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Trust Management of Tiny Federated Learning in

Internet of Unmanned Aerial Vehicles
Jie Zheng, Jipeng Xu, Hongyang Du, Dusit Niyato, Fellow IEEE, Jiawen Kang, Jiangtian Nie, Zheng Wang

Abstract—Lightweight training and distributed tiny data stor-
age in local model will lead to the severe challenge of convergence
for tiny federated learning (FL). Achieving fast convergence in
tiny FL is crucial for many emerging applications in Internet
of Unmanned Aerial Vehicles (IUAVs) networks. Excessive infor-
mation exchange between UAVs and IoT devices could lead to
security risks and data breaches, while insufficient information
can slow down the learning process and negatively system
performance experience due to significant computational and
communication constraints in tiny FL hardware system. This
paper proposes a trusting, low latency, and energy-efficient tiny
wireless FL framework with blockchain (TBWFL) for IUAV
systems. We develop a quantifiable model to determine the
trustworthiness of IoT devices in IUAV networks. This model
incorporates the time spent in communication, computation, and
block production with a decay function in each round of FL at
the UAVs. Then it combines the trust information from different
UAVs, considering their credibility of trust recommendation. We
formulate the TBWFL as an optimization problem that balances
trustworthiness, learning speed, and energy consumption for
IoT devices with diverse computing and energy capabilities.
We decompose the complex optimization problem into three
sub-problems for improved local accuracy, fast learning, trust
verification, and energy efficiency of IoT devices. Our extensive
experiments show that TBWFL offers higher trustworthiness,
faster convergence, and lower energy consumption than the
existing state-of-the-art FL scheme.

Index Terms—Trust Management, Blockchain, Tiny Wire-
less Federated Learning, Internet of Unmanned Aerial Vehicle
(IUAV).

I. INTRODUCTION

Recently, federated learning (FL) has emerged as a viable

means to build intelligent systems to support tasks like traffic

monitoring and digital healthcare [1] [2]. With wirelesss FL

(WFL), a base stations (BS) or unmanned aerial vehicle (UAV)
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collects information (e.g., model parameters) from multiple

user equipments (UEs). A global model can be trained on the

BS or UAV, then the parameter of which is distributed to users

to be fine-tuned to create a local model on their local device

(using local training data) [3]. The parameters generated by

these local models are then transmitted back to a centralized

server to update the global parameter [4]. FL mitigates many

privacy concerns when performing crowd-sourcing learning as

the central server does not need to directly access user data

during training. Moreover, compared to traditional distributed

tiny machine learning, tiny FL can better cope with the

heterogeneity of data and computing power owned by all

involved parties [5].

Although promising, there are key challenges in training

the tiny WFL model training [6] due to the openness of the

wireless link. As it uses a broadcast channel, the security

of data during communication cannot be guaranteed, and it

is easy to be tampered [7]. Most importantly, this problem

occurs even when FL is used for supervised learning: Internet

of Things (IoT) users participating in FL are not necessarily

trusted, and data owners at the UE may send deceptive

parameters to the edge server in the UAV, which breaks

the FL process. Specifically, malicious devices intentionally

alter a small portion of the parameters of the local model or

inject toxic data into the local data set and form a false data

injection attack [8] [9]. Furthermore, lightweight training and

distributed tiny data storage in tiny FL will results in the slow

convergence of global model in internet of unmanned aerial

vehicles (IUAVs).

To address the issue that IoT UEs participating in WFL

are untrustworthy and therefore easy to cause data poison-

ing attacks, the blockchain has been shown to enhance the

reliability of FL tasks in wireless IoT networks [10] [11].

However, existing works did not verify the performance under

distributed tiny data storage conditions that the data are not

independent and identically distributed, and also ignored an

increase in cost of resources of the overall learning process

after joining the blockchain in IUAVs. While [12] proposed

a novel WFL algorithm by only assuming strongly convex

and smooth loss functions, denoted as the FEDL algorithm,

which is suitable for wireless networks and shows higher

accuracy and convergence speed than those of the federated

average (FedAvg) algorithm [13]. This is due to the fact that

the algorithm provides more parameters in the local update

stage of the UE upload. However, the FEDL can easily suffer

poisoning attacks when transmitted on untrusted channels,

and is more destructive, as demonstrated by our experiments

results.
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Meanwhile, blockchain can provide secure transactions [14],

and trust management of blockchain can be referred to as

a potent way of assessing the actions of UEs, serving to

dampen the influence of malicious devices, in which a trust

model can be used to compute the trust value to quantify

the trustworthiness of a given UE as the participant [15]. In

this paper, a trust management framework for tiny blockchain-

enabled wireless federated learning (BWFL) implemented in

a semi-central manner for UAVs is proposed with the consid-

eration of local learning time, wireless transmission time and

block validation time. The local time is subject to the level

of local accuracy and the hyper-learning rate, and the wireless

transmission time is subject to the wireless resource allocation,

and the block validation time is affected by the frequency of

block generation and the size of block. Furthermore, a resource

allocation optimization problem for our proposed tiny trust

blockchain-enabled wireless federated learning (TBWFL) is

formulated to capture the trade-off between the trustworthy

learning time and energy costs for UEs with heterogeneous

computing and power resources. To our best knowledge, this

work is the first proposed trust model to evaluate and quantify

the trust characteristics of blockchain-enabled tiny WFL in

IUAVs.

The main contributions of this paper are summarized as

follows.

• We propose a novel trust management model for a tiny

WFL enabled by semi-centralized blockchain considering

direct and indirect trust values from the single UAV

domain and the multiple UAVs domain. By considering

both direct and indirect trust, the model provides more

robustness against attacks, better scalability, and dynamic

trust update, essential for coverage and timeliness oper-

ations in IUAV systems. Direct trust is computed using

historical experiences of the evaluated UE by applying

a decay function with the parameters of communication

time, computation time, and block producing time in

every round of tiny WFL. Indirect trust can be derived by

consolidating recommendations from UAVs within and

across domains. The credibility of trust recommendations

from UAVs can be computed with their respective actions

of recommendation provision.

• We present a trust, fast, and energy-efficient blockchain

tiny WFL framework for IUAV systems. Beyond the as-

sumption of a strongly convex and smooth loss function,

our proposed TBWFL not only considers the heteroge-

neous data of UEs but also characterizes the trade-off

between local computing time, global communication

time, block producing time, and energy cost of UE

to update the trustworthy tiny WFL model for IUAV

systems. Our proposed TBWFL scheme implemented in

a semi-centralized manner appears to be an effective

compromise, offering the advantages of both centralized

and distributed systems in the potentially large number

of small devices, the limited energy resources of IoT tiny

devices, and the highly heterogeneous data in tiny WFL

of IUAV systems.

• We design an optimization problem of computing and

communication resource allocation for TBWFL to op-

timize jointly the trust value, block producing time and

training time and UE energy consumption. The trust value

of UE is computed before their parameters aggregation.

The spread of malicious information across the wireless

network is significantly suppressed by strategically select-

ing the appropriate UE with the higher trust value as the

participant. The effectiveness of our proposed TBWFL

system is extensively evaluated. The experimental results

affirm that our TBWFL model is effective in capturing

dynamic malicious actions of UE in each round of WFL.

Comparative analysis reveals that our proposed TBWFL

model outperforms existing trust models. Our approach

effectively combats poisoning attacks and recovers con-

vergence even in the face of malicious UE attacks.

II. RELATED WORK

Federated Learning in IUAV: FL has drawn great attention

due to its advantages of data partitioning, privacy protection,

the decentralized machine learning paradigm, communication

interaction, and the heterogeneity of data and system [16]

[17]. Recently, the integration of FL into UAV networks has

raised concerns for many research endeavors, such as FL for

multiaccess edge computing assisted by UAVs [18], FL for 6G

UAVs [19], FL for UAV-Assisted in multitiered networks [20].

With the evolution of IoT networks, FL has been suggested

for an array of IoT applications [2] [21]. Due to the limited

computing capacity, transmitting bandwidth, and energy in IoT

networks, WFL in resource-constrained mobile IoT networks

has received gradually more attention [22]. By jointly opti-

mizing communication efficiency and resource allocation, fast

convergence and accurate FL over lossy radio channels and

limited communication resources have been investigated in

mobile IoT networks [23].

Tiny Federated Learning in IUAV: Recently, tiny federated

learning has been attracted more attention gradually. A pruning

model for FL was proposed to generate tiny distributed ma-

chine learning for resource-constrained IoT devices [24]. The

tiny federated learning with bayesian classifiers was proposed

by distributing tiny data storage on IoT devices to increase

energy efficiency, reduce delay as well as communication cost

on IoT devices [25]. An online tiny federated meta-learning

was proposed to jointly train a solid initialization for the model

of neural network [26]. However, these works do not consider

the wireless transmission and fast convergence of global model

in tiny FL for IUAV. Meanwhile, in IUAV networks where the

UE communicates via wireless links, the radio reliability of

UEs has a significant influence on model security for tiny FL

in IUAVs [8]. The integration of blockchain to improve the

security of WFL has attracted considerable attentions [27].

The blockchain-enabled FL (BFL) framework in digital twin

wireless networks was proposed to improve the dependability

and security of systems [28]. The blockchain-enabled trustwor-

thy FL architecture was introduced to improve accountability

and fairness in the FL system [29].

Trust management for Tiny Federated Learning in IUAV: In

addition, tiny WFL in IUAV networks faces the lack of mutual

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3363443

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Leeds. Downloaded on February 09,2024 at 09:11:49 UTC from IEEE Xplore.  Restrictions apply. 



3

trust among mobile users for the broadcast character of the

wireless channel and different radio access points. A repu-

tation mechanism for BFL has been proposed to incentivize

UEs to participate in BFL to carry out high-quality model

aggregation [30]. An adaptive framework integrating federated

learning and blockchain was proposed to estimate the trust

values of mobile UE by handling the trust with probability in

different networks [31]. In contrast to the majority of studies

that utilize existing, standard blockchain-enabled WFL algo-

rithms, our work presents a novel trust management scheme

for tiny WFL in IUAVs. It is essential for evaluating the

trustworthiness of parameters aggregation in every round and

the whole trustworthy for fast FL convergence so as to identify

malicious IoT devices in IUAVs systems. We investigate how

the communication and computation properties can affect the

trustworthiness of blockchain-enabled tiny WFL algorithms in

IUAVs. In the future, our work can be extended with two

aspects: covert communication [9], secrecy rate [32] and

privacy protect [33]; UAV trajectory with the integration of

reconfigurable intelligent surface and unmanned aerial vehicle

(RIS-UAV) networks [34] [35] for tiny WFL in the IUAV

system.

III. SYSTEM MODEL

��,� ��,�’
��,�’

��,���,���,���,�

Figure 1: Architecture of Trust IUAV System.

In the context of WFL-enabled IUAV networks, wireless

communication between UEs and UAVs is not only resource-

intensive, but also lacks consistent reliability. Moreover, IoT

devices are constrained by their limited resources. To facilitate

trust management and reduce the storage and computation

overhead associated with blockchain, a comprehensive TB-

WFL IoT network framework can be structured into three tiers:

the physical layer, the blockchain layer, and the trust layer, as

depicted in Figure 1. Trust verification using blockchain occurs

within the blockchain layer. Following this verification, trust

management and trust resource allocation can be carried out

in the trust layer. Using different types of FL, the framework

Table I: Parameters and descriptions

Parameters Descriptions

U Maximum number of UEs participating in federated learning

Su Size of data owned by UE u
enu Parameters of local model for UE u at the n-th round

∇gu Gradient of loss function for UE u
γ Trust parameter used to balance local and global gradient estimates

µ Accuracy of local level

Tc Time of local computation for one round

Tr Time of communication for one round

To Total time of one round for BWFL

Tb Time of identifying aggregation parameter for the blockchain

Nl Amount of rounds for the local model

Ng Amount of rounds for the global model

Eu,c Energy costs of UE u for computation

Eu,r Energy costs of UE u for communication

Eo Energy costs of federated learning for one round

pu Transmitting power of UE u
fv
k Required CPU cycles for UAV k to verify one block

fu Computing frequency of UE u

fb
k CPU frequency assigned to the blockchain by UAV k

ξ Required trust threshold of TBWFL

τ Total time of TBWFL

Rτ
u,k Response trust of UE u to UAV k at the period of τ

Mp

u,k
Number of positive responses from UAV k to UE u

Mτ
u,k Total interaction number of UE u to UAV k within the period of τ

Lu,k Trust level of UE u to UAV k
Qu,k Quality scoring of u for UAV k
Au,k Decay degree of quality scoring

χd Decay constant parameter of direct trust

χi Decay constant parameter of indirect trust

Ψ Set of recommendation UAVs

Du,k Direct trust value of UAV k to UE u
Iu,k Indirect trust value of UAV k to UE u
Ck,u Recommendation credibility of UE u from another base station k
Bk,u Decay degree of each recommendation trust rating

Wk,k′ Recommendation trust rating of u for UAV k from k′

Oτ
k,u Number of recommendations from UAV k to UE u within τ

can contain two domains: intradomain and interdomain. Com-

munication within a single domain (intradomain) is signifi-

cantly more frequent than communication between different

domains (interdomain). The UE can associate with a UAV by

considering the reference signal received power (RSRP) in the

downlink, and the access of uplink is the same UAV as the

downlink. In this paper, a domain can be defined as a cluster

of UEs situated within the identical physical space such as

UEs connecting to the same UAV in this paper.

A. Tiny Federated Learning Model

FL problems can be divided into local computing problems

and global aggregation problems. The WFL system consists

of a total of U UEs and K UAVs with edge servers. UAVs

play a crucial role in parameter aggregation, collecting the

parameters of each UE’s local model in the FL process. As

UAVs are interconnected via mmWave, the transmission delay

of information between UAVs can be ignored. Tiny FL can

train distributed data located at tiny IoT devices such as

microcontrollers with ultra-low-power e.g., 1mW [36], while

the power for each UAV can be up to 200 W [37]. In this

paper, we focus on the energy and delay of tiny UE leaving

the costs of communication and computation between UAVs

as future work.

Each UE, denoted by u, has a local data set of size Su,

and the total size of the data set is obtained with S =
U
∑

u=1
Su,

where Su = {(x1, y1) , · · · , (xSu
, ySu

)} represents the data set

of UE u. The component xu refers to the data generated or

collected by UE, while yu denotes the corresponding label of
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xu. The goal of FL is to determine the parameters of model e
that characterize the result yu through the loss function gu(e),
which is associated with the data set of UE u expressed as

follows:

Gu(e) :=
1

Su

Su
∑

u=1

gu(e). (1)

Then, the FL model by minimizing global loss function can

be derived as follows:

min
e∈Rd

G(e) :=

U
∑

u=1

Su

S
×Gu(e). (2)

For given ∀e, e′ ∈ Rd, the loss function Gn() in tiny FL

can be assumed as L-smooth and β-strongly convex with

Gu(e
′) + ⟨∇Gu(e

′), e− e′⟩+
β

2
||e− e′||2 ≤ Gu(e)

≤ Gu(e
′) + ⟨∇Gu(e

′), e− e′⟩+
L

2
||e− e′||2,

(3)

where ⟨e, e′⟩ is the inner product of e and e′, and || · ||
represents l2 norm.

It is worth noting that the properties of strong convexity and

smoothness have broad applications, encompassing areas such

as l2 regularized linear regression models and l2 regularized

logistic regression [17] [38]. Additionally, we define ρ = L
β

as the condition number of the Hessian matrix for Gu(·).

B. Blockchain Model

To mitigate the risk of parameter poisoning attacks during

the wireless communication process of FL by malicious IoT

devices, we consider the UAV equipped with blockchain tech-

nology to identify the safety and trustworthiness of aggrega-

tion parameters. The Ethereum blockchain, operating through

smart contracts, is used to verify the parameters through

the Solidity programming language. UAVs connected through

mmWave maintain the distributed ledger to verify transactions,

thereby ensuring the system security, which can be referred to

a semi-distributed implementation.

The aggregation of local model parameters will activate

smart contracts, which are recorded and transmitted to other

UAVs to verify via the blockchain. These smart contracts

are treated as transactions and packaged into blocks. The

blockchain conducts a consensus process to validate trans-

actions within these blocks. The time cost associated with

block verification is attributable to the activation of the smart

contract following the parameters upload by UEs. The smart

contract manifests as a transaction within the blockchain.

These transactions are collected by block producers to be

assembled into the block. The block is produced to verify

the consensus in Ethereum. Thus, the time cost of blockchain

operations is computed by

Tb = max
k

lbf
v
k

f bk
, (4)

where fvk denotes the CPU cycles required at the UAV k to

verify a block, lb represents the size of block, and f bk is the

CPU frequency assigned to the blockchain by UAV k.

C. Trust Calculation Management Model of IUAV

In the process of WFL, a device is deemed untrustworthy

if it fails to provide the correct data or delivers malicious

data. The trust value attributed to an UE by an UAV is

predicted based on the historical behavior exhibited in their

past interactions. Here, our evaluation of an objective entity

can be computed with direct and indirect approaches, as shown

in the trust layer of Figure 1.

1) Direct trust model: For devices that are directly con-

nected to the UAV, we can compute direct trust to evaluate

the trustworthiness of UE. On one hand, the ability of a

UE to provide timely uploads of model parameters is critical

to enable fast convergence of FL. On the other hand, the

quality of the model parameters uploaded by UE is also

particularly significance to the FL process. The longer the time

interval between UE and UAV, the less accurately it reflects

the ongoing or prospective parameters updating of UE, thereby

necessitating a discounting of its trustworthiness. Therefore,

we first examine the time scale of trust parameters and define

the period τ of effective trust parameters, in order to decrease

the data storage overhead and the workload of trust calculation.

The participation of UE in FL in terms of its timeliness and

trustworthiness is obtained from response and rating of trust.

Furthermore, we introduce the decay function to update the

trust rating for more time-efficient trust values.

We define response trust as the probability that UE u can

participate and provide the correct model parameters to UAV

k in a timely manner. Assuming that the user is connected

with only one UAV during one round in the FL process, so

the response trust of UE u connected with UAV k in the n-th

global round can be denoted as Rn
u,k, or simply as Rn

u , which

is calculated as follows:

Rn
u =

Mp
u

Mτ
u

, (5)

where Mp
u is the number of responses from UAV k for user u

and Mτ
u is the total number of interactions between the UAV

k and UE u in the period of τ . The response of trust in the

period τ are valid, and τ is the total time of TBWFL, that is,

τ = Ng ∗ Tg , where Ng is total number of global rounds and

Tg is the cumulative time of communication, computing and

blockchain within each TBWFL round.

The quality of trust ratings of model parameters updated by

the devices involved in each round is crucial for the whole

FL process. We set a trustworthiness score to indicate the

level of trust for UE u with respect to the UAV. That is, the

ability of UE u to provide reliable data in accordance with

the requirements of UAVs, as measured by the quality of the

parameters uploaded by UE u in their past interactions. We

use Ln
u to denote the trust level of UE u to UAV in the n-th

global round, which can be calculated as follows:

Ln
u =

n−1
∑

n′=1

(

Qn′

u ×An′

u

)

n−1
∑

n′=1

An′

u

, (6)

where Qn′

u is the trust rating value of UE u for the model
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parameters provided by UAVs at the n′-th round, and An′

u is

the degree of attenuation of the trust rating.

The trust rating value should have a reasonable period and

the trust rating obtained from a previous interaction is subject

to time-based discounting. The validity of trust is for a period

set by τ , and the trust rating follows a decay function within

the period τ . If it is beyond this period, the trust rating value

will be disregarded. We can select the decay function with the

principle of cooling by Newton [39]. The level of decay, An′

u ,

for the rating Sn′

u that occurs at time n′, with n′ ∈ [1, n− 1]
is modeled as follows:

An′

u = exp

(

−
χd

Mp
u
× (n− n′)Tg

)

, (7)

where χd denotes a fixed parameter for direct trust referred

to the certain FL application, and Mp
u represents the quantity

of positive responses received from UAVs, and n − n′ is the

different of rounds to identify the time of decay function.

According to the above equation, the decay function of trust

rating is influenced by three aspects Mp
u , Tg , and n − n′.

As the number of positive interactions from UE u to UAV k
increases, the Au will augment closing to 1, which means that

the trust rating of UE u decays at a lower rate. As the number

of aggregation rounds from UE to UAV increases, the trust

rating is outdated leading to a greater degree of decay.

Both the timely positive response rate and the quality rating

of trust represent an inherent impression of UAV for UE u,

which can be referred to as direct trust. Therefore, we can

obtain the direct trust value UE u, denoted by Dn
u , using the

following calculation:

Dn
u = Rn

u × Ln
u, (8)

In summary, the confidence level of a UE is positively associ-

ated with the positive response proportion and the trust rating

value. It represents the reliability of UE verified by UAVs

specifically that the UE can provide a trustworthy local model

parameters in a timely manner.

2) Indirect trust: When a UE has never interacted with a

UAV or the number of interactions is insufficient to determine

exactly the direct trust, it becomes indispensable for UE to

compute the indirect trust to ensure the belief of the UE. In

the following, we detail the modeling of indirect trust, the

verification of recommendation credibility, and the selection

of recommenders.

Considering the transferability characteristic of UE to UAV

and trust relationships across different rounds in FL, the model

of indirect trust is formulated by the direct trust value that

other UAVs hold in regard to the objective UE. The indirect

trust value of the target UE u associated with the UAV k for

time n is represented by Inu , which is calculated by weighting

the trust values of those UAVs connected to the k′-th UAV to

the target UE as follows:

Inu =

∑

k′∈Ψ

(

Dn
k,k′ × Cn

u,k′

)

∑

k′∈Ψ

Cn
u,k′

, (9)

where Dn
k,k′ denotes the direct trust quality between UAV k′

and UAV k at round n, Cn
u,k′ is the recommendation credibility

of UAV k′ when recommending UAV k, and Ψ denotes the

set of recommendations for UAV k.

We introduce the concept of recommendation trustworthi-

ness referring to the reliability of trust information offered

by UAVs. When the UAV k′ aims to assess the indirect trust

value the UE u at round n′, the direct trust assessed before

by another UAV k′ can be termed a recommendation Dn
u,k′ .

Here, UAV k′ is directly connected to UAV k, and we express

the prior trust rating of UAV k for UE u by Qn′

u,k through

the previously perceived trust rating. Initially, we measure

the difference between Qn′

u,k and Dn
u,k′ , denoted by Vn′

k,k′ as

follows:

Vn′

k,k′ =
∣

∣

∣
Qn′

u,k −Dn′

u,k′

∣

∣

∣
. (10)

We further calculate the recommendation trust rating as

follows:

Wn′

k,k′ = max
(

1−Vn′

k,k′ ∗2, 0
)

. (11)

The recommendation rating is in the range of 0 to 1 to indicate

the trustworthiness of UAV k for the trust information provided

by UAV k′ for UE u.

Given that the trust values are dynamic and change with

each round, the credibility of the recommendation is calculated

by introducing a decay function. This approach allows the

trustworthiness of a recommendation to adapt over time,

reflecting changes in the behavior of the UE or the conditions

of the wireless network. Thus, the credibility of the recom-

mendation is given as follows:

Cn
u,k′ =

n−1
∑

n′=1

Wk,k′ ×Bn′

u,k′

n−1
∑

n′=1

Bn′

u,k′

, (12)

where Bn′

u,k′ denotes the decay degree of each recommendation

rating Wn′

k,k′

Bn′

u,k′ = exp

(

−
χi

Oτ
u,k′

× (n− n′)

)

, (13)

where χi denotes a fixed factor for indirect trust related to

the certain FL application and Oτ
u,k′ represents the amount

of recommendations of UAV k′ and UE u during the period

τ . The recommendation trust rating is updated before every

recommendation is made.

3) Overall Trust Calculation: For all devices, we can

calculate their total trust value on the basis of direct trust

and indirect trust. Therefore, the whole trust value indicates

the trustworthiness of the target UEs that provide the model

parameters to UAVs, and it guides the elimination of malicious

UEs and the attack of wireless link for UEs from candidate

UEs that are not contributing effectively to the convergence of

WFL.

Thus, for UE u connected with UAV k, we can obtain its

total trust value, denoted by γnu , in the n-th global round
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through a combination of direct trust and indirect trust.

γnu = ω ·Dn
u + η · Inu , (14)

where ω and η represent the weight factors to balance direct

trust and indirect trust, respectively. These weights are devised

dynamically with adaptation as follows:

ω =
loga+1(1 + i)

loga+1(1 + i) + logb+1(1 + j)
, (15)

η =
logb+1(1 + j)

loga+1(1 + i) + logb+1(1 + j)
, (16)

where the cardinal number i = min(Mp
u , a) and the cardinal

number j = min(Ψ, b). With the increasing Mp
u , both ω and

i also increase. This leads to the direct trust being given more

weight when calculating the total trust. Additionally, when a

large number of credible UAVs offer their recommendations to

the UE, the weight given by the indirect trust becomes greater.

The weight values can be used based on specific use cases

or scenarios, for example, η = 0 denotes that there is no

interaction or recommendation for UE u to other UAVs k and

the total trust only can be computed by direct trust. Another

scenario arises when a new UE enters the TBWFL system or

an UE has no prior interactions with UAV, then ω and η are set

to 0, and the initial total trust value can be taken as 0.5 in this

work. Furthermore, the weight can be modeled for horizontal

and vertical federated learning, which is out of this paper and

can be investigated jointly in the future.

IV. TRUST BLOCKCHAIN WIRELESS FL ALGORITHM

Our proposed TBWFL algorithm is described as Algorithm

1. To address the problem (2), TBWFL utilizes the iterative

method that necessitates Ng global rounds to update the global

model. The exchanges between UEs and UAVs in each global

round are described below.

UEs trust update local models: In the local training stage of

UE, the UE u obtains the local model enu in the global round

n. The UE gets the information en−1 and ∇Ḡt−1 from the

UAV to minimize its surrogate function as follows:

min
e∈Rd

Hn
u (e) = Gu(e) +

〈

γnu∇Ḡ
n−1 −∇Gu

(

en−1
)

, e
〉

.

(17)

Furthermore, we have

∇Hn
u (e) = ∇Gu(e) + γnu∇Ḡ

n−1 −∇Gu(e
n−1), (18)

where γnu denotes the trust value of the global gradient

estimated for local gradient of UE u in round n. γnu will

influence the convergence of tiny WFL from Theorem 2.

Compared to the conventional FedAvg [13], TBWFL needs to

get more information en and ∇Gu(e
n−1) from UEs to provide

three key advantages of linear, fast and trust convergence for

the tiny WFL in IUAV system. Furthermore, our theoretical

analysis of the TBWFL model is noteworthy in that it does

not rely on the gradient divergence bound. This assumption

is often a prerequisite in studies dealing with non-strongly

convex problems, as indicated in previous research [38] [40].

This removes one of the constraints often applied to more

scenarios.

Algorithm 1 TBWFL

Input: e0, µ ∈ [0, 1],γ > 0
1: for n = 1 to Ng do

2: Computation: UE u can obtain en−1,∇Ḡn−1, γnu , and

the trust resource allocation solutions φ from UAVs, and

figure out (17) at rounds Nl to realize µ-approximation

solution enu satisfying (19).

3: Communication: UE u transmits enu and ∇Gu (e
n
u) to

UAV according to the trust resource allocation solutions

φ obtained from UAVs.

4: Trust Verification: The blockchains in the UAVs use

cross-validation to verify the model parameters of all

UEs, computing the trust value of the model parameters

updated by each UE in the round. If the trust value of

UE falls below the predetermined threshold, the UE is

flagged as providing potentially malicious parameters,

leading to its exclusion from the current round.

5: Trust Resource Allocation: Each UAV performs the

wireless resource allocation in the single domain for

the tiny UEs with algorithm 2 from the problem (27).

6: Consensus: Multiple UAVs maintain a complete copy

of the trust information within the blockchain ledger,

and it is imperative to keep the ledgers of all UAVs in

the consensus state.

7: Aggregation and Feedbacks: The UAV verifies the

local parameters of the UE from the blockchain, updates

the global model and computes the trust value of UE

γu, en, and ∇Ḡn as in (14), (20) and (21) respectively.

Then the UAV sends γu, en, ∇Ḡn, and the solutions

of the trust resource allocation to all UEs.

8: end for

Then, the UE can solve (17) within the local round of Nl

to acquire an approximate solution enu, which should satisfy

the following condition:

∥∇Hn
u (enu)∥ ≤ µ

∥

∥∇Hn
u

(

en−1
)∥

∥ , ∀u, (19)

where µ ∈ (0, 1) denotes the accuracy level of local training

to balances the number of local and global rounds for the

convergence of FL. Subsequently, en and ∇Ḡn are updated

according to (17) and (19) and return to the UAVs. The process

should be iteratively executed until the global loss function has

achieved convergence.

UAVs trust global aggregation model with blockchain: The

UE u sends the local model parameters enu and gradient

∇Gu (e
n
u) to the UAV, and then the UAV verifies the trust

value of these transmitted components with (14) and proceeds

to aggregate these reliable components through the following

equations:

en =

U
∑

u=1

Su

S
enu, (20)

∇Ḡn =

U
∑

u=1

Su

S
∇Gu (e

n
u) . (21)

The UAV broadcasts en and ∇Ḡn to all UEs. Participating
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UEs have a critical role in minimizing their surrogate function

Hn+1
u (e) in the subsequent global round n + 1. It is worth

noting that UAVs do not require access to local data set Sn,

∀n, thereby ensuring the preservation of data privacy.

Theorem 1. With L-smooth convex and β-strongly convex

Gn(·) and the Hn
u (e) satisfying a linear convergence rate c(1−

σ)n, the number of local rounds Nl required for UEs to update

local models and achieve a µ-approximation condition can be

obtained as follows:

Nl =
1

σ
ln
vρ

µ2
. (22)

Proof: Refer to Appendix A.

Theorem 2. For given G(en) − G(e∗) ≤ δ for ∀n ≥ Ng ,

the number of global rounds Ng for TBWFL can be denoted

as

Ng =
2ρ
(

(1 + µ)2γ2ρ2 + 1
)

γ (2(µ− 1)2 − µ(µ+ 1)(3γ + 2)ρ2 − γρ2(µ+ 1))

× log
G
(

e0
)

−G (e∗)

δ
.

(23)

Proof: Refer to Appendix B.

Time cost: Given the robust computational capability of the

edge server and the relatively small volume of parameters that

require global aggregation in each round, we can neglect the

aggregation time. However, the time of blockchain to verify

the trust of aggregation parameter can not be neglected due

to the heavy computational requirement of blockchain in the

UAV. Furthermore, we consider the local computation time of

UE in mobile IoT network. Since the downlink rate surpasses

the uplink in mobile wireless network, we can neglect the

downlink time of the global parameter from UAV to UE

and focus on the uplink time of the UE. In our study, we

take into account synchronous communication. This approach

necessitates that all UEs resolve their local problems (17) prior

to entering the parameter transmission phase in the uplink

direction. In summary, the total time consumption of our

TBWFL consists of three components: local computation time,

uplink communication time, and the blockchain time.

The computation time for a local round is denoted by Tc.

Therefore, given that there are Nl local rounds within a global

round, the overall computation time for a global round can

be calculated as NlTc. And Tr represents the communication

time of a global round. Then the total time consumption of a

BTWFL global round can be formulated as follows:

Tg = NlTc + Tr + Tb. (24)

Energy Consumption: We use au to denote the computa-

tional cost required by UE to train one data sample. Assuming

that all samples {xu, yu}u∈Su
are the same size, the compu-

tational cost in terms of CPU cycles in the UE to complete

a local round calculation can be denoted as auSu. With the

frequency of CPU fu and the effective coefficient of the

computing chip-set θu
2 for UE u, the CPU energy consumption

for each round can be expressed as [41]:

Eu,c =
θu
2
auSuf

2
u . (25)

Thus, the computing time can be obtained in each local round

for the UE u auSu

fu
.

We can assume that the sizes of vectors eu and ∇Gn(en)
remain constant underpinned by the fact that the dimensions of

these vectors are fixed, and the data size of eu and ∇Gn(en)
is described as dn. The transmitting rate for UE u can be

obtained ru = B ln(1 + hupu

N0

) with Shannon capacity, where

B denotes the wireless bandwidth, and N0 denotes the noise of

background, and hu denotes the average channel gain. Thus,

the scale of transmission time for UE u is obtained with cu =
du/ru. Then, the energy costs for one round are given by

Eu,r = cupu.

The energy consumption of local computation also relies on

the amount of local rounds, so the overall energy costs of a

TBWFL global round is obtained by

Eo =

U
∑

u=1

(Eu,r +NlEu,c). (26)

V. TRUST OPTIMIZATION AND SOLUTION

In this section, we investigate the wireless resource op-

timization for TBWFL over IUAV system. As the number

of tiny UEs in the IUAV network continues to grow, the

requirements of UEs participating in tiny WFLs are manifested

in low latency, low power consumption, high security, and high

accuracy. Therefore, how to decrease the delay and energy cost

of model training while ensuring the trust accuracy of the

model in WFL applications has become an important issue.

Considering that minimizing the time and communication

cost while guaranteeing high-quality trust tiny WFL is our

core problem, which requires finding the balance between

model accuracy, model trustworthy and the delay in the tiny

WFL processes. Therefore, we formulate the trust resource

allocation problems as follows:

P : min
{f,c,µ,Tr,Tc,Tb}∈φ

Ng [Eo + λTg] (27)

s.t.

U
∑

u=1

cu ≤ Tr, (27a)

max
u

auSu

fu
= Tc, (27b)

Fm
u ≤ fu ≤ Fu, ∀n ∈ N , (27c)

Pm
u ≤ pu ≤ Pu, ∀n ∈ N , (27d)

0 ≤ µ ≤ 1, (27e)

F b,m
k ≤ f bk ≤ F b

k , (27f)

0 < γu < 1, ∀u ∈ U , (27g)

γu ≥ ξ, ∀u ∈ U . (27g)

When the UE reduces its own power consumption, it will

definitely increase the time of the local training model, and

then it is contradictory to decrease the delay and energy

consumption simultaneously. To strike a trade-off between the

training delay and the cost of energy consumption, a weight

λ (joules/second) is introduced into the objective function to

represent the extra energy consumption that the algorithm is

prepared to endure to reduce the training delay. At the same
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time, according to the optimization theory, 1/λ is a Lagrange

multiplier [42]. The problem of resource management for

TBWFL (27) is non-convex due to multiple product with two

functions in the goal function and constraint (27b).

First, we can select UEs with a given trust value from UAVs.

These UEs should satisfy the condition γu ≥ ξ in order to

participate in the following subproblems P1, P2, and P3.

These subproblems are optimized and decomposed from the

origin problem P .

Then, for given the fixed values of µ and γ, we can

decompose the objective function into the following two sub-

problems P1 and P2 when the UE trust is not considered.

P1 : min
fu,Tc

U
∑

u=1

Eu,c + λTc (28)

s.t.max
u

auSu

fu
= Tc, (28a)

Fm
u ≤ fu ≤ Fu, ∀n ∈ N. (28b)

Obviously,P1 illustrates a CPU cycle optimization of lo-

cal computing delay and energy consumption, while P1 is

regarded as power control of uplink, determining the time-

sharing ratio of the device to minimize the energy and trans-

mitting time of UEs. It is obvious that P1 is a convex problem.

Thus, we obtain the solutions of TBWFL optimization based

on the KKT method [42].

For P1, the optimal CPU frequency of UE can be divided

into three cases according to their execution capabilities.

We set the optimal fu to be f∗u and the optimal Tc to be

T ∗
c , so UEs in set U1 always run at the highest frequency

f∗u = fmax
u ; UEs in set U2 can complete the task quickly

even if they run at the lowest frequency f∗u = fmin
u ; UEs

in set U3 have the best frequency inside its feasible set

f∗u = auSu

T∗
c

. T ∗
c can be obtained max{TU1

, TU2
, TU3

}, where

TU1
= maxu∈U1

auSu

Fu
,TU2

= maxu∈U2

auSu

Fm
u

, and TU3
=

(

∑

u∈U3
θu (auSu)

3
/λ
)1/3

.

Furthermore, we can observe that the optimal solutions reply

not only on these subsets, but also on their cut-off TU1
, TU2

,

and TU3
, where the longest cut-off among the subsets will

influence the optimal cut-off T ∗
c . The optimal frequency at

the UE is determined by T ∗
c and the specific subset that the

UE belongs to.

Then the optimal solution of P1 varies with λ. When

λ ≤ minu∈U θu
(

fmin
u

)3
, only devices that can operate at

the lowest frequency are allowed to exist at this time T ∗
c =

maxu∈U
auSu

fmin
u

, f∗u = fmin
u . When minu∈U θu

(

fmin
u

)3
<

λ ≤
(

maxu∈U2

auSu

fmin
u

)3

, the devices that can operate at the

lowest frequency and the devices with the best frequency

within their feasible set are allowed to exist, at this time

T ∗
c = max {TU2

, TU3
},f∗u = max

{

fmin
u , auSu

T∗
c

}

. When
(

max
u∈U2

auSu

fmin
u

)3

< λ ≤
∑

u∈U3
θu(auSu)

3

(

max
u∈U

auSu
fmax
u

)

3 , only the devices with

the best frequency inside their feasible set can operate at this

time T ∗
c = TU3

,f∗u = auSu

TU3

. When

∑

u∈U3
θu(auSu)

3

(

max
u∈U

auSu
fmax
u

)

3 < λ,

only the devices in U1 are running at this time T ∗
c = TU1

,

f∗u = fmax
u .

The subproblem 2 is described as follows:

P2 : min
cn,Tr

U
∑

u=1

Eu,r + λTr (29)

s.t.
∑

u∈U

cu ≤ Tr, (29a)

Pm
u ≤ pu ≤ Pu, ∀n ∈ N. (29b)

We can also observe that the P2 is convex problem. For

P2, we know T ∗
r =

∑N
u=1 c

∗
u. With the power function

pu = N0

hu

(

e
ru
B − 1

)

and the constraint (29b), we can derive the

maximum and minimum time ratio required for UE when UE

transmits at its minimum and maximum power. We introduce

an indirect power control function, the power of which can be

controlled by the weight λ to adjust the time ratio to transmit

an amount of data du.

hu(λ) =
du/B

1 +W
(

λN−1

0
hn−1
e

) , (30)

where W (·) represents the Lambert W-function.

The optimum solution of P2 varies according to the weight

λ. When λ ≤ h−1
u (cmax

u ), it means that the device always

runs at the maximum power at this time c∗u = cmax
u . When

h−1
u (cmax

u ) < λ < h−1
u

(

cmin
u

)

, it means that the device will

find a suitable power to send data at this time τmin
u < c∗u <

cmax
u . When λ ≥ g−1

u

(

cmin
u

)

, the device is willing to run at

the minimum power at this time c∗u = cmin
u . Furthermore, we

can obtain T ∗
r =

∑

u cu.

We observe that the solutions of P1 and P2 after adding

the trust constraint also do not depend on µ and γ, so we

can get the optimal value T ∗
c , T ∗

r ,f∗,c∗,E∗
u,c and E∗

u,r. These

values will affect the third sub-problem of TBWFL as follows:

P3 : min
µ>0

1

Z

(

λ (T ∗
r +NlT

∗
c + T ∗

b ) +

U
∑

u=1

E∗
u,r +NlE

∗
u,c

)

(31)

s.t.0 < µ < 1, 0 < Z < 1. (31a)

where Z =
γ(2(µ−1)2−µ(µ+1)(3γ+2)ρ2−γρ2(µ+1))

2ρ((1+µ)2γ2ρ2+1) .

Although P3 is non-convex, we can see that the only one

variable need to be optimized in P3. Thus, we utilize the

numerical optimization to solve the optimal solution.

The trust resource allocation can be performed in UAVs

together with the blockchain in a semi-centralized manner,

and the solutions of resource allocation are sent to all UEs.

Then, the UEs carry out local training and transmit the

aggregation parameters to the UAV based on the trust resource

allocation solutions in ψ. The TBWFL can be implemented as

follows: the trusted UEs are selected with trust quantification

in blockchain-enabled UAVs at each FL round, and then the

energy consumption of the UEs and the overall delay of FL are

optimized with resource allocation using the trust value γu to

capture the trade-off between the number of local and global

rounds. In local round of FL, the trust value γu determined by

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3363443

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Leeds. Downloaded on February 09,2024 at 09:11:49 UTC from IEEE Xplore.  Restrictions apply. 



9

Algorithm 2 Trust Resource allocation

Input: Ng , Eo, λ, Tg , Tr, Tc, Fu, Fmin
u , Pu, Pm

u , F b
k ,F b,m

k ,

µ ∈ [0, 1],γu
1: Trust user selection: The UEs are selected for participa-

tion in the resource allocation of subproblems based on

the computed trust value γu ≥ ξ of UE in UAVs.

2: Subproblem 1: For given the fixed values of µ and γ,

the optimal computation frequency fu and the optimal

computation time Tc of the CPU can be obtained by

solving the subproblem P1 based on the KKT method.

3: Subproblem 2: For given the fixed values of µ and γ,

the transmission time scale cu for UEs can be determined

with the power control by weight λ from the subproblem

P2.

4: Subproblem 3: After having obtained the solution of P1

and P2, the only variable µ can be optimized by utilizing

the numerical optimization to solve the subproblem P3.

Tb will affect the local and global gradient estimate to further

determine the communication time Tr. Thus, the total time

of each round is determined by Tg = NlTc + Tr + Tb. For

the global round in FL, the µ by balancing the number of

local and global rounds can optimize the energy and delay

of tiny UE to determine the convergence of TBWFL. For the

resource allocation of P , the λ (Joules/second) is used to

strike the trade-off between the energy cost of UE and the

training time of the TBWFL. Therefore, our proposed TBWFL

can strike a trade-off between the energy cost of UE and the

local computing time, global communication time, and block

production time for TBWFL in IUAV systems.

A. Stationary and Complexity Analysis

Then we discuss the complexity analysis on the combined

solution of our approach. The problems P1 and P2 are solved

separately, which means that each device usually takes two

independent procedures: 1) local computing for the CPU and

2) transmission of parameters with wireless communication.

The P1 and P2 are independent of µ since the wireless

transmission in P2 has no influence on local accuracy, while

the computation cost in P2 should be considered for each

local round. We can see that the solutions to P1 and P2 play a

significant role in discerning to what extent the communication

cost outweighs the computation cost, which is a critical aspect

in determining the optimal local accuracy. Thus, P1, P2,

and P3 can be solved sequentially so that we can achieve the

solutions to TBWFL. Furthermore, the complexities associated

with our approach can also be summarized as follows: it will

be O(N2) for P1, it will be O(1) for P2, and it will be

O(N) for P3.

Moreover, the solutions of these subproblems P1, P2, and

P3 should be stationary for TBWFL. The idea is straightfor-

ward by using the KKT condition to obtain the stable solutions

of TBWFL. The KKT conditions are decomposed into three

separate sets of expression with decoupling variables. The first

two sets align with the KKT conditions of P1 and P2 that

Table II: Experimental Parameters

Parameters Value Parameters Value

Bandwith B 125 kHz Tx power of UE

pu

0.2 ∼ 1 mW

Data size of UE

Su

300 ∼ 800 KB Update size of UE

du

0.5 KB

Max frequency of

UE Fu

36 ∼ 64 MHz Min frequency of

UE Fm
u

1 MHz

Capacitance coef-

ficient of the UE

chipset θu

2 × 10−28 CPU cycles to one

sample of data of

UE au

10 ∼ 30 cycles/bit

Requirement trust

threshold ξ
0.6 Percentage of ma-

licious UE PD
10% ∼ 50%

Direct trust decay

χd

0.5 Indirect trust de-

cay χi

10

are addressed using closed-form expressions, and the final set

for P3 can be solved using numerical optimization.

VI. PERFORMANCE EVALUATION

Evaluation Setting: In this section, our proposed trust

management framework of TBWFL is verified with actual

federated datasets MNIST and FEMNIST using multinomial

logistic regression and cross-entropy error loss functions.

These datasets vary in terms of sample sizes to demonstrate

that FL can handle non-IID data. For MNIST, each UE

encompasses three out of the total ten labels. While FEMNIST

is constructed by splitting data derived from the expanded

MNIST [43]. All datasets are randomly split, 75% is used

for training and 25% is used for testing. The total amount of

UEs is set to 100. Since FL algorithms are allowed to sample

randomly, the number of UE participating in each round can

be set to 10, and the maximum amount of local and global

round can be set to 40 and 600, respectively. Table II gives

the other experimental parameters for the simulation.

Furthermore, we conduct a comprehensive evaluation of the

proposed trust-based model by incorporating it into various

FL algorithms under different scenarios. The impact of the

trust model on system performance is analyzed by varying

parameters. The evaluation not only substantiates the effec-

tiveness of our approach but also provides insight into how

different parameters influence the performance of the WFL

system. Specifically, we take into account a scenario featuring

malicious behavior where a UE may provide model parameters

that deliberately disrupt the FL process. This UE is known as

a malicious IoT device, and we have varied its proportion

from 10% to 50% in our experimental setup. Note that, as in

most real-world cases, the malicious behavior of a malicious

UE does not commence as a malicious UE but may suddenly

deviate from previously honest behavior.

A. The effectiveness of our approach

To illustrate the effectiveness of our approach, our initial

experiment involved a comparison of the unattacked FEDL

algorithm [12], the poisoned FEDL algorithm, the poisoned

FedAvg algorithm [13], and our proposed scheme on two

standard datasets. The total amount of FL rounds can be set

to 600, using the unattacked FEDL algorithm as a benchmark

for comparison. Figure 2a shows the experiments on the

FEMNIST dataset, and Figure 2b shows the experiments on
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Figure 2: Comparison of our proposed algorithm with other

algorithms for different cases on FEMNIST(a) and

MNIST(b) datasets.
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Figure 3: Our proposed trust resource allocation scheme in

terms of the total energy costs (a) and EDP (b)

the MNIST dataset. As observed in Figure 2, it is apparent

that the benchmark algorithm demonstrates the fastest con-

vergence amongst all schemes. Both the FEDL and FedAvg

algorithms are susceptible to poisoning attacks, with FEDL

more severely impacted. However, our proposed scheme sig-

nificantly mitigates the impact of the poisoning attack and

delivers trustworthy convergence on the WFL system.

B. Performance comparison of wireless resource allocation

for TWBFL

We compare the minimize energy consumption, minimize

time consumption, and random optimization methods with our

proposed trust resource allocation method for TBWFL with

respect to the total energy costs and the energy-delay product

(EDP). The EDP is the product of the consumed energy

and delay to complete the computing task and parameters

transmission, which is usually employed to evaluate the trade-

off between delay performance and energy consumption.

Figure 3a shows that the minimize the time consumption

method requires much more energy than other schemes with

the increasing amount of global rounds since all UEs operate

the highest computing frequency and maximum transmitting

power to minimize the delay. The minimize energy consump-

tion scheme also leads to more energy consumption than our

approach as the increasing amount of global rounds. This

is because all UEs operate the lowest CPU frequency and

minimum transmitting power, causing a retransmission delay

in WFL increasing energy consumption. While the energy

costs of the random case can be better than the minimize

the time consumption method since the CPU frequency and

transmitting power are set to random average value resulting

in lower energy consumption. Furthermore, Figure 3b shows

that our approach yields the lowest EDP because our approach

can achieve the balance between energy costs and delay in

TBWFL.

C. Trust Evaluation

In Figure 4, the percentage of malicious user devices (PD)

is set to 10%, 25%, and 50% to evaluate our approach for the

FL process on the Femnist dataset. The performance of our

proposed trust model is evaluated with the varying amount of

UE IoT devices. All IoT devices consistently exhibit honest

behavior, however, starting at round 120 the malicious IoT de-

vices begin to alter their behavior, providing model parameters

under a poisoning attack while the remaining nodes continue to

contribute honest model parameters. Figure 4a and Figure 4b

shows that testing accuracy and training loss with global round

can recover the norm convergence for our approach from the

different ratio malicious IoT devices,i.e.,from 10% to 50%.

Meanwhile, Figure 4c displays the variations in trust value for

the different ratio of malicious IoT devices.

As shown in Figure 4a, the accuracy drops to approximately

half of its original value when 10% of devices are mali-

cious. When this proportion increases to 25%, the accuracy

is reduced to about 0.4 times its initial value. With 50%

malicious devices, the FL process essentially has to restart,

implying a significant negative effect on FL as the proportion

of malicious devices increases. The observed drop in accuracy

can be attributed to two main factors. Firstly, honest devices

remain oblivious to the behavioral changes until they interact

with a malicious device. Second, as the number of malicious

devices increases, UAVs are more likely to be mislead into

selecting malicious service devices for aggregation. However,

after approximately 20 global rounds, the accuracy of TBWFL

begins to converge and slowly approaches the level observed

prior to the attack. The training loss values shown in Figure 4b

have a similar change process as Figure 4a, which indicates

that our proposed TBWFL model can efficiently secure the

WFL process by mitigating the negative impact caused by

malicious IoT devices.

Meanwhile, in Figure 4c, the trust values decline at a similar

rate when the behavior of the device changes. Therefore, in

Figure 4a and Figure 4b, the differential drop in accuracy

and the differential increase in loss value can be attributed

to the varying number of malicious UEs. In essence, we can

infer that the decline in accuracy from round 120 to 200

is predominantly driven by malicious IoT devices supplying

poisoning and attacking parameters. The UAV with edge server

will adjust to change the trust value of UEs after identifying

the malicious UEs, and when the trust value of UEs decreases,

the UAVs no longer select the malicious service devices, which

shows that our proposed TBWFL model exhibits a robust

capability to accurately detect the behavioral shifts of UEs.

D. Evaluation of decay function

In Figure 5, we evaluate the impact of the decay function for

our proposed trust management model. As seen in Figure 5a,

the global accuracy of our TBWFL model incorporating the

decay function experiences a smaller reduction after UEs alter

their behaviors. Moreover, our TBWFL model integrated with
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Figure 4: The accuracy, loss value and trust value variation of our approach in the presence of 10%, 25% and 50% of

malicious devices on the FEMNIST dataset.
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Figure 5: The accuracy, loss value and trust value change of the our approach in the presence of 10% of malicious devices

on the FEMNIST dataset with and without the decay function

the decay function achieves a steady state faster than its

counterpart that does not consider the decay function. This

trend is also reflected in training loss, as depicted in Figure 5b.

The quicker and more efficient adaptation can be attributed

to the fact that, without the decay function, the weight of

current behavior-based ratings is considered equivalent to that

given to historical rating the trust computation. As a result,

capturing behavioral changes becomes a slower and more

extended process. Similarly, as shown in Figure 5c, the trust

values in our TBWFL model with the decay function converge

at a faster rate compared to the model with no consideration

of the decay function. This can be explained by the higher

weight assigned to new malicious behavior in trust calculations

within the decay function model, causing the trust value to

rapidly deteriorate. Consequently, malicious service devices

are less likely to be selected for participation in a given round

of aggregation in our TBWFL scheme with decay functions

than these trust management scheme without decay functions.

E. Scalability Assessment

As depicted in Figure 6, we investigate the scalability of

our proposed trust model in an experimental setting identical

to that in Figure 5 on the MNIST data set. We configured

two distinct service UE sizes: one with 15 honest UEs and

5 malicious UEs, and another with 75 honest IoT devices

and 25 malicious UEs. By evaluating the scalability of our

proposed model under these configurations, we can understand

its performance and applicability in WFL systems, in the

presence of varying numbers and proportions of honest and

malicious IoT devices. Analyzing this can offer valuable

insights into the reliability and robustness of our trust model

under different scenarios.

In Figure 6a and Figure 6b, we can observe that with differ-

ent numbers of UEs, comparable patterns can be generated by

suddenly starting to provide poisoning model parameters after

the 120th round, and then the global accuracy and training

loss stabilize rapidly within approximately 25 global rounds.

As the UE scalability increases, the global accuracy decreases

slightly and the training loss values increase slightly. The

reason is that the more UEs in the system lead to a greater

selection pool for UAVs during trustworthy aggregating. Thus,

it results in lower global accuracy and higher training loss

values. Nevertheless, under both scalability settings, the global

accuracy and training loss in our proposed model stabilize after

a small amount of global rounds, which is beneficial for the

FL process. In Figure 6c, we observe that the trust values of

malicious IoT devices in our trust model demonstrate similar

patterns under both scalability settings. As the amount of UEs

increases, UAVs can detect changes of trust values for UE

more rapidly and select other IoT devices with higher trust

values. Therefore, our trust management model demonstrates

robust scalability and holds potential for application in large-

scale scenarios.
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Figure 6: The comparison of the accuracy, loss value and trust value of our approach in the presence of 25% malicious

devices on MNIST dataset with 20 and 100 UEs

0 25 50 75 100 125 150 175 200
Global Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

in
g 

Ac
cu

ra
cy

Typical reputation model
PeerTrust model
Our trust model

(a)

0 25 50 75 100 125 150 175 200
Global Rounds

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Tr
ai

ni
ng

 L
os

s

Typical reputation model
PeerTrust model
Our trust model

(b)

Figure 7: The comparison of the accuracy and loss value

change of our approach on FEMNIST dataset for traditional

trust model, PeerTrust trust model, and our proposed trust

model

F. Performance Comparison of Different Trust Model

Figure 7 shows that the comparison of our trust approach

with two typical schemes in the trust field: the traditional rep-

utation scheme and the widely-applied PeerTrust scheme. We

ensure that the experiment settings are the same as the condi-

tions of the initial experiment, with the proportion of malicious

IoT devices deliberately configured to 10%. The traditional

reputation model computes the trust value of the UE by taking

the mean of all of its trust values, therefore considering all past

behaviors on an equal footing without granting any particular

significance to the recent ones. While the PeerTrust model

utilizes the advanced trust value model/direct trust calculation

(TVM/DTC) technique to determine the trust values of UEs.

This model deploys an adaptive time window-based algorithm

by integrating the most recent dynamic behavior of UEs into

its computations, thereby setting the nearest time window to

align with three rounds, similar to our proposed trust model.

As is shown in Figure 7, our proposed trust model exhibits

superior performance compared to the PeerTrust scheme,

which is superior to the conventional reputation scheme. These

three models display a similar trend during the FL process

before any change in behavior by malicious IoT devices.

However, when attacks occur, our model demonstrates marked

resilience to the ensuing poisoning attacks, much more than

the PeerTrust and traditional reputation models. The PeerTrust

model with the adaptive time-window-based algorithm exhibits

a more effective recognition of the dynamic behavior of UEs

than the traditional model. However, it falls short compared

to our trust model. These comparative results indicate that the

unique design of our model by incorporating a trust decay

function and direct and indirect trust can obtain a significant

performance advantage. This underlines the potential of our

model to effectively manage trust in mobile IoT devices in

the context of WFL environments.

VII. CONCLUSIONS

In this paper, we proposed a semi-centralized trust manage-

ment framework for blockchain-enabled tiny WFL in IUAV

systems, which can provide a trust, fast, low latency and

energy-efficient WFL aggregation model for IUAV systems. To

mitigate the effect of malicious UEs in tiny FL, we designed

the quantifiable trust model of UE by combining direct and

indirect trust, including the consideration of a decay function

and recommendation credibility for trust model to aggregate

parameters in resource-constrained IUAV networks. To achieve

the trust and energy efficiency for UEs to participate in the

fast convergence of tiny WFL in IUAV networks, we em-

bedded the trust model of tiny BWFL with wireless resource

allocation to strike the trace-offs between computation time,

communication time, block producing time, energy consump-

tion and credibility evaluation for blockchain-enabled tiny

WFL. The experimental results illustrated the effectiveness of

our proposed TBWFL model in recognizing malicious UEs,

particularly in dynamic scenarios where the behavior of UEs

changes during the WFL aggregation process. The comparative

results clearly showed that the superiority of our approach

over the other considered typical trust management schemes.

Our work has the potential to quantify the trustworthiness of

UEs for the aggregation of the radio model parameters and

to enhance system security together with fast convergence for

tiny WFL. In the future, we can further investigate the cost of

communication and computation of UAV and UAV trajectory

for tiny WFL in IUAV situations.

APPENDIX A

PROOF OF THEOREM 1

Since L-smooth and β-strongly convex Gn(·), we can obtain
||∇Gn(e)||

2

2L ≤ Gn(e)−Gn(e
∗) ≤ ||∇Gn(e)||

2

2β ,∀e. Due to (1−
σ)n ≤ e−nσ, the µ-approximation condition ∥∇Hn

u (enu)∥ ≤
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µ
∥

∥∇Hn
u

(

en−1
)
∥

∥ when cLβ e
−nσ ≤ µ2. With ln operation, we

have ln cLβ e
−nσ ≤ lnµ2, log cLβ + ln e−nσ ≤ lnµ2, log vL

β −

nσ ≤ lnµ2, ln cLβ − lnµ2 ≤ nσ, ln vρ
µ2 ≤ nσ, 1

σ ln vρ
µ2 ≤ n.

Therefore, the proof of Theorem 1 can be completed.

APPENDIX B

PROOF OF THEOREM 2

With given UE trust local model Hn
u (e) in (17), if ênu

be the solution to mine∈Rd Hn
u (e), we have ∇Hn

u (e
n−1) =

γnu∇Ḡ
n−1 and ∇Hn

u (ê
n
u) = ∇Gn (ê

n
u) + γnu∇Ḡ

n−1 −
∇Gu(e

n−1) = 0.
Due to G(·) as L-Lipschitz smooth, we have as follows by

using Jensen’s inequality, L-smoothness, and Cauchy-Schwarz
inequality

G(enu)−G(en−1) ≤
〈

∇G
(

e
n−1

)

, e
n

u − e
n−1

〉

+
L

2

∥

∥e
n

u − e
n−1

∥

∥

2

=
〈

∇G
(

e
n−1

)

−∇Ḡ
n−1

, e
n

u − e
n−1

〉

+
L

2

∥

∥e
n

u − e
n−1

∥

∥

2

+
〈

∇Ḡ
n−1

, e
n

u − e
n−1

〉

≤
∥

∥∇G
(

e
n−1

)

−∇Ḡ
n−1

∥

∥

∥

∥e
n

u − e
n−1

∥

∥

+
L

2

∥

∥e
n

u − e
n−1

∥

∥

2

+
〈

∇Ḡ
n−1

, e
n

u − e
n−1

〉

(32)

≤
∥

∥∇G
(

e
n−1

)

−∇Ḡ
n−1

∥

∥

∥

∥e
n

u − e
n−1

∥

∥+
L

2

∥

∥e
n

u − e
n−1

∥

∥

2

−
1

γ

〈

∇Gn (ênu)−∇Gu

(

e
n−1

)

, e
n

u − e
n−1

〉

=
∥

∥∇G
(

e
n−1

)

−∇Ḡ
n−1

∥

∥

∥

∥e
n

u − e
n−1

∥

∥+
L

2

∥

∥e
n

u − e
n−1

∥

∥

2

−
1

γ

〈

∇Gu (ênu)−∇Gn (enu) , e
n

u − e
n−1

〉

−
1

γ

〈

∇Gu (enu)−∇Gu

(

e
n−1

)

, e
n

u − e
n−1

〉

(33)

≤
∥

∥∇G
(

e
n−1

)

−∇Ḡ
n−1

∥

∥

∥

∥e
n

u − e
n−1

∥

∥+
L

2

∥

∥e
n

u − e
n−1

∥

∥

2

+
L

γ
∥ênu − e

n

u∥
∥

∥e
n

u − e
n−1

∥

∥−
1

γL

∥

∥∇Gn (enu)−∇Gu

(

e
n−1

)
∥

∥

2

,

(34)

where γ = min{γnu}.

For above norm terms, we have
∥

∥ênu − en−1
∥

∥ ≤
1
β

∥

∥∇Ht
n

(

en−1
)∥

∥ =
γn
u

β

∥

∥∇Ḡn−1
∥

∥ ≤ γ
β

∥

∥∇Ḡn−1
∥

∥ and

∥ênu − enu∥ ≤ 1
β ∥∇H

n
u (e

n
u)∥ ≤ µ

β

∥

∥∇Hn
u

(

en−1
)
∥

∥ =
µγn

u

β

∥

∥∇Ḡn−1
∥

∥ ≤ µγ
β

∥

∥∇Ḡt−1
∥

∥. By using triangle inequality,

we can obtain ∥enu−e
n−1∥ ≤ ∥enu− ê

n
u∥+∥ênu−e

n−1∥ ≤ (1+
µ) γβ

∥

∥∇Ḡn−1
∥

∥. We also have∥∇Gn(e
n
u) − ∇Gu(e

n−1)∥ =
∥

∥∇Hn
u (e

n
u)−∇Hn

u (e
n−1)

∥

∥ ≥ ∥∇Hn
u (e

n−1)∥ −
∥∇Hn

u (e
n
u)∥ ≥ (1− µ)∥∇Hn

u (e
n−1)∥ ≥ (1− µ)γ

∥

∥∇Ḡn−1
∥

∥.

We define ∇F (.) and ∇F̄ t−1, then we can obtain

∥∇G(en−1)−∇Ḡ
n−1∥ =

∥

∥

∥

∥

∥

U
∑

u=1

Su

S

(

∇Gn(e
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u)−∇Gu(e
n−1)

)

∥

∥

∥

∥

∥

≤

U
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u=1

Su

S

∥

∥∇Gu(e
n

u)−∇Gu(e
n−1)

∥

∥ ≤

U
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u=1

Su

S
L
∥

∥e
t

n − e
n−1

∥

∥

≤ (1 + µ)γ
L

β

∥

∥∇Ḡ
n−1

∥

∥ .

(35)

Therefore, it is obtained with
∥

∥∇G(en−1)
∥

∥

2
≤ 2

∥

∥∇Ḡn−1 −∇G(en−1)
∥

∥

2
+ 2

∥

∥∇Ḡn−1
∥

∥

2

≤ 2(1 + µ)
2
γ2ρ2

∥

∥∇Ḡn−1
∥

∥

2
+ 2

∥

∥∇Ḡn−1
∥

∥

2
.

(36)

We further have

∥

∥∇Ḡn−1
∥

∥

2
≥

1

2(1 + µ)2γ2ρ2 + 2

∥

∥∇G(en−1)
∥

∥

2
. (37)

If we define X as X =
γ(−2(µ−1)2+(µ+1)µ(3γ+2)ρ2+(µ+1)γρ2)

2ρ < 0, then we can

obtain as follows:

G(enu)−G(en−1) ≤
X

β

∥

∥∇Ḡ
n−1

∥

∥

2

≤
X

2β
(

(1 + µ)2γ2ρ2 + 1
)

∥

∥∇G(en−1)
∥

∥

2

= −
γ(2(µ− 1)2 − (µ+ 1)µ(3γ + 2)ρ2 − (µ+ 1)γρ2)

2ρ
(

(1 + µ)2γ2ρ2 + 1
)

× (G(en−1)−G(e∗)
)

.

(38)

By subtracting G(e∗) from both sides of the above, we have

G(enu)−G(e∗)

≤ (1−
γ(2(µ− 1)2 − (µ+ 1)µ(3γ + 2)ρ2 − (µ+ 1)γρ2)

2ρ
(

(1 + µ)2γ2ρ2 + 1
) )

×
(

G(en−1)−G(e∗)
)

, ∀n.
(39)

Therefore, we can obtain

G(en)−G(e∗) ≤

U
∑

u=1

Su

S

(

G(enu)−G(e∗)
)

≤ (1−
γ(2(µ− 1)2 − (µ+ 1)µ(3γ + 2)ρ2 − (µ+ 1)γρ2)

2ρ
(

(1 + µ)2γ2ρ2 + 1
) )

× (G(en−1)−G(e∗))

≤ (1−
γ(2(µ− 1)2 − (µ+ 1)µ(3γ + 2)ρ2 − (µ+ 1)γρ2)

2ρ
(

(1 + µ)2γ2ρ2 + 1
) )n

× (G(e0)−G(e∗)).
(40)

Similar to the proof of Theorem 1 with c(1− σ)n, G(en)−
G(e∗) ≤ δ and ln operation for both side of inequation, we

can obtain Ng and complete the proof of Theorem 2.
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