK14), shown in figure 1. The wall-shear stress was not measured on the disc surface, but
it was estimated by modifying a correlation for computing the skin-friction coefficient in
uncontrolled boundary layers. Koch and Kozulovic used the local streamwise slip velocity
generated by the disc in the correlation, thus predicting reductions of skin-friction drag
up to 17% on the disc surface. The procedure adopted by KK13 and KK14 is detailed in
the Supplementary Material 1.

The numerical and statistical procedures are presented in §2. Section 3 describes the
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dynamics of the actuators and the modelling of the torques acting on the discs. In §4,
we study the passive response of full freely-rotating discs to the turbulent flow. In §5,
the simulations of arrays of half discs are discussed and compared to the experimental
results of KK13 and KK14. Section 6 presents the conclusions of the study.

2. Numerical procedures

In this section, we present the flow system and the numerical procedures. An in-
compressible turbulent flow between parallel flat walls fitted with spinning discs is
investigated. The flat discs, flush-mounted on the walls, are free to rotate under the
viscous action of the turbulent channel flow. The Cartesian coordinates describing the
system are the streamwise coordinate x∗, the wall-normal coordinate y∗, and the spanwise
coordinate z∗ (the ∗ superscript indicates a dimensional quantity). The respective velocity
components in these directions are u∗, v∗, and w∗. The channel walls are separated by a
distance L∗

y = 2h∗ and the flow is driven by a streamwise pressure gradient. A constant
flow rate per unit wall-area Q∗ is imposed. The bulk velocity is U∗

b = Q∗/2h∗.
The fluid motion obeys the incompressible continuity and Navier-Stokes equations

(NSE),

∇ · u = 0, (2.1)

∂u

∂t
+ (u · ∇) u = −∇p +

1

Rep
∇2u. (2.2)

Quantities are non-dimensionalized by the channel half-height h∗, the density of the
fluid ρ∗, and the centreline velocity of the laminar Poiseuille flow at the same flow rate,
defined as U∗

p = 3Q∗/4h∗. Quantities expressed in these outer units are written without
any symbol. All flows are at a Reynolds number Rep = U∗

ph∗/ν∗ = 4200, where ν∗ is the
kinematic viscosity of the fluid.

Equations (2.1) and (2.2) are subject to the no-slip boundary conditions at the channel
walls. The velocity is null over the stationary portions of the walls, while it coincides with
the local disc velocity when the fluid passes over a disc. The boundary conditions are
time dependent because they are determined by the rigid-body dynamics of the discs,
driven by the instantaneous wall-shear stresses exerted by the wall turbulence on the disc
surfaces. The dynamics is ruled by a two-way coupling between the fluid and the freely-
rotating discs. The Supplementary Material 3 discusses an uncoupled model, where the
motion of the disc does not feed back to the turbulence dynamics. Two configurations are
considered: a full-disc layout where two coaxial discs, one on each wall, are completely
exposed to the viscous action of the turbulent flow, and an arrangements of rows and
columns of half discs, for which only the right half of the discs is wetted by the fluid.
Figure 2a shows the configuration of a full disc for three diameters and figure 2b shows
the configuration of the half discs.

The turbulent channel flow with the freely-rotating discs is studied via direct numerical
simulation (DNS). The open-source code Incompact3d (Laizet & Li 2011; Laizet &
Lamballais 2009) is used to simulate the flows. The code solves the non-dimensional,
incompressible NSE using a Chorin-Temam projection method, with time advancement
performed using a second-order Adams-Bashforth scheme. The time integration of the
equation of motion of the discs is performed using the same numerical scheme of the fluid
solver and the same temporal resolution. The spatial discretization employs sixth-order
compact finite difference schemes. The Poisson equation for the projection-step pressure
is solved in spectral space using fast Fourier transforms on a partially staggered grid.
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Figure 2: Schematic of (a) the single freely-rotating disc of increasing diameter and (b)
the rows and columns of half discs.

The computational grid is uniformly spaced along the streamwise and spanwise directions
and is stretched along the wall-normal direction, ensuring that the near-wall resolution is
sufficient to resolve the smallest flow scales accurately. Incompact3d is parallelized using
the Message Passing Interface and exhibits excellent scalability, achieved through a 2D
domain decomposition (Laizet & Li 2011). The code is run on the Cray XC30 “Archer”
supercomputer of the National Supercomputing Service and the “ShARC” cluster at the
University of Sheffield. The simulations are run using 1024 parallel computational cores,
adopting a 32 × 32 block decomposition.

The channel flow is assumed to be periodic along the x and z directions and the
dimensions of the computational domain in these directions are Lx and Lz. For the
full-disc cases, the domain dimensions are Lx = 4.53π, Ly = 2 and Lz = 2.26π and
the number of points defining the numerical grid are 256×129×256 in the x, y, and z
directions, respectively.

All computations are initiated from the laminar Poiseuille channel flow between the
two solid stationary walls, perturbed by random noise. The initial flow field evolves to the
fully-developed uncontrolled turbulent flow, identified by the main statistics displaying
convergence and the total mean stress profile being linear (Orlandi 2012). This fixed-wall
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fully-developed turbulent flow is used as the initial flow field for the computations of the
coupled fluid-disc system. The initial transient flow occurring between the activation of
the fluid-disc boundary conditions and the beginning of the fully-developed condition of
the flow over freely-moving discs is discarded to acquire meaningful statistics.

2.1. Averaging procedures

The time average of a flow variable f(x, y, z, t) over a time interval [0, T ] during which
f is statistically stationary is defined as:

f(x, y, z) =
1

T

∫ T

0

f(x, y, z, t) dt. (2.3)

For the case where the walls are covered by rows and columns of half discs, the flow
is statistically periodic along x and z with period Dh, which is the side of the square
containing one half disc. A spatial ensemble-averaging operator is therefore defined as:

[f ]s (xs, y, zs, t) =
1

ND

rD∑

nx=1

cD∑

nz=1

f (xs + nxDh, y, zs + nzDh, t) , (2.4)

where 0 6 xs 6 Dh and 0 6 zs 6 Dh are the ensemble spatial coordinates, and rD and
cD are the number of rows and columns of a total number of ND = rD × cD discs in the
computational domain. Spatial averaging along xs and zs, i.e., averaging over a square
of area D2

h defining the minimal flow unit containing one disc, is expressed as:

〈f〉(y, t) =
1

D2
h

∫ Dh/2

−Dh/2

∫ Dh/2

−Dh/2

[f ]s (xs, y, zs, t) dxsdzs. (2.5)

The statistical sample is doubled by averaging a quantity across the two channel halves.
A capital letter indicates a global average, F (y) = [f ]g = 〈f〉. For example, the global-
averaged streamwise velocity is U(y) = [u]g. The velocity field is decomposed as follows,

u(x, y, z, t) = U(y) + ud(x − ⌊x/Dh⌋Dh, y, z − ⌊z/Dh⌋Dh) + ut(x, y, z, t), (2.6)

ud = {ud, vd, wd} = [u]s − U(y), (2.7)

where U(y) = {U(y), 0, 0}.

The separation of scales typical of wall-bounded turbulence is measured by the friction
Reynolds number Reτ = h∗/δ∗

ν = 180, where δ∗
ν = ν∗/u∗

τ is the near-wall viscous length

scale, u∗
τ =

√[
τ∗
w,x

]
g

/ρ∗ is the wall-friction velocity, and
[
τ∗
w,x

]
g

= ν∗ρ∗dU∗/dy∗|y=0 is

the global-averaged wall-shear stress in the fixed-wall configuration. Quantities scaled in
viscous units, that is, using the fixed-wall u∗

τ and h∗, are denoted by a + superscript.
The skin-friction coefficient is Cf = 2 [τw,x]g /U2

b , where Ub = 2/3. The drag reduction
R is defined as the percentage decrease of the skin-friction coefficient:

R(%) = 100(%) · Cf,un − Cf
Cf,un

, (2.8)

where Cf,un is the skin-friction coefficient of the uncontrolled flow. We also define a
spatially dependent turbulent drag reduction as follows:

Rxz (xs, zs) (%) = 100(%) · Cf,un − cf (xs, zs)

Cf,un
, (2.9)
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dh

D

Dh

Figure 3: Schematic of the disc and its housing. The axis of rotation of the disc is indicated
by a dash-dotted line and the dark grey squares represent the ball bearing.

where cf (xs, zs) = 2Re−1
p U−2

b ∂(U + ud)/∂y
∣∣
y=0

. The disc drag-reduction margin Rd is

defined as the reduction of wall friction computed by only taking into account the disc
surface.

3. Modelling of the disc dynamics

This section presents the modelling of the dynamics of the freely-rotating discs. Unless
stated otherwise, this model is valid for both configurations of discs, shown in figure 2.
In this section, the modelling of the two-way coupled dynamics is presented, while the
modelling of the uncoupled dynamics is discussed in the Supplementary Material 3.1. The
discs are flush mounted on the two surfaces of the channel, have diameter D∗, and are
rigid, homogeneous, and free to rotate about their central axis. A schematic of the disc
housing is shown in figure 3. The discs are characterized by their thickness b∗ and material
density ρ∗

d. The moment of inertia of a disc about its central axis is I∗ = πb∗D∗4ρ∗

d/32.
A thin gap of width 0.05D∗ is modelled around the edge of each disc to simulate the
clearance region between the disc and the stationary channel walls. Within the annular
gap the velocity is modelled to decay linearly from its maximum value on the disc edge
to zero on the fixed portion of the wall. This treatment of the gap closely represents
a real experimental set-up where such gaps would always be present, and it drastically
reduces the numerical oscillations that would arise from a discontinuity in the velocity
field (Ricco & Hahn 2013).

Each disc is fitted with a thin shaft and housed in a cavity in the wall that is deep
enough for the upper surface of the disc to be flush with the channel wall. The cavity
has thickness d∗

h and is filled with the same fluid of the turbulent channel flow. The shaft
is supported by a bearing mounted into a purpose-built hole at the bottom of the disc
housing. The disc housing has a similar design to those realized in the experimental study
of KK13 and KK14, and in a preliminary experimental apparatus built at the Deutsches
Zentrum für Luft- und Raumfahrt (DLR) in Göttingen to reproduce the spinning-disc
system studied numerically by Ricco & Hahn (2013) (M. Rutte and U.G. Becker, private
communication).

It is important to convert the scaled quantities characterizing the turbulent flow and
the disc system to physical quantities because one must simulate a flow system that
can be realized in a laboratory. One risk when working solely with scaled variables is, for
example, to compute a turbulent flow over unrealistically light discs. The very low inertia
would lead to exceedingly large angular velocities and thus drag-reduction margins that
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Table 1: Physical quantities of the turbulent water channel flow and the discs.

h∗ (cm) U∗
b (cm/s) ν∗ (m2/s) ρ∗ (kg/m3) Rep b∗ (mm) ρ∗

d (kg/m3)
10 2.8 10−6 1000 4200 0.5 2700

could not be measured experimentally. Table 1 presents the characteristics of a turbulent
channel flow with discs, where the working fluid is water at 20◦C. Water is preferred
to air because the larger dynamic viscosity of water generates a larger frictional torque
on the disc surface. The discs must be designed as thin and light as possible in order
to minimize their inertia and thus maximize their angular acceleration for a given fluid
torque. The disc thickness is chosen to be 0.5mm and we assume the material of the discs
to be aluminium. The density of aluminum ρ∗

d is almost three times the density of water,
i.e., ρd = 2.7. If air were chosen, the scaled density of the disc would be ρd = 2200.

Three cavity depths are tested, dh = 0.1, 1, and 10. The smallest value is chosen to
simulate more intense frictional effects caused by the flow in the cavity, while the largest
value is selected to simulate a housing torque that is not influenced by the confinement
of the cavity.

3.1. Dynamics of the rotating discs

The disc motion is described by its angular velocity Ω(t) or by its disc-tip velocity
W (t) = RΩ(t), where R is the radius of the disc. The disc-tip velocity evolves according
to the following dynamical equation:

2I

D

dW

dt
= Tf − Th − Tb, (3.1)

where W is positive anti-clockwise, Tf is the torque exerted by the wall-shear stresses
of the channel flow on the flow-facing surface of the disc, Th is the torque arising from
the fluid contained in the housing beneath the disc, and Tb is the frictional torque given
by the ball bearing. Equation (3.1) is nonlinear because the torques Tf and Th depend
on W . The equation of the disc dynamics (3.1) is solved together with the continuity
equation (2.1) and the NSE (2.2). The equations are mathematically coupled for two
reasons. First, the torque Tf , exerted by the wall-shear stresses of the wall turbulence,
drives the motion of the disc and is therefore an input into the disc dynamics. Second,
the disc motion fixes the boundary conditions of the fluid velocity on the disc surface. On
a disc centred at (xc, zc) and rotating with a disc-tip velocity W , the velocity boundary
conditions for the streamwise and the spanwise velocity components read:

u(x, y = 0, 2, z, t) = W (t)(z − zc)/R, w(x, y = 0, 2, z, t) = −W (t)(x − xc)/R, (3.2)

for x, y belonging to the surface of the disc, i.e., (x − xc)
2 + (z − zc)

2 6 R2. The coupled
system is visualized in figure 4 using a block diagram (Åström & Murray 2008). The
diagram features the disc-tip velocity as the main output and displays a closed-loop
structure due to the two coupling elements, i.e., the fluid torque and the fluid velocity
boundary conditions.

For the full-disc cases, only the disc diameter is varied, while the disc thickness, material
density, and cavity depth are kept constant. For the case with D = 3.38, the flow over
the isolated full discs, shown in figure 2, was compared to the flow over rows and columns
of discs with the same diameter and no differences in the statistics were found.

As in the wind-tunnel study of KK13 and KK14, we consider freely-rotating discs
that only have the right spanwise half exposed to the wall turbulence, while the other
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NSE

fluid dynamics

∫
S
τw×(x− xc) dS

fluid torque (3.3)

τw
Ẇ IR−1 =

∑
i Ti

disc dynamics (3.1)

Tf W

W (x− xc)/R

disc BC (3.2)

u(y = 0, 2)

Px

Figure 4: Block-diagram of the two-way coupled disc-fluid system as a feedback loop. In
this diagram and in figures 1 and 3, the dot indicates the derivative with respect of time
and BC stands for boundary conditions.

Table 2: Numerical parameters of the half-disc flow simulations. The numbers of the grid
size are the number of grid points along the x, y, and z directions. The models for Th
are presented in the Supplementary Material 2.

Case Lx Lz D+ ND dh Th model
HD1 4.53π 2.26π 605 8 0.1 Stewartson
HD3 4.53π 2.26π 605 8 1 Stewartson
HD4 4.53π 2.26π 605 8 10 Stewartson
HD2 6.7π 3.33π 1210 2 0.1 Stewartson
HD5 4.53π 2.26π 605 8 10 von-Kármán

half is covered by a solid surface and is not exposed to the flow. The half discs rotate
with a finite mean velocity, caused by the averaged fluid torque induced by the mean
wall-shear stress on the exposed portion of disc surface. Since the steadily moving discs
produce a streamwise slip velocity at the wall, a local flattening of the velocity profile
and a reduction of the mean velocity gradient at the wall are expected. The half-disc
simulations, summarized in table 2, differ in three ways from the experiments of KK13 and
KK14. In the experiments, an open free-stream boundary layer is studied, the Reynolds
number is larger than in our channel-flow simulations, and the disc diameters are larger
in wall units. The half discs are modelled by applying the fixed-wall condition to the
left-hand half of the disc. The disc model is modified by only calculating Tf on the
existing disc half and by multiplying Th by a factor of 1.5 to account for the friction
under the hypothetical plate that would cover the sheltered half of the disc. The latter
change implies that the flow under the plate covering the disc half is assumed to be the
same as that found in the housing cavity.

3.2. Modelling of the torques

The fluid torque Tf results from the wall-shear stresses exerted by the turbulent flow
over the surface S of a disc and is expressed by the integral:

Tf(t) =

∫

S

τw × (x − xc) dS =

∫ R

−R

∫ √
R2−(x−xc)2

−

√
R2−(x−xc)2

[(z − zc)τw,x − (x − xc)τw,z] dzdx,

(3.3)
where the streamwise and spanwise components of the wall-shear stress τw are

τw,x = − 1

Rep

∂u

∂y

∣∣∣∣
y=0

, τw,z =
1

Rep

∂w

∂y

∣∣∣∣
y=0

. (3.4)
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Table 3: Wrms for the full-disc coupled cases. The confidence intervals are at the 95%
level.

D D+ I × 103 Wrms × 102 W +

rms chi-squared confidence on Wrms × 102

0.28 50 0.01 1.94 0.45 +1.57, −1.16
0.56 100 0.1 2.31 0.54 +1.87, −1.39
0.84 150 0.7 2.01 0.47 +1.63, −1.21
1.13 200 2.10 1.83 0.43 +1.48, −1.10
1.69 300 10.8 1.51 0.35 +1.22, −0.91
2.25 400 34.2 1.23 0.29 +1.00, −0.74
3.38 600 173 0.95 0.22 +0.77, −0.57
4.44 800 515 0.79 0.19 +0.64, −0.48
5.00 900 828 0.70 0.16 +0.56, −0.42
5.60 1000 1350 0.60 0.14 +0.49, −0.36
6.70 1200 2670 0.58 0.13 +0.47, −0.35

The integral in (3.3) is evaluated at each time-step and the boundary condition on the disc
are updated accordingly, realizing the fully coupled disc-fluid dynamics. The ball-bearing
torque is modelled as Tb = |Tb|sgn(W ), where |Tb| is obtained from the specifications
of an industrial bearing. The torque exerted by the cavity flow is modelled as Th =
Th(Rep, dh, W, D), using known solutions of flows over spinning discs. Details of the
modelling of the torques acting below the disc surface are presented in the Supplementary
Material 2.

4. Results for the full discs

This section presents the results of turbulent flows over the isolated full freely-rotating
discs, depicted in figure 2a. The uncoupled-dynamics results are found in the Supple-
mentary Materials 3.2 and 3.3. For the full-disc simulations, the linear housing torque
formula (2.1) is used. The equation of motion for the disc simplifies to:

dW

dt
=

16

πbD3ρd
[Tf(t) − Tb] − W (t)

Repdhbρd
. (4.1)

The wall turbulence exerts a finite instantaneous torque on the full disc, which results
in an unsteady motion of the disc characterized by its disc-tip velocity W . The root-
mean-square of the disc-tip velocities (Wrms) and the chi-squared confidence intervals are
presented in table 3 for the eleven disc diameters studied, ranging between D+=50 and
D+=1200. (The subscript rms henceforth indicates the root-mean-square of a quantity).
The time average W is null in all the cases because the wall-shear stress has no preferential
direction over the disc surface. Small values of the disc-tip velocities are found, the Wrms
never exceeding the wall-friction velocity.

Time histories of W are shown in figure 5a for three diameters. The discs oscillate
randomly around W = 0 and the variance of W is larger at small diameters, the disc
oscillations becoming less intense as the diameter increases. The time histories of the
torque in the same time interval, shown in figure 5b, behave in the opposite way, the
variance of Tf growing rapidly with the diameter.

Because of the small angular displacements, no drag reduction occurs. Ricco & Quadrio
(2008) for spanwise-wall oscillations, Quadrio & Ricco (2011) for wall-travelling waves
and Ricco & Hahn (2013) for rotating discs demonstrated that a minimal wall velocity,
about W + = 1, is required for the wall turbulence to be affected by the wall motion and
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Figure 5: Time evolutions of (a) the disc-tip velocity W + and (b) the fluid torque T +
f

for discs with three diameters.
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Figure 6: Wall-normal profiles of the root-mean-square of the streamwise (a–d) and
spanwise (e–h) velocity fluctuations at different positions on the freely oscillating disc
for the case with D = 0.84 ( ) and the reference channel-flow case ( ). The locations
are shown on the top left of each graph. The variables are scaled with the wall units of
the reference channel flow.

to experience drag reduction. If the wall displacement is too small, the viscous effects are
confined in a very thin layer because the wall-normal momentum diffusion from the wall
is limited. In the freely-rotating disc case, Wrms is always smaller than the minimal wall
velocity and is thus expected that the skin-friction drag is unaffected.

The profiles of the root-mean-squares of the streamwise and spanwise velocity fluctua-
tions are reported in figure 6. The wall-normal extension of the oscillation-induced flow is
confined to the viscous sublayer and cannot modify the structure of near-wall turbulence
for y+ > 5. The mean velocity, turbulent Reynolds stresses and root-mean-square of the
wall-normal velocity fluctuations (not depicted in figure 6) are indistinguishable from
those of the reference channel flow.
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Figure 8: Instantaneous snapshots of (a) the torque contribution given by the streamwise
wall-shear stress and (b) the torque contribution given by the spanwise wall-shear stress,
on a disc with D = 6.

Figure 7 shows the values of Wrms and Tf,rms. The blue symbols denote the coupled-
dynamics results, summarized in table 3, and the red symbols denote the uncoupled-
dynamics results, discussed in the Supplementary Material 3. For D+<100, Wrms grows
with the disc diameter, while Wrms decreases as D−0.55 for 100<D+<900. The maximum
Wrms at D+=100 occurs because, for very small D, the torque is too small to exert the
required power to move the discs, while for large discs, the inertia of the disc thwarts
the action of the torque. The optimum diameter is comparable with the characteristic
spanwise spacing of the low-speed streaks (Kline et al. 1967). The torque Tf,rms is
instead a monotonically increasing function of the diameter. For 0<D+<100, Tf,rms
grows more rapidly with D than for larger diameters and is proportional to D2.2 for
100<D+<900. The uncoupled-dynamics data reveal that the two-way fluid-disc coupling
has an attenuating effect on the kinetic energy of the disc.

The torque can be written as Tf = T x
f +T z

f , where T x
f and T z

f are given by the stream-
wise and spanwise wall-shear stresses, τw,x and τw,z, respectively. Figure 8 visualizes
instantaneous snapshots of the torque contributions. The component T x

f is much larger
than T z

f and most intense at the disc sides. Figure 9a (top) shows that T x
f and T z

f have
opposite sign for most of their time histories. The torque variance is expressed as:

Var(Tf) = T x
f

2 + T z
f

2 + 2T x
f T z

f , (4.2)
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Figure 9: Spanwise and streamwise components of the fluid torque. (a) Time-series
of T x+

f (t) (black) and T z+
f (t) (colour) for the uncoupled (top) and the coupled case

(bottom). (b) Mean-square values and covariance as a function of the disc diameter. The
blue series indicate the data from the coupled simulations and the red series indicate the
data are from the uncoupled simulations, discussed in the Supplementary Material 3.

where the last term is the covariance of the streamwise and spanwise terms. The
dependence of the right-hand side terms of equation (4.2) on the disc diameter is shown in
figure 9b by the open blue symbols. All three components share a very similar growth with
the disc diameter. The streamwise components dominate over the other two components,
contributing to more than 90% of the total variance. The covariance is negative and larger
in absolute value than the spanwise component.

The standardized histograms plots for W and Tf are shown in figure 10 and compared
to the standard normal distribution. The disc-tip velocity W fits the normal distribu-
tion well for all the diameters. The Tf distribution is instead wider than the normal
distribution at the tails for the small diameters. The graph of Tf for D+ = 50 has
heavy tails, with an estimated value of the standardized fourth moment larger than four.
This disc size is smaller than the spanwise integral length scale of the wall-shear stress,
about 100δ∗

ν, and thus a possible explanation for the tail behaviour is that the torque
fluctuations depend on localized instantaneous extreme events, impacting on the positive
tails of the wall shear-stress distribution (Hu et al. 2006). For larger discs, the extreme
shear-stress events are likely to play a more marginal role because they are averaged over
a larger wall region. Although the wall turbulence is non-Gaussian (Davidson 2004), the
very good agreement between the W distribution and the normal distribution is likely to
be due to the filtering of the turbulence signal given by the disc dynamics equation (3.1).
The extreme rare bursting and sweeping events that characterize the wall-shear stress
and cause the heavy tails of the torque distribution are too short-lived to accelerate the
disc so as to generate corresponding extreme values of disc-tip velocity W . It would be
interesting to verify whether the W distribution deviates from the normal one if turbulent
flows at larger Reynolds numbers or lighter discs are considered.

The Power Spectral Densities (PSD) for the disc-tip velocity and the fluid torque,
shown in figure 11, reveal which temporal scales of the wall turbulence are selected by
the disc dynamics. Normalizing the PSD graphs with the total power does not result in
a collapse of the curves for all diameters. An excellent overlap for W and Tf is observed
for the cases with the four largest diameters, for D+ = 800 − 1200, at frequencies that
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Figure 10: Standardized histogram plots of (a) W and (b) Tf for coupled-dynamics
simulations. The solid line denotes the standard normal distribution.
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Figure 11: Power spectral densities, denoted by S with subscripts indicating the quantity
and shown in premultiplied form. (a) Disc-tip velocity W and (b) fluid torque Tf . The
plots are normalized by the total power.

are larger than the one corresponding to the maximum energy. For D+ = 50 − 400,
most of the energy is contained in the higher frequencies. As the diameter increases, the
spectrum shifts to lower frequencies. For these diameters, no distinct peak is found for W
in the range D+ = 50 − 400 as the energy spreads over a relatively broad high-frequency
range. The same discussion holds for the Tf PSD in the range f+ = 0.01 − 0.03, but
for D+ = 200 and 400 two distinct maxima are present. For moderate diameters, in the
range D+ = 600 − 800, a narrow peak occurs for W and Tf at around f+ = 0.005, which
corresponds to a period of about 200ν∗/u∗2

τ . As the diameter increases, the spectral W
peak disappears and its energy is distributed more evenly at frequencies f+<0.004. The
torque Tf instead maintains the peak at about f+ = 0.005.
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Table 4: Results from the half-disc simulations.

Case D+ W
+

U+

s,d R(%) Rd(%)

HD1 605 0.98 0.42 2.1 4.9
HD2 1210 0.98 0.42 2.1 4.9
HD3 605 1.42 0.60 2.8 8.6
HD4 605 4.85 2.06 5.6 19.9
HD5 605 2.49 1.05 5.1 13.9

5. Results for the half discs

The main difference between the full discs and the half discs is the finite average
velocity in the half disc case due to the driving action of the mean turbulent flow. Once
the new fully-developed regime is established, the disc inertia can be neglected because
the half-disc W is determined by the steady-state balance between the fluid torque and
the frictional housing torques T f (W ) = Th(W ) + Tb. In analogy with studies on drag
reduction by hydrophobic walls where a local slip velocity is used (Min & Kim 2004;
Busse & Sandham 2012), we define the average streamwise slip velocity as Us,d = 〈u〉d,
where the subscript d denotes the spatial average over the moving disc surface only. The
slip velocity is related to W , i.e., Us,d = 4W/3π. No averaged spanwise slip velocity
occurs because the discs are rigid, that is, the left-oriented spanwise velocity distribution
downstream of the disc centre is antisymmetric to the right-oriented spanwise velocity
distribution upstream of the disc centre. The magnitude of the average disc velocity of
each half is equal to half of Us,d.

5.1. Turbulent drag reduction

5.1.1. Performance and spatial distribution

As shown in table 4, cases HD1 and HD2 return small drag-reduction margins of around
R = 2%, which become almost Rd = 5% when the half-disc surface is considered. The
disc-tip velocities and the drag-reduction margins are the same for these cases, although
the disc diameters are different, suggesting a direct link between the slip velocity and
the drag reduction, as for flows over hydrophobic surfaces (Min & Kim 2004). The best
performing cases are HD4 and HD5, with Rd = 20% and Rd = 14%, respectively.

Figure 12 shows the drag-reduction margin as a function of the slip velocity, including
the experimental data of KK13. KK13 estimated the drag-reduction level by using an
empirical formula based on a correlation of the skin-friction coefficient in the fixed-wall
case, as discussed in the Supplementary Material 1. We use this empirical formula to
estimate Rd as a function of U+

s by numerically integrating the relation (1.3) for our
Reynolds number Reτ = 180. As KK13 did not measure the wall-shear stress on the
disc or in its proximity, no experimental data exist for a precise quantitative comparison.
Nevertheless, it is useful to compare our numerical results with the predictions given by
KK13’s formula. In both the experiment and the simulations, Rd is positively correlated
to U+

s,d, although the estimated values are lower than those obtained by DNS. These
differences may be due to different housing and bearing frictions, Reynolds numbers, and
geometry, i.e., a boundary-layer flow in the experiments and a channel flow in our case.
Another cause of discrepancy can be the attenuation of the near-wall turbulence intensity
caused by the streamwise slip, which is not accounted for by KK13’s model.

As U+
s,d increases, R first increases linearly and then levels off at higher disc velocities.

On the stationary wall region (amounting to 63% of the total wall area) neither drag
reduction nor drag increase is measured for U+

s,d ≈ 1 (case HD5), while a 3% drag
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Figure 12: Drag-reduction margins Rd and R as functions of the slip velocity U+
s,d. The

simulations refer to cases HD1-HD5 in table 4 and the boundary-layer experimental data
are by KK13.

Figure 13: Spatial distribution of the drag-reduction margin Rxz on a single, ensembled-
averaged flow unit. (a) Estimation from experimental data by KK13 (fastest rotating
case, the region where no data are available is in white), (b) case HD5, (c) case HD4.

increase is observed for U+
s,d ≈ 2 (case HD4). Although Rd on the rotating half disc

increases by 6% from HD5 to HD4, the non-negligible drag increase on the rest of the
wall surface causes R to only grow by about 0.6%.

Figure 13a reports Rxz, the spatial distribution of the drag-reduction margin, for the
best-performing experiment of KK13, obtained by using the empirical correlation (1.1).
The estimated wall-shear-stress reduction is streamwise homogeneous and proportional
to the local streamwise velocity, increasing linearly with z. The prediction of KK13 thus
fails to capture the streamwise dependence because the assumption is that the drag
reduction is solely caused by the streamwise wall slip induced by the spinning disc.

The maps of Rxz for the numerical cases HD4 and HD5, shown in the graphs 13b–c,
reveal a non-homogeneous spatial distribution along both x and z. The drag-reduction
margin increases moving away from the centreline as predicted by KK13’s model because
the local streamwise slip velocity grows as the right side of the disc is approached. The
maximum wall-shear-stress reduction occurs over the lower part of the rotating disc, while
the maximum drag increase occurs in a region that is narrow in the spanwise direction,
near the centreline, and upstream of the disc centre. This increase of wall friction might
be an effect of the modelled discontinuity at the centreline. As the slip velocity doubles
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from U+
s,d = 1 for HD5 to U+

s,d = 2 for HD4, the drag-increase region on the disc surface
and near the centreline becomes wider and more intense, while the drag-reduction margin
also grows, especially near the disc tip. The improvement of drag reduction as the disc
spins faster is more significant than the increase of drag. These two contrasting effects are
the reason why the drag-reduction margin over the disc surface does not double as does
the disc-tip velocity, as shown in figure 12. In the HD5 case with low U+

s,d, the wall-shear
stress is almost unchanged over the fixed portion of the surface. In the faster HD4 case,
a narrow region of drag reduction is instead observed close to the centreline, while a thin
area of increased drag is observed around the circumference and immediately downstream
of the disc, where the coupled-dynamics boundary conditions change to fixed-wall no-slip.
This increased wall-shear stress is the reason for the enhanced drag over the stationary
portion of the wall, which balances the drag reduction over the disc. No drag reduction
is found downstream of the disc, as claimed by KK13 and KK14.

5.1.2. Analogies with other drag-reduction techniques

An interesting case for comparison is the oil-channel experimental campaign of Bechert
et al. (1996). In these experiments, a section of the channel wall was replaced with a
tensioned steel belt, free to move in the streamwise direction under the action of the wall-
shear stress. By recording the shear force on the passive wall section and the speed of the
belt, Bechert et al. related the wall slip velocity to the drag reduction. Slip velocities in
the range Us≈0.05-0.1 resulted in drag reductions between 5% and 10%. Our simulations
achieve higher R for a similar slip velocity (i.e., for case HD5 with Us,d=0.05, Rd=14%,
while for case HD4 with Us,d=0.08, Rd=20%). The differences are likely due to the higher
Reynolds numbers in the experiments and to the experimental challenges associated with
ensuring that the moving belt remained taut and horizontal.

It is also useful to compare the disc results with those produced by hydrophobic
surfaces. A relationship exists between the hydrophobic-wall U+

s and the drag-reduction
level (Rastegari & Akhavan 2018). By using the data of Min & Kim (2004), U+

s = 0.6
leads to R = 7.8% and U+

s = 1 gives R = 12.4%. These hydrophobic-wall values pertain
to the whole wall, but they must be compared with our Rd values because in our case the
slip is confined to the disc surface. The hydrophobic-wall R values are in good agreement
with our Rd values in table 4. Rastegari & Akhavan (2018) also used a formula, their
equation (5.3), that relates the drag-reduction level to the shift of the quantity B, the
intercept of logarithmic-law formula for the mean velocity profile when scaled using the
drag-reducing friction velocity, due to the change of wall-shear stress. By using the shifts
∆B for our cases HD4 and HD5 in their formula, we obtain R = 5.6% for the HD4 case
and R = 5.1% for the HD5 case, in perfect agreement with our numerical values in table
4.

The spanwise disc velocity varies linearly from its negative minimum at the upstream
disc edge to its positive maximum at the downstream disc edge. A similar spanwise-
wall velocity distribution was used by Viotti et al. (2009), where the wall forcing was
spanwise only, sinusoidal and distributed over the whole wall. Large drag-reduction
margins exceeding 40% were obtained. It is therefore reasonable to compare the passive
disc technique with Viotti et al. (2009)’s case and ask whether the spanwise disc velocity
affects the drag-reduction performance and whether it is the reason behind the drag
reduction computed via DNS being larger than that obtained by streamwise-only KK13’s
model, as shown in figure 12. To address this question, two further numerical cases are
considered by modifying case HD4. In one case, the disc streamwise velocity is assigned
the value corresponding to the velocity arising passively in case HD4, while the spanwise
velocity is artificially set to zero. In the other case, the spanwise velocity is instead
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Table 5: Statistics of the single-component simulations and of case HD4.

Flow case W + U+

s,d Rd(%) R(%)

streamwise only 4.9 2.1 25 7.9
spanwise only 4.9 - 0.8 -1.9
HD4 4.9 2.1 20 5.2

prescribed and the streamwise velocity is null. The results in table 5 show that, in terms
of the overall drag-reducing performance, the streamwise-only case leads to larger drag
reduction than the HD4 case, both over the disc surface and by averaging over the entire
wall. The purely spanwise forcing instead results in very small drag reduction on the disc
surface and drag increase over the entire wall. One reason for the small drag reduction in
the spanwise-only case is that only part of the wall is forced along the spanwise direction,
whereas, in Viotti et al. (2009)’s case, the wall velocity is spanwise homogeneous. Another
reason is the low value of spanwise wall velocity, which is not large enough to generate a
sufficiently thick spanwise viscous layer, required to alter the wall turbulence effectively
and to lead to drag reduction (Quadrio et al. 2009; Quadrio & Ricco 2011). The analysis
on the flow statistics of these two cases, found in §5.3, further elucidates the dynamics
of the spanwise-only case. We conclude that the two forcing effects are not additive, the
streamwise disc slip is the main responsible cause for drag reduction, and the spanwise
wall velocity only plays a marginal role in the overall drag-reduction dynamics. We note
that the role of the spanwise wall velocity in the half-disc technique is thus different from
that in hydrophobic surfaces, where a spanwise slip is always detrimental to the overall
drag-reduction effect.

5.1.3. Water or air as working fluid

As discussed in §3 it would be better to use water instead of air as working fluid
because of the larger dynamic viscosity of water, which would cause larger wall-shear
stresses on the disc surface, slip velocities and drag-reduction margins. Nevertheless, it is
of interest to compare the behaviour of the half discs in the two fluids. To conduct this
comparison, it must be decided which parameters are kept constant. We assume that
the same discs are used (same diameter, thickness, and material), the half-height of the
channel h∗ is the same, and the flows are at the same Rep.

The ratio of the angular accelerations for the water and air flows can be estimated by
using (3.1) in dimensional form, neglecting the friction losses,

dW ∗/dt∗|water
dW ∗/dt∗|air

=
ν∗|water µ∗|water

ν∗|air µ∗|air
≈ 3, (5.1)

where µ∗ is the dynamic viscosity.
For the full discs, once the oscillatory regime has established, the different angular

accelerations would not impact on the flow dynamics because the typical disc tip velocity
would be smaller than the friction velocity in both air or water and drag reduction would
not occur in either case. The different accelerations would instead impact on the transient
dynamics of the half discs from the stationary condition to the drag-reduction regime.
The half discs in water would accelerate at about three times the angular velocity of
the half discs in air and it would thus take less time in water for the half discs to reach
the fully-developed conditions. Once the fully-developed condition of the half discs is
established, the averaged angular acceleration is zero because the fluid torque is balanced
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Figure 14: Instantaneous iso-surfaces of the invariant λ+
2 = −0.009 (Jeong & Hussain

1995), coloured by the streamwise velocity component. (a) case HD5, (b) case HD4.

by the friction torque below the surface of the disc. By estimating the fluid torque as
T ∗

f ∼ τ∗
wR∗3, the friction torque as T ∗

h ∼ W ∗R∗, and by extracting the wall-shear stress
from the friction Reynolds number, it follows that

W ∗|water
W ∗|air

=
ν∗|water µ∗|water

ν∗|air µ∗|air
≈ 3, (5.2)

in agreement with equation (5.1) for the acceleration. In viscous units, the ratio becomes

W +|water
W +|air

=
µ∗|water

µ∗|air
≈ 50. (5.3)

It follows from figure 12 that, for the same conditions discussed earlier, the drag reduction
in air would be almost negligible compared with the drag reduction in water.

5.2. Flow visualizations

Figure 14 shows instantaneous flow visualization of the fine-scale vortical structures
using the λ2 invariant method (Jeong & Hussain 1995). A persistent reduction in the
size and number of the vortices occurs along the streamwise direction above the spinning
discs, in contrast with the stationary-wall part that is visually indistinguishable from the
reference fixed-wall flow. The effect is more pronounced for case HD4 as the slip velocity
Us,d is double that of case HD5 and the drag-reduction level is larger. An analogous
reduction of the number of vortices was observed by Olivucci et al. (2019) for the flow
over actively spinning rings.

5.3. Flow statistics

Figure 15 depicts the flow statistics computed by averaging over the entire wall surface.
The mean flow is affected in the viscous sublayer, where the gradient is reduced. The
peaks of the Reynolds stresses and the root-mean-square of the streamwise velocity are
less intense, while the statistics of the wall-normal and spanwise velocities are unvaried.

Figure 16 shows the wall-normal profiles of time- and ensemble-averaged statistical
quantities at different locations in the proximity of and on the half-disc surface. The
streamwise mean velocity [u]+s is unaffected on the left fixed-wall part and immediately
downstream of the disc. It is instead altered significantly up to y+ = 5 in the middle
of the disc surface, where the streamwise slip velocity has the direct effect of reducing
the wall-shear stress. In the buffer layer and above, the flow is instead almost unaltered
compared with the fixed-wall case. This result gives support to the main assumption used
by KK13 and KK14 for estimating the drag reduction, discussed in the Supplementary
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Figure 15: Wall-normal profiles of flow statistics for case HD4 ( ), case HD5 ( )
and the reference channel flow ( ), averaged on the whole wall. The variables are scaled
with the wall units of the reference channel flow.

Material 1, i.e., the bulk mean flow above the disc coincides with the reference case, so
that the boundary-layer thickness remains constant.

On the left part, the statistics are largely unaffected, with the streamwise-velocity
root-mean-square decreasing slightly for y+ > 5 and the Reynolds stresses [utvt]

+
s being

indistinguishable from the reference case. The wall-normal profiles of all the fluctuating
velocities are attenuated in the same way up to y+ = 80 on and downstream of the disc
surface. This behaviour chimes with the flow response to discs and rings spinning at a
constant angular velocity, studied by Olivucci et al. (2019). They showed that the flow
statistics are largely independent of the streamwise location, i.e., the attenuation of the
wall turbulence brought about by the disc rotation persists downstream even where the
portion of the wall is stationary. Both [utvt]

+
s and [utut]

+
s decrease significantly, shifting

upward and reducing by a maximum of 30%.

Figure 17 reports the flow statistics of the cases with streamwise-only and spanwise-
only wall forcing, discussed in §5.1.2. The statistics are computed on the half disc along a
line parallel to the streamwise axis of symmetry of the disc. The line is positioned close to
the axis of symmetry because in that region the spanwise motion amplitude is relatively
large. The mean velocity profile of the streamwise-only case and case HD4 are very close,
which is expected given that the mean slip velocities are similar. The local peak intensity
of the Reynolds stresses is more weakened by the full case HD4 than either one of the
streamwise-only or spanwise-only cases. The latter is however more efficient (at least
locally) at pushing the peak of the stresses away from the wall and is also locally more
efficient at weakening all the three turbulence intensity components, as shown in figure
17i-t. The large reductions of turbulence quantities given by the spanwise-only case along
this streamwise line do not explain the small drag-reduction margin reported in table 5
when the whole disc surface is considered. We thus resort to the spanwise distributions of
the local skin-friction coefficient, based on our version of the Fukagata-Iwamoto-Kasagi
identity developed for spinning-disc flows (Olivucci et al. 2019). The budget equation is

〈cf 〉x(zs) = Clam
f + 〈cdf 〉x(zs) + 〈ctf 〉x(zs), (5.4)

where Clam
f is the laminar skin-friction coefficient, cdf and cdf are the local contributions

to Cf from utvt and udvd respectively, and the subscript x denotes averaging along the
streamwise direction. Averaging (5.4) along z gives the budget identity for the global skin-
friction coefficient Cf = Clam

f + Cd
f + Ct

f . The terms of (5.4) are depicted in figure 18. In
the spanwise-only case, the wall-shear stress is reduced on the disc near the centreline, but
it also increases as the right disc edge is approached (blue line in figure 18c). These two
effects balance each other, causing the low drag reduction. The detrimental contribution
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Figure 16: Wall-normal profiles of several flow statistics at four different positions on the
wall: (a)-(d) the period-averaged streamwise velocity [u]+s , (e)-(h) the turbulent Reynolds
stress [utvt]

+
s , (i)-(l) the root-mean-square of the streamwise velocity. (m)-(p) the root-

mean-square of the wall-normal velocity. (q)-(t) the root-mean-square of the spanwise
velocity. The positions are identified by blue dots in the sketches. The statistics of case
HD4 ( ) are compared to the reference channel-flow statistics ( ). The variables are
scaled with the wall units of the reference channel flow.
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Figure 17: Wall-normal profiles of several period-averaged wall-normal statistics at
different positions on the half-disc. The location are shown in the sketches. Case HD4
statistics ( ) are compared to the reference channel-flow ( ) and to the streamwise-
only ( ) and spanwise-only ( ) test cases. The variables are scaled with the wall
units of the reference channel.

of cdf is absent when the spanwise component is eliminated, as the flat red curve in
figure 18b indicates.
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Figure 18: Distribution of the local skin-friction coefficients according to (5.4). (a) case
HD4, (b) streamwise only, (c) spanwise only. Budget terms cdf ( ), ctf ( ), clamf
( ), reference channel ctf,0 ( ).

5.4. Power consumed by the moving discs

The passive discs can be classified as a passive-absorbing drag-reduction technique,
following the definition first proposed by Aghdam & Ricco (2016), who considered the
channel as the control volume for the energy balance. Passive-absorbing methods do not
require external power to cause drag reduction, but they consume power as the wall
turbulence interacts with the wall, which is fitted by half discs in our case. Another
example of passive-absorbing method is compliant surfaces that deform under the action
of the wall turbulence. The other group of passive techniques is called passive-neutral,
such as riblets (Garćıa-Mayoral & Jiménez 2011) or dimples (van Nesselrooij et al. 2016)
that instead do not transfer power from the wall turbulence to the exterior of the fluid
control volume because they are rigid and stationary. Passive-neutral devices nonetheless
involve a power penalty within the fluid control volume with respect to the reference case,
caused by a larger wetted area for riblets and dimples, or detrimental pressure drag for
dimples, wavy walls (Ghebali et al. 2017) and baffles (Marensi et al. 2020).

In the half-disc case, the power extracted from the wall turbulence by the discs is
consumed through friction effects below the disc surface. The power Px = CfU3

b D2

required to pump the fluid in a single-disc flow unit along the streamwise direction
satisfies the balance:

Px = Pε + Pf , (5.5)

which follows from the integration of the mean kinetic energy equation on the flow-unit
volume (Hinze 1975). The power-budget terms are visualized in figure 19 by arrows that
represent the power transfer direction. The power Pε represents the total dissipation in
the fluid, i.e., the volume integral of the point-wise viscous dissipation rate. The power Pf
is the power outflow to the moving discs, calculated by integrating the point-wise power
on the wall surface, which is equivalent to Pf = T fΩ in accordance to (3.3), where Ω is
the disc angular velocity. In the fixed-wall case, the power budget is Px,un = Pε,un. Since
the disc rotates steadily, Pf = Ph = (Th + Tb)Ω, i.e., the power extracted by the disc
from the wall turbulence is all dissipated by the frictional losses occurring in the disc
housing. In the best drag-reduction case HD4, Pε amounts to 99% of Px, so Pf accounts
for the remaining 1%.
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Figure 19: Schematic representation of the mean power budget for the disc-fluid system.
The size of the arrows is not proportional to the power amount.

6. Conclusions

Turbulent channel flows over discs that rotate passively under the action of the wall-
shear stress have been studied via direct numerical simulations. The dynamics of the discs
is driven by the instantaneous torque produced by the overriding wall turbulence and the
Navier-Stokes equations are solved with modified boundary conditions that synthesize
the motion of the discs. They are therefore two-way-coupling simulations of the equations
of motion of the discs and the fluid. The disc dynamics is driven actively by the fluid
torque and thwarted by two resisting torques, i.e., the cavity torque, that depends on
the flow regime occurring in the cavity, and the torque given by the ball bearing that
supports a disc.

We have considered discs of different diameters that are either fully exposed to the wall
turbulence or partially covered by the wall. In the full-disc cases, the root-mean-square
of the amplitude of the disc velocity is always smaller than the wall-friction velocity.
The wall displacement is so small that the minimal forcing conditions needed to alter
the wall turbulence are not met and no drag reduction occurs. An optimal diameter
of D+ = 100, matching the characteristic spanwise spacing of the near-wall low-speed
streaks, generates the largest disc displacement and velocities. A reduced-order model,
discussed in the Supplementary Material 3, has helped clarify the spectral filtering of the
wall-turbulence signal to the disc motion. In the fastest half-disc case, drag-reduction
levels up to 20% occur over the disc surface and up to 5.6% when the entire channel
walls are considered. We also computed the power extracted by the discs, which is
dissipated by the friction effects below the disc surface. The only experimental results
on passively-rotating half discs were analyzed (Koch & Kozulovic 2013, 2014). The drag-
reduction margin was not measured in those experiments, but estimated to be 17%
through a fixed-wall skin-friction correlation. It was therefore not possible to carry out
quantitative comparisons. Nevertheless, the experimental trend of drag reduction as a
growing function of an equivalent slip velocity matches our numerical data qualitatively
and the angular velocities are of comparable amplitude. Further work is needed to
investigate the dependence of the disc-slip velocity and the drag-reduction margin on
the Reynolds number.
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Józsa, T.I., Balaras, E., Kashtalyan, M., Borthwick, A.G.L & Viola, I.M. 2019 Active

and passive in-plane wall fluctuations in turbulent channel flows. J. Fluid Mech. 866,
689–720.

Jung, W.J., Mangiavacchi, N. & Akhavan, R. 1992 Suppression of turbulence in wall-
bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4 (8), 1605–1607.
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1. Estimation of the skin-friction drag reduction by Koch &
Kozulovic (2013, 2014)

We discuss the procedure adopted by KK13 and KK14 to estimate the turbulent drag
reduction on the surface of their passively spinning discs, shown in figure 1. KK13 and
KK14 carried out seven experiments in a closed-circuit wind tunnel. The main flow
parameters and results are summarized in table 1.

Although KK13 and KK14 measured the streamwise velocity profiles on and down-
stream of the disc, the wall-shear stress on the disc surface was not measured directly.
They measured f∗, the average number of revolutions per second of the disc, and
derived the spatial distribution of the streamwise slip length by assuming that the
disc angular was constant, i.e., u∗

s(z
∗) = 2πf∗z∗, where z∗ is the spanwise distance

from the disc center. It was further assumed that the 99% boundary-layer thickness
δ∗

99 over the disc was identical to the fixed-wall case. The boundary-layer thickness was
measured experimentally at three spanwise distances from the disc centre and was in
good agreement with the fixed-wall value, supporting the assumption. The wall-shear
stress τ∗

w on the disc surface was estimated by modifying correlations for the skin-friction
coefficient and the boundary-layer thickness, valid in the fixed-wall case:

τ∗

w(x∗, z∗) = 0.0225ρ∗ν∗1/4 [U∗
∞ − u∗

s(z
∗)]7/4

δ99(x∗)1/4
, (1.1)

δ∗

99(x∗) = 0.37(x∗ − x∗

v)

[
ν∗

U∗
∞(x∗ − x∗

v)

]1/5

, (1.2)

where U∗
∞ is the free-stream velocity, ν∗ is the kinematic viscosity of air, and x∗

v is the
virtual origin of the turbulent boundary layer, calculated by upstream extrapolation of
the downstream measurements of δ∗

99. The spatial distribution of the reduction of the
wall-shear stress, Rxz, is obtained by use of (1.1) with and without the local slip velocity
u∗
s:

Rxz(%) = 100

[
1 −

(
1 − u∗

s

U∗
∞

)7/4
]

. (1.3)

The spatially-averaged drag reduction over the half disc, Rd, is computed by numerically
integrating (1.3) for our friction Reynolds number Reτ=180. The result is shown in
figure 12.

†Email address for correspondence: p.ricco@sheffield.ac.uk
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Table 1: Flow parameters and results of the boundary-layer experiments from KK13 and
KK14.

U∗
∞ [m/s] δ∗

99 [mm] f∗ [1/s] Reτ D+ W
+

U+

s,D Rd(%)

20.32 3.98 9.94 276 6943 3.00 1.27 11.2
25.38 3.80 14.33 322 8481 3.54 1.50 12.6
30.41 3.67 19.01 366 9980 3.99 1.69 13.9
35.6 3.55 23.78 409 11500 4.33 1.84 14.7
40.7 3.46 28.78 449 12973 4.65 1.97 15.6
45.86 3.38 34.04 488 14444 4.94 2.09 16.3
50.96 3.31 39.04 525 15882 5.15 2.19 17.1

2. Modelling of torques below the disc surface

The modelling of the torques given by the ball bearing and by the fluid friction in the
housing cavity is presented.

2.1. Torque produced by the ball bearing

Each disc is supported by a ball bearing fixed onto its shaft, as shown in dark grey in
figure 3. The resisting torque Tb of a rolling-element bearing is caused by a combination
of phenomena, such as lubrication, material deformation, thermal losses, and others.
Its complete modelling is complex and the industrial estimates are usually performed
through the use of empirical formulas (Harris & Kotzalas 2006). The main contribution
to Tb is the load-induced rolling friction arising from the pressure contact between the
rotary elements and the metal grooves, often named races. The interaction is similar to
that experienced by train wheels on rail tracks.

Our estimate of Tb is based on the empirical formulas provided by a manufacturer of
rolling-element bearings, the Swedish company SKF (www.skf.com). A realistic bearing
model must be selected by considering the water-channel flow presented in table 1. The
critical aspect is the capability of the bearing to support the axial load of the weight
of the disc without generating a high-friction torque. Watertight seals are often used to
protect the lubricant, but they are not modelled in our case because lubrication is not
required for our slowly rotating and lightly loaded bearings.

A sound choice is a SKF angular-contact thrust bearing belonging to the series 7009.
These bearings produce small friction under high axial loads and are available in sizes
that are compatible with the required design. Using the bearing data-sheet parameters
and an axial load corresponding to the weight of a disc of diameter D = 5, the SKF
formulas return a friction torque that, translated into our outer units, is |Tb| = 0.0001.
The effect of the axial load can be neglected because the weight of the disc is negligible.
The use of a bearing torque that does not depend on W is justified because, at our slow
rotation rates, only rolling friction occurs, which is nearly independent of the angular
velocity. The bearing torque is therefore modelled as Tb = |Tb|sgn(W ). The sign of the
disc-tip velocity is accounted for because the friction of the bearing opposes the rotation.

2.2. Torque produced by the fluid friction in the housing cavity

The motion of the fluid within the cavity under a disc results in a resisting torque Th
acting on the bottom surface of the disc. Two predictive models for Th are used, thus
avoiding the full simulation of the cavity flow.

We consider an idealized case where the disc angular velocity fluctuates following a
monochromatic sinusoidal wave of zero mean and frequency f∗. We assume that the
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scaled frequency is small, i.e., d∗

h

√
f∗/ν∗ ≪ 1, in order to model the cavity flow in

a quasi-steady regime (a similar definition for a different oscillating-flow configuration
is found in Barenghi & Jones 1989). In the case of full discs, shown in figure 2a, the
discs fluctuate randomly, i.e., the time history of the disc motion shows a continuous
frequency spectrum. The quasi-steadiness assumption is valid in all the cases because a
large fraction of the disc kinetic energy corresponds to a range of frequencies f∗ of the
spectrum for which d∗

h

√
f∗/ν∗ ≪ 1. In the half-disc cases, shown in figure 2b, the discs

rotate with a finite mean angular velocity and thus the quasi-steadiness assumption is
also always verified due to the standard deviation of the velocity fluctuations being much
smaller than their temporal average. A further assumption is that the flow in the cavity
is laminar. The steady flow between two coaxial infinite discs, one at rest and the other
one moving with constant angular velocity Ω, was studied by Stewartson (1953) in the
laminar regime at small and moderate Reynolds numbers. The azimuthal velocity uθ is
independent of the other two components, uθ = rΩyh/dh, where yh is the wall-normal
coordinate within the cavity and r is the radial coordinate with origin at the centre of
the disc. The resisting torque is:

Th =
πD4

32dhRep
Ω. (2.1)

We also model the flow in the cavity through the swirling boundary-layer solution of von
Kármán (1921) for the flow induced by a disc beneath a semi-infinite fluid. The torque
of the von-Kármán solution reads:

Th = sgn(Ω)
πGD4

32Re
1/2
p

|Ω|3/2, (2.2)

where G = 0.6159 is a numerically-determined constant.
The most rigorous method to check the validity of the assumptions would be to carry

out a DNS simulation of the cavity flow for each case, from which the scaled frequency
parameter can be computed and the mean profiles and the resisting torque can be
checked against the predictive model. This approach was not pursued because it is too
computationally demanding. Future work should certainly be directed at improving the
predictive model of the resisting cavity torque, mainly in view of quantitative comparisons
with experimental data. Additional factors that will have to be modelled include the
viscous shear stresses on the shaft supporting the disc, the secondary flows inside the
cavity due to the ball bearing and the uneven steps or gaps, such as those of the
experimental set-up shown in figure 1, and the effects of the transitional and turbulent
flows inside the cavity at large angular velocities. The fluid friction below the disc could
be minimized by designing the disc housing to be air filled, thus sealed from the turbulent
flow of water on top of the disc.

3. Uncoupled dynamics of the full discs

3.1. Modelling of the uncoupled dynamics of the full discs

The full-disc configuration is also studied under the simplifying assumption that the
disc-tip velocity W is small. This assumption is reasonable as verified by the two-
way-coupling simulations. In this uncoupled system, the torque engendered by the wall
turbulence causes the motion of the discs, but the disc-tip velocity is so small that the
wall turbulence is unaffected by the disc rotation. It is therefore a one-way coupling
system, where the NSE are subject to the no-slip stationary-wall boundary conditions.



30 Paolo Olivucci, Daniel J. Wise, Pierre Ricco

NSE,
fixed-wall BC

fluid dynamics

∫
S
τw,0×(x− xc) dS

fluid torque (3.3)

τw,0

Ẇ0IR
−1 =

∑
i Ti

disc dynamics (3.1)

Tf,0 W0Px

Figure 1: Block-diagram of the uncoupled disc-fluid system.

Figure 1 depicts the uncoupled system, where there is no feedback from the disc to the
fluid boundary conditions. The wall-shear-stress torque on the disc is first computed
using the reference fixed-wall turbulent channel flow, and then the torque determines the
disc dynamics.

The uncoupled system is obtained by a regular perturbation expansion for small W .
We define the small parameter ǫ = maxt [W ∗(t∗)] /U∗

p ≪ 1 and we further assume that
W/Tf = O(1), which is also reasonable because the instantaneous torque, Tf ≪ 1, is given
by the statistically homogeneous wall-shear stress acting over a disc without a preferential
angular direction. We first expand the disc velocity as W (t) = ǫWm

0 (t) + O(ǫ2) (where
Wm

0 = W ∗/ maxt [W ∗] = O(1)), the fluid velocity and pressure as (u, p)(x, t; W ) =
(u0, p0)(x, t) + ǫ(u1, p1)(x, t) + O(ǫ2), the wall-shear stress as τw(x, t; W ) = τw,0(x, t) +
ǫτw,1(x, t) + O(ǫ2), and the torque as Tf(t; W ) = ǫTm

f,0(t) + ǫ2Tm
f,1(t) + O(ǫ2). (The

subscript “0” henceforth indicates quantities that refer to the uncoupled case.) By
substituting these expansions into (2.1), (2.2), (3.1), and (3.2), one finds that u0 satisfies
the reference fixed-wall NSE equations at leading order and that, at the next order O(ǫ),
the disc-tip velocity Wm

0 satisfies the dynamical equation driven by the fixed-wall torque
Tm
f,0. At this next order, u1 satisfies linearized NSE equations, where the convection is

driven by u0 and the wall boundary conditions synthesize the effect of the disc rotation
on the fluid motion. We do not solve for u1 as we are interested in the leading-order
behaviour. The feedback loop thus vanishes as the leading-order expansion leads to the
no-slip stationary-wall boundary conditions.

The uncoupled model has a number of advantages over the coupled model. First, the
uncoupled results can be compared to those from the coupled simulations, assessing the
impact of the two-way coupling on the disc dynamics and the fluid flow. Second, in
the uncoupled case, the equation of motion of the disc is linear because the torque is
a known function of the turbulent flow. Therefore, the system is more easily studied in
the frequency domain and the linearity of the disc equation of motion allows the explicit
calculation of the frequency response of the disc dynamics to the fluid torque. Third,
contrary to the coupled case, it is not required to perform new simulations for cases with
discs of different diameter, but it is sufficient to simulate the fixed-wall channel flow once
and then, from this flow, extract the fluid torques exerted on the disc-shaped patches of
choice. This approach allows the study of a large number of cases: we have considered
seventy diameters in the range D+ = 20 − 1200.

3.2. Uncoupled dynamics in the physical domain

This section discusses the uncoupled disc-fluid dynamics, represented schematically in
the block-diagram of figure 1. The dynamics is still described by (4.1), but it becomes
linear in the limit of small W because the torque Tf,0 is given by the fixed-wall reference
flow. The solution to the uncoupled (4.1) is

W0(t) =
16e−Cht

πbρdD3

∫ t

0

[
Tf,0

(
t̂
)

− Tb
]

eCht̂ dt̂, (3.1)

where Ch = (Repdhbρd)
−1

and W0(t = 0) = 0.
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Figure 2: Standardized histogram plots of (a) W0 and (b) Tf,0 for uncoupled-dynamics
simulations. The solid line denotes the standard normal distribution.

The red symbols in figure 7 show that W0,rms behaves qualitatively as Wrms in the
coupled-dynamics case, i.e., it decays as D−0.7 after the maximum response for D+ = 100.
The fixed-wall fluid torque Tf,0 also follows a similar behaviour to the coupled case. The
dependence of Tf,0 on D in the large-D range matches that of the coupled case, i.e.,
it also grows as D2.2. The values of W0,rms and Tf,0,rms are up to three times larger
than in the coupled case, regardless of D. This result proves that the two-way interaction
between the disc and the fluid produces an attenuating effect on the disc velocity and
the torque.

The time evolutions of the fluid torque components T x
f,0 and T z

f,0 for the uncoupled
case are shown in figure 9a (bottom). Differently from the coupled case, where the torque
components are strongly anti-correlated, there is no noticeable correlation between T x

f,0

and T z
f,0. The contributions of the components of equation (4.2) to Var(Tf,0) for the

uncoupled case are presented in figure 9b by the blue symbols. Similar to the coupled
simulations, the streamwise component of the torque dominates over the other two
components. The magnitudes of the variance T z2

f,0 and covariance T x
f,0T z

f,0 are much
smaller than in the coupled simulations.

Figure 2 shows the standardized histograms of W0 and Tf,0. The coupling has a
negligible effect on the trends as the W0 values follow the normal distribution for all
the diameters and the heavy-tail behaviour of Tf,0 deviates from the normal curve at
small diameters by a similar amount as in the coupled case.

3.3. Uncoupled dynamics in the frequency domain

The dynamics of the full discs for small W is also investigated in the frequency domain,
as shown in figure 3. As the response functions are difficult to study in the nonlinear
coupled case, we focus on the linear uncoupled system.

The normalized PSDs of the disc-tip velocity and the fluid torque are displayed in
figure 4. The PSDs of W0 also follow an analogous behaviour to the coupled case, with
the lower frequencies contributing more to the total power as D increases. Similar to
the coupled case, the trends shift to low frequencies as the diameter increases and both
quantities show the peak at about f+=0.005. These maxima are now much more distinct
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NSE
fixed-wall BC

fluid dynamics

Ĝ0

fluid torque

τ̂w,0(f, κx, κz)
F̂0

disc dynamics

T̂f,0(f) Ŵ0(f)P̂x

Figure 3: Block-diagram of the uncoupled disc-fluid system in the wavenumber-frequency
domain, where τ̂w,0(κx, κz, f) is the wavenumber-frequency spectrum of the wall-shear
stress, κx and κz are the streamwise and spanwise wavenumbers, f is the frequency, and
the hat indicates the Fourier transform. Ĝ0 and F̂0 are the Fourier transforms of the
fluid-torque integral (3.3) and the disc dynamical equation (4.1), respectively.
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Figure 4: Power spectral densities, denoted by S with subscripts indicating the quantity
and shown in pre-multiplied form. (a) Disc-tip velocity W0 and (b) fluid torque Tf,0,
computed from uncoupled-dynamics simulations. The plots are normalized with the total
power.

than in the coupled case and the energy distribution of Tf,0 at higher frequencies is
flatter.

The frequency-domain solution of (3.1) is:

Ŵ0 =
16

πbρsD3(2πif + Ch)
T̂f,0, (3.2)

where we have excluded Tb because Tb ≪ Th,0, revealing the scaling with D−3 and
the inverse dependence on b and ρs, i.e., a thinner disc or a lighter material result
in larger W . Equation (3.2) can be written as F̂0 = Ŵ0/T̂f,0, so that the gain is

|F̂0| = 16/πbρsD
3
√

4π2f2 + C2
h. By neglecting friction to extract information about

inertia, |F̂0,s| = 16/πbρsD
32πf . Figure 5 depicts the scaled |F̂ |. When computed from

the coupled nonlinear simulations, the procedure is not rigorous, but it offers a tool
to assess whether the model is valid. The dashed lines show the matching with the
inertia-driven behaviour for large frequencies ∼ f−1 and the constant behaviour at low
frequencies, dictated by the housing-torque viscous effects. We find F̂0 > F̂ at any f ,
with the difference reducing as D−0.8 as D increases.

To study Ĝ0, shown in figure 3, we neglect the dependence of Tf,0 on time and study its
variance using temporally uncorrelated realizations Tf,0(ti), where the ti are sufficiently
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Figure 5: (a) Transfer functions from the uncoupled exact theory (dashed lines) and
calculated from the coupled DNS simulations (solid lines). (b) Colour map plot of |ΨxR|
as a function of the inverse of the streamwise and spanwise wavelengths, normalized with
the disc diameter. This choice of coordinates emphasizes how the relative scale of the
shear-stress wavelengths to the disc size affects the filtering properties of ΨxR.

delayed. We study the x-component T x
f,0, given in (3.3) (the analysis is analogous for

T z
f,0), i.e.,

T x
f,0(ti; R) =

∫

S

zF−1
xz

{
τ̂w,x,0

}
(κx, κz)}dxdz = (3.3)

=

∫∫

R2

τ̂w,x,0(κx, κz)

(
1

4π2

∫

S

zeiκxxeiκzzdxdz

)
dκxdκz (3.4)

=

∫∫

R2

τ̂w,x,0ΨxR dκxdκz , (3.5)

where S is the disc surface, τ̂w,x,0 is the spatial Fourier transform of τw,x,0(x, z), and
F−1
xz {·} is its inverse. The function ΨxR(κx, κz) simplifies to:

ΨxR(κx, κz) = R3Ψ(Rκx, Rκz), (3.6)

where Ψ is

Ψ(κ1, κ2) =
1

2π2κ1

∫ 1

−1

z sin
(

κ1

√
1 − z2

)
eiκ2zdz. (3.7)

We then study the magnitudes |τ̂w,x,0| and |ΨxR| as the largest contribution to Var(T x
f,0).

The phase spectra Φτ and Φψ also contribute to Var(T x
f,0). The fixed-channel simulation

data render Φτ a function with a uniformly distributed random phase. The function Φψ
takes discrete values of either −π/2 or π/2, the sign being dictated by the same radial
period observed for the oscillations of |ΨxR|.

Figure 5b shows the magnitude |ΨxR| of the spectral filter function, calculated by solving
the integral in (3.7) numerically. The axes use the reciprocal of the wavelength (i.e.,
1/λx=κx/2π) normalized with the disc diameter to visualize the filtering behaviour
of ΨxR relative to the disc size. As the function |ΨxR| is even with respect to both
wavenumbers, only the first quadrant is shown. A series of regularly-spaced oscillations
can be observed, centred at the origin and decreasing in intensity at higher values of the
diameter-wavelength ratio. The period of these oscillations, calculated along a radial
direction centred at the origin, is D/λ=1 where λ =

√
λ2
x + λ2

z, which means that
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|ΨxR| privileges spanwise modes, gradually decreasing at low spanwise wavenumbers and
vanishing completely for purely streamwise modes. The maximum of |ΨxR| is determined to
be a purely spanwise mode such that D/λz = 0.732. The largest individual contribution
to the torque is given by the spanwise mode of τw,x,0 whose wavelength is 1.37 times the
diameter.

When observed in the absolute coordinates 1/λx and 1/λz, the map of figure 5b
corresponds to the case D = 1. When the disc size increases for D > 1, the coordinates
scale linearly with D, which means that the maximum of |ΨxR| moves closer to κz = 0
and the radial wavelength of the oscillations decreases linearly, visually generating a
“shrinking” effect centred at the origin. Similarly, when D < 1, |ΨxR| undergoes an
“expansion” according to the same proportionality of the coordinates to D. The other
effect of varying the disc size is that |ΨxR| is uniformly amplified by a factor of R3,
according to (3.6). Larger discs therefore produce a very intense, localized filtering near
the origin, while smaller discs have a weaker, spread-out filtering across a broad range of
wavenumbers.

The PSD of the streamwise wall-shear stress reveals where the contributions to |τ̂w,x,0|
are located on average (not shown). It is found that, as |ΨxR| decreases and spreads out
for increasingly large D, the entire shear-stress PSD attenuates, leading to smaller torque
values. Conversely, for sufficiently small D, ΨxR has an amplifying effect, with the most
amplified modes being those of small streamwise wavenumbers, which correspond to the
energy-containing region of the shear-stress PSD. Therefore, increasingly intense values
of the torque occur as the disc size increases. This result qualitatively corresponds to
that observed in figure 7, the precise dependence on D being determined by the specific
form of the shear-stress spectrum.

As discussed in §4, the spanwise shear-stress torque T z
f is much smaller than the

streamwise one. A relation analogous to (3.5) is derived for T z
f :

T z
f,0(R) =

∫∫

R2

τ̂w,z,0ΨzR dκxdκz . (3.8)

The difference between the spanwise filter function and the streamwise case is that
ΨzR(κx, κz) = R3Ψ(Rκz, Rκx), i.e., the spanwise and the streamwise wavenumbers are
exchanged. This result can be shown by substituting z with x in (3.5) and calculating
the spatial integral. As implied by its definition, ΨzR privileges streamwise modes of τ̂w,z,0
(as opposed to spanwise for ΨzR) and its maximum amplification happens for the purely
streamwise mode such that D/λx ≈ 0.732.

The variance of Tf,0 is calculated by evaluating the variance of the right-hand side
of (3.5) and (3.8) over the ensemble of uncorrelated shear-stress fields produced from
the numerical simulation of the fixed-wall channel. After taking the square root, the
resulting curve, measured directly from the spatial wall shear-stress fields through (3.3)
and shown in figure 5b alongside Tf,0,rms(D), shows excellent quantitative agreement
with the numerical data.

It is conjectured that the change of slope occurring at around D+=100 in figure 7
originates from the scaling behaviour of the filter-function kernel ΨxR with respect to
D. According to (3.6) and the visualization shown in figure 5b, ΨxR has two possible
mechanisms for amplifying the wall-shear-stress modes. First, its amplitude grows as
D3 and, second, its maxima move relative to the wall-shear-stress spectrum maximum
because the coordinates scale with D. While the first mechanism always results in an
uniformly increasing amplification, the effect of the second mechanism is significant only
when the ΨxR maximum overlaps the region of maximum energy concentration of the
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wall-shear stress. On the contrary, if the ΨxR maximum overlaps modes for which the
wall-shear-stress PSD is zero, no local amplification takes place and those modes do not
contribute to the integral (3.5). Therefore, as D increases and the ΨxR maximum moves
closer to the origin, initially a regime is expected where both the first and the second
mechanisms work in favour of the amplification because the kernel maximum moves
progressively closer to the PSD maximum, until the two overlap. Thereafter, a regime
of reduced amplification rate, i.e., a gentler slope of the Tf,rms(D) curve, is expected
because the two maxima move apart. The diameter Dc at which the maximum of |ΨxR| and
the maximum of Sττ overlap can be used as an estimate of the slope-changing diameter.
It is found that the maximum of Sττ is located at around 1/λz = 1.2, which implies that
Dc=0.732/1.2=0.61 or D+

c ≈ 110 in viscous units. This value matches the slope-changing
point of Tf,0,rms(D) well, qualitatively endorsing the conjectured mechanism.
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