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We present theoretical results related to the experimental findings of Matsubara & Alfredsson

(2001) on the scaling of the energy spectra of the Klebanoff modes, i.e. streamwise-elongated

vortical disturbances generated by free-stream turbulence in a flat-plate transitional boundary

layer. The scaling is explained by a model that describes the streamwise evolution of the streamwise

and spanwise energy spectra. The theoretical framework is based on the quasi-steady asymptotic

solution of the boundary-region equations, on an axial-symmetric model of the free-stream

spectrum, and on the spectral response of the boundary layer to the external perturbations.
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1. Introduction

The transition of a boundary layer from the laminar regime to fully developed turbulence is a

central problem in an immense range of technological applications because turbulent wall friction

can be several times larger than that exerted by a laminar boundary layer. Frictional losses in the

boundary layer are responsible for the performance degradation of engineering flow systems, such

as turbomachinery and jet engines, for the enhanced aerodynamic drag of transport vehicles, and,

in turn, for wasted fuel consumption, unwanted noise production and environmental pollution.

For design purposes, it is therefore paramount to be able to predict under which conditions

boundary-layer transition occurs. Free-stream turbulence acts as a triggering factor for transition,

and it has been shown that the transition Reynolds number decreases as the free-stream turbulence

level increases (Mayle 1991).

Dryden (1936) and Taylor (1939) were probably the first to study the effects of free-stream

turbulence on a flat-plate boundary layer. They showed that the dominant streamwise velocity

fluctuations generated by free-stream turbulence in the boundary layer are of very low frequency

and reach amplitudes that can be several times larger than those in the free stream.

The Dryden–Taylor observations did not receive much attention until Klebanoff (1971) carried

out experiments in which he reproduced the earlier findings of Dryden and Taylor. Klebanoff

demonstrated that the disturbances grow more or less linearly with the boundary-layer thickness,

and they are quite narrow in the spanwise direction. Klebanoff referred to these disturbances

as ‘breathing modes’ because, as noted earlier by Taylor (1939), they appeared to correspond

to a thickening and thinning of the boundary layer. Kendall (1991) renamed them Klebanoff

† Email address for correspondence: p.ricco@sheffield.ac.uk
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modes, and that name has taken hold even though these disturbances are not modes in the strict

mathematical sense, i.e. they are not homogeneous solutions of differential equations.

The early transition experiments were conducted at very low free-stream turbulence levels

(𝑇𝑢<0.1%), but more recent experiments, such as those by Westin et al. (1994), Matsubara &

Alfredsson (2001), Fransson et al. (2005), Fransson & Shahinfar (2020) and Mamidala et al.

(2022) were carried out at higher turbulence levels. However, the results are invariably the same.

The dominant streamwise velocity fluctuations are always of the Klebanoff type, i.e. the boundary

layer acts as a low-frequency-pass filter on the free-stream perturbation spectrum, and amplifies

streamwise stretched streaky vortical structures. The spanwise wavelength of the Klebanoff modes

is constant along the streamwise direction, and the peak amplitude occurs at the same Blasius-

similarity wall-normal location. Direct numerical simulations have also been employed to study

the development of low-frequency streaks and the induced bypass transition (Jacobs & Durbin

2001; Ovchinnikov et al. 2008; Yao et al. 2022).

The mathematical framework describing the incompressible Klebanoff modes was developed

by Leib et al. (1999) (LWG99). They proved that these disturbances, near the leading edge, are well

represented by forced solutions of the linearized unsteady boundary-layer equations for which the

spanwise viscous effects are negligible. As the mean boundary layer grows downstream, these

equations lose their validity because the spanwise length scale of the Klebanoff modes becomes

comparable with the boundary-layer thickness. Their dynamics is then ruled by the unsteady

boundary-region equations, i.e. the Navier-Stokes equations where the spanwise viscous ter.m.s.

are retained, while the streamwise pressure gradient and the viscous effects can be neglected

because the perturbations are of low frequency and streamwise elongated. The boundary-region

equations, and their terminology, were first used by Kemp (1951) to study the corner boundary-

layer problem. A crucial ingredient in the LWG99 formulation is the continuous action of the

free-stream perturbations that are responsible for the generation and evolution of the Klebanoff

modes. LWG99 utilized matched asymptotic expansions to obtain the initial and outer boundary

conditions that synthesize the interaction between the free-stream flow and the boundary-layer

flow. Wundrow & Goldstein (2001) and Ricco et al. (2011) extended the linearized study of

LWG99 to include nonlinear effects, focusing on the steady and unsteady cases, respectively.

Ricco et al. (2011) also explained the occurrence of nonlinear effects in the results by Matsubara &

Alfredsson (2001), and studied the secondary instability of the saturated Klebanoff modes, thereby

describing the mechanism at the heart of bypass transition induced by free-stream turbulence.

Extensions to the compressible regime include the investigations by Ricco & Wu (2007), Ricco

et al. (2009), Ricco et al. (2013) and Marensi et al. (2017).

Other theories describing the Klebanoff modes have been proposed. The non-modal growth

theory (Schmid & Henningson 2001) and the optimal growth theory (Andersson et al. 1999;

Luchini 2000) model the growth of streaky disturbances already present in the boundary layer,

while allowing the disturbances to vanish in the free stream. Continuous Orr-Sommerfeld modes

have also been used extensively since Jacobs & Durbin (2001) to synthesize the penetration of

free-stream disturbances into a boundary layer. Reviews of this approach are found in Dong &

Wu (2013), Ricco et al. (2016) and Durbin (2017).

In the present study, we develop the theoretical background of previously unexplained

experimental results of a transitional boundary layer exposed to free-stream turbulence, reported

by Matsubara & Alfredsson (2001) (MA01). These findings are remarkable because the energy

spectra at different streamwise locations were found to collapse on one another when scaled

properly. MA01 described their discovery as “an unexpected new finding” and their energy

spectra showing “an astonishing similarity” for which “there is no theoretical explanation”.

In §2, the experimental findings of MA01 on the scaling of the Klebanoff modes are discussed.

In §3, we present the key features of the mathematical framework describing the Klebanoff modes,
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Figure 1: Mean boundary-layer streamwise velocity profiles reported by MA01 for 𝑥∗⩽500mm

(black circles) and 700mm⩽𝑥∗⩽1900mm (thin lines). The red thick line denotes the numerical

solution of the Blasius laminar boundary-layer flow and 𝛿∗
𝑑

indicates the displacement thickness.

while the theoretical results behind the experimental findings of MA01 are found in §4. Section

5 contains the conclusions.

2. Discussion of the experimental results of Matsubara & Alfredsson

MA01 studied experimentally an incompressible flow of uniform velocity 𝑈∗
∞ past a thin flat

plate located in a low-speed wind tunnel. Rigid grids were placed upstream of the leading edge of

the plate to generate free-stream vortical disturbances. A thin laminar boundary layer developed

over the flat plate and transitioned to a fully-developed turbulent boundary layer because of the

perturbative action of the free-stream disturbances. The objective of the MA01 study was to

fully characterize the transitional boundary layer. In our discussion of the MA01 results and

in the theoretical analysis, the flow is described through a Cartesian coordinate system, i.e. x∗

= 𝑥∗ î + 𝑦∗ ĵ + 𝑧∗k̂, where 𝑥∗, 𝑦∗, 𝑧∗ define the streamwise, wall-normal and spanwise directions,

respectively, and the superscript ∗ indicates a dimensional quantity. The flat plate is located at

𝑦∗ = 0, and its leading edge is at 𝑥∗ = 0. Lengths are scaled by Λ
∗
𝑧 , the integral spanwise length

scale of the free-stream vortical disturbances, velocities are scaled by 𝑈∗
∞, pressure is scaled by

𝜌∗𝑈∗2
∞ , where 𝜌∗ is the density, and time is scaled by Λ

∗
𝑧/𝑈∗

∞. The kinematic viscosity is denoted

by 𝜈∗. Non-dimensional quantities are not marked by any symbol.

2.1. Validity of linearized dynamics

As our theoretical framework hinges on the assumption that the boundary-layer disturbances

are described by a linearized dynamics, we first examine the MA01 findings to support our

hypothesis. Figure 1 shows the mean boundary-layer streamwise velocity profiles measured by

MA01 at different streamwise locations. The data displayed by the black circles correspond to the

three streamwise stations that are closest to the leading edge, i.e. 𝑥∗=100, 300, 500mm. The data

represented by the thin lines were acquired at 𝑥∗>500mm. The black-circle data show excellent

agreement with the numerical solution of the Blasius laminar boundary-layer flow, represented by

the thick red line, while the thin-line data deviate progressively more and more from the laminar

solution as 𝑥∗ increases. For 𝑥∗>500mm, nonlinear effects become important as the boundary-

layer perturbations grow in amplitude, and the wall-shear stress is enhanced as fully-developed
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Figure 2: (a,b) Reproduction of figure 13 in MA01. Energy spectra as functions of (a) the

streamwise wavenumber and (b) the spanwise wavenumber. (c,d) Reproduction of figure 14 in

MA01. Rescaled energy spectra as functions of (c) the scaled streamwise wavenumber and (b)

the dimensional spanwise wavenumber. Data were acquired at 𝑦∗/𝛿∗
𝑑
=1.2. The solid lines are for

𝑥∗=120, 150, 200, 250, 300, 400, 500 mm. Labels in the original graphs have been changed to

conform to the present notation.

turbulence ensues. These results are evidence of the perturbed flow obeying a linearized dynamics

at the locations closest to the leading edge because the mean-flow profiles follow the laminar

solution. Figure 3 in MA01 further reveals that the boundary-layer thickness and the shape factor

match the laminar values for 𝑥∗⩽700mm. Additional support for these results is given by profiles

of the root-mean-square (r.m.s.) of the streamwise velocity fluctuations, shown in figure 2c of

MA01, which denote clear signs of nonlinear effects for 𝑥∗⩾1100mm, such as the disturbances

growing in the outer part of the boundary layer, and the perturbation peak moving closer to the

wall. The theoretical and numerical results that match quantitatively the nonlinear MA01 data

are discussed in Ricco et al. (2011). We conclude that a linearized dynamics can be utilized to

study the perturbed flow for 𝑥∗⩽500mm, despite the free-stream turbulence intensity not being

vanishingly small for these experiments, i.e. 𝑇𝑢 = 2.2% (refer to grid A in table 1 in MA01).

2.2. Scaling of experimental turbulence spectra

Figures 2(a,b), a reproduction of figure 13 in MA01, depict streamwise velocity energy spectra

at 𝑦∗/𝛿∗
𝑑
= 1.2, where 𝛿∗

𝑑
is the displacement thickness. For this experimental dataset,𝑈∗

∞ = 5m/s

and Λ
∗
𝑧 = 7mm, computed from the autocorrelation of the streamwise velocity shown in figure 7

on p. 161 of MA01. The Reynolds number based on Λ
∗
𝑧 is 𝑅𝜆=𝑈

∗
∞Λ

∗
𝑧/𝜈∗=2232. The spectrum 𝐸𝛼
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is shown as a function of the streamwise wavenumber 𝑘∗𝑥 = 2𝜋 𝑓 ∗/𝑈∗
∞, where 𝑓 ∗ is the frequency

(figure 2a), and the spectrum 𝐸𝛽 is shown as a function of the spanwise wavenumber 𝑘∗𝑧 = 2𝜋/𝜆∗𝑧 ,
where 𝜆∗𝑧 is the spanwise wavelength (figure 2b).

The wavenumbers in figures 2(a,b) are dimensional, while in our theoretical analysis they are

scaled by Λ
∗
𝑧 , that is, 𝑘𝑥 = 𝑘∗𝑥Λ

∗
𝑧 and 𝑘𝑧 = 𝑘

∗
𝑧Λ

∗
𝑧 . The spectra 𝐸𝛼 and 𝐸𝛽 are linked to the variance

of the streamwise velocity fluctuations,

𝜖2
〈
𝑢′2

〉
𝑧𝑡
(𝑥, 𝑦) = 𝐶𝛼

∫ ∞

0

𝐸𝛼 (𝑘𝑥)d𝑘𝑥 = 𝐶𝛽

∫ ∞

0

𝐸𝛽 (𝑘𝑧)d𝑘𝑧 , (2.1)

where 𝐶𝛼 and 𝐶𝛽 are constants, computed in §2.3, and ⟨·⟩𝑧𝑡 indicates averaging along 𝑧 and over

𝑡. In figure 2, the dash-dotted lines refer to locations upstream of the solid lines, while the dashed

lines correspond to locations downstream of the solid lines.

In figure 2(a), for 𝑥∗⩽500 mm, the dash-dotted and solid lines show that the low-wavenumber

portion of the spectrum grows downstream, while the high-wavenumber portion is unchanged.

This behaviour confir.m.s. that the boundary layer acts as a low-frequency-pass filter (Durbin

2017), consistently with the algebraic growth of the streamwise-elongated, low-frequency Kle-

banoff modes. The high-frequency free-stream disturbances do not penetrate sufficiently into the

boundary layer to reach these wall-normal locations. Nonlinear effects becomes predominant

further downstream, where the high-wavenumber fluctuations grow more significantly than the

low-wavenumber ones (dashed lines). Figure 2(b) shows that the spanwise energy spectrum grows

uniformly for all the spanwise wavenumbers.

Figures 2(c,d) are a reproduction of figure 14 in MA01. The spectra 𝐸𝛼 and 𝐸𝛽 , shown in

figures 2(a,b), are scaled as (the symbol ·̂ is used here in lieu of ∗ in MA01)

𝐸𝛼 =
𝐸𝛼

𝐶𝑒𝑅𝑒
3/2
𝑥

, 𝐸𝛽 =
𝐸𝛽

𝐶𝑒𝑅𝑒𝑥
, (2.2)

where 𝑅𝑒𝑥 = 𝑈∗
∞𝑥

∗/𝜈∗, and the constant 𝐶𝑒 = 16 is the same for the two spectra. The scaling

of 𝐸𝛽 with 𝑅𝑒𝑥 is expected because the integral of 𝐸𝛽 along 𝑘𝑧 , given by the last equation of

(2.1), is equal to the variance of the streamwise velocity fluctuations, which grows linearly with

𝑅𝑒𝑥 , as shown by the experimental results in figure 2d of MA01. On the abscissas of figures

2(c,d), the streamwise wavenumber is scaled by the displacement thickness 𝛿∗
𝑑
, while the spanwise

wavenumber is dimensional. Both sets of profiles represented by the solid lines show excellent

collapse when rescaled. The objective of our study is explain the scaling of those solid lines in

figures 2(c,d).

This scaling demonstrates that the streamwise spectrum 𝐸𝛼 grows downstream at a faster rate

(proportional to 𝑅𝑒
3/2
𝑥 ) than its integral across the streamwise wavenumbers 𝜖2

〈
𝑢′2

〉
𝑧𝑡

, which

grows linearly with 𝑅𝑒𝑥 , as shown in figure 2d of MA01. The different growth rates are caused

by the low-frequency fluctuations becoming larger more rapidly than the high-frequency ones, as

shown in figure 2(a).

It is worth mentioning that Zhigulev et al. (2009), in their figures 7 and 8, reported similar

scaling of streamwise spectra, in their case by 𝑅𝑒2
𝑥 and 𝑅𝑒

3/2
𝑥 , for different boundary-layer

datasets collected in their low-turbulence wind tunnel (𝑅𝑒2
𝑥 and 𝑅𝑒

3/2
𝑥 were written as 𝜖2

〈
𝑢∗′2

〉
𝑧𝑡

and 𝜖2
〈
𝑢∗′2

〉
𝑧𝑡
𝛿∗
𝑑
, respectively, in their formulas (2.8) and (2.9)). They attributed the scaling by

𝑅𝑒
3/2
𝑥 to nonlinear effects. We show in the following that the scaling of the MA01 spectra can

be explained by asymptotic results emerging from the linearized theory of LWG99, although our

form of free-stream spectrum does model nonlinear effects through its streamwise dependency.
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Figure 3: Growth of r.m.s. of streamwise velocity fluctuations as a function of 𝑅𝑒𝑥 , computed

by integrating the spectra 𝐸𝛼 (red circles) and 𝐸𝛽 (blue squares) shown by solid lines in figures

2(a,b).

2.3. Computation of 𝐶𝛼 and 𝐶𝛽

The constants𝐶𝛼 and𝐶𝛽 in (2.1) are found as follows. The integrals in (2.1) are first computed

by using the spectral data in figures 2(a,b) at different streamwise locations 𝑅𝑒𝑥 . For the

experimental data of figure 2, MA01 do not report the values of 𝜖2
〈
𝑢′2

〉
𝑧𝑡

at different 𝑅𝑒𝑥 .

The data shown in figure 2d on p. 156 of MA01 for a similar set of flow conditions can, however,

be used for our purpose because that graph shows that the r.m.s. of the streamwise velocity starts

to deviate from the linear behaviour when it reaches a value of about 9 · 10−3. The constants 𝐶𝛼

and 𝐶𝛽 can thus be found by linear fitting of the integrated experimental data in order to obtain

𝜖2
〈
𝑢′2

〉
𝑧𝑡

= 9 · 10−3 at 𝑅𝑒𝑥 = 159438, which is the most downstream location where the data

of figure 2 obey the scaling discussed in §2.2 (denoted by solid lines). Data downstream of this

location, displayed by dashed lines in figures 2(a,b), are affected by nonlinear effects, similarly

to the r.m.s. data larger than 9 · 10−3 in figure 2d on p. 156 of MA01. The computed values

are 𝐶𝛼 = 1.62 · 10−10 and 𝐶𝛽 = 4 · 10−12. Figure 3 shows that the r.m.s. values, obtained by

integrating 𝐸𝛼 and 𝐸𝛽 , agree well with each other and grow linearly with 𝑅𝑒𝑥 as expected. MA01

give the free-stream turbulence level for this experimental dataset, 𝑇𝑢(%) = 0.022, and we thus

take 𝜖 = 0.022.

2.4. Power-law dependence of scaled turbulence spectra

The data in figures 2(c,d) are replotted in figure 4, which reveals that the experimental data of

the energy spectra by MA01 are well approximated by the power laws

𝐸𝛼 =
1.91 · 10−5

(𝑘𝑥𝛿𝑑)𝛼
, where �̃� = 2.82, (2.3)

𝐸𝛽 =
8.3 · 102

𝑘
𝛽
𝑧

, where 𝛽 = 1.55. (2.4)

The power laws (2.3) and (2.4) are useful in our theoretical analysis of §4.
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Figure 4: (a) Scaled energy spectrum 𝐸𝛼 as a function of the streamwise wavenumber 𝑘𝑥𝛿𝑑 and

(b) scaled energy spectrum 𝐸𝛽 as a function of the spanwise wavenumber 𝑘𝑧 . The experimental

data by MA01, also shown in figures 2(c,d), are represented by the red circles, and the algebraic

best fitting lines in solid blue represent relations (a) (2.3) and (b) (2.4).

3. Theoretical framework for the Klebanoff modes

The theory of the Klebanoff modes is found in LWG99. Here, we report the main points that

are useful for our analysis of the wind-tunnel flow studied by MA01.

3.1. The free-stream disturbance flow at short streamwise distances

A uniform flow of velocity 𝑈∗
∞ past an infinitely thin flat plate transports homogeneous,

statistically stationary vortical fluctuations of the gust type, i.e. disturbances that are convected

passively by the mean flow. These free-stream perturbations are assumed to be of small amplitude

with respect to 𝑈∗
∞, so that the free-stream flow is represented as the sum of the mean uniform

flow and the free-stream vortical disturbances, as

u∞ = î + 𝜖u′
∞ (𝑥 − 𝑡, 𝑦, 𝑧) = î + 𝜖

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
û′
∞ (𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧)ei(k·x−𝑘𝑥 𝑡 )d𝑘𝑥d𝑘𝑦d𝑘𝑧 , (3.1)

where 𝜖≪1, û′
∞={�̂�∞, �̂�∞, �̂�∞}=O(1), k={𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧}, and the streamwise wavenumber 𝑘𝑥 and

the frequency −𝑘𝑥 are related because of Taylor’s hypothesis (Taylor 1938; Hunt 1973). In the

experiments of MA01, the turbulence is generated by a grid located upstream of the leading edge

of the plate, but we consider 𝑥 = 0 as the streamwise location where the free-stream turbulence

starts influencing the system because that is where the turbulence intensity was measured by

MA01, as explained in the second paragraph of p. 154 in MA01. The representation (3.1) is

valid at wall-normal distances that are sufficiently large for the flow not to be influenced by

the presence of the boundary layer and the flat plate. The free-stream perturbation (3.1) is not

influenced by viscous dissipation while being transported downstream by the free-stream potential

flow because it is valid only at sufficiently small 𝑥 location. The streamwise evolution of the free-

stream flow is nevertheless taken into account at larger streamwise locations by the model of the

free-stream spectrum studied in §§4.1 and 4.2, and by the numerical solution of the free-stream

disturbance flow that includes the viscous dissipation and the inviscid displacement of the mean-

flow streamlines due to the boundary layer, as discussed in §3.2. Furthermore, expansion (3.1)

is not valid for amplitudes of free-stream disturbances comparable with that of the mean flow

and for a non-uniform free-stream mean flow because Taylor’s hypothesis does not apply in those

cases (Lundell & Alfredsson 2004).
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3.2. The Klebanoff modes

In the limit of large Reynolds number, 𝑅𝜆≫1, the mean laminar boundary layer that develops

over the flat plate is described by the steady boundary-layer equations (Schlichting & Gersten

2000). The mean-flow streamwise and wall-normal velocity components are𝑈 (𝑥, 𝑦) and𝑉 (𝑥, 𝑦),
and the wall-normal similarity coordinate is 𝜂=𝑦/𝛿=𝑦

√︁
𝑅𝜆/2𝑥, where 𝛿=

√︁
2𝑥/𝑅𝜆=

√
2𝛿𝑑/1.72 is

the boundary-layer thickness used in LWG99.

The free-stream vortical flow encounters the boundary layer and generates the Klebanoff

modes, as documented by the experimental data of MA01 discussed in §2. We consider the

limit 𝑘𝑥=O
(
𝑅−1
𝜆

)
≪𝑘𝑦 ,𝑘𝑧 because the Klebanoff modes are of low frequency. The boundary

layer indeed acts as a low-frequency-pass filter and thus only the low-frequency disturbances

penetrate into the boundary layer, as evidenced in figure 9b on p. 162 of MA01. We study

the flow at downstream locations where 𝛿∗=O(Λ∗
𝑧), and we scale the streamwise coordinate as

𝑥=𝑘𝑥𝑥=O(1). As explained in LWG99, the condition for linearization in the boundary layer is

𝜖/𝑘𝑥≪1. The boundary-layer flow is expressed as the sum of the mean boundary-layer flow U

and the disturbance flow 𝜖u′, as follows (LWG99, Hunt (1973), Hunt & Carruthers (1990)):

u = U(𝑥, 𝑦) + 𝜖u′ (𝑥, 𝑦, 𝑧, 𝑡) = U(𝑥, 𝑦) + 𝜖
∫ ∞

−∞

∫ ∞

−∞
û′ (𝑥, 𝑦, 𝑘𝑥 , 𝑘𝑧)ei(𝑘𝑧 𝑧−𝑘𝑥 𝑡 )d𝑘𝑥d𝑘𝑧 =

= {𝑈,𝑉, 0} + 𝜖
∫ ∞

−∞

∫ ∞

−∞

{
𝑢0 (𝑥, 𝜂),

(
2𝑥𝑘𝑥

𝑅𝜆

)1/2
𝑣0 (𝑥, 𝜂), 𝑤0 (𝑥, 𝜂)

}
ei(𝑘𝑧 𝑧−𝑘𝑥 𝑡 )d𝑘𝑥d𝑘𝑧 + O

(
𝜖2
)
,

(3.2)

where the leading-order velocity components with respect to 𝑘𝑥≪1 are retained, i.e.

{𝑢0, 𝑣0, 𝑤0}=
[
�̂�∞ + i𝑘𝑧 �̂�

∞/
(
𝑘2
𝑥 + 𝑘2

𝑧

)1/2] {(i𝑘𝑧/𝑘𝑥)𝑢, (i𝑘𝑧/𝑘𝑥) 𝑣, 𝑤}. The components {𝑢, 𝑣, 𝑤}
satisfy the linearized unsteady boundary-region equations, complemented by initial and boundary

conditions, all found in LWG99. Homogeneous boundary conditions at the wall represent the no-

slip condition, while mixed boundary conditions in the free stream account for the boundary-layer

inviscid displacement and the perturbation decay due to viscous dissipation. The system is solved

by a second-order implicit finite-difference scheme and a standard block-elimination algorithm

(Ricco & Wu 2007), described in Appendix A.

The scaled wavenumber 𝜅𝑧=𝑘𝑧/(𝑘𝑥𝑅𝜆)1/2
=O(1) represents the relative importance between

spanwise and wall-normal viscous effects at 𝑥=O(1). In the limit 𝜅𝑧≪1, the spanwise viscous

diffusivity becomes negligible and the dynamics is ruled by the boundary-layer equations.

We now discuss an asymptotic result, based on the parameter 𝜅𝑧 , which is central in the analysis

developed in §4. LWG99 showed that an asymptotic solution exists in the low-frequency, large-

spanwise-wavenumber limit 𝜅𝑧≫1 with �̃�=𝜅𝑦/|𝜅𝑧 |=O(1), where 𝜅𝑦=𝑘𝑦/(𝑘𝑥𝑅𝜆)1/2. In this limit,

the leading-order velocity components {𝑢, 𝑣, 𝑤} are rescaled and expressed as a function of the

new streamwise coordinate �̃�=𝜅2
𝑧𝑥=O(1), i.e. �̃�(�̃�, 𝜂, �̃�)=𝜅2

𝑧𝑢=O(1), {�̃�, 𝑤}(�̃�, 𝜂, �̃�)={𝑣, 𝑤}=O(1).
The rescaled velocity components {�̃�, �̃�, 𝑤} are quasi-steady and depend only on the ratio of

wavenumbers �̃� and not explicitly on the scaled spanwise wavenumber 𝜅𝑧 . Although the asymptotic

solution is valid for 𝜅𝑧≫1, the numerical calculations reveal the remarkable result that the

algebraic growth of the quasi-steady asymptotic solution {�̃�, �̃�, 𝑤} is indistinguishable from the

full boundary-region solution even for 𝜅𝑧 as low as 1. Figure 5 indeed shows that the trends of

|�̃� | for different 𝜅𝑧⩾1 and the same �̃� collapse onto one another when plotted as a function of

�̃�. It also means that the asymptotic solution describes the Klebanoff modes well even when the

spanwise wavelength is comparable with the boundary-layer thickness, which is precisely the flow

condition of interest in the experiments of MA01. Therefore, the asymptotic solution {�̃�, �̃�, 𝑤}
is utilized in the scaling analysis of §4, where the collapse of the spectral distributions shown in
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Figure 5: Growth and decay of the scaled streamwise velocity component of the Klebanoff modes

|�̃� | = 𝜅2
𝑧 |𝑢 | at 𝜂 = 1.46 as a function of the scaled streamwise coordinate �̃� = |𝜅𝑧 |

√
𝑥 for different

�̃� values. The velocity is computed by solving numerically the boundary-region equations, found

in LWG99. The straight solid lines denote the linear growth. The inset shows the slope of the

linear growth, 𝐺 ( �̃�).

figure 4 is obtained. Figure 5 also reveals that the initial growth of the disturbance is linear when

𝜅𝑧 ⩾ 1, that is, |�̃� | = 𝐺 ( �̃�) |𝜅𝑧 |
√
𝑥. The inset of figure 5 shows the slope 𝐺 ( �̃�). The decay of �̃� as

�̃�→∞, and therefore of 𝐺 ( �̃�), is predicted by the asymptotic analysis because, in the limits 𝜅𝑧≫1

and �̃�≫1, the solution can be written as �̆�(𝑥, 𝜂) = �̃�2�̃� = 𝜅2
𝑦𝑢 = O(1), where 𝑥 = �̃�2�̃� = 𝜅2

𝑦𝑥.

4. Scaling of the Klebanoff modes

4.1. Variance of the boundary-layer streamwise velocity

The boundary-layer perturbations and the free-stream modes are related as (Hunt 1973; Hunt

& Carruthers 1990)

�̂�′𝑖 (𝑥, 𝑦, 𝑘𝑥 , 𝑘𝑧) =
∫ ∞

−∞
𝑀𝑖 𝑗 (𝑥, 𝑦; 𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧)�̂�′∞ 𝑗 (𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧)d𝑘𝑦 ,

where 𝑀𝑖 𝑗 is a tensor acting as a transfer function between the free-stream flow and the boundary-

layer flow. The interest is in the correlation of the boundary-layer velocity components, delayed

in time and 𝑧 (Batchelor 1953),

𝑅𝑖 𝑗 (𝑥, 𝑦, 𝑟𝑧 , 𝜏) = 𝜖2
〈
𝑢′𝑖 (𝑥, 𝑦, 𝑧 + 𝑟𝑧 , 𝑡 + 𝜏)𝑢′𝑗 (𝑥, 𝑦, 𝑧, 𝑡)

〉
𝑧𝑡
,

which can be expressed as (refer to pp. 638-640 in Hunt (1973))

𝑅𝑖 𝑗 (𝑥, 𝑦, 𝑟𝑧 , 𝜏) = 𝜖2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

3∑︁
𝑙=1

3∑︁
𝑚=1

𝑀
†
𝑖𝑙
𝑀 𝑗𝑚Φ∞𝑙𝑚 (k)ei(𝑘𝑧𝑟𝑧−𝑘𝑥 𝜏 )d𝑘𝑥d𝑘𝑦d𝑘𝑧 ,
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where Φ∞𝑙𝑚 is the spectral tensor of the turbulence upstream of the flat plate and the symbol

† indicates the complex conjugate. The focus is on the spectral properties of the mean-square

streamwise velocity fluctuations, i.e. 𝑖= 𝑗=1, 𝑟𝑧=𝜏=0 (LWG99),

𝜖2
〈
𝑢′2

〉
𝑧𝑡
= 𝑅11 (𝑥, 𝑦, 0, 0) = 𝜖2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

3∑︁
𝑙=1

3∑︁
𝑚=1

𝑀
†
1𝑙
𝑀1𝑚Φ∞𝑙𝑚 (k)d𝑘𝑥d𝑘𝑦d𝑘𝑧 . (4.1)

The relevant components of the transfer-function tensor 𝑀𝑖 𝑗 are

𝑀11 = 𝑢 (0) , 𝑀12 =
i𝑘𝑥√︃
𝑘2
𝑥 + 𝑘2

𝑧

𝑢 (0) −
𝑘2
𝑧

𝑘𝑥

√︃
𝑘2
𝑥 + 𝑘2

𝑧

𝑢, 𝑀13 =
i𝑘𝑧

𝑘𝑥
𝑢, (4.2)

where 𝑢 (0) is the next-order term of the expansion of 𝑢0 in (3.2) with respect to 𝑘𝑥≪1 (LWG99).

By substituting (4.2) into (4.1) and collecting the dominant ter.m.s. O
(
𝑘−2
𝑥

)
, the integrand in

(4.1) becomes

3∑︁
𝑙=1

3∑︁
𝑚=1

𝑀
†
1𝑙
𝑀1𝑚Φ∞𝑙𝑚 (k) =

𝑘2
𝑧 |𝑢 |2

𝑘2
𝑥

©
«

𝑘2
𝑧√︃

𝑘2
𝑥 + 𝑘2

𝑧

Φ∞22 +Φ∞33

ª®®
¬
+ O(𝑘−1

𝑥 ). (4.3)

As suggested by LWG99 on p. 187, an axial-symmetric turbulence model that describes free-

stream turbulence is (Batchelor 1953; Chandrasekhar 1950)

Φ∞𝑖 𝑗 =

𝑘2
⊥𝛿

⊥
𝑖 𝑗 − 𝑘⊥𝑖𝑘⊥ 𝑗

𝑘2
⊥

(
Φ𝑡 −

2𝑘2
𝑥

𝑘2
⊥
Φ𝑥

)
+ Φ𝑥

𝑘2
⊥

(
𝑘2
𝑥𝛿

⊥
𝑖 𝑗 − 𝑘𝑥𝑘⊥𝑖𝛿𝑖1 + 𝑘2

⊥𝛿𝑖1𝛿 𝑗1
)
, (4.4)

where 𝑘⊥𝑖 = 𝑘𝑖−𝛿𝑖1𝑘𝑥 , 𝛿𝑖1 is the Kronecker delta, 𝛿⊥𝑖 𝑗 = 𝛿𝑖 𝑗−𝛿𝑖1𝛿 𝑗1 is the cross-stream Kronecker

delta, and 𝑘⊥=
√︃
𝑘2
𝑦 + 𝑘2

𝑧 . The functions Φ𝑥=Φ𝑥 (𝑘𝑥 , 𝑘⊥) and Φ𝑡=Φ𝑡 (𝑘𝑥 , 𝑘⊥) are the longitudinal

and transverse spectra. In the limit 𝑘𝑥→0,

Φ∞22 =
𝑘2
𝑧

𝑘2
𝑥 + 𝑘2

𝑧

Φ𝑡 , Φ∞33 =
𝑘2
𝑥

𝑘2
𝑥 + 𝑘2

𝑧

Φ𝑡 . (4.5)

Substitution of (4.5) into (4.3) and then into (4.1) leads to the variance of boundary-layer

streamwise velocity,

〈
𝑢′2

〉
𝑧𝑡
(𝑥, 𝑦) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
𝑘𝑧

𝑘𝑥

)2

|𝑢 |2 (𝑥, 𝑦)Φ𝑡 (𝑘𝑥 , 𝑘⊥)d𝑘𝑥d𝑘𝑦d𝑘𝑧 . (4.6)

As discussed by LWG99, these results demonstrate that, at leading order, the growth and

development of the Klebanoff modes is dictated by the transverse spectral function Φ𝑡 obtained

by correlations of the velocity components perpendicular to the streamwise direction (refer to

LWG99 on p. 188), and not by the longitudinal spectral function Φ𝑥 , which is typically the object

of experimental investigations of freely decaying grid-generated turbulence.

4.2. Free-stream turbulence spectrum

The axial-symmetric transverse turbulence spectrum Φ𝑡 (𝑘𝑥 , 𝑘⊥) in §4.1 is assumed to pertain

to homogeneous turbulence and it is therefore independent of the streamwise direction (Hunt 1973;

Hunt & Carruthers 1990). However, in a more general non-homogeneous case, the turbulence
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spectrum also depends on the position vector,Φ𝑡 (x, 𝑘𝑥 , 𝑘⊥), as for example discussed in Townsend

(1980). To the best of our knowledge, no detailed measurements of Φ𝑡 have been made, so our

objective is to suggest a functional form for Φ𝑡 that is a satisfactory model for our problem.

Our choice of spectrum takes inspiration from the theory of temporally decaying turbulence

discussed in Townsend (1980) on p. 61. The results in the streamwise decaying case can be

assumed to be qualitatively analogous to the temporally decaying case if the streamwise direction

is considered in lieu of time for flows where the turbulence intensity is much smaller than the

free-stream mean velocity, i.e. when Taylor’s hypothesis is valid, as explained in Townsend (1980)

on p. 65. In the idealized limit of vanishingly small amplitude of free-stream turbulence generated

by a grid swept through a still fluid, Batchelor (1953), on p. 93, shows that the time dependency is

due solely to the viscous dissipation, and the temporal decay is exponential. However, Batchelor

(1953) warns that this behaviour would occur only after a long time and it would not apply to a real

turbulent flow generated by a grid in a wind tunnel. The exponential decay would thus not pertain

to locations relatively close to the turbulence-generating grid, which are certainly of interest in

the study of the MA01 experimental results. Furthermore, if the turbulence spectrum Φ𝑡 were

assumed to be independent of the streamwise direction, as in §4.1, the streamwise evolution of

the free-stream disturbance would affect the variance
〈
𝑢′2

〉
𝑧𝑡

in the boundary layer only indirectly

through the decaying free-stream wall-normal and spanwise velocity components because |𝑢 |, the

leading-order component in (4.6), vanishes as 𝑦→∞ (refer to equations (5.11) and (5.20)-(5.22)

in LWG99). Neglecting the streamwise dependency of the free-stream spectrum would mean

that the free-stream decay would be purely exponential because it is dictated by a linearized

dynamics. Including the streamwise dependence in Φ𝑡 is therefore deemed to be more realistic

and it also serves the purpose of modelling mild effects of nonlinearity. Similar modelling of mild

nonlinearity in a free-stream spectrum pertaining to realistic grid-generating turbulence has been

proposed by LWG99 in their §7.2.

Townsend (1980) on p. 61 shows that the spectral function for decaying turbulence has the

form

𝐸 (𝑘, 𝑡) =
〈
𝑢′ (𝑡)2

〉
𝐿 (𝑡)F (𝑘𝐿 (𝑡)), (4.7)

where 𝐿 (𝑡) is an integral scale representing the free-stream isotropic turbulence, ⟨·⟩ indicates

spatial averaging and 𝑘 is the wavenumber. The spectral function (4.7) is found by appropriate

scaling of experimental data (Stewart & Townsend 1996), as also discussed in Hinze (1975) on

p. 263. By substitution of (4.7) into the equation governing the rate of change of the turbulence

spectrum, Townsend (1980) finds

d
〈
𝑢′ (𝑡)2

〉
d𝑡

∝
〈
𝑢′ (𝑡)2

〉3/2

𝐿 (𝑡) ,
d𝐿 (𝑡)

d𝑡
∝
〈
𝑢′ (𝑡)2

〉1/2
, (4.8)

as further explained in Batchelor (1953) on p. 103. The temporal decay of
〈
𝑢′ (𝑡)2

〉
that satisfies

(4.8) is

〈
𝑢′ (𝑡)2

〉
∝ 𝑡−𝛾 , (4.9)

which is consistent with numerous experimental data, for which 1.15<𝛾<1.45 (refer to p. 160

of Pope (2000)), and with theoretical studies, which suggest 𝛾=1 (refer to Tennekes & Lumley

(1972)) or 𝛾=3/2 (refer to Davidson (2004) on p. 407, where the Saffman spectrum is discussed).

The decay constant 𝛾 can then be assumed to be

1 ⩽ 𝛾 ⩽ 3/2. (4.10)
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The integral spatial scale 𝐿 is predicted to grow as

𝐿 ∝ 𝑡𝜁 , 1/4 ⩽ 𝜁 ⩽ 1/2. (4.11)

Substitution of (4.9) and (4.11) into (4.7), and use of (4.10), lead to a simplified form of the

spectrum

𝐸 (𝑘, 𝑡) ∝
F

(
𝑘𝑡𝑑/2

)
𝑡𝑐/2

, (4.12)

for which the inequalities

1 ⩽ 𝑐 ⩽ 5/2 and 1/2 ⩽ 𝑑 ⩽ 1 (4.13)

apply. Also, 𝑐=3𝛾 − 2 and 𝑑 = 2 − 𝛾, from which

𝑐 = 4 − 3𝑑. (4.14)

The time-decaying isotropic spectrum (4.12) can now be used to obtain a spectrum that pertains

to the grid-generated turbulence of interest in our problem. As the spectrum has to account for the

streamwise decay of turbulence, the temporal dependence in (4.12) is converted to the streamwise

dependence. The axial symmetry of the turbulence has to be modelled by including the effect

of the cross-flow wavenumber 𝑘⊥ because, as explained by Batchelor (1953), purely isotropic

turbulence is extremely hard to obtain in the laboratory. Our axial-symmetric transverse spectrum

therefore reads:

Φ𝑡 (𝑥, 𝑘𝑥 , 𝑘⊥; 𝑅𝜆) =
1

𝑘𝑏⊥ (𝑘𝑥𝑅𝜆)2𝛿𝑐
F

(
𝑘𝑥𝑅𝜆𝛿

𝑑

𝑘𝑛⊥

)
, (4.15)

where, in lieu of 𝑡 in (4.12), we have introduced the streamwise coordinate 𝑥 and expressed

this dependence through the boundary-layer thickness 𝛿 because 𝛿 ∝
√
𝑥. The dependence of the

spectrum on 𝑘⊥ is introduced inside and outside the function F to allow maximum generality. The

spatial dependence of the spectrum (4.15) is mild compared with the long streamwise length scale

of the Klebanoff modes because (4.15) is expressed as a function of 𝛿 = 𝛿∗/Λ∗
𝑧 , where 𝛿∗ and Λ

∗
𝑧

are comparable. Consistently with the theoretical framework of §3, the low-frequency assumption

is adopted as the boundary layer acts as a low-frequency-pass filter. It is thus reasonable to consider

a free-stream spectrum such as (4.15), dominated by low-frequency disturbances (𝑘𝑥 ≪ 1 with

𝑘𝑥𝑅𝜆 = O(1) or smaller).

The parameters 𝑛, 𝑏, 𝑐, 𝑑 in (4.15) are found by asymptotic analysis and by fitting the

experimental data. The parameters 𝑐 and 𝑑 play analogous roles in (4.12) and (4.15).

4.3. Scaling of boundary-layer streamwise velocity spectra

By substituting the spectrum (4.15) into (4.6), the variance of the boundary-layer streamwise

velocity becomes

〈
𝑢′2

〉
𝑧𝑡
=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
𝑘𝑧

𝑘𝑥

)2 |𝑢 |2

𝑘𝑏⊥ (𝑘𝑥𝑅𝜆)2𝛿𝑐
F

(
𝑘𝑥𝑅𝜆𝛿

𝑑

𝑘𝑛⊥

)
d𝑘𝑥d𝑘𝑦d𝑘𝑧 . (4.16)

Expression (4.16) is used with (2.1) and (2.2) to explain the scaling of the experimental results,

shown in figures 2(c,d). The four parameters 𝑛, 𝑏, 𝑐, 𝑑 in (4.16) are found by using the following

four conditions.

• In figure 2(c), the spectrum 𝐸𝛼 depends only on the scaled streamwise wavenumber 𝑘𝑥𝛿𝑑 .
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• In figure 2(d), the spectrum 𝐸𝛽 depends only on the spanwise wavenumber 𝑘𝑧 and is

independent of the streamwise location.

• In figure 4(a), the best fitting of the experimental data leads to the power-law dependency

(2.3) for 𝐸𝛼 (𝑘𝑥𝛿𝑑).
• In figure 4(a), the best fitting of the experimental data leads to the power-law dependency

(2.4) for 𝐸𝛽 (𝑘𝑧).

4.3.1. Spectrum versus spanwise wavenumber

Motivated by the scaling of the spectrum 𝐸𝛽 by 𝑅𝑒𝑥 , given in the second expression in (2.2),

the variance (4.16) is rescaled by 𝑅𝑒𝑥 as

〈
𝑢′2

〉
𝑧𝑡

𝐶𝑒𝑅𝑒𝑥
=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

𝑘2
𝑧 |𝑢 |2

𝐶𝑒𝑘
𝑏
⊥ (𝑘𝑥𝑅𝜆)3𝑥𝛿𝑐

F
(
𝑘𝑥𝑅𝜆𝛿

𝑑

𝑘𝑛⊥

)
d𝑘𝑥d𝑘𝑦d𝑘𝑧 . (4.17)

The streamwise velocity |𝑢 | is changed to |𝑢 |2 = |�̃� |2 𝑘2
𝑥𝑅

2
𝜆
/𝑘4

𝑧 and the streamwise coordinate is

eliminated by using 𝑥 = 𝛿2𝑘𝑥𝑅𝜆/2, to obtain

〈
𝑢′2

〉
𝑧𝑡

𝐶𝑒𝑅𝑒𝑥
=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

2 |�̃� |2

𝐶𝑒𝑘
2
𝑧𝑘

𝑏
⊥ (𝑘𝑥𝑅𝜆)2𝛿𝑐+2

F
(
𝑘𝑥𝑅𝜆𝛿

𝑑

𝑘𝑛⊥

)
d𝑘𝑥d𝑘𝑦d𝑘𝑧 . (4.18)

The asymptotic solution for 𝜅𝑧 ≫ 1, i.e. |�̃� |2 = (𝑘𝑧𝛿)2 |𝐺 ( �̃�) |2 /2, shown in figure 5 and discussed

at the end of §3.2, is substituted into (4.18) to arrive at

〈
𝑢′2

〉
𝑧𝑡

𝐶𝑒𝑅𝑒𝑥
=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

|𝐺 ( �̃�) |2

𝐶𝑒𝑘
𝑏
⊥ (𝑘𝑥𝑅𝜆)2𝛿𝑐

F
(
𝑘𝑥𝑅𝜆𝛿

𝑑

𝑘𝑛⊥

)
d𝑘𝑥d𝑘𝑦d𝑘𝑧 . (4.19)

The wavenumbers 𝑘⊥ and 𝑘𝑦 are eliminated by using 𝑘⊥=|𝑘𝑧 | (1+ �̃�2)1/2=|𝑘𝑧 |𝐾 ( �̃�) and 𝑘𝑦 = 𝑘𝑧 �̃�,

and the integration limits are changed to [0,∞)

〈
𝑢′2

〉
𝑧𝑡

𝐶𝑒𝑅𝑒𝑥
=

∫ ∞

0

∫ ∞

0

∫ ∞

0

23 |𝐺 ( �̃�) |2

𝐶𝑒𝑘
𝑏−1
𝑧 (𝑘𝑥𝑅𝜆)2𝐾 ( �̃�)𝑏𝛿𝑐

F
(
𝑘𝑥𝑅𝜆𝛿

𝑑

(𝑘𝑧𝐾 ( �̃�))𝑛

)
d𝑘𝑥d�̃�d𝑘𝑧 . (4.20)

By using the rescaled (2.1),

〈
𝑢′2

〉
𝑧𝑡

𝐶𝑒𝑅𝑒𝑥
=
𝐶𝛽

𝜖2

∫ ∞

0

𝐸𝛽 (𝑘𝑧)d𝑘𝑧 , (4.21)

we find

𝐸𝛽 (𝑘𝑧) =
23𝜖2

𝐶𝑒𝐶𝛽𝑅
2
𝜆
𝑘𝑏−1
𝑧 𝛿𝑐

∫ ∞

0

|𝐺 ( �̃�) |2

𝐾 ( �̃�)𝑏
∫ ∞

0

1

𝑘2
𝑥

F
(
𝑘𝑥𝑅𝜆𝛿

𝑑

(𝑘𝑧𝐾 ( �̃�))𝑛

)
d𝑘𝑥︸                                ︷︷                                ︸

𝐼𝛽

d�̃�. (4.22)

By defining the integration variable 𝜎 = 𝑘𝑥𝑅𝜆𝛿
𝑑/[𝑘𝑧𝐾 ( �̃�)]𝑛, the integral 𝐼𝛽 in (4.22) becomes

𝐼𝛽 =
𝑅𝜆𝛿

𝑑

[𝑘𝑧𝐾 ( �̃�)]𝑛
∫ ∞

0

F (𝜎)
𝜎2

d𝜎. (4.23)

Upon substitution of (4.23) into (4.22), we obtain



14 Pierre Ricco

𝐸𝛽 (𝑘𝑧) =
23𝜖2𝛿𝑑−𝑐

𝐶𝑒𝐶𝛽𝑅𝜆𝑘
𝑏−1+𝑛
𝑧

∫ ∞

0

|𝐺 ( �̃�) |2

[𝐾 ( �̃�)]𝑛+𝑏
d�̃�

∫ ∞

0

F (𝜎)
𝜎2

d𝜎. (4.24)

The key point here is that, as the function 𝐸𝛽 must not depend on the streamwise direction, the

dependence on 𝛿 must be eliminated. It follows that 𝑐 = 𝑑.

The spectrum (4.24) becomes

𝐸𝛽 (𝑘𝑧) =
𝐵𝛽𝐺𝛽Σ𝛽

𝑘𝑧
𝛽

, (4.25)

where 𝛽 = 𝑏 − 1 + 𝑛, and

𝐵𝛽 =
23𝜖2

𝑅𝜆𝐶𝑒𝐶𝛽

, 𝐺𝛽 =

∫ ∞

0

|𝐺 ( �̃�) |2(
1 + �̃�2

) (𝑛+𝑏)/2 d�̃�, Σ𝛽 =

∫ ∞

0

F (𝜎)
𝜎2

d𝜎. (4.26)

The algebraic decay emerging in (4.25) matches the behaviour of the experimental data in figure

4 (right). At small 𝑘𝑧 , the theoretical framework does not predict the trend of the data in figure

4 (right), which is almost independent of 𝑘𝑧 . At small 𝑘𝑧 , the spanwise wavelength is larger

than the boundary-layer thickness, the spanwise viscous effects are negligible and the flow is

ruled by the boundary-layer equations, as discussed in §3.1. Our analysis instead hinges on the

asymptotic solution of the boundary-region equations for which the spanwise wavelength and

the boundary-layer thickness are comparable, i.e. the wall-normal and spanwise diffusion effects

are both important (𝜅𝑧 = O(1) or larger). The same reasoning applies to the dash-dotted lines in

figure 2(d), which do not collapse onto one another as they correspond to streamwise locations

close to the leading edge, where spanwise-diffusion effects are negligible.

4.3.2. Spectrum versus streamwise wavenumber

Motivated by the scaling of the spectrum 𝐸𝛼 by 𝑅𝑒
3/2
𝑥 , given in the first expression in (2.2),

the variance (4.16) is rescaled by 𝑅𝑒
3/2
𝑥 . By using 𝑐 = 𝑑, found in §4.3.1, we find

〈
𝑢′2

〉
𝑧𝑡

𝐶𝑒𝑅𝑒
3/2
𝑥

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

𝑘2
𝑧 |𝑢 |2

𝐶𝑒𝑘
5/2
𝑥 𝑘𝑏⊥𝑅

7/2
𝜆
𝛿𝑐𝑥3/2 F

(
𝑘𝑥𝑅𝜆𝛿

𝑐

𝑘𝑛⊥

)
d𝑘𝑥d𝑘𝑦d𝑘𝑧 . (4.27)

The streamwise velocity |𝑢 | is changed to |𝑢 |2 = |�̃� |2 𝑘2
𝑥𝑅

2
𝜆
/𝑘4

𝑧 and the streamwise coordinate is

eliminated by using 𝑥 = 𝛿2𝑘𝑥𝑅𝜆/2 to find

〈
𝑢′2

〉
𝑧𝑡

𝐶𝑒𝑅𝑒
3/2
𝑥

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

23/2 |�̃� |2

𝐶𝑒𝑘
2
𝑧𝑘

2
𝑥𝑘

𝑏
⊥𝑅

3
𝜆
𝛿𝑐+3

F
(
𝑘𝑥𝑅𝜆𝛿

𝑐

𝑘𝑛⊥

)
d𝑘𝑥d𝑘𝑦d𝑘𝑧 . (4.28)

The changes of variable 𝑘𝑧 = 𝑘⊥ sin 𝜃, 𝑘𝑦 = 𝑘⊥ cos 𝜃, 𝑘⊥ = 𝑘𝑜/𝛿 are used in (4.28) to find

〈
𝑢′2

〉
𝑧𝑡

𝐶𝑒𝑅𝑒
3/2
𝑥

=

∫ ∞

−∞

∫ ∞

0

∫ 2𝜋

0

23/2 |�̃� |2

𝐶𝑒𝛿𝑐+3−𝑏𝑘𝑏+1
𝑜 (sin 𝜃)2𝑘2

𝑥𝑅
3
𝜆

F
(
𝑘𝑥𝑅𝜆𝛿

𝑛+𝑐

𝑘𝑛𝑜

)
d𝜃d𝑘𝑜d𝑘𝑥 . (4.29)

We substitute the asymptotic result

|�̃� |2 =
𝑘2
𝑧𝛿

2

2
|𝐺 ( �̃�) |2 =

𝑘2
𝑜 (sin 𝜃)2

2
|𝐺 (cot 𝜃) |2
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into (4.29) to obtain〈
𝑢′2

〉
𝑧𝑡

𝐶𝑒𝑅𝑒
3/2
𝑥

=

∫ ∞

−∞

∫ ∞

0

∫ 2𝜋

0

√
2 |𝐺 (cot 𝜃) |2

𝐶𝑒𝛿𝑐+4−𝑏𝑘𝑏−1
𝑜 𝑘2

𝑥𝑅
3
𝜆

F
(
𝑘𝑥𝑅𝜆𝛿

𝑛+𝑐

𝑘𝑛𝑜

)
d𝜃d𝑘𝑜d𝑘𝑥 . (4.30)

By using the rescaled (2.1),

〈
𝑢′2

〉
𝑧𝑡

𝐶𝑒𝑅𝑒
3/2
𝑥

=
𝐶𝛼

𝜖2

∫ ∞

0

𝐸𝛼 (𝑘𝑥𝛿)
𝛿

d(𝑘𝑥𝛿), (4.31)

changing the limits of the integration along 𝑘𝑥 to [0,∞), and equating (4.30) and (4.31), we find

𝐸𝛼 (𝑘𝑥𝛿) =
23/2𝜖2𝐺𝛼

𝐶𝑒𝐶𝛼𝑅
3
𝜆

∫ ∞

0

F
(
𝑘𝑥𝑅𝜆𝛿

𝑛+𝑐

𝑘𝑛𝑜

)
d𝑘𝑜

𝑘2
𝑥𝛿

𝑐+3−𝑏𝑘𝑏−1
𝑜

, (4.32)

where

𝐺𝛼 =

∫ 2𝜋

0

|𝐺 (cot 𝜃) |2 d𝜃. (4.33)

We define the integration variable 𝜔 = 𝑘𝑥𝑅𝜆𝛿
𝑛+𝑐/𝑘𝑛𝑜 (𝑛 > 0) in (4.32) to obtain

𝐸𝛼 (𝑘𝑥𝛿) =
23/2𝜖2𝐺𝛼

𝑛𝐶𝑒𝐶𝛼𝑅
3+(𝑏−2)/𝑛
𝜆

∫ ∞

0

F (𝜔) d𝜔

𝜔1+(2−𝑏)/𝑛𝛿𝑐+1+𝑐 (𝑏−2)/𝑛𝑘2+(𝑏−2)/𝑛
𝑥

. (4.34)

By defining �̃� = 2 + (𝑏 − 2)/𝑛 and 𝑑 = 𝑐 + 1 + 𝑐(𝑏 − 2)/𝑛, the spectrum becomes

𝐸𝛼 (𝑘𝑥𝛿) =
23/2𝜖2𝐺𝛼

𝑛𝐶𝑒𝐶𝛼𝑅
3+(𝑏−2)/𝑛
𝜆

(
𝛿𝑑/𝛼𝑘𝑥

)𝛼
∫ ∞

0

F (𝜔) d𝜔

𝜔1+(2−𝑏)/𝑛 . (4.35)

For the spectrum 𝐸𝛼 to depend only on 𝑘𝑥𝛿, we set �̃� = 𝑑. It follows that 𝑐 = 1. The values

𝑐 = 1 and 𝑑 = 1 respect the inequalities (4.13) and the relation (4.14) obtained in §4.2 from

Townsend’s spectrum. The decay constant becomes 𝛾 = 1, which also falls within the inequality

range predicted by Townsend’s theory and is consistent with theoretical and experimental studies

(Tennekes & Lumley 1972; Fransson et al. 2005).

By using the displacement thickness 𝛿𝑑 instead of 𝛿, as in the MA01 experiments, the spectrum

(4.35) becomes

𝐸𝛼 (𝑘𝑥𝛿𝑑) =
𝐴𝛼𝐺𝛼Ω𝛼

(𝑘𝑥𝛿𝑑)𝛼
, (4.36)

where

𝐴𝛼 =
23/2𝜖2

𝑛𝐶𝑒𝐶𝛼𝑅
3+(𝑏−2)/𝑛
𝜆

(
1.72
√

2

)𝛼
, Ω𝛼 =

∫ ∞

0

F (𝜔)
𝜔1+(2−𝑏)/𝑛 d𝜔. (4.37)

For 𝑘𝑥𝛿𝑑 < 0.04, the experimental data shown in figure 4 (left) decay algebraically at a smaller

rate than at larger 𝑘𝑥𝛿𝑑 . For fixed 𝑘𝑥 and small 𝛿𝑑 , the spanwise wavelength is larger than 𝛿𝑑 , the

spanwise diffusivity is negligible, and the flow is described by the boundary-layer equations. It is

then expected that the spectrum behaves differently when the boundary-region equations, used in

our theoretical framework, instead describe the flow.
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𝐸𝛽 (𝑘𝑧) =
𝐵𝛽𝐺𝛽Σ𝛽

𝑘𝑧
𝛽

𝐸𝛼 (𝑘𝑥𝛿𝑑) =
𝐴𝛼𝐺𝛼Ω𝛼

(𝑘𝑥𝛿𝑑)𝛼

𝐵𝛽𝐺𝛽Σ𝛽 = 8.3 · 102 𝐴𝛼𝐺𝛼Ω𝛼 = 1.91 · 10−5

𝐵𝛽 =
23𝜖2

𝑅𝜆𝐶𝑒𝐶𝛽
= 27104 𝐴𝛼 =

23/2𝜖2

𝑛𝐶𝑒𝐶𝛼𝑅
3+(𝑏−2)/𝑛
𝜆

(
1.72
√

2

)𝛼
= 4.86 · 10−7

𝐺𝛽Σ𝛽 = 0.0306 𝐺𝛼Ω𝛼 = 39.32

𝐺𝛽 =

∫ ∞

0

|𝐺 ( �̃�) |2(
1 + �̃�2

) (𝑛+𝑏)/2 d�̃� = 0.0627 𝐺𝛼 =

∫ 2𝜋

0
|𝐺 (cot 𝜃) |2 d𝜃 = 0.314

Σ𝛽 =

∫ ∞

0

F (𝜎)
𝜎2

d𝜎 = 0.488 Ω𝛼 =

∫ ∞

0
𝜔 (𝑏−2)/𝑛−1F (𝜔) d𝜔 = 125.22

Table 1: Numerical values of quantities related to the energy spectra 𝐸𝛼 and 𝐸𝛽 .

4.4. Parameters of the transverse spectrum Φ𝑡

We use the exponents �̃� = 2.82 and 𝛽 = 1.55 in (2.3), found from the best-fitting analysis in

§2.4, to solve the algebraic expressions 𝛽 = 𝑏 − 1 + 𝑛, found in §4.3.1, and �̃� = 2 + (𝑏 − 2)/𝑛,
found in §4.3.2. The four coefficients of the transverse spectrum Φ𝑡 are

𝑐 = 𝑑 = 1, 𝑛 =
𝛽 − 1

�̃� − 1
= 0.302, 𝑏 =

�̃�𝛽 + �̃� − 2𝛽

�̃� − 1
= 2.248. (4.38)

Table 1 presents the numerical values related to the energy spectra 𝐸𝛼 and 𝐸𝛽 .

4.5. The spectral function F
A spectral function F that satisfies the two integrals Σ𝛽 and Ω𝛼, given in table 1, is now

chosen. Inspired by Ishihara et al. (2005) and Sagaut & Cambon (2008), we select F (𝜉) =

𝐴 𝑓 𝜉
𝑎1 exp (−𝑎2𝜉

𝑎3 ), where the coefficients satisfy

Σ𝛽 =

∫ ∞

0

F (𝜎)
𝜎2

d𝜎 = 𝐴 𝑓

∫ ∞

0

𝜎𝑎1−2 exp (−𝑎2𝜎
𝑎3 ) d𝜎 =

𝐴 𝑓 Γ

(
𝑎1−1
𝑎3

)

𝑎3𝑎

𝑎1−1

𝑎3

2

= 0.488, (4.39)

Ω𝛼 =

∫ ∞

0

𝜔𝜔F (𝜔) d𝜔 = 𝐴 𝑓

∫ ∞

0

𝜔𝑎1+𝜔 exp (−𝑎2𝜔
𝑎3 ) d𝜔 =

𝐴 𝑓 Γ

(
𝑎1+𝜔+1

𝑎3

)

𝑎3𝑎

𝑎1+𝜔+1

𝑎3

2

= 125.22,

(4.40)

with Γ the Gamma function, and 𝜔 = (𝑏 − 2)/𝑛 − 1=0.179. We can find multiple combinations

of 𝐴 𝑓 , 𝑎1, 𝑎2 and 𝑎3 that satisfy Σ𝛽 and Ω𝛼. Figure 6 shows an example of the spectral function

F (𝜉).
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Figure 6: Spectral function F (𝜉) for 𝐴 𝑓 = 0.03, 𝑎1 = 3, 𝑎2 = 0.3 and 𝑎3 = 0.9.

5. Conclusions and outlook

In this paper, we have continued our effort to obtain theoretical and numerical results that

explain the experimental findings reported by Matsubara & Alfredsson (2001), one of the most

important studies on the impact of free-stream turbulence on the growth and evolution of velocity

perturbations in a flat-plate transitional boundary layer. In Ricco et al. (2011), our theoretical

framework and calculations reproduced the main features reported by Matsubara & Alfredsson

(2001) on the initiation of nonlinear effects within the boundary layer, such as the enhancement

of the wall-shear stress with respect to the laminar value, the growth of disturbances in the

outer part of the boundary layer and the motion of the peak fluctuations towards the wall. In the

present paper, we have instead focused on the collapse of the energy spectral profiles, obtained

by Matsubara & Alfredsson (2001) when appropriate rescaling was adopted.

The spectral theory of homogeneous temporal-decaying turbulence developed by Townsend

(1980) has been utilized to obtain a model spectrum for the streamwise-decaying axial-symmetric

free-stream turbulence generated by Matsubara & Alfredsson (2001) by use of a grid located in

the upstream section of their wind tunnel. Quasi-steady asymptotic solutions of the unsteady

boundary-region equations, found by Leib et al. (1999), have been used in the analysis of the

experimental results of Matsubara & Alfredsson (2001). The quasi-steady approximation was

justified by the established finding that the boundary layer acts as a low-frequency-pass filter on

the free-stream fluctuations, i.e. low-frequency disturbances are amplified in the boundary layer,

while high-frequency disturbances are less prone to reach the core of the boundary layer.

Further work should be directed at measurements of the cross-stream velocity components in

the free stream to arrive at a functional form for the transverse spectrum, which is responsible

for the generation of the low-frequency Klebanoff modes inside the boundary layer (Leib et al.

1999). To the best of our knowledge, no experimental data of the free-stream transverse spectrum

exist. These data would allow for a better understanding of the response of the boundary layer to

the free-stream flow.

As our formulation considers quasi-steady components of the Klebanoff modes, more accurate

models that would allow for comparison at any wavenumber and frequency should include

perturbations at any value of the scaled wavenumber 𝜅𝑧 . The boundary-layer equations, valid

near the leading edge where spanwise diffusion is negligible, should be solved for the cases

with 𝜅𝑧≪1. An evident complication is that the receptivity would then be dictated by the full

free-stream spectrum (4.4), which is a combination of the streamwise and transverse spectra, and
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not only by the leading-order transverse spectrum (4.15). It also follows that velocity components

of higher order (with respect to the frequency), such as those appearing in (4.2) and the order-

one components studied by Wu & Dong (2016), would have to be taken into account. These

improvements could lead to better agreement between the theoretical results and the experimental

data at small 𝑘𝑥𝛿𝑑 and small 𝑘𝑧 in figure 4.

In our analysis, only a mild effect of free-stream nonlinearity has been included by modelling the

streamwise dependency of the free-stream spectrum, along similar lines to the nonlinear model in

§7.2 of Leib et al. (1999). If the streamwise dependency of the free-stream spectrum had not been

accounted for, the free-stream decay would have been exponential because dictated by a linearized

dynamics, and it would not have been representative of realistic turbulence generated by a grid

in a wind tunnel (Batchelor 1953). Lifting the assumption of low-amplitude disturbances would

lead to a better understanding of the boundary-layer response to the free-stream perturbation

flow during the nonlinear stages of transition, which may involve secondary instability and the

formation of turbulent spots. An interesting line of research would be the quantitative comparison

between such nonlinear receptivity results and experimental data during transition, such as those

obtained, for example, by Verdoya et al. (2022).
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Appendix A. Numerical procedures

The boundary-region equations, given by (5.2)-(5.5) on p. 180 in LWG99 and complemented

by the free-stream and initial boundary conditions given by (5.28)-(5.31) on p. 183 and (5.25)-

(5.27) on p. 182 in LWG99, are solved numerically. As the equations are parabolic along the

streamwise direction, a streamwise marching scheme is employed. As shown in figure 7, a

second-order implicit finite-difference scheme, central in 𝜂 and backward in 𝑥, is adopted, where

the derivatives of a velocity component are expressed as

𝜕𝑞

𝜕𝜂
=
𝑞 𝑗+1 − 𝑞 𝑗−1

2Δ𝜂
,

𝜕2𝑞

𝜕𝜂2
=
𝑞 𝑗+1 − 2𝑞 𝑗 + 𝑞 𝑗−1

(Δ𝜂)2
,

𝜕𝑞

𝜕𝑥
=

3
2
𝑞𝑖, 𝑗 − 2𝑞𝑖−1, 𝑗 + 1

2
𝑞𝑖−2, 𝑗

Δ𝑥
. (A 1)

If the pressure is computed on the same grid as the velocity components, a pressure decoupling

phenomenon occurs. Therefore, the pressure is computed on a grid staggered in 𝜂 as

𝑝 =
𝑝 𝑗+1 + 𝑝 𝑗

2
,

𝜕𝑝

𝜕𝜂
=
𝑝 𝑗+1 − 𝑝 𝑗

Δ𝜂
. (A 2)

The pressure at the wall does not have to be specified and is calculated a posteriori by solving

the 𝑧-momentum equation at 𝜂 = 0. Due to the linearity of the equations, the system is in the



Scaling of boundary-layer disturbances 19

Outer BC

Wall BC x̄

η

∆x̄

∆η

i-1, j i , ji-2, j

i , j -1

i , j+1

N -1

0

i, j+1

i, j

Figure 7: Sketch of the regular grid (black circles) and staggered grid (grey circles) used for the

numerical scheme, adapted from Viaro & Ricco (2019). BC stands for ‘boundary conditions’.

form Ax = b. For a grid with 𝑁 points along 𝜂, A is a (𝑁 − 2) × (𝑁 − 2) block-tridiagonal matrix

where each block is a 4× 4 matrix associated with the four unknowns {�̄�, �̄�, �̄�, 𝑝}. Therefore, the

wall-normal index 𝑗 of the vectors and matrix runs from 1 to 𝑁 − 2. The numerical procedure

used to solve the linear system is found in Cebeci (2002) on pp. 260-264.
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