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The development and growth of unsteady three-dimensional vortical disturbances
entrained in the entry region of a circular pipe is investigated by asymptotic and
numerical methods for Reynolds numbers between 1000 and 10000, based on the pipe
radius and the bulk velocity. Near the pipe mouth, composite asymptotic solutions
describe the dynamics of the oncoming disturbances, revealing how these disturbances
are altered by the viscous layer attached to the pipe wall. The perturbation velocity
profiles near the pipe mouth are employed as rigorous initial conditions for the boundary-
region equations, which describe the flow in the limit of low frequency and large Reynolds
number. The disturbance flow is initially primarily present within the base-flow boundary
layer in the form of streamwise-elongated vortical structures, i.e., the streamwise velocity
component displays an intense algebraic growth, while the cross-flow velocity components
decay. Farther downstream the disturbance flow occupies the whole pipe, although the
base flow is mostly inviscid in the core. The transient growth and subsequent viscous
decay are confined in the entrance region, i.e., where the base flow has not reached the
fully developed Poiseuille profile. Increasing the Reynolds number and decreasing the
frequency causes more intense perturbations, whereas small azimuthal wavelengths and
radial characteristic length scales intensify the viscous dissipation of the disturbance. The
azimuthal wavelength that causes the maximum growth is found. The velocity profiles
are compared successfully with available experimental data and the theoretical results
are helpful to interpret the only direct numerical dataset of a disturbed pipe-entry flow.

Key words:

1. Introduction

The problem of the stability and transition to turbulence of pipe flows has witnessed
an immense interest in the scientific and engineering communities since the famous
experimental work of Reynolds (1883). Flows through pipes are central to countless
engineering applications, primarily because one must predict the occurrence of transition
to turbulence as the majority of gas, oil, water and air pipe flows are turbulent even
at moderate Reynolds numbers. While fluids engineers are mostly concerned with an
accurate computation of the pressure gradient required for propelling the fluid through

† Email address for correspondence: p.ricco@sheffield.ac.uk
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pipes, physicists and mathematicians have also been attracted by the fascinating physical
phenomena observed in these flows and by the exceptional difficulties related to the
theoretical analysis of these confined flows.

It is still not clear how a laminar pipe flow becomes unstable and evolves to turbulence.
The first theoretical challenge is that numerical and theoretical studies have consistently
reported that the Poiseuille laminar flow is always stable to small perturbations at every
Reynolds number when the problem is investigated using classical stability theory Drazin
& Reid (2004). This result has therefore led researchers to analyse the dynamics of finite-
amplitude disturbances and alternative routes to turbulence.

Research studies on pipe flows have mainly focussed on the dynamics of the fully
developed laminar flow, while a limited number of investigations have reported results
on the entrance problem, that is, where the laminar base flow evolves from the pipe
mouth. Along the entrance region, the flow depends on the streamwise coordinate and
the pressure gradient is unknown a priori, thus posing additional challenges to its analysis.
Our main objectives are, therefore, to investigate how vortical disturbances superimposed
on the oncoming base flow at the pipe entrance are influenced by the pipe confinement,
and how they are convected and evolve downstream through the pipe along the entrance
region, prior to the flow breakdown to turbulence. We have devoted particular attention
to the flow specification at the pipe mouth because a realistic source of perturbation is
fundamental as a first step towards a full understanding of the pipe-flow transition to
turbulence. We have considered the pipe wall to be smooth, rigid and stationary, and
therefore we have neglected two other realistic sources of disturbances, i.e., wall roughness
and wall vibrations.

In the following, we first discuss the most relevant studies of stability and transition
in pipe flows and then we present our research objectives and the structure of the paper.

1.1. Stability of fully developed pipe flows: small perturbations

Motivated by the impact of the pioneering experiments by Reynolds (1883), Rayleigh
(1892) conducted the first stability analysis of a cylindrical flow in the inviscid regime,
finding only stable perturbations. The first viscous stability study was carried out
years later by Sexl (1927), who showed flow stability in the limits of small and large
Reynolds numbers. Several studies in the past century, such as Pekeris (1948), Corcos
& Sellars (1959), Gill (1965), Lessen et al. (1968), Crowder & Dalton (1971) and
Salwen et al. (1980), have established that the fully developed Poiseuille pipe flow is
stable to infinitesimal disturbances according to classical stability theory even at very
large Reynolds number. It was therefore a natural step to analyse other mechanisms
of instability, such as transiently growing disturbances. Bergström (1993), Schmid &
Henningson (1994), O’Sullivan & Breuer (1994), Mayer & Reshotko (1997), Trefethen
et al. (1999) and Meseguer (2003) studied the transient problem in time, while Reshotko
& Tumin (2001) focussed on the spatial transient evolution of the disturbances. The
results of Mayer & Reshotko (1997) are of note as they compare favourably with the
experimental results by Kaskel (1961). These studies concur that small perturbations
superimposed on the fully developed Poiseuille flow can grow algebraically in time or
space and then decay because of viscous effects. The reader is referred to section 3.2 in
Kerswell (2005) for an exhaustive discussion of stability studies of small perturbations
superimposed on the Poiseuille flow.

Alongside the theoretical advancements, pipe-flow experimental campaigns followed
the work of Reynolds (1883), as summarized in section 3.1 of Kerswell (2005). Fox
et al. (1968) experimentally tested the stability of small perturbations introduced in
the fully developed region and reported that the flow became unstable for Reynolds
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numbers larger than approximately 2000 (based on the pipe diameter), i.e., comparable
with the results found by Reynolds (1883), although no comparison was carried out
because the perturbations of Reynolds (1883)’s experiments were at the pipe inlet.
Other experimental campaigns, e.g. Draad et al. (1998), demonstrated that the transition
Reynolds number could be increased significantly by reducing the amplitude of the
perturbations.

1.2. Stability and transition of fully developed pipe flows: finite-amplitude perturbations

As linearized dynamics only provided a limited understanding of the fully developed
pipe-flow transition problem, considerable effort has been devoted to the nonlinear
behaviour of perturbations. The dynamics of finite amplitude disturbances in the limit
of high Reynolds number was first studied by Davey & Nguyen (1971) via weakly
nonlinear theory. The equilibrium perturbation amplitude above which disturbances grow
was predicted and the most unstable disturbance was found to be near the pipe axis.
These results were contradicted by Itoh (1977), who discovered no equilibrium states
by a similar approach. Davey (1978) further analysed these studies and concluded that
neither centre-mode results were reliable, although maintained that equilibrium states did
exist. Smith & Bodonyi (1982) indeed found neutral disturbances of finite amplitude by
utilizing nonlinear critical layer theory. Patera & Orszag (1981), using direct numerical
simulations, did not find any axisymmetric equilibrium states and concluded that the
weakly nonlinear approach can lead to invalid results.

Nonlinear travelling waves were first discovered numerically by Faisst & Eckhardt
(2003) and Wedin & Kerswell (2004), thus paving the way for the use of dynamical
systems in the study of pipe-flow transition Duguet et al. (2008); Hof et al. (2008); Avila
et al. (2010, 2013). Section 4 in Kerswell (2005) discusses the main results on these
travelling waves. Their existence was confirmed in the water pipe-flow experiments of
Hof et al. (2004, 2005).

Other useful papers that thoroughly discuss experimental, numerical and theoretical
advances related to the pipe-flow problem in the nonlinear regime are those by Avila
et al. (2011), Eckhardt et al. (2007), Eckhardt (2009), Avila et al. (2011) and Mullin
(2011). The review paper by Eckhardt (2007) offers an interesting list of open problems
related to the pipe-flow nonlinear breakdown to turbulence.

1.3. Stability and transition of pipe-entrance flows

As Reynolds (1883) recognized that the perturbance dynamics from the pipe inlet
played a key role in the flow breakdown to turbulence, researchers have turned their
attention to the stability of the pipe entrance flow. The main conclusion is that the
pipe entrance flow is linearly unstable according to classical stability theory Tatsumi
(1952); Huang & Chen (1974b,a); Smith & Bodonyi (1980); Garg (1981); Gupta & Garg
(1981); da Silva & Moss (1994), although there is still controversy about the exact form
of the neutral curve, inside which Tollmien-Schlichting (TS) waves appear. The results
by Gupta & Garg (1981) and da Silva & Moss (1994) show good agreement for most of
the downstream locations and Reynolds numbers, from which it has been concluded that
the entrance flow is linearly stable for Reynolds numbers smaller than approximately
10000, based on the pipe radius and bulk velocity. Much lower critical Reynolds numbers
have been reported by the experimental study of Sarpkaya (1975), probably because of
the finite size of the induced perturbation, and by the numerical investigation of Sahu
& Govindarajan (2007). Duck (2005, 2006) used asymptotic and numerical methods to
study the algebraic growth of disturbances near the pipe mouth, in the form of the so-
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called Luchini mode Luchini (1996), located within the boundary layer attached to the
pipe wall.

Wygnanski & Champagne (1973)’s experimental study focussed on the initial growth of
perturbations generated at the pipe mouth, with the objective of understanding how these
disturbances seeded turbulent puffs and slugs farther downstream. More laboratory data
have been reported by Zanoun et al. (2009) in an attempt to quantitatively correlate the
location and features of the transitional flow with the intensity of the inlet perturbations.
The direct numerical simulations by Wu et al. (2015) and Wu et al. (2020) showed how
localized perturbations imposed at the pipe entrance evolved downstream and led to the
breakdown to turbulence. At the pipe inlet, the Poiseuille parabolic velocity profile was
chosen as base profile in most of the cases, and the uniform plug flow was selected in one
case.

To the best of the authors’ knowledge, no theoretical studies exist on the entrainment
of velocity and pressure perturbations at the pipe inlet, in an attempt to analyse how
these disturbances evolve and grow downstream inside the confined space.

1.4. Objectives and structure of the paper

We aim to analyse the response of the entrance incompressible pipe flow to vortical
disturbances convected by the inlet flow. The main motivation arose from the absence
of theoretical results on the dynamics of pipe entrance flows perturbed by disturbances
that can be created and measured in a laboratory, despite the central role played by
these perturbations as harbingers of instability and transition, as recognized since the
pioneering work of Reynolds (1883). We consider flows at Reynolds numbers for which the
entrance pipe flow is stable according to classical stability theory, i.e., TS waves do not
occur, although experimental results have shown these flows to transition to turbulence.

We adopt the reasonable assumptions of large Reynolds number and of velocity
disturbances of small amplitude and low frequency. The last assumption is based on the
observation that streamwise-stretched low-frequency perturbations are the most likely
to penetrate viscous layers and amplify downstream to cause transition Matsubara &
Alfredsson (2001). We are particularly interested in explaining how the disturbances
are altered as they enter the pipe confinement and experience the increasing base-flow
pressure gradient, how they penetrate into the boundary layer attached to the pipe wall,
and how they amplify inside the pipe as the base flow becomes fully developed. We report
how the perturbation dynamics depends on the flow parameters, such as the Reynolds
number, the frequency, and the wavelengths of the prescribed disturbance. We carry out
visual and data-based comparisons with experimental data of Wygnanski & Champagne
(1973), and interpret results from the direct numerical simulation study of Wu et al.

(2015) on a pipe flow perturbed by inlet disturbances.

Our mathematical approach and numerical results are a starting point for the un-
derstanding of the relationship between the transitional Reynolds number and the role
of inlet vortical perturbations in laminar-to-turbulent transition in pipe flows. We have
restricted the analysis to the linearized dynamics under the assumption of small pertur-
bations and we are currently extending our study to the nonlinear case.

In §2, the scaling and assumptions are presented, together with the governing equations
and the numerical procedures. The initial flow development is studied in §3 and the results
of the downstream flow dynamics are discussed in §4. The conclusions of our study are
presented in §5.
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2. Scaling and equations of motion

We first present the asymptotic scaling in §2.1 and the equations of motion in §2.2.
In §2.3 we discuss how linear stability results are useful to extract the locations in the
entrance pipe-flow region where exponentially growing waves may occur. The numerical
procedures are discussed in the Supplementary Material S1.

2.1. Scaling and asymptotic regions

We consider the pressure-driven incompressible flow at the entrance of a pipe with
circular cross-section. Dimensional quantities are hereafter indicated by the superscript
∗. The oncoming flow approaching the pipe entrance is assumed to be uniform, of velocity
U∗

∞ and aligned with the pipe axis. The pipe wall is assumed to be infinitely thin so that,
similar to the case of uniform flow approaching a thin flat wall, the oncoming flow is
undisturbed at leading order. In a laboratory, the upstream geometry and the finite
thickness of the pipe wall may alter the uniformity of the oncoming flow. Our inlet flow,
therefore, is a simplified version of that utilized by O. Reynolds in his seminal study
(Reynolds 1883), where the pipe entrance was bell shaped. As the oncoming flow enters
the pipe, a boundary layer develops on the pipe wall. The thickness of this viscous layer
increases downstream until the pipe flow becomes fully viscous and attains the classical
Poiseuille parabolic profile.

The flow is conveniently represented in a cylindrical coordinate system, where the
coordinates x∗, r∗ and θ are the streamwise direction, the radial direction and the
azimuthal angle, respectively. The centreline of the pipe is at r∗ = 0 and the pipe wall is
located at r∗ = R∗, where R∗ is the pipe radius. Lengths are scaled by a reference length
λ∗, specified below. Velocities are normalized by U∗

∞, the pressure is scaled by ρ∗U∗2
∞ ,

where ρ∗ is the density of the fluid, and the time is scaled by λ∗/U∗
∞ (quantities without

any symbols are non-dimensional).
Superimposed on the oncoming streamwise flow {U∗

∞, 0, 0} are gust-type vortical
fluctuations advected by the base flow. In a technological or industrial system, these
oncoming disturbances could be due to upstream vibrations or structural imperfections,
and in a laboratory setting they could be generated by vibrating ribbons or rigid grids
located near the pipe entrance, where the wavelengths and frequencies could be controlled
accurately, as could the location of generation.

We first consider a region around the pipe axis where velocity fluctuations are not
influenced by the pipe wall, either by the no-penetration condition on the radial veloc-
ity disturbance or by the no-slip condition on the streamwise and azimuthal velocity
components. At these locations sufficiently near x = 0 and sufficiently far away from
the pipe wall, the velocity fluctuations can be expressed mathematically as a Fourier–
Bessel series, where the Fourier expansions pertain to time, x and θ, while the Bessel
expansion is used along the radial coordinate. As it is assumed that the amplitude of the
perturbation is asymptotically smaller than U∗

∞, the perturbation dynamics is linear. A
single Fourier–Bessel coefficient of the full-spectrum series expansion is thus considered,
as follows

u = {1, 0, 0}+ε

{
û∞

x,mnJm (r) ,
û∞

r,mnJm (r)

r
,

−iû∞

θ,mnJ
′
m (r)

ξmn

}
ei[kx(x−t)+mθ] +c.c., (2.1)

where Jm is the Bessel function of the first kind of order m, E = ei[kx(x−t)+mθ], ε ≪ 1
is the amplitude of the gust, r = ξmnr/2R, ξmn are the zeros of the Bessel function, i.e.
the real numbers that satisfy Jm(ξmn) = 0, c.c. stands for the complex conjugate, and
the prime indicates the first derivative with respect to r. In the most general case, the
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quantities
{
û∞

x,jmn, û
∞
r,jmn, û

∞

θ,jmn

}
= O(1) are complex. The inviscid velocity field (2.1)

satisfies the Euler equations and is generated at a circle of radius 2R, centred at the
pipe centreline and located in the plane (r, θ) at a small distance upstream of the pipe
mouth at x = 0. The scaling of the radial direction by 2R is used instead of R to avoid
the unrealistic scenario of vanishing streamwise and radial velocity components at r = R
where the disturbance is generated.

The reference length is λ∗ = θgR
∗ (λ∗/R∗ = O(1)), that is, the circumferential

wavelength of the gust at r∗ = R∗, where θg is the azimuthal angle corresponding to
the wavelength λ∗. As in the flat-plate case of Leib et al. (1999) where the spanwise
wavelength is used, the azimuthal wavelength λ∗ at r∗ = R∗ is chosen because down-
stream it becomes comparable with the boundary layer thickness and the pipe radius.
If θg = π/2, the wavelength λ∗ spans a quarter of the circumference of the pipe. An
obvious constraint is that the maximum λ∗ coincides with the pipe circumference. The
coefficient m = 2πR ∈ N denotes the number of wavelengths λ∗ around the circumference
(we restrict ourselves to cases for which m 6= 0 because we are interested in three-
dimensional disturbances). The radial velocity is never singular at the centreline despite
Jm being divided by r because, given Jm(r) ∼ (r/2)m/Γ (m + 1) for r ≪ 1 (where Γ is
the gamma function), the radial average û∞

r,0n is zero.

The focus is on low-frequency (i.e. long wavelength) disturbances with a streamwise
wavenumber kx = 2πλ∗/λ∗

x ≪ 1, where λ∗
x is the streamwise wavelength of the gust, as

these perturbations are most likely to penetrate a boundary layer and generate laminar
streaks (Matsubara & Alfredsson 2001). As the convected gust is transported passively
by the uniform base flow, the pressure fluctuations are negligible at leading order in
kx ≪ 1 (refer to Goldstein (1978), equation (2.3) and Leib et al. (1999), equation (3.2)).
Equation (2.1) satisfies the continuity equation as the term emerging from ∂u/∂x is
O(kx) ≪ 1, i.e.

ξmnû
∞

r,mn +mû∞

θ,mn = O(kx). (2.2)

Without losing generality, m > 0 is taken. The continuity equation also determines the
r−1 dependence for the radial velocity and the dependence on the derivative of the Bessel
function and the coefficient −i/ξmn for the the azimuthal velocity.

The Reynolds number is Reλ = U∗
∞λ

∗/ν∗ ≫ 1. Inside the pipe, the disturbances evolve
downstream on a length scale that is comparable with the streamwise gust wavelength. A
distinguished scaling is thus kx = O(Re−1

λ ) or x = kxx = 2πx∗/λ∗
x = O(1). The disparity

between the streamwise and azimuthal scales implies that disturbances of amplitude
O(ε) may generate streamwise velocity perturbations with an amplitude of O(ε/kx) in
the viscous layers. These amplitudes are assumed to be much smaller than U∗

∞, which
translates to ε/kx ≪ 1 or εReλ ≪ 1 and implies that the Navier-Stokes equations may
be linearized.

Vortical disturbances analogous to those defined in (2.1) have been found in other
cylindrical flows, i.e. the instability modes of a rotating pipe flow also have the streamwise
velocity component proportional to Jm and the radial velocity proportional to Jm/r
(Pedley 1969). A similar choice for the oncoming disturbance was employed for the flat-
plate boundary-layer cases studied by Ricco et al. (2011) and Marensi et al. (2017), who
prescribed the vorticity fluctuations as a pair of gusts with equal and opposite spanwise
wavenumbers. Disturbances (2.1) are physically realistic because they may be generated,
for example, by a grid at the entry of the pipe, as a circular analogue to the vibrating
wires used in the receptivity studies by Dietz (1999) and Borodulin et al. (2021a,b) for
two- and three-dimensional free stream vortical disturbances, respectively.

As shown in figure 1, the domain is divided into six asymptotic regions. The effect of the
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εu∞

RδR

No dP/dx

influence

Mild dP/dx

influence

Full dP/dx

influence

Fully developed

Poiseuille flow

I

II
III

II
III

IV

VI

V

r

x

Figure 1: Asymptotic regions of the pipe flow (not in scale). The boundary-layer thickness
δR is defined in §4.1.

base-flow streamwise pressure gradient is negligible in regions I, II and III, mild in region
IV, and fully influential in region V. In region VI, the base flow is fully developed. In
region I, at x = O(1), the base and the perturbation flows are inviscid and rapid distortion
theory applies (Goldstein 1978). A velocity potential is used and the wall is taken into
account through the no-penetration condition on the radial velocity component. In the
viscous region II, δ∗/λ∗ ≪ 1, where δ∗ is the boundary-layer thickness. Regions I and
II are studied in §3.2.1. Region III occurs where δ∗/λ∗ = O(1) and x = O(1) and it
is governed by the linearized unsteady boundary-region equations (Leib et al. 1999).
In region IV, which is in the pipe core and surrounded by region III, the base flow is
inviscid and the perturbation flow is viscous. Regions III and IV are discussed in §3.2.2.
In region V the base flow is not self-similar because of the unknown pressure gradient.
The streamwise base-flow velocity at the pipe axis increases with x and the base flow is
non-parallel as the radial velocity plays a key role. The latter vanishes farther downstream
in region VI, where the parabolic Poiseuille profile occurs.

2.2. Governing equations and boundary conditions

The flow field is governed by the continuity and Navier-Stokes equations,

∇ · u = 0, (2.3)

∂u

∂t
+ (u · ∇) u = −∇p+

1

Reλ
∇2u, (2.4)

where u = {ux, ur, uθ}. The velocity u and the pressure p are expressed as the superpo-
sition of the base flow and the perturbation flow, i.e. {u, p} =

{
U(x, r), P (x

}
+ {u′, p′},

where {
U(x, r), P (x)

}
= {U(x, r), kxV (x, r), 0, P (x)} , (2.5)

{u′, p′} = {u′, v′, w′, p′} = ε




ux,0(x, r)
ur,0(x, r)
uθ,0(x, r)
p0(x, r)


 ei(mθ−kxt) + c.c., (2.6)

and

{ux,0, ur,0} =
{
u(0)

x , kxu
(0)
r

}
+

{
im

kx
ux, imur

}
, (2.7a)
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uθ,0 = − ikx

m
u

(0)
θ + uθ, (2.7b)

p0 =
kx

Reλ
p(0) +

im

Reλ
p. (2.7c)

The notation in (2.6)-(2.7) is as close as possible to the flat-plate case by Leib et al. (1999)

for ease of understanding. The main difference between ur and u
(0)
r and the corresponding

components in (4.1) on page 176 of Leib et al. (1999) is the missing factor (2x)1/2 in
(2.6), which arises in Leib et al. (1999)’s case because of the Blasius-similarity scaling.

By substituting (2.5)-(2.6) into (2.3)-(2.4) and collecting the terms of O(1), one obtains
the base-flow boundary-layer equations (Hornbeck 1964),

∂U

∂x
+
V

r
+
∂V

∂r
= 0, (2.8)

U
∂U

∂x
+ V

∂U

∂r
= −dP

dx
+

1

F

(
1

r

∂U

∂r
+
∂2U

∂r2

)
, (2.9)

∂P

∂r
= 0, (2.10)

for kx, Re
−1
λ ≪ 1 and F = kxReλ = O(1). As P is unknown, (2.8)-(2.9) are solved

together with the mass conservation law,
∫ R

0
Urdr = R2/2, found by averaging across

a pipe cross-section. Equations (2.8)-(2.9) are subject to the no-slip and no-penetration
conditions at the pipe wall, U = V = 0 at r = R, and to the symmetry conditions at the
axis, ∂U/∂r = V = 0 at r = 0. As p′ at the wall is unknown, we eliminate the pressure
from (2.3)-(2.4) (Kim et al. 1987) to obtain the perturbation-flow equations,

V̂ ur + V̂r
∂ur

∂r
+ V̂rr

∂2ur

∂r2
+ V̂rrr

∂3ur

∂r3
+ V̂rrrr

∂4ur

∂r4
+ V̂x

∂ur

∂x
+ V̂xr

∂2ur

∂x∂r
+ V̂xrr

∂3ur

∂x∂r2
+

Ûux + Ûr
∂ux

∂r
+ Ûrr

∂2ux

∂r2
+ Ûx

∂ux

∂x
+ Ûxr

∂2ux

∂x∂r
+ Ûxrr

∂3ux

∂x∂r2
= 0,

(2.11)

(
−i+

m2

Fr2
+
∂U

∂x

)
ux +

(
V − 1

Fr

)
∂ux

∂r
+ U

∂ux

∂x
− 1

F
∂2ux

∂r2
+
∂U

∂r
ur = 0, (2.12)

The coefficients of (2.11) are

V̂ =

(
1

m2
− 1

) (
i − ∂V

∂r
+

1 −m2

Fr2

)
+

2r

m2

∂2U

∂r∂x
+

r2

m2

∂3U

∂r2∂x
(2.13)

V̂r =
3ir

m2
− 3r

m2

∂V

∂r
− 1

Frm2
− 2

Fr + V − 4V

m2
+

r2

m2

∂2U

∂r∂x
(2.14)

V̂rr =
1

m2

(
ir2 − 5rV − r2 ∂V

∂r
− 2m2

F +
5

F

)
(2.15)

V̂rrr =
1

m2

(
6r

F − r2V

)
(2.16)

V̂rrrr =
r2

Fm2
(2.17)

V̂x = U − U

m2
+

r

m2

∂U

∂r
+

r2

m2

∂2U

∂r2
(2.18)
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V̂xr = −3rU

m2
(2.19)

V̂xrr = −r2U

m2
(2.20)

Û =
∂V

∂x
+

2r

m2

∂2U

∂x2 +
r2

m2

∂3U

∂x2∂r
(2.21)

Ûx = − 2

Fr +
6r

m2

∂U

∂x
+

2r2

m2

∂2U

∂x∂r
(2.22)

Ûr =
r

m2

∂V

∂x
(2.23)

Ûrr =
r2

m2

∂V

∂x
(2.24)

Ûxr =
2

m2

(
1

F − 2rV − r2 ∂V

∂r

)
(2.25)

Ûxrr =
2r

m2F . (2.26)

The boxed terms in (2.13)-(2.15) pertain to the unsteadiness and are asymptotically
smaller than the other terms in the low-frequency limit F ≪ 1. The procedure to obtain
(2.11)-(2.12) is given in the Supplementary Material S2. Equations (2.11) and (2.12) are

also satisfied by {u(0)
x , u

(0)
r }. At the start of the analysis, equation (2.12) is the radial

vorticity equation, but it reduces to the x-momentum equation because the leading-order
contribution to the radial vorticity is given by ux due to kx ≪ 1. Equations (2.11) and
(2.12) are subject to

ux = ur =
∂ur

∂r
= 0 (2.27)

at r = R because of the no-slip condition at the pipe wall and the continuity equation
(S2.5). The boundary conditions at r = 0 are

m = 1 : ux = 0, u′

r = 0, u′

θ = 0, (2.28)

m = 2 : ux = 0, ur = 0, uθ = 0, (2.29)

m > 2 : ux = 0, ur = 0, u′

r = 0, (2.30)

where the prime here indicates the derivative with respect to r. For m = 1, (2.11)-(2.12)
are solved together with the continuity equation (S2.5) because uθ appears in (2.28). For
m = 2, this complication is avoided by using u′′

r = 0 instead of the last condition in
(2.29). The behaviour of the perturbation flow near the pipe axis and the derivation of
the boundary conditions is further discussed in the Supplementary Material S3. The same

boundary conditions are found for u
(0)
x , u

(0)
r , u

(0)
θ . The azimuthal velocity component uθ

and the pressure p are computed a posteriori from the continuity equation (S2.5) and
the azimuthal momentum equation (S2.8).

The base-flow equations (2.8)-(2.9) and the perturbation equations (2.11)-(2.12) are
parabolic and thus the specification of the appropriate initial conditions is of crucial
importance. We have devoted great attention to the formulation of physically meaningful
initial conditions for both the base flow and the perturbation flow. The initial base-flow
velocity profile has usually been assumed uniform (Hornbeck 1964). We instead take
into account the interaction between the oncoming flow and the pipe wall by deriving
an asymptotic solution composed of the Blasius flow near the walls (inner solution) and
the inviscid flow in the pipe core, distorted by the developing boundary layers (outer
solution). The Supplementary Material S4 discusses the conditions under which the
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curvature effects can be neglected near the wall. The small-x base-flow asymptotic initial
condition used to solve the base-flow equations (2.8)-(2.9) is described in §3.1.

Perturbation inflow conditions for open boundary-layer computations are often spec-
ified as the continuous spectrum of the Orr-Sommerfeld equations (Jacobs & Durbin
2001; Brandt et al. 2004) or by selecting optimal perturbations, as those obtained for
the flat-plate case by Andersson et al. (1999) and Luchini (2000). As inflow conditions,
Buffat et al. (2014) imposed optimal disturbances within one of the boundary layers near
the entrance of a channel, while perturbations were absent in the inviscid core.

We prescribe initial conditions that are superposed on the inviscid core flow and match
the oncoming vortical disturbances at x = 0, given in (2.1). Like the base flow, these initial
conditions are expressed as asymptotic composite solutions of a viscous inner solution
within the boundary layer and an outer solution where the base flow is inviscid in the
pipe core because we are interested in their entrainment of vortical disturbances that
occupy the entire cross-plane near the pipe mouth. The initial condition is not imposed
at x = 0 because the radial base-flow velocity is singular there and because the flow field
is governed by the full Navier-Stokes equations in the immediate surroundings of the
inlet. Therefore, the initial conditions are imposed at a location 0 < x0 ≪ 1.

Section 3.2 presents results for the development of the perturbation flow at small-x
locations where the base-flow pressure gradient is negligible. These flow fields are small-x
asymptotic solutions of the flow in region V and can therefore be used as initial conditions
to solve equations (2.11)-(2.12) along the pipe, where the base-flow streamwise pressure
gradient is fully influential.

2.3. Critical streamwise location for linear stability

As we are interested in the spatial transient growth of vortical disturbances in the
entrance region, a first step is to report, as a function of the Reynolds number, the
streamwise locations where TS waves appear. Figure 2 shows the neutral stability
locations xc/R as a function of the Reynolds number ReR = RReλ = U∗

∞R
∗/ν∗

computed by Gupta & Garg (1981) (blue line) and da Silva & Moss (1994) (red circles).
The entrance flow is linearly stable for ReR < 11000 and the unstable region has a finite
extent along the x direction as the flow is always linearly stable when it reaches the
fully developed condition. We also show the experimental neutral points by Sarpkaya
(1975), measured by introducing disturbances at fixed locations on the pipe wall by
electromagnetic excitation. da Silva & Moss (1994) claimed that the disagreement may
be due to the finite amplitude of Sarpkaya (1975)’s perturbations, which cannot be
captured by the linear stability theory. We focus on Reynolds numbers in the range
1000 < ReR < 10000 (marked by the light grey area in figure 2), i.e. small enough for
TS waves not to appear and large enough for algebraically growing perturbations or
transition to turbulence to have been observed in experimental studies.

3. Initial flow development

In this section we discuss the theoretical and numerical results of the base and pertur-
bation flows near the pipe entrance, where the effect of the pipe confinement is important,
but the influence of the base-flow pressure gradient is negligible at leading order. This
mathematical analysis is relevant because, through the asymptotic formulation, the
physical flow features near the entrance are revealed and the flow evolution farther
downstream inside the pipe can be computed. As explained at the end of §2, the results
obtained in this section will indeed specify the appropriate initial conditions for the
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Figure 2: The blue line and red circles confine the unstable area according to classical
stability theory, i.e. where TS waves start to grow, computed by Gupta & Garg (1981)
and da Silva & Moss (1994), respectively. The black (axisymmetric disturbances) and
white (non-axisymmetric disturbances) circles represent the experimental neutral points
measured by Sarpkaya (1975). The solid black line denotes the end location of the
entry pipe-flow region, according to our definition based on the second derivative of
the base velocity at the centreline, discussed in §4.1. The grey area illustrates the range
of Reynolds numbers for the flows studied.

computation of the base and the perturbation flows in region V, where the dynamics is
fully influenced by the streamwise pressure gradient.

3.1. Initial base flow in regions I and II

The initial base-flow solution is constructed according to the method of matched
asymptotic expansions. The outer solution is the inviscid base flow in the core of the
pipe, while the inner solution is the viscous flow attached to the pipe wall. The composite
solution reads

U = Uout + Uin − Ucom, (3.1)

where the subscripts in, out, and com stand for inner, outer and common, respectively,
and U is defined in (2.5). The common part is defined as

Ucom = lim
r→R

Uout = lim
η→∞

±Uin, (3.2)

where

η = (R− r)

(
Reλ

2x

)1/2

= O(1) (3.3)

is the scaled radial coordinate of the inner solution and in (3.2) the plus sign applies
to the streamwise velocity and the minus sign applies to the radial velocity because the
coordinates r and η point in opposite directions.

For the flow in the entrance region of a channel, the inner solution near the inlet
corresponds to the Blasius flow as the Reynolds number is large (Wilson 1970; Rubin
et al. 1977; Duck 2005; Buffat et al. 2014). We also benefit from the Blasius solution in the
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pipe-flow case as we have proved in the Supplementary Material S4 that the curvature
effects are negligible near the wall. The inner flow therefore satisfies the self-similar
Blasius equation

F ′′′ + FF ′′ = 0, (3.4)

where the prime indicates differentiation with respect to η. The boundary conditions for
equation (3.4) are F (0) = 0, F ′(0) = 0 and F ′ → 1 as η → ∞. The inner base flow reads

U in = F ′, V in =
ηF ′ − F

(2xReλ)
1/2

. (3.5)

As Reλ ≫ 1, the base-flow viscous effects are negligible in the pipe core near the entrance,
which is consistent with the use of the boundary-layer approximation of the Navier-Stokes
equations. In the pipe core, the axisymmetric outer flow is described by the inviscid Stokes
stream function ψ,

ψ(x, r) =
r2

2
+Re

−1/2
λ ψ2(x, r), (3.6)

i.e. Uout = r−1∂ψ/∂r and V out = −r−1∂ψ/∂x. The leading-order term r2/2 in (3.6)
represents the uniform streamwise flow. The second-order stream function ψ2, which
defines the flow due to the pipe confinement and to the Blasius boundary layer developing
on the pipe wall, satisfies

∂2ψ2

∂x2
+
∂2ψ2

∂r2
− 1

r

∂ψ2

∂r
= 0, (3.7)

subject to

ψ2 = βR
√

2x at r = R, x > 0 (3.8a)

ψ2 = 0 at r = R, x < 0 (3.8b)

ψ2 = 0 at r = 0, (3.8c)

where β = limη→∞ (η − F ) = 1.217 . . .. The inviscid base flow in the pipe core is irro-
tational and therefore the governing equation (3.7) is obtained by setting the azimuthal
vorticity component to zero. Equation (3.7) is not the Laplace equation because of the
negative sign of the last term (Panton 2013). The boundary condition (3.8a) is obtained
by asymptotic matching, i.e. the radial component of the outer velocity must match the
outer limit of the base-flow wall-normal velocity of the Blasius boundary layer,

V com = lim
r→R

V out =
−1

RRe
1/2
λ

∂ψ2

∂x

∣∣∣∣
r=R

= − lim
η→∞

V in = lim
η→∞

F − ηF ′

(2xReλ)1/2
=

−β
(2xReλ)

1/2
,

(3.9)
where the minus sign in front of the η-limit is due to the inner and outer velocity
components pointing towards opposite directions. It follows that

ψ2(x) = βR

∫
(2x)−1/2dx = βR

√
2x, (3.10)

at r = R for x > 0. The boundary condition (3.8b) is obtained as follows. The base flow
is uniform and streamwise only as x → −∞ and, as it is not influenced by the presence
of the pipe, no wall-normal base-flow velocity occurs as x → −∞. Also, the horizontal
line r = R for x < 0 is a streamline with stagnation point at x = 0−, r = R and no
wall-normal base-flow velocity occurs along it because the base flow approaches the pipe
wall parallel to it. Therefore, V out = 0 at r = R for x < 0, i.e. ∂ψ/∂x = ∂ψ2/∂x = 0. As
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we choose ψ2 = 0 as x → −∞, by integrating ∂ψ2/∂x = 0 from x → −∞ for r = R, it
follows that ψ2 = 0 along r = R for x < 0. The boundary condition (3.8c) follows from
V out = 0 along the pipe axis at any x due to the flow axial symmetry.

The solution to (3.7) together with the boundary conditions (3.8) is found by use of
the complex Fourier transform along x. The solution reads

ψ2(x, r) = −rβi1/2

2
√

2π

∫ +∞+iγ

−∞+iγ

I1(ζr)eiζx

I1(ζR)ζ3/2
dζ, (3.11)

where I1 is the modified Bessel function of the first kind and γ ∈ R < 0. The
Supplementary Material S5 presents the derivation of (3.11) (Dettman 1965). The
composite solution of the streamwise velocity U is

U(x, r) = U =F ′(η(x, r)) − βi1/2

2
√

2πRe
1/2
λ

∫ +∞+iγ

−∞+iγ

eiζx

ζ1/2I1(ζR)

[
I1(ζr)

ζr
+ I ′

1(ζr)

]
dζ+

βi1/2

2
√

2πRe
1/2
λ

∫ +∞+iγ

−∞+iγ

eiζx

ζ1/2

[
I ′

1(ζR)

I1(ζR)
+

1

ζR

]
dζ.

(3.12)

The composite solution of the radial velocity V , defined in (2.5), is

V (x, r) = k−1
x V =

ηF ′(η(x, r)) − F (η(x, r))

kx (2xReλ)
1/2

+

βi3/2

2
√

2πkxRe
1/2
λ

∫ +∞+iγ

−∞+iγ

I1(ζr)eiζx

I1(ζR)ζ1/2
dζ +

β

kx (2xReλ)
1/2

.

(3.13)

Figure 3 shows the inner and outer solutions, their common parts, and the composite
solutions for the base flow for Reλ = 500 and 2000 at x = 0.04. The composite base-
flow streamwise velocity, depicted in figure 3(a,b), agrees well with the inner Blasius
solution across the pipe radius as the acceleration in the pipe core is still small at this
x location. The increase of inviscid streamwise velocity balances the decrease within the
viscous region to conserve the mass flow rate. The displacement effect of the Blasius
boundary layers, given by (3.9), causes a small streamwise pressure gradient related
to the dependence of the displacement stream function ψ2 on the x coordinate. This
small pressure gradient is negligible at leading order in the boundary layer. The inviscid
streamwise velocity is larger than unity near the wall because it accelerates along x
to conserve the mass flow rate as the radial velocity decreases from its boundary-layer
blowing value as the pipe axis is approached. This acceleration gives rise to the local
near-wall peak in the U profile, also reported in Durst et al. (2005) for entry-pipe flow
and in Sparrow et al. (1964), Panton (2013) and Alizard et al. (2018) for entry-channel
flows. The peak occurs because the inviscid streamwise velocity is larger than the viscous
streamwise velocity deficit of the boundary layer.

The base-flow radial velocity, shown in figure 3(c,d), agrees well with the viscous
solution only in the proximity of the wall, while the two fail to overlap in the inviscid core,
where the composite profile coincides with the outer solution. The composite solution
shows a distinct near-wall peak that moves closer to the wall and decreases in intensity
as the Reynolds number increases. The velocity is not exactly zero at the wall. This small

slip velocity decreases as O
(
Re

−1/2
λ

)
and induces a viscous layer at the next order, which

is not computed.
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Figure 3: Composite solutions for the base-flow streamwise velocity U (top) and radial
velocity V (bottom) at x = 0.04 for R = 1 and two Reynolds numbers.

3.2. Initial perturbation flow

The precise flow specification at the pipe entrance is relevant as our interest lies in the
mathematical description of the inlet profiles to start the computations and to understand
how the vortical disturbances are entrained in the pipe mouth and how they evolve in the
entrance region. The initial perturbation flow, fully influenced by the confinement of the
pipe and only mildly by the base-flow streamwise pressure, is studied in this section via
matched asymptotic expansions. Asymptotic composite solutions are derived for regions
I and II in §3.2.1. The flow in regions III and IV is discussed in §3.2.2.

3.2.1. Perturbation flow in regions I and II

In region I the base flow is uniform and inviscid, the perturbation flow is inviscid,
and x ≪ 1 with F = O(1). The flow field can thus be adequately described by rapid
distortion theory (Goldstein 1978). The velocity is expressed as

uout =̂i + ε
[
u(1)(x, r) + kxu

(1)
1 (x, r)

]
ei(mθ−kxt) + c.c.

=̂i + ε (u∞ + ∇φ+ kx∇φ1) + c.c..
(3.14)

The velocity u(1) is due to the interaction of the free stream gust (2.1) with the pipe

wall, while u
(1)
1 is generated by the wall-normal boundary-layer perturbation velocity via
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∇φ1. The perturbation potential φ satisfies the Laplace equation

1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂θ2
+
∂2φ

∂x2
= 0, (3.15)

subject to

φ finite at r = 0, (3.16a)

∂φ

∂r
+ u∞r = 0 at r = R, x > 0, (3.16b)

where u∞r(r = R) =
[
2û∞

r,mnJm(ξmn/2)/ξmn

]
exp [ikx(x− t) + imθ] is the gust radial

velocity found from (2.1) as the pipe wall is approached. Expression (3.16b) is the no-
penetration boundary condition at the wall for the radial velocity. To solve (3.15) in
the infinite strip −∞<x<∞, 06r6R, one needs a boundary condition at r = R for
x < 0, which is unknown. However, the interest here is in the solution at x ≫ 1,
which can be found by separation of variables. In this limit, it is found that φ =
φ̂(r) exp [ikx(x− t) + imθ], where φ̂(r) satisfies the modified Bessel equation

r2 d2φ̂

dr2
+ r

dφ̂

dr
−

(
m2 + k2

xr
2
)
φ̂ = 0. (3.17)

In the limit kx ≪ 1, the solution is

φ = −
2Rû∞

r,mn

mξmn
Jm

(
ξmn

2

) ( r
R

)m

e[ikx(x−t)+imθ], (3.18)

which is not singular when m = 0 because û∞
r,0n = 0. Details of the derivation to obtain

(3.18) are found in the Supplementary Material S6. The velocity components of u(1) ={
u

(1)
x , u

(1)
r , u

(1)
θ

}
in (3.14) are

u(1)
x (x, r) = u∞x +

∂φ

∂x
= −

2ikxRû
∞
r,mn

mξmn
Jm

(
ξmn

2

) ( r
R

)m

eix + û∞

x,mnJm

(
ξmnr

2R

)
eix,

(3.19)

u(1)
r (x, r) = u∞r +

∂φ

∂r
= −

2eixû∞
r,mn

ξmn

[
Jm

(
ξmn

2

) ( r
R

)m−1

− R

r
Jm

(
ξmnr

2R

)]
, (3.20)

u
(1)
θ (x, r) = u∞θ +

1

r

∂φ

∂θ
= −

2iû∞
r,mn

ξmn
Jm

(
ξmn

2

) ( r
R

)m−1

eix −
iû∞

θ,mn

ξmn
J ′

m

(
ξmnr

2R

)
eix,

(3.21)

Using (2.6) and (2.7), the leading-order streamwise and radial velocities in region I are

ux,out =0, (3.22a)

ur,out = − iu
(1)
r

m
=

2ieixû∞
r,mn

mξmn

[
Jm

(
ξmn

2

) ( r
R

)m−1

− R

r
Jm

(
ξmnr

2R

)]
. (3.22b)

The leading-order azimuthal velocity uθ,out = u
(1)
θ is given by (3.21) because of (2.7b). As

the pipe wall is approached, uθ,out drives the inner flow in the viscous region II, where the
azimuthal viscous diffusion effects do not play a leading role. As proved by the scaling
in the Supplementary Material S4, the flow in region II is described by the unsteady
boundary-layer equations in Cartesian coordinates because the curvature effects are



16 P. Ricco, C. Alvarenga

negligible near the wall. The inner solution for the radial velocity is uθ,in = uθ,comF
′(η),

found by use of (4.13) in Leib et al. (1999), where the common part uθ,com is

uθ,com(x) = uθ,out(r = R) = − ieix

ξmn

[
2û∞

r,mnJm

(
ξmn

2

)
+ û∞

θ,mnJ
′

m

(
ξmn

2

)]
. (3.23)

The composite azimuthal velocity uθ is

uθ = −
2iû∞

r,mn

ξmn
Jm

(
ξmn

2

) ( r
R

)m−1

eix −
iû∞

θ,mn

ξmn
J ′

m

(
ξmnr

2R

)
eix + uθ,com (F ′ − 1) .

(3.24)

The solution (3.24) is not needed for the numerical computation in region V because uθ is
absent from equations (2.11) and (2.12). However, the computation of uθ,com is essential
because it determines the amplitude of the inner streamwise and radial velocities. The
streamwise velocity component in region II is ux,in = uθ,comxηF

′′/(2R). The xηF ′′/2
dependence is found using (4.13) in Leib et al. (1999), and the amplitude uθ,com is
obtained by converting the continuity equation from cylindrical to Cartesian coordinates
and by taking the limit r → R. As ux,out = 0, the composite streamwise velocity ux is

ux = uθ,com
xηF ′′

2R
. (3.25)

The asymptotic approach is clearly an invaluable tool as the amplitude of the streamwise
perturbation velocity is uniquely linked to the oncoming free stream flow characteristics
through uθ,com, given in (3.23). Had the perturbation been prescribed within the bound-
ary layer without relating to the oncoming fluctuations, the streak amplitude should have
been assigned arbitrarily.

The composite radial velocity ur is found by first summing the outer solution (3.22)
and the inner solution obtained by multiplying the region-II wall-normal velocity (4.13)
in Leib et al. (1999) by the amplitude uθ,com and by (2x)1/2 on using (4.1) in Leib
et al. (1999). The common part, i.e. the large-η limit of the region-II solution, is then
subtracted. The common part also emerges from the second-order term of the Taylor
expansion of the outer solution (3.22) as r → R, while the leading-order term vanishes
because of the no-penetration condition (3.16b). The composite radial velocity ur is

ur =
2ieixû∞

r,mn

mξmn

[
Jm

(
ξmn

2

) ( r
R

)m−1

− R

r
Jm

(
ξmnr

2R

)]

︸ ︷︷ ︸
outer solution

−

uθ,com

4R

(
2x

F

)1/2 (
η2F ′′ − 3ηF ′ − F

)

︸ ︷︷ ︸
inner solution

− uθ,com

R

(
2x

F

)1/2

η

︸ ︷︷ ︸
common part

.

(3.26)

The initial conditions for
{
u

(0)
x , u

(0)
r , u

(0)
θ

}
, defined in (2.7), are also found through a

composite solution. The solution for the streamwise velocity u
(0)
x is found by combining

the outer solution (3.19) and the inner solution given by (4.13) in Leib et al. (1999), valid

for F = O(1) and x ≪ 1. The composite streamwise velocity u
(0)
x is

u(0)
x = û∞

x,mnJm

(
ξmnr

2R

)
eix + û∞

x,mnJm

(
ξmn

2

)
eix

[
(ηF ′)′ + F ′

2
− 1

]
. (3.27)

The first term in (3.19) can be neglected because it is O(kx). The inner solution for
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the radial velocity u
(0)
r is found by (4.13) in Leib et al. (1999), which is also valid for

F = O(1) and x ≪ 1. It reads

u
(0)
r,in = −

û∞
x,mnJm (ξmn/2)

2(2xF)1/2
[η(ηF ′)′ − F ] . (3.28)

Physically this perturbation velocity represents a radial blowing/suction effect, an un-
steady analogue to the one experienced by the base-flow Blasius boundary layer. In the
Blasius case, the base wall-normal velocity is generated by the free stream uniform U∗

∞,

while u
(0)
r,out is driven by u

(0)
x,out. The transpiration velocity induces the inviscid velocity

field u
(1)
1 in (3.14) and the associated radial pressure gradient. The velocity potential φ1

satisfies

∇2φ1 = 0, (3.29)

subject to

φ1 finite at r = 0, (3.30a)

∂φ1

∂r
= lim

η→∞
u

(0)
r,in = −β

û∞
x,mnJm (ξmn/2)

2(2xF)1/2
eimθ−ikxt at r = R, x > 0, (3.30b)

Similar to the problem of solving (3.15), (3.29) cannot be solved in the infinite strip
−∞<x<∞, 06r6R because the boundary condition at r = R for x < 0 is unknown. In
our region of interest, x≫1, the second derivative of φ1 with respect to x is asymptotically
smaller than the other derivatives as long as kx ≪ x ≪ 1 because of the (2x)−1/2

behaviour of the boundary conditions (3.30b). By separating the variables and expressing

φ1 = φ̂1(r) exp (imθ − ikxt) /(2x)1/2, equation (3.29) simplifies to the Euler differential
equation. The solution is

φ̂1 = −β
û∞

x,mnJm(ξmn/2)rm

2mRm−1F1/2
. (3.31)

The composite radial velocity u
(0)
r reads

u(0)
r = −

û∞
x,mnJm(ξmn/2)

2(2xF)1/2

{
η(ηF ′)′ − F + β

[( r
R

)m−1

− 1

]}
. (3.32)

It is verified that kxu
(0)
r is asymptotically smaller than imur and u

(0)
x where kx/Reλ≪

x≪1, as required by the expansion (2.7). Differently from the leading-order components
where uθ,out is needed to determine the amplitude of {ux,in, ur,in}, it is not necessary

to compute u
(0)
θ,out as we have already found {u(0)

x , u
(0)
r } to start the integration of the

boundary-region equations (2.11) and (2.11).

Figures 4, 5, 6 and 7 show velocity profiles for different m and n values. The flow
parameters have been chosen as representative of the most significant cases, i.e. azimuthal
wavelengths at r = R and characteristic radial length scale comparable with the radius,
Reynolds number with a middle value in the range of interest given in figure 2, and
sufficiently small x for the asymptotic solutions to be valid.

In figures 4 and 5, increasing n causes the velocity profiles that are directly driven

by the free stream forcing (2.1), i.e. ur, uθ and u
(0)
x , to have a more intense modulation

along the radial coordinate because the Bessel-function zeros ξmn, which appear in the
argument of the Bessel functions in (2.1), increase in amplitude. The zeros ξmn can thus
be interpreted as analogous to wall-normal wavenumbers in the Cartesian geometry.
Figures 4(c,d) and 6(c,d) show how the inner profiles (region II) and the outer profiles
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Figure 4: Real parts of composite velocities ux, ur, uθ in regions I and II for different n
values and m = 3, x = 0.018, Reλ = 4712, kx = 0.37, R = 0.812. In this figure and in
figure 6, panel (d) shows a zoomed view of the asymptotic matching of the inner solution
(dashed grey line) and the outer solution (dashed red line) of ℜ(uθ).
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Figure 5: Real parts of composite velocities u
(0)
x , u

(0)
r in regions I and II for different n

values and m = 3, x = 0.018, Reλ = 4712, kx = 0.37, R = 0.812.

(region I) of the azimuthal velocities combine to create the composite profiles valid at
any radial location. Figure 8 shows contour plots of the composite velocity components
and the pressure at a fixed time instant in a cross-plane near the pipe mouth.

The composite solutions (3.25)-(3.27) and (3.32) for ux, ur, u
(0)
x , and u

(0)
r in regions I

and II are used as initial conditions for the computation in regions V and VI.
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Figure 6: Real parts of composite velocities ux, ur, uθ in regions I and II for different m
values and n = 2, x = 0.018, Reλ = 4712, kx = 0.37, R = 0.812.
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3.2.2. Perturbation flow in regions III and IV

The outer expressions (3.22) do not take into account the viscous decay as they are
only valid in the inviscid region I, i.e. for x ≪ 1. Viscous effects become important as the
outer flow evolves downstream through region IV. The flow in regions III and IV can be
found by a composite solution. The expression for the outer velocity field in region IV
can be written as

u =

{
1

r

∂ψ

∂r
,−1

r

∂ψ

∂x
, 0

}
+ εuoute

i(mθ−kxt) + c.c., (3.33)
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Figure 8: Contours of the instantaneous velocity components 2ux,0, 2ur,0, 2uθ,0 and
pressure 2p0 at t = 0, x = 0.018, for Reλ = 2356, kx = 0.185, R = 0.6366 (n = 3,m = 4).

where the stream function ψ(x, r) is given in (3.6) and (3.11). As depicted in figure 1,
the base-flow pressure gradient only has a second-order effect through the x-dependence
of ψ(x, r). In the Cartesian geometry the outer velocity uout can be obtained analytically
by solving the parabolic region-IV momentum equation (5.9) on page 181 in Leib et al.

(1999). In the cylindrical geometry, the radial and the azimuthal momentum equations
are instead coupled and the system has to be solved numerically. The inner solution must
also found numerically by solving the boundary-region equations (5.2)-(5.5) on page 180
of Leib et al. (1999), complemented by mixed-type boundary conditions obtained by
asymptotically matching with the outer solution (3.33). These numerical calculations are
not pursued herein because our region-V solution includes the solutions of regions III and
IV and covers the whole streamwise flow evolution as the base-flow pressure gradient is
accounted for at leading order.
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4. Downstream flow development

In §3 the base and perturbation flows are influenced by the confinement of the pipe,
but the streamwise location is sufficiently upstream for the base-flow streamwise pressure
gradient not to play a leading-order role. In the present section, we consider region V, i.e.
streamwise locations where the base-flow pressure gradient instead plays a leading-order
role on the base flow and therefore on the perturbation flow. In region VI, the pressure
gradient adjusts downstream to a constant value as the base flow develops to the fully
developed Poiseuille flow. The base-flow profiles are obtained by solving (2.8)-(2.9) and
the perturbation profiles are found by solving (2.11)-(2.12).

4.1. Base flow

The base-flow streamwise and wall-normal velocity profiles across the pipe are shown
in figure 9 at different streamwise positions. The small-x asymptotic profiles (3.1) are also
shown (dashed lines). The flow field approaches the fully developed regime as it develops
downstream: the base-flow streamwise velocity evolves to the parabolic Poiseuille profile,
while the wall-normal velocity decreases to zero.

The base-flow streamwise velocity is shown in figure 10 at various r/R locations as
a function of the streamwise position. There is excellent agreement with the numerical
data by Hornbeck (1964) (red circles) and very good agreement with the experimental
data by Reshotko (1958) (white circles), except at the two locations closest to the pipe
wall, where the uncertainty of the measurements may have been influential.

The downstream adjustment of the pressure gradient can be monitored through the
correction pressure function

K
(

x

R2Reλ

)
=

|∆P ∗|
ρ∗U∗2

∞

− 8ν∗x∗

R∗2U∗
∞

= |∆P | − 8x

R2Reλ
, (4.1)

which measures the deviation of the base-flow pressure, defined in (2.5), from the fully
developed Poiseuille value. Our numerical data, shown in figure 11, agree well with
the numerical data based on the series solution by Sparrow et al. (1964) (red circles)
and satisfactorily with the experimental data by Mohanty & Asthana (1978). Our fully
developed computed value, K∞ = limx→∞ K(x) = 0.63, matches the one by Sparrow
et al. (1964) and is slightly lower than the experimental values by Shapiro et al. (1954)
(square) and Knibbs (reported by Sparrow et al. (1964), triangle).

We can define boundary-layer thicknesses to quantify the diffusion of the viscous effects
as the flow develops downstream. They are defined as

δk = ∆k

∫ R

0

[
1 − U(x, r)

U cen(x)

]
dr, (4.2)

where k = R identifies the boundary thickness that matches the pipe radius in the
fully developed downstream limit (∆R = 3 is obtained by substituting δR = R,
limx→∞ U(x, r) = 2[1 − (r/R)2], and limx→∞ U cen = 2 into (4.2)) and k = LWG,PIPE
denotes the boundary thickness that matches the one employed by Leib et al. (1999)

as x → 0, i.e. δLWG = (2x/Reλ)
1/2

(∆LWG,PIPE = β−1 = 0.822 is obtained by substituting
(3.12) into (4.2)). Figure 12 (left) shows the boundary-layer thicknesses as functions of
the streamwise coordinate. The thickness δLWG,PIPE in our pipe-flow flow case is thinner
than the corresponding Blasius-flow δLWG because of the accelerating core caused by the
favourable pressure gradient.

We also quantify the entry length, i.e. the distance from the pipe mouth where
region V ends and the fully developed region VI starts. The entry length is typically
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Figure 9: Streamwise (top) and wall-normal (bottom) base-flow velocity profiles. The
solid lines denote the solutions at x/(R2Reλ) = 0.0012, 0.0036, 0.01, 0.03, 0.06, 0.12, 0.6
obtained by numerically solving the boundary-layer equations (2.8)-(2.9). The dashed
lines show the composite solution of the streamwise velocity (3.12) (top) and of the
wall-normal velocity (3.13) (bottom) at x/(R2Reλ) = 0.0004.

defined by the streamwise location where the axis base velocity U cen reaches 99% of
its fully developed value. We can first use equation (23) in Durst et al. (2005), i.e.

xe,u = 2R
[
0.4642 + (2Ce,uRReλ)1.6

]1/1.6
, where Ce,u = 0.0567. As we operate under

the assumption Reλ ≫ 1, Durst et al. (2005)’s equation reduces to xe,u = 4Ce,uR
2Reλ,

which is consistent with the scaling adopted in figure 10. We compute Ce,u = 0.057,
which is within the uncertainty range provided by Durst et al. (2005). We also quantify
the entrance region as xe,pres = 4Ce,presR

2Reλ, i.e. the streamwise distance from the
pipe mouth where K = 0.99K∞, that is, where the pressure gradient has reached its fully
developed constant value. We compute Ce,pres = 0.055.

Crabtree, Küchemann & Sowerby on page 440 of Rosenhead (1963) remark that in
a pipe entrance flow:‘...the whole of the fluid across a section becomes influenced by
viscosity before the parabolic profile is reached.’ We can examine this statement, although
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Figure 10: Base-flow streamwise velocity U at r/R = 0, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9 (from top
to bottom) as a function of the streamwise coordinate, computed by numerically solving
the boundary-layer equations (2.8)-(2.9) (solid lines). The symbols are experimental data
by Reshotko (1958) (empty circles) and boundary-layer numerical data by Hornbeck
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Figure 11: Correction pressure function K, defined in (4.1), as a function of the streamwise
coordinate, computed by numerically solving the boundary-layer equations (2.8)-(2.9)
(solid line). The symbols are numerical data by Sparrow et al. (1964) (red circles) and
experimental data by Mohanty & Asthana (1978) (white circles), Shapiro et al. (1954)
(square) and Knibbs (reported by Sparrow et al. (1964), triangle).

they do not specify how the diffusion of viscous effects is defined mathematically. The
development of the flow to the Poiseuille parabolic profile is already quantified by the
entry length xe,u, based on the downstream evolution of U cen, but we also further monitor
it by an adjustment length xe,pois = 4Ce,poisR

2Reλ, defined as the streamwise location
where the average difference between the streamwise velocity and the Poiseuille velocity,

i.e. E (x) = R−1
∫ R

0
|U(x, r) − 2[1 − (r/R)2]|dr (shown by the dashed line in figure 12,

right), has decayed to 1% of limx→0 E = 2/3. We find Ce,pois = 0.057, i.e. the same as



24 P. Ricco, C. Alvarenga

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

x/(R2Reλ)

δR/R

δLWG/R

δLWG,PIPE/R

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−4

−3

−2

−1

0

x/(R2Reλ)

∂2U
∂r2

|r=0

−6E

Figure 12: Left: Boundary-layer thicknesses δR, δLWG and δLWG,PIPE as functions of the
streamwise coordinate. Right: Second derivative of the streamwise velocity at the pipe
axis and average error E , defined in the text and measuring the deviation of the U profile
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Criterion dP /dx E Up(r = 0) δR
∂2U

∂r2

∣∣∣
r=0

Parameter Ce,pres Ce,pois Ce,u Ce,δ Ce,u2

0.055 0.057 0.057 0.059 0.085

Entry length xe,pres/(R2Reλ) xe,pois/(R2Reλ) xe,u/(R2Reλ) xe,δ/(R2Reλ) xe,u2/(R2Reλ)

0.219 0.228 0.226 0.237 0.341

Table 1: Entrance lengths according to the definitions in the text.

Ce,u. The diffusion of viscous effects can be quantified by two adjustment lengths. We first
obtain xe,u2 = 4Ce,u2R

2Reλ, i.e. the downstream distance from the pipe mouth where
the second derivative of the streamwise velocity with respect to the radial coordinate at
the pipe axis, ∂2U/∂r2|r=0 (shown by the solid line in figure 12, right), is 99% of its fully
developed value. We choose this quantity because it represents radial viscous effects and
the axis is the last radial location where the viscous diffusion from the wall is felt. We
compute Ce,u2 = 0.085. We then find xe,δ = 4Ce,δR

2Reλ, i.e. the downstream distance
from the entrance where δR=0.99R, and obtain Ce,δ = 0.059. Table 1 summarizes the
computed entrance lengths.

We therefore find that Ce,u2, Ce,δ>Ce,u, Ce,pois, i.e. the flow becomes viscous for the
whole wall-normal extent of the pipe slightly downstream from where the flow can be
considered in good agreement with the Poiseuille profile. Therefore, there does not exist
a distinct streamwise region along which viscous diffusion affects the whole wall-normal
extent of the pipe and the velocity profile has not yet developed to the parabolic profile,
which appears to be in contradiction with the statement by Crabtree, Küchemann &
Sowerby. The adjustment length xe,u2, based on the second wall-normal derivative of the
streamwise velocity at the pipe axis, is the most conservative amongst the four lengths,
as also visually evident in figure 12 (right).
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Fluid U∗

∞
ν∗ Re∗

∞
R∗ λ∗ λ∗

x Reλ kx ReR λxR

[m s−1] [m2s−1] [m−1] [m] [m] [m]
×106 ×10−3 ×103 ×103

Water 0.1 1 100 15 23.6 0.8 2356 0.185 1500 53.3

Air 1.3 13 100 15 23.6 0.8 2356 0.185 1500 53.3

Table 2: Parameters for water and air pipe flow experiments. The unit Reynolds number
is Re∗

∞ = U∗
∞/ν

∗ and m = 4.

4.2. Perturbation flow

The downstream evolution of the perturbation flow is discussed in this section. The
scaling adopted in §2, which leads to ux,0 = ux,0(x, r;Reλ, kx, n,m,R, û

∞
x , û

∞
r ), is useful

for the asymptotic analysis and it relates directly to the open-boundary-layer case of
Leib et al. (1999). However, it is does not convey an immediate physical meaning as, for
example, the scaled frequency kx appears as an independent variable and in the scaling
of x. We therefore express the solution as ux,0 = ux,0(xR, rR;ReR, λxR, n, λR, û

∞
x , û

∞
r ),

where the subscript R indicates scaling by the pipe radius R∗, i.e. λR = λ∗/R∗. In the
cylindrical geometry, varying the index n allows studying the role of radial length scale,
i.e. the larger n, the smaller the radial length scale.

In the analysis, we fix û∞
x,mn = 1, and the kinetic energy of the gust at the pipe mouth,

defined as

Egust,R =
E∗

gust

U∗2
∞R∗2

= π

∫ 1

0

(
|ug,x|2 + |ug,r|2 + |ug,θ|2

)
rRdrR, (4.3)

(where rR = r∗/R∗), is kept equal to Egust,11, the energy for m = n = 1 and û∞
r,11 = 1

(ug,x, ug,r, ug,θ are the amplitudes of the free stream gust velocity components, defined
in (2.1)). Expression (4.3) is written explicitly as

Egust,R = π

∫ 1

0

[
rR

(
û∞

x,mnJm (r)
)2

+

(
4û∞

r,mnJm (r)
)2

rRξ2
mn

+ rR

(
û∞

r,mnJ
′
m (r)

)2

m2

]
drR,

(4.4)
where r = ξmnrR/2 and û∞

θ,mn has been eliminated by using (2.2). Setting Egust = Egust,11

allows computing û∞
r,mn for m,n of choice and use of (2.2) gives û∞

θ,mn.
We first study the velocity and pressure profiles of a reference case that is representative

of realistic water and air pipe-flow experiments. Table 2 presents the flow parameters of
these cases. We then study the effect of the inflow parameters on the perturbation field.

4.2.1. Initial reference-case flow

The region-I-II asymptotic initial conditions require a smooth matching with the
numerical solutions of the boundary-region equations (2.11) and (2.12) at small xR

locations. This matching is monitored by comparison in figure 13. The asymptotic profiles
(dashed lines) are consistent with the numerical solutions (solid lines) at small xR. The
ux profiles resemble the profiles of the Klebanoff modes appearing in free stream open
boundary layers due to free stream vortical disturbances, shown in figure 3 on page 184
of Leib et al. (1999). This profile shape is expected because at short distances from the
pipe entrance the flow confinement and the base pressure gradient do not play a leading
role, a valid representation being given by the free stream boundary-layer region-II profile
(3.25). Nevertheless, the amplitude and growth rate of ux in our case are given by uθ,com
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Figure 13: Streamwise and radial velocity components for the Reynolds number and the
frequency of Table 2 and n = 3, m = 2. The solid lines indicate the numerical solutions
of the boundary-region equations (2.11) and (2.12) and the dashed lines indicate the
asymptotic composite solutions used as initial conditions of the numerical calculations:

(3.25) for ux, (3.27) for u
(0)
x , (3.26) for ur, and (3.32) for u

(0)
r .

in (3.23) and are thus influenced by the presence of the pipe wall. At these locations

the dominant part of the total streamwise disturbance velocity ux,0 is due to u
(0)
x , which

is given in (3.27) and is caused by the direct free stream forcing action of the inviscid
streamwise velocity in (3.19). The part due to ux is smaller, which means that the streaks
have not formed yet and do not dominate the boundary layers over the pipe wall.

4.2.2. Downstream evolution of the reference-case flow

The downstream evolution of the disturbance field for the reference case of Table 2 is
investigated (n = 3,m = 4), assigned as perturbations at the pipe entrance. The inflow
perturbations are streamwise-stretched vortices with comparable radial and azimuthal
length scales in cross-sectional r − θ planes and a much longer streamwise wavelength.
As discussed in §2.3, at this bulk Reynolds number, ReR = 1500, no TS waves exist, but
nevertheless an intense transient growth is detected. This growth is monitored by the
energy of the perturbation, defined as

E(xR) = π

∫ 1

0

|ux,0|2rRdrR

︸ ︷︷ ︸
Ex

+π

∫ 1

0

|ur,0|2rRdrR

︸ ︷︷ ︸
Er

+π

∫ 1

0

|uθ,0|2rRdrR

︸ ︷︷ ︸
Eθ

, (4.5)

where ux,0, ur,0, uθ,0 are defined in (2.7). Figure 14 (left) shows that, while at the entrance
the three velocity components have comparable intensity, the streamwise velocity compo-
nent is the major contributor to the perturbation dynamics as the total energy increases
from the pipe inlet, while the other two velocity components decay at comparable rate, as
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Figure 14: (a) Streamwise evolution of the perturbation energy E and of its three parts
Ex, Er, Eθ related to the velocity components. (b) Radial location of the maximum of E
and amplitude of the wall perturbation pressure pw (inset).

shown in the inset of figure 14 (left). Downstream of xR = 20, the total energy is almost
entirely due to ux,0. It reaches its peak at xR = 28 and then decays monotonically
because of viscous dissipation. Almost no perturbation energy is computed downstream
of xR = 120. The transient growth is confined to region V, upstream of the fully
developed region VI, because the entry region, estimated through the centreline base
velocity, terminates at xR = 339. The energy growth and decay is qualitatively similar
the transient results in fully developed pipe flows by Reshotko & Tumin (2001) in the
spatial case and by O’Sullivan & Breuer (1994) and Trefethen et al. (1999) in the temporal
case if the time scale is converted to the axial coordinate by use of the streamwise velocity
at the pipe axis for qualitative comparison.

As shown in figure 14 (right), the maximum of the perturbation energy near the pipe
mouth is confined near the pipe wall, within the base-flow viscous layer. As the flow
evolves downstream, the perturbation spreads towards the core of the pipe, although its
peak remains in the outer quarter radial region during the entire flow evolution (radial
location rE > 0.6). The inset of figure 14 (right) depicts the downstream evolution of the
magnitude of the pressure at the wall, i.e.

pw(xR) = |p0(rR = 1)| =
λ3

R

4π2

∣∣∣∣
∂uθ,0

∂rR
+
∂2uθ,0

∂r2
R

∣∣∣∣
rR=1

. (4.6)

Relation (4.6) is obtained from the θ-momentum equation (S2.8). The wall pressure
decays up to xR = 0.5, grows to a maximum at xR = 4, and then decays monotonically
downstream.

The radial profiles of |ux,0| are shown in figure 15(a), for growing disturbances, and in
figure 15(b), for decaying disturbances. The base-flow streamwise gradients enhance the
perturbation near the wall and the maximum of |ux,0| moves towards the centreline at
all streamwise locations. During the growth phase, the wall-shear stress induced by the
perturbation remains constant, while it decays when the perturbation energy decreases.

The azimuthal velocity |uθ,0| in figure 16 (left) decays at a faster rate near the centreline
and so does the radial velocity |ur,0| (not shown). Figure 16 (right) confirms that the
pressure |p0| is closely related to |uθ,0| as the near-wall maximum of |uθ,0| is located at
the same radial position of the local maximum of |p0|, although the overall maximum
pressure disturbance is found at the pipe wall.

Figure 17 shows contour plots of the velocity components and pressure at a fixed time
instant in a cross-plane where the total perturbation energy reaches its maximum. The
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Figure 15: Profiles of the streamwise velocity amplitude |ux,0| at different streamwise
locations: (a) growing disturbance at xR = 3.5, 6.9, 13.7, 20.5; (b) decaying disturbances
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Figure 16: Profiles of the azimuthal velocity amplitude |uθ,0| (a) and of the pressure
amplitude |p0| (b) at xR = 8.7, 13.7, 28.9, 45.9.

spanwise and streamwise velocity components appear twisted about the pipe axis with
respect to the initial symmetrical distribution observed near the pipe mount, shown in
figure 8.

4.2.3. Effect of Reynolds number

Figure 18 shows the evolution of the total energy E at different bulk Reynolds numbers
ReR. As ReR increases up to approximately ReR = 6000, the perturbation energy
increases, with the peak occurring farther downstream. The initial growth rate is in-
dependent of ReR. For 6000 < ReR < 10000, the evolution of the energy up to the
maximum is Reynolds number independent, while downstream of the peak the energy
decays at a slower rate as ReR increases. This dependence on the Reynolds number also
occurs in free stream boundary layers exposed to convected gusts, where the spanwise
wavenumber κ = kz/F1/2 is the governing parameter (Leib et al. 1999). In figures 5
and 6 of Leib et al. (1999), as κ decreases from 1 to 0.1 the the global perturbation
energy, dominated by the streamwise velocity, increases and its maximum occurs farther
downstream. This behaviour is thus consistent with figure 18, where κ = m/(kx,RReR)1/2

is in the range 0.12 < κ < 0.3 for 1500 < ReR < 10000. The radial locations of the energy
maxima move closer to the wall at larger ReR as the boundary layers becomes thinner
(not shown).
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Figure 17: Contours of the instantaneous velocity components 2ux,0, 2ur,0 and 2uθ,0, and
the pressure 2p0 at t = 0, xR = 28, for ReR = 1500, kx = 0.118, n = 3,m = 4.
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Figure 18: Effect of ReR on the downstream evolution of perturbation energy E . The
dashed line in this figure and in figures 19, 20 and 21 indicates the case of Table 2
(n = 3,m = 4).
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4.2.4. Effect of streamwise wavelength

Studying the influence of the streamwise wavelength λxR of the oncoming disturbance
is equivalent to studying that of the frequency because the two quantities are inversely
proportional to each other and related through U∗

∞ for small-amplitude free stream gusts.
Figure 19 shows that the initial amplitude of the perturbation energy is independent of
λxR. Up to xR = 10, λxR has no influence on the disturbance growth as the profiles
overlap on one another. Farther downstream, longer wavelengths (i.e. smaller frequencies)
lead to perturbations that grow more intensely, with their maxima occurring at larger
xR locations.

The trends at the two highest λxR overlap (red line and thin black line), showing the
independence of the dynamics in the limit of low frequency. The asymptotic scaling at
large λxR can be studied for ǫ = F ≪ 1. In this limit, we introduce Û = U , V̂ = ǫV , x̂ =
x/ǫ and ûx = ux/ǫ. All the terms in the base-flow equations (2.8)-(2.9) are retained and
the coefficient in front of the parenthesis in (2.9) changes to unity. The boundary-region
equations (2.11)-(2.12) simplify as all the terms in (2.13)-(2.26) that are proportional to i,
which are due to the unsteadiness of the oncoming disturbance (2.1), are asymptotically
smaller, and F changes to unity. The low-frequency disturbance dynamics is thus steady
at leading order. The analogous scaling for open free stream boundary layers was first
found by Leib et al. (1999) on pages 183–185. In figure 19, the behaviour is consistent
with the asymptotic analysis for ǫ ≪ 1: ReR is constant for those cases and thus it does
not affect the scaling x̂. At leading order the total energy is

E ∼ πm2

k2
x

∫ 1

0

|ûx|2rRdrR = 4π3Re2
R

∫ 1

0

|ûx|2rRdrR, (4.7)

which is independent of λxR. The prediction that the optimum conditions leading to the
maximum transient growth are steady is fully consistent with the optimal-growth results
of vortical perturbations that are present inside a Blasius boundary layer and evolve
downstream from locations near the leading edge (Andersson et al. 1999; Luchini 2000).
Figure 19 shows that oncoming perturbations with measurable unsteadiness, i.e. with
frequency f∗ = 1Hz (λxR = 200) for the air pipe in Table 2, are equally likely to lead to
the flow breakdown as they achieve a growth which is very close to the optimal one.
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Figure 20: (a) Real part of ur for m = 4 at xR = 0.18. (b) Effect of n on the downstream
evolution of total energy E for m = 4.

4.2.5. Effect of radial characteristic scale

In the expansion based on Fourier–Bessel coefficients (2.1), the characteristic radial
scale is defined by the zeros of the Bessel function ξmn. For fixed azimuthal index m, the
larger the radial coefficient n, the smaller the radial length scale, as shown in figure
20 (left) by the profiles of the real part of ur at small xR locations. The transient
growth decreases as the radial length scale of the free stream disturbance becomes
smaller, as shown in figure 20 (right). This effect is due to the more intense viscous
dissipation caused by the large velocity gradients related to the small radial scale. The
location of the maximum energy is computed closer to the pipe inlet as the radial scale
decreases. For a Fourier-Bessel coefficient n = 9, the perturbation decreases upstream
of the expected transient growth and subsequent viscous dissipation. For n = 12, the
perturbation decreases at any streamwise location.

The influence of the radial scale on the disturbance evolution cannot be investigated
through the non-normality of the eigenfunctions of the developing boundary layers on
the pipe wall. An eigenvalue-based approach would model the near-entrance disturbance
as completely confined within the base-flow boundary layer, whereas the radial scale
only pertains to the free stream gust flow and does not enter the classical stability
problem of the boundary layer. The adopted boundary-region approach instead takes into
account all the characteristics of the gust flow because, being an initial-value problem,
the specification of the pipe-entrance flow is vital for the evolution of the perturbation
inside the pipe.

4.2.6. Effect of azimuthal wavelength

Figure 21 (left) shows the real part of uθ for n = 6 near the pipe mouth, at xR = 0.18,
for different λzR = 2π/m. For this n value, varying m only impacts on the azimuthal
modulation of the disturbance, while the characteristic radial scale is maintained. The
influence of the azimuthal wavelength λzR on the perturbation energy inside the pipe
is shown in figure 21 (right). There exists an optimal λzR (the reference λzR = 2.09,
m = 3) that leads to the most energetic growth. This azimuthal coefficient was also
found to lead to the most energetic spatial transient disturbance by Mayer & Reshotko
(1997) in a fully developed laminar flow. Disturbances with smaller λzR are influenced
by viscous dissipation that hampers their growth. Oncoming disturbances with a larger
azimuthal wavelength, λzR = 3.14 (m = 2) are almost two-dimensional and do not
lead to the maximum growth because the dynamics of the streaks is a strictly three-
dimensional phenomenon (Leib et al. 1999), unlike TS waves, the amplification of which
is maximum in the two-dimensional case (Schmid & Henningson 2001). The perturbations
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Figure 21: (a) Real part of w for n = 6 at xR = 0.18. (b) Effect of λzR on the downstream
evolution of total energy E .

with λzR = 3.14 persist downstream to larger distances than in the optimal case because
they are less influenced by viscous dissipation due to azimuthal shear effects.

4.2.7. Comparison with experimental and numerical data

Wygnanski & Champagne (1973) experimentally studied the air flow in the entrance
region of a circular pipe in order to understand the formation of turbulent slug and
puffs. Just like Reynolds (1883), they recognized the impact of the entry disturbances
on the flow character farther downstream, especially the intensity of inlet perturbations.
They utilized an orifice, a suspended circular disk and a honeycomb to generate the
perturbation at the pipe mouth. In the entrance region, i.e. where the flow is stable
according to classical stability theory, Wygnanski & Champagne (1973) detected intense
growth of low-frequency oscillations upstream of the turbulent region and proposed that
‘...the growth of perturbations is associated with the large shear existing within the
boundary layer...’. They also observed that the longitudinal fluctuations rose abruptly,
much more than the cross-flow velocity components. These experimental results fully
agree with our theoretical results.

Figure 22 shows their flow visualization of the pipe entrance flow by dye injection at
two downstream locations. It is evident that, upstream of where the flow breaks down
to turbulent puffs (right-hand part of figure 22a), the disturbances are elongated in the
axial direction and characterized by a well-defined azimuthal length scale, as predicted
by the low-frequency theory.

Figure 23 presents a comparison between our calculations and three sets of experimen-
tal data by Wygnanski & Champagne (1973). In figure 23(a,b), the base-flow comparison
is excellent for the case at low level of free stream turbulence (figure 23a, |u′|/U cl = 0.16%,
where U cl is the centreline mean velocity), whereas the experimental base-flow data at
much higher levels of free stream turbulence (top right graph, |u′|/U cl = 5.8%, and 7.8%)
deviate considerably from the base flow computed via (2.8) and (2.9). These results are
expected because, when the oncoming disturbances are weak (generated by the upstream
honeycomb), the nonlinear effects on the perturbation dynamics are negligible and do not
distort the laminar base flow. When the disturbances are more intense (generated by the
orifice and the suspended disk), nonlinearity distorts the base flow, even though the flow
has not broken down to turbulence. The comparisons of the perturbation data, shown
in figure 23(c,d), are consistent with the mean-flow results, i.e. much better agreement
is obtained in the left graph, where nonlinear effects are likely to play a marginal role.
The results in figure 23(c) are robust because the profile shape varies only slightly when
the frequency, and the azimuthal and radial indexes, m and n, are varied independently
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λ∗ λ∗

Figure 22: Visualization of flow disturbances at xR = 60 (left) and xR = 100 (right)
for an air flow in a pipe at ReR = 1250 (Wygnanski & Champagne 1973). The arrows
indicate the azimuthal wavelength in the developing regions. The flows are from the left
to the right.

about the reference case kx,R = 0.118, n = 2, m = 3. The flow parameter ranges were
chosen based on the description of the experimental conditions given in Wygnanski &
Champagne (1973), i.e. streamwise wavelength longer than the radius and comparable
azimuthal and radial length scales because generated by the honeycomb upstream of
the pipe entrance. It would certainly be interesting to carry out further comparisons
between better controlled experiments and computations of the nonlinear boundary-
region equations and direct numerical simulations.

Wu et al. (2015) studied the pipe-flow entrance problem via direct numerical simula-
tions. In one of their cases at ReR = 4000, the flow at the pipe inlet was a superposition
of a uniform base flow and vortical disturbances located near the pipe wall with a quite
distinct azimuthal modulation. The perturbation did not grow as the base flow evolved
along the entry region and the breakdown to turbulence was detected much farther
downstream, i.e. at locations where the laminar base flow reached the parabolic profile.
This result qualitatively agrees with our theoretical prediction. A visual inspection of
their figure 1D leads to an estimate of m = 8 or larger, that is, sufficient for viscous
effects to dominate and attenuate the algebraic growth, as observed in figure 21 (m = 8
corresponds to λzR = 0.79).

5. Conclusions

In this paper, we have presented the first theoretical study of the entrainment and
growth of unsteady three-dimensional vortical disturbances in the entrance region of
an incompressible pipe flow, as a step towards the full comprehension of laminar to
turbulent transition in confined flows. This fundamental problem has been central in the
fluid mechanics research community since the pioneering work of Reynolds (1883). In the
other theoretical studies of the pipe-entrance flow, the entrainment of disturbances in
the confined space was not studied because velocity or pressure fluctuations were absent
in the pipe core flow and were only present in the viscous boundary layer attached to
the pipe wall (references in §1.3).

The mathematical framework takes inspiration from the pioneering work by Leib et al.

(1999) on the generation of low-speed streaks in a flat-plate boundary layer. The analysis
is based on the method of matched asymptotic expansions and on the assumptions of high
Reynolds number and of flow perturbations of low amplitude and frequency. The low-
frequency hypothesis has been motivated by the evidence that these disturbances amplify
the most in free stream boundary layers to form streamwise-elongated streaks. This
approach has allowed for an analytical description of realistic vortical perturbations that
can be created in a laboratory set-up at the pipe inlet. The effects of the pipe confinement,
the streamwise pressure gradient, the viscous/inviscid interplay and the interactions



34 P. Ricco, C. Alvarenga

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

r/R

U
/
U

c
l

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

r/R

U
/
U

c
l

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

r/R

|u
′
|/
|u

′ m
a
x
|

experimental data

kx,R = 0.118 n = 2 m = 3

kx,R = 0.059 n = 2 m = 3

kx,R = 0.177 n = 2 m = 3

kx,R = 0.118 n = 1 m = 3

kx,R = 0.118 n = 3 m = 3

kx,R = 0.118 n = 2 m = 2

kx,R = 0.118 n = 2 m = 2

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

r/R

|u
′
|/
|u

′ m
a
x
|

Figure 23: Experimental data by Wygnanski & Champagne (1973) (symbols) and
numerical profiles (solid lines) at xR = 30. Top: base-flow streamwise velocity,
computed by solving (2.8) and (2.9); bottom: perturbation-flow streamwise velocity
ǫ|ux,0| normalized by the maximum value, computed by solving (2.11) and (2.12). Left:
ReR = 9500 and |u′|/U cl = 0.16%; right: ReR = 1200 and |u′|/U cl = 5.8% (white circles)
and |u′|/U cl = 7.8% (black circles). Here U cl denotes the centreline base-flow velocity.
For all cases, the reference flow parameters are kx,R = 0.118, n = 2, m = 3.

amongst the velocity components have been revealed. The amplitude of the initial
disturbance is related uniquely to that of the oncoming free stream perturbation. The
composite velocity profiles of the disturbance flow have been useful for the specification
of the appropriate initial conditions for the boundary-region perturbation equations.

The base-flow velocity components and pressure gradient agree with results from direct
numerical simulations and experiments. We propose to utilize the second derivative of
the base flow at the pipe centreline to ascertain whether the flow has reached the fully
developed Poiseuille flow. This method is the most conservative one among those tested
for quantifying the entry length because the pipe axis is the last location where the
base flow is subject to the diffusing viscous effects. Near the pipe mouth, the base
pressure gradient plays a minimal role and the disturbance flow is mostly dominant
within the boundary layer at the pipe wall. The perturbations appear in the form of
streamwise-elongated streaky structures and eventually evolve towards the pipe core,
where the base flow is still mostly inviscid. The disturbance growth is enhanced as the
frequency decreases, and the bulk Reynolds number and the characteristic radial length
scale increase. The azimuthal wavelength that generates the most intense downstream
growth has also been computed.

The significant algebraic growth and the viscous decay only occur in the entrance
region, i.e. where the base flow is still streamwise dependent. Nevertheless, as evident
from the direct numerical simulations of Wu et al. (2015), vortical disturbances that
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initially decay from the pipe inlet may trigger nonlinear effect farther downstream and
lead the flow to the breakdown to turbulence. Our results compare favourably with
the experimental data of Wygnanski & Champagne (1973) when the amplitude of the
oncoming perturbation is low, thus suggesting that the linearized dynamics is valid. The
less satisfactory agreement for more intense perturbations highlights the urgency for the
inclusion of the nonlinear effects. We therefore plan to extend our analysis by relaxing the
assumption of small amplitude to study the nonlinear dynamics and to explore the link
between the perturbations generated at the pipe inlet and the travelling waves discovered
by Faisst & Eckhardt (2003) and Wedin & Kerswell (2004). Accurate experimental data
are also required in order to further test our results.
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