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ABSTRACT 

Machine Learning has potential applications across a 

wide spectrum of devices. However, current 

approaches for domain-specific accelerators have 

encountered difficulties in satisfying the most recent 

computational demands for machine learning 

applications. This work aims to create an adaptive 

acceleration framework for fNIRS motion artefact 

detection, which will be specifically designed for 

wearable devices. We evaluate the performance of the 

SVM classifier that has been implemented using SYCL 

on our fNIRS dataset across diverse devices and 

discuss the potential to accelerate more advanced 

motion artefact classifiers at the edge. 

 

Figure 1: Overall design of the proposed real-time motion-artefact 

detection platform 

The implementation of SVM with the ComputeCpp 

design flow is based on their project SYCL-ML . Their 

SVM implementation is properly designed to fit the 

MNIST dataset. The input dataset is firstly applied to 

Principal Component Analysis (PCA) in order to 

increase the training speed and accuracy. Then the data 

is fed to the classifier and performs the training 

process. However, the training function in this 

implementation is optimised for multi-class 

classification problems.  The number of training 

iterations is correlated with the number of categories.  

The confusion matrix presented in Table 1 after one 

epoch training, generated through the utilisation of 

OneDAL-SVM on the testing dataset, demonstrates the 

ability to accurately identify motion artefacts in fNIRS 

time series. However, the high number of false 

positives may result in an excessive intervention on the 

original fNIRS signals, potentially leading to a loss of 

information. In this study, the utilised version of 

OneDAL example and DPCPP compiler is 2023.0.0. 

 

Table 1: Confusion Matrix of OneDAL-SVM result on fNIRS 

testing dataset 

 Actual Values 

Positive Negative 

Predicted 

Values 

Positive 1418106 133765 

Negative 2186 13677 

Sensitivity 0.998 
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Precision 0.913 

Recall 0.888 

F1 Score 0.986 

 

Table 2 shows the processing speed on different 

hardware. The processing speed is calculated with the 

function ‘high_resolution_clock’ in ‘chrono’ header in 

microseconds and shown in the table in seconds. The 

data demonstrates that the GPU exhibits significantly 

enhanced processing speed in comparison to both the 

CPU and FPGA emulator. Although the processing 

speed of the CPU and FPGA emulator is similar, the 

FPGA emulator experiences a performance loss due to 

its simulation by the CPU.  

 

Table 2: Training and inference speed on different hardware with 

OneDAL-SVM 

 Training Inference 

CPU 100.13s 10.10s 

GPU 32.20s 4.62s 

FPGA Emulator 112.01s 11.31s 

 

2 Conclusion 

In this paper we have studied the possibility of building 

a heterogeneity- aware tool chain on machine learning 

based motion detection on fNIRS dataset. The results 

of our study indicate that the processing speed can be 

augmented by a factor of two by utilizing a GPU in 

comparison to utilizing a CPU and FPGA emulator. 

We have demonstrated the possibility of compilers 

across multiple platforms, yet it can be of interest also 

in other heterogeneous platforms such as 

neuromorphic memristors.  We have shown how the 

approximation data conversation strategies are 

computationally plausible. In the Future, multiple 

types of machine learning techniques, such as VGG-

16, U-net will be tested on heterogeneous platforms. 
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