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Abstract

Catastrophizing is a transdiagnostic construct that has been suggested to precipitate

and maintain a multiplicity of psychiatric disorders, including anxiety, depression, post‐

traumatic stress disorder, and obsessive‐compulsive disorder. However, the underlying

cognitive mechanisms that result in catastrophizing are unknown. Relating

reinforcement learning model parameters to catastrophizing may allow us to further

understand the process of catastrophizing. Using a modified four‐armed bandit task, we

aimed to investigate the relationship between reinforcement learning parameters and

self‐report catastrophizing questionnaire scores to gain a mechanistic understanding of

how catastrophizing may alter learning. We recruited 211 participants to complete a

computerized four‐armed bandit task and tested the fit of six reinforcement learning

models on our data, including two novel models which both incorporated a scaling factor

related to a history of negative outcomes variable. We investigated the relationship

between self‐report catastrophizing scores and free parameters from the overall best‐

fitting model, along with the best‐fitting model to include history, using Pearson's

correlations. Subsequently, we reassessed these relationships using multiple regression

analyses to evaluate whether any observed relationships were altered when relevant IQ

and mental health covariates were applied. Model‐agnostic analyses indicated there

were effects of outcome history on reaction time and accuracy, and that the effects on

accuracy related to catastrophizing. The overall model of best fit was the Standard

Rescorla–Wagner Model and the best‐fitting model to include history was a model in

which learning rate was scaled by history of negative outcome. We found no effect of

catastrophizing on the scaling by history of negative outcome parameter (r = 0.003,

p = 0.679), the learning rate parameter (r = 0.026, p = 0.703), or the inverse temperature

parameter (r = 0.086, p = 0.220). We were unable to relate catastrophizing to any of the

reinforcement learning parameters we investigated. This implies that catastrophizing is

not straightforwardly linked to any changes to learning after a series of negative

outcomes are received. Future research could incorporate further exploration of the

space of models which include a history parameter.
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1 | INTRODUCTION

The term catastrophizing refers to the tendency of an individual to

“[overestimate] the likelihood of a negative event, and also [believe]

that the negative event will be catastrophic” (Pike et al., 2021), and

has been a recurring concept across the psychiatric literature since

first being coined in the 1960s (Ellis, 1962). In clinical populations,

catastrophizing may present as overestimating the likelihood of a

trauma reoccurring in those with post‐traumatic stress disorder

(Dunmore et al., 1999), or predicting excessively negative conse-

quences in response to physical anxiety symptoms in those with

panic disorder (Austin & Richards, 2001). However, it is largely

accepted to be a phenomenon also present to varying degrees in

nonclinical populations, in scenarios such as believing one's plane

may crash in response to turbulence. It has been suggested that

catastrophizing may be a transdiagnostic construct that contributes

to both the onset (Jenness et al., 2016; McLaughlin et al., 2014; Paré

et al., 2019) and maintenance of a multiplicity of psychiatric

conditions (Gellatly & Beck, 2016), with the content of the

“catastrophe” differing between disorders, but the mental processes

and manifested behaviors (such as safety‐seeking or an inability to

reappraise a situation), remaining largely consistent. Notably, the

transdiagnostic relevance of catastrophizing is well supported by the

widespread success of decatastrophizing cognitive therapy in treating

a range of disorders (Bowers et al., 1997; Clark & Beck, 2011).

In our previous work developing a self‐report measure for

catastrophizing for use in a broader psychiatric context (Pike

et al., 2021), we found that our catastrophizing measure exhibited

a greater ability to predict psychiatric diagnoses and psychiatric

medications over and above the common, clinically implemented

Patient Health Questionnaire‐9 (PHQ‐9) (Kroenke et al., 2001) and

Generalized Anxiety Disorder Assessment (GAD‐7) (Spitzer

et al., 2006) questionnaires, demonstrating that catastrophizing has

the potential to be an important predictor of mental health

susceptibility. Despite this, there has been little detailed research

exploring the cognitive processes that initiate this cycle.

In this study, we proposed the application of a reinforcement

learning framework to explore whether computational methods can

be used to capture catastrophizing cognitions, by parameterizing the

psychopathological alterations of learning that may lead to mal-

adaptive behaviors downstream.

Reinforcement learning is a learning algorithm in which an

individual uses the disparity between expected and obtained

outcomes (the prediction error) to update internal associations

between certain stimuli or actions and their outcomes. This, in turn,

signals the need to adjust behavior accordingly, and this process

ultimately optimizes decision‐making to maximize reward and

minimize loss long term (Sutton & Barto, 1998).

The reinforcement learning framework has been successfully

employed to investigate mental health conditions that involve

catastrophizing (Aylward et al., 2019; Dayan, 2009; Kumar et al., 2008;

Pike & Robinson, 2022), but never to empirically describe catastro-

phizing as an isolated construct. These reinforcement learning studies

often implicitly assume that changes in learning might cause changes

in mood or other symptoms, thus implicating these learning changes

as targets for intervention. This assumption is plausible: there is

evidence that cognitive changes are predictive of response to

antidepressants (Park et al., 2018), and cognitive biases predict later

onset of depression and anxiety (Smith et al., 2018). If this

assumption holds, using reinforcement learning parameters to define

how learning processes are altered in those who catastrophize could

drive a more informed approach to dismantling catastrophic cognition

by identifying specific targets for interventions, not only for

translational use across conditions but also as an early intervention

to protect at‐risk populations from the onset of these disorders.

Moreover, these methods represent a pivotal step towards advancing

the precision with which we are able to assess the effectiveness of

cognitive and psychopharmacological intervention, by providing a

framework to measure changes in these reinforcement learning

processes over time (Lawson et al., 2021), without the subjectivity of

self‐report. However, it may be noted that there is yet to be concrete

evidence for this assumption of a causal pathway, and therefore, it is

plausible that the direction of causality may be the reverse. Future

longitudinal studies may be necessary to disentangle these

constructs.

Given that catastrophizing is characterized in the literature as an

exaggerated perception of the seriousness of the consequences of a

negative or ambiguous event, we considered it plausible that

catastrophizing could manifest as overweighting recent (negative)

outcomes when learning, particularly when these are frequent.

Computationally, this can be captured by scaling the learning rate

parameter in a reinforcement learning model by the proportion of

previous negative outcomes within a given window. In other words,

following a string of negative outcomes, we suggest catastrophizers

will update their learnt value for a stimulus to a greater degree than

noncatastrophizers.

1.1 | Study objectives and hypotheses

1.1.1 | Objective

To investigate the relationship between reinforcement learning

parameters and self‐report catastrophizing questionnaire scores. By

modeling a modified four‐armed bandit task, we aim to elucidate the

mechanisms by which catastrophizing may alter learning.
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To address this objective, our study tested six learning models

and investigated the following predictions, which were largely

dependent on which model proved to be the best fit for our data,

as stated in our preregistration document (Harada‐Laszlo

et al., 2021).

H1: First, we hypothesized that models that included the

history of negative outcome as a parameter would fit the data

better than those that lack this variable. Furthermore, we

predicted that the best‐fitting model to include a history term

would be one that scales learning rate by history rather than

one in which sensitivity is scaled by history.

H2.1: In the case that the best‐fitting model was one that

scales learning rate by history of negative outcome, we predicted

that there would be a positive correlation between the scaling

parameter and self‐report catastrophizing scores.

H2.2: In the case that the best‐fitting model was one in

which the sensitivity parameter was scaled by history of

negative outcome, we predicted there would be a positive

correlation between the sensitivity parameter and self‐report

catastrophizing scores.

2 | MATERIALS AND METHODS

Note that this study was preregistered (10.17605/OSF.IO/VSN8B),

and open data and code can be found at 10.17605/OSF.IO/3Y6UJ.

2.1 | Participants and recruitment

We recruited 211 participants for this study (145 females, mean ± SD

age = 40.1 ± 10.7; 66 males, mean ± SD age = 43.6 ± 10.0) via the

Prolific platform (https://app.prolific.co/), as informed by a priori

power analysis (Supporting Information S1: Section 1.1). We set

inclusion and exclusion criteria via the Prolific platform, details of

which can be found in Supporting Information S1: Section 1.2.

2.2 | Experimental procedure

Following recruitment, participants were directed to the Gorilla

platform, where we obtained informed consent and presented all

components of the experiment. Participants were randomly assigned

to one of four versions of the modified four‐armed bandit task (see

Figure 1c), and subsequently directed to complete the forward digit

span (Wechsler, 1955) (Supporting Information S1: Section 3) and

one of three versions of the adapted ART task (Chierchia et al., 2019)

(Supporting Information S1: Section 4) in an order randomized

between participants. Next, participants answered brief questions

about any mental health diagnoses and medications used, before

commencing the questionnaire battery (Supporting Information S1:

Section 5), in which all six questionnaires were counterbalanced

among participants. The experimental session lasted approximately

26min (mean ± SD session duration = 25.6 min ± 7.5 min).

2.3 | Four‐armed bandit task

To capture participant learning and decision‐making, we devised a

computerized probabilistic instrumental learning task, based on the

framework of the “four‐armed bandit task” (Daw et al., 2006), a

common learning paradigm that allows for the presentation of

rewards and punishments (Averbeck, 2015).

On each trial, participants were given the choice of four “bandits”

with fluctuating associations with appetitive or aversive outcomes

and were instructed to choose the bandit most likely to deliver a

reward. Feedback was displayed immediately following bandit

selection and points were exhibited on screen throughout the

experimental session. Participants were given 5 s to make their

selection, before the task progressed automatically onto the next trial

(trials where no choice was made were censored from modeling).

Bandits remained in a fixed position throughout the experimental

session, and there was always one bandit that would deliver a reward

on each trial, with the choice of any other bandit resulting in negative

feedback.

Our task consisted of 200 trials, and the reward probabilities for

each bandit changed with each block of 25‐trials, without the

participant being informed. The order of these eight blocks was

randomized between participants, and trials within each block were

shuffled. For each block, there was one winning bandit with a pay‐off

between 50% and 75% (Figure 1b). Each of the four bandits was the

winning bandit in two of the 25‐trial blocks, to ensure continual

learning of stimulus‐outcome contingencies. For further task descrip-

tion see Supporting Information S1: Section 2.

2.4 | Additional tasks

We included two additional tasks and a battery of six short mental

health related questionnaires, to measure the factors which we

considered to be vital covariates for analysis.

We employed a computerized adaptation of the forward digit

span as a proxy for working memory (Wechsler, 1955), as participants

are required to remember and integrate recent outcome history for

maximal performance in the reinforcement learning task (Collins

et al., 2014). Moreover, we implemented a computerized Abstract

Reasoning Task (Chierchia et al., 2019) as a proxy for fluid intelligence,

which has been proposed as a determinant of choice and strategy in

reinforcement learning (Schad et al., 2014). To keep our experiment

within reasonable time limits, we developed a shortened 4‐minute

version of this task (Chierchia et al., 2019). Details of this procedure

along with the analysis of the psychometric properties of the
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F IGURE 1 The modified four‐armed bandit task. We constructed a narrative in which bandits were represented by images of restaurants,
and the fluctuating probabilities of different outcomes was communicated via the instruction that chefs could change randomly at any time, and
that even good chefs would sometimes make a bad meal. (a) demonstrates trial structure, including the bandit selection screen and feedback
screen as seen by participants. (b) illustrates the fluctuation of reward count per bandit across 200 trials, where reward probabilities shift every
25 trials, and each color represents a bandit. The y axis indicates the number of times each bandit is the rewarded/correct choice per 25‐trial
block. (c) illustrates the four variations of stimuli color randomization. Bandits A, B, C, and D remained in a fixed position at top left, top right,
bottom right, and bottom left respectively. Each of the colors, Red (R), Green (G), Yellow (Y), and Blue (B) were used to represent each bandit for
one in four participants, in a manner randomized between participants.
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shortened adaptation can be found in Supporting Information S1:

Section 4.

Our questionnaire battery comprised the Self‐Report Catastro-

phizing Questionnaire to assess catastrophizing (Pike et al., 2021), the

GAD‐7 to assess anxiety (Spitzer et al., 2006), the Spielberger State‐

Trait Anxiety Inventory to measure trait anxiety (Spielberger, 1983),

the PHQ‐8 to measure depression (Kroenke et al., 2009), the Penn

State Worry Questionnaire (PSWQ) to measure worry (Meyer

et al., 1990), and our Covid‐19 Impact Questionnaire to assess the

extent to which an individual has been affected by the Covid‐19

pandemic (Pike et al., 2023). We included these measures to allow us

to assess whether any results were specific to catastrophizing, rather

than frequently co‐existing psychopathology. Further details of each

questionnaire can be found in Supporting Information S1: Section 5.

2.5 | Statistical analysis

2.5.1 | Model‐agnostic analyses

We analyzed participants' task performance to understand whether

there were any relationships between catastrophizing scores and

model‐agnostic measures of behavior. First, we performed simple

Pearson's correlations between catastrophizing score and “task score”

(defined as choosing the bandit that was rewarded on that given trial),

and also correlated catastrophizing scores with each participants' win‐

stay proportion (their tendency to repeat their choice after receiving a

win outcome) and their lose‐shift proportion (their tendency to choose

a different stimulus after not receiving a win outcome).

To assess in more detail the effect of outcome history on

participants' performance, we performed two mixed model analyses

with a random intercept for each participant. Please note that these

were not preregistered, as they do not relate to our primary

hypotheses (relationships between model parameters and catastro-

phizing). First, we performed a logistic mixed model of lagged

outcome on participants' subsequent choice to switch (choose

another stimulus) or stay (repeat the same choice), and a mixed

model of lagged outcome against reaction time (RT). We also

repeated these analyses including only the significant lag terms and

adding catastrophizing scores.

2.5.2 | Learning models and model fitting

We then initially tested the fit of six learning models to our data,

including the Standard Rescorla–Wagener Model (Rescorla, 1972),

the Rescorla–Wagner model with a sensitivity term (Huys et al., 2013),

the Vmax model (Huang et al., 2017) and the Pearce–Hall

associability model (Pearce & Hall, 1980), along with two novel

learning models designed to test our hypotheses, in which learning

rate and sensitivity are respectively scaled by history of negative

outcome. For model equations and descriptions, see Supporting

Information S1: Section 6.

Models were written using Stan syntax and model fitting was

conducted using CmdStanR. Our models were hierarchical in

structure and as such, we derived model parameters from a group

distribution, parameterized by weakly informative hyperparameters.

We conducted posterior inference for our models using a Markov‐

Chain Monte‐Carlo sampling scheme implemented in R v4.0.2 and

CmdStanR v0.3.0. We used 4 chains with 2000 iterations each, of

which we designated half for warmup. We employed the No‐U‐Turn

Sampling algorithm (Hoffman & Gelman, 2014). We selected the

best‐fitting model as defined by the integrated Bayesian Information

Criterion (iBIC) (Huys et al., 2012), which generates a score based on

the likelihood (the probability that the model assigns to the actual

choice made by the participant) and incorporates a penalty for

increased model complexity.

2.6 | Data analysis

To assess relationships between catastrophizing and cognition, we

performed Pearson's correlations between catastrophizing scores

and all reinforcement learning parameters of the best‐fitting model as

well as the relevant scaling or sensitivity parameter in the best‐fitting

model that included history. Subsequently, we used multiple regres-

sion to investigate whether these relationships were affected by

adding several potentially important covariates to the model,

including working memory, fluid intelligence, age, and sex. In addition,

we performed a second multiple regression to investigate the

specificity of our findings to catastrophizing, by creating a complete

model that incorporated all questionnaire scores, along with all

covariates included in the first multiple regression.

3 | RESULTS

3.1 | Model‐agnostic analyses

There was no correlation between catastrophizing scores and task

scores (r(223) = 0.098, p = 0.145), nor was there any correlation

between catastrophizing scores and lose‐shift proportion (r

(233) = 0.094, p = 0.161). There was a correlation between catastro-

phizing scores and win‐stay proportion (r(223) = 0.161, p = 0.015),

such that those with higher catastrophizing scores tended to repeat a

choice after a win.

There was a significant effect of switch/stay choices for up to

three trials previously (Table 1), such that after receiving a win

outcome, individuals were more likely to “stay”—and this effect was

true even if the win outcome was three trials ago. There was also a

significant effect on reaction time from the two previous trials

(Table 2): after a win outcome, participants responded more slowly

for one trial, then more rapidly on the subsequent trial.

We also performed mixed model analyses to examine the

interaction between z scored catastrophizing scores and the

significant lag terms for both of the above models. There were
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significant interactions between catastrophizing scores and the first

two lag terms (t − 1 and t − 2) in the switch/stay logistic model

(Figure 2a), such that those with higher catastrophizing scores were

more likely to stay after a win outcome, and switch after a loss

outcome. There were no significant interactions with catastrophizing

score in the reaction time model (Figure 2b). Our results indicate

some interaction between history of outcomes and catastrophizing:

we, therefore go on to report computational models that we

designed to capture the relationship between outcome history and

catastrophizing.

3.2 | Modeling results

Figure 3 demonstrates our fit assessment of six models to the data,

according to the iBIC (Huys et al., 2012). Contrary to our prediction in

H1, the best‐fitting model was the standard Rescorla–Wagner Model

(Rescorla, 1972), referred to henceforth as 1lr1t. The 1lr1t model

equation is outlined below:

Q Q Q= + learning rate ∙ (outcome − ),t a t a t t a+1, , , (1)

where Qt,a is the learnt value of action a on trial t, learning rate is the

extent to which learnt values are updated in response to reward

prediction errors (the part of the equation inside the brackets,

representing the difference between the actual and expected

outcomes), and outcomet is the feedback from trial t. The free

parameter per participant is learning rate.

We added an action model to the learning model which converts

these learnt contingencies into choice probabilities. This action model

includes an inverse temperature parameter, which governs choice

noisiness and exploration, as shown below:

Q

Q
Prob =

exp( ∙ inverse temperature)

sum(exp( ∙ inverse temperature)
,t a

t a

t all
,

,

,

(2)

where inverse temperature is a parameter estimated for each

participant and must have a positive value, and Q(t,all) signifies that

the denominator term is a summation of exponent of the Q values for

all stimuli on trial t (each multiplied by inverse temperature).

As stated in our preregistration (Harada‐Laszlo et al., 2021), we

additionally assessed the best‐fitting model to include a history term.

Our results showed the model in which learning rate is scaled by

history of negative outcome (lr scaling), performed better than the

learning model in which sensitivity is scaled by history of negative

outcome, which aligns with our secondary prediction in H1. The lr

scaling model equation is shown below:

Q Q

Q

= + (learning rate + (scaling ∙ history ))

∙ (outcome − ),

t a t a t

t t a

+1, ,

,

(3)

where scaling represents a factor by which learning rate is adjusted and

historyt is the proportion of trials that gave negative feedback within a

window of the previous 10 trials (trial t inclusive). The free parameters

are learning rate and scaling. We used the same action model as shown

in Equation (2). Given the findings in the model agnostic analyses, we

then created a family of models based on this one, with varying lengths

of “window”: including 1–4 trials back (note that the last lag that was

significant in the switch‐stay analysis was 3, and the last lag in the RT

analysis was 2). The best‐fitting model had a “window” of 1 (Figure 3b),

which in essence is somewhat similar in principle to a Vmax model—

learning rates are adjusted when there is a change in the most

rewarding outcome—whereas here, learning rates are adjusted just

depending on whether there was negative feedback.

3.3 | Relationship between model parameters and

catastrophizing symptoms

We performed correlation analyses between catastrophizing scores

and the scaling parameter in the best model that included history (as in

Hypothesis 2.1), as well as for all parameters in the winning model, as a

predefined exploratory analysis (Harada‐Laszlo et al., 2021). Catastro-

phizing had no relationship with the scaling parameter from the lr

scaling model (Figure 4a), suggesting that catastrophizing does not

relate to the extent to which individuals adjust their learning rate

based on history of negative outcome. Additionally, our results

demonstrated that neither the learning rate, nor the inverse temperature

TABLE 1 Logistic mixed model of switch/stay on trial t
(optimizer: bobyqa, nAGQ: 10).

Term Odds ratio (CI) p

Intercept 0.24 (0.20, 0.29) <0.001***

Lag outcome (t − 1) 30.66 (28.66, 32.80) <0.001***

Lag outcome (t − 2) 1.81 (1.81, 1.92) <0.001***

Lag outcome (t − 3) 1.12 (1.05, 1.18) <0.001***

Lag outcome (t − 4) 0.98 (0.92, 1.04) 0.429

Lag outcome (t − 5) 0.99 (0.93, 1.05) 0.676

Abbreviation: CI, confidence interval.

***p < 0.001.

TABLE 2 Mixed model of reaction time on trial t.

Term Estimate (CI) p

Intercept 613.43 (577.09, 649.76) <0.001***

Lag outcome (t − 1) 33.24 (20.51, 45.97) <0.001***

Lag outcome (t − 2) −13.38 (−26.44, −0.32) <0.045*

Lag outcome (t − 3) 0.02 (−13.09, 13.12) 0.998

Lag outcome (t − 4) −10.14 (−23.21, −2.91) 0.128

Lag outcome (t − 5) −11.25 (−23.99, 1.49) 0.676

Abbreviation: CI, confidence interval.

*p < 0.05.

***p < 0.001.
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parameter from the 1lr1t model were significantly related to the

propensity to catastrophise, indicating that catastrophizing is not

related to the weighting of recent outcomes when updating learnt

values (Figure 4b), nor exploration and stochasticity (Figure 4c).

3.4 | Multiple regression analyses

To examine whether other relevant variables affected our findings,

we performed several planned multiple regression analyses to adjust

for confounds and test specificity. As a reminder, the first category of

these included relevant covariates (Model 1—working memory, fluid

intelligence, age, and gender), and the second examined specificity to

catastrophizing by including scores on other mental health question-

naires (Model 2).

3.5 | Scaling parameter (lr scaling model)

Catastrophizing was shown to have no effect on scaling in either

regression model. Although the estimated coefficient value for

catastrophizing underwent a positive shift from Model 1 (β = 0.001,

p = 0.771) to Model 2 (β = 0.017, p = 0.095) this did not reach

significance at the predetermined p = 0.05 level (Figure 4d).

Notably, sex (where in the model we define female as the default

state and effect is the result of being male) had a significantly negative

effect on scaling in both Model 1 (β = −0.466, p = 0.025) and Model 2

(β = −0.500, p = 0.017), demonstrating that when the other predictors

are controlled for, sex is negatively corelated with scaling by history of

negative outcome (Figure 4d). This relationship was verified by further

exploratory analysis (Supporting Information: Section 8.1)

3.6 | Learning rate (1lr1t model)

There was no significant relationship between catastrophizing and

learning rate in either model. Similarly to the scaling parameter, the

catastrophizing predictor underwent a positive shift from Model 1

(β = 0.000, p = 0.960), to Model 2 (β = 0.003, p = 0.106), which was

ultimately insignificant (Figure 4e).

Fluid intelligence had a significant negative relationship with

learning rate in both Model 1 (β = −0.013, p = 0.015) and Model 2

F IGURE 2 Shows the results of mixed model analyses on switch/stay behavior and reaction time on trial t, with regressors including all
significant lags from the previous models, and the interaction with catastrophizing scores. (a) mixed model of switch/stay behavior and (b) mixed
model of reaction time.
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(β = −0.013, p = 0.016) indicating that greater fluid intelligence is

associated with lower learning rate. We confirmed this effect in an

exploratory analysis (Supporting Information: Section 8.2).

3.7 | Inverse temperature (1lr1t model)

Despite the figure displaying the catastrophizing coefficient having a

weakly positive relationship with inverse temperature in Model 1

(β = 0.004, p = 0.083), this was not significant and the effect

diminished in Model 2 (β = 0.001, p = 0.901) (Figure 4f).

Sex (where we define female as the default state and effect is the

result of being male) had a strongly positive effect on inverse

temperature, which was evident in both models [Model 1 (β = 0.247,

p = 0.003); Model 2 (β = 0.246, p = 0.004)], while age was negatively

related to inverse temperature in both models [Model 1 (β = −0.009,

p = 0.011); Model 2 (β = −0.009, p = 0.020)]. These relationships were

supported by exploratory analysis (Supporting Information:

Section 8.3), indicating that in our data, inverse temperature is higher

in men than in women and decreases with age.

4 | DISCUSSION

In this study, we explored the relationship between reinforcement

learning parameters and self‐report catastrophizing scores to understand

how learning processes may be transformed in catastrophizing, with a

particular interest in the scaling by history of negative outcome parameter,

F IGURE 3 Illustrates the model fit results for our data as defined by the integrated Bayesian Information Criterion (iBIC). From best fit
(lowest score) to worst fit (highest score). (a) initial six models, (b) family of models with scaled learning rates and different windows.
1lr1t = Standard Rescorla–Wagner, 1lr1s1lapse = Rescorla–Wagner model with sensitivity term, associability = Pearce–Hall model, lr scaling =
learning rate scaled by history model (outcome window: 10), sensitivity scaling = sensitivity scaled by history model, vmax = Vmax model. In
(a), the filled star denotes the winning model overall (1lr1t), while the outlined star marks the winning model out of those to include a history
term (lr scaling).
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which we considered to be a promising construct to relate to

catastrophizing (H2.1). First, we performed model‐agnostic analyses,

which showed that history of outcomes does impact future behavior

(positive outcomes promote “stay” behavior, and neutral outcomes

promote “switch” behavior for three trials into the future, and positive

outcomes promote an initial slowing of response, then subsequent

speeding), and that (at least in our “accuracy” analyses), this may be

enhanced by catastrophizing.We then conducted model fitting on several

standard learning models that are prevalent in computational psychiatry,

in addition to two novel models which were designed to explicitly

parameterize altered learning when a series of negative outcomes are

received. Our model comparison showed that the 1lr1t model, which did

not include a scaling term, was the best fit for our data overall, and the lr

scaling model (with a “history” window of only one trial) was the best‐

fitting model to include a history variable.

We did not find a relationship between catastrophizing and any

of the parameters we investigated. However, we did find significant

relationships between parameters and several of our covariates. In

the lr scaling model, sex (where we define female as the default state

and effect is the result of being male) was negatively related to the

scaling parameter. In the 1lr1t model, fluid intelligence was negatively

correlated with the learning rate parameter, while the inverse

temperature parameter was negatively correlated to age, and

positively related to sex.

4.1 | Standard reinforcement learning models

performed better than our novel models with a scaling

parameter

A notable finding from this study is that the Standard

Rescorla–Wagner model (Rescorla, 1972) (1lr1t model) provided a

better fit for the data than our models which included a scaling term

related to the history of outcome. It can, therefore, be inferred that in

F IGURE 4 (a–c) Illustrate the plotted correlations between self‐report catastrophizing scores and specific reinforcement learning
parameters. None of these relationships were found to be statistically significant; (a) shows the relationship between catastrophizing and scaling
(r = 0.003, p = 0.679), (b) with learning rate(r = 0.026, p = 0.703), and (c) with inverse temperature (r = 0.086, p = 0.220). (d–f) Show multiple
regression analyses for each parameter, with estimated coefficients of all Model 1 (blue) and Model 2 (orange) predictors displayed on the same
plot to convey the effects of adding questionnaires as covariates. (d) Shows multiple regression analysis for the scaling parameter.
Catastrophizing had no effect on the scaling parameter in Model 1 (β = −0.001, p = 0.771) or Model 2 (β = 0.017, p = 0.095). There was a
significant negative effect of self‐reported sex on the scaling parameter in both Model 1 (β = −0.466, p = 0.025) and Model 2 (β = −0.500,
p = 0.017). (E) Shows multiple regression analysis for the learning rate parameter of the 1lr1t model. Catastrophizing had no effect in Model 1
(β = 0.000, p = 0.960) or Model 2 (β = 0.003, p = 0.106). Fluid intelligence had a significant negative effect on learning rate parameter in Model
1(β = −0.013, p = 0.015) and Model 2 (β = −0.013, p = 0.016). (F) Shows multiple regression analysis for the inverse temperature parameter of the
1lr1t model. Catastrophizing had no significant effect on Model 1 (β = 0.004, p = 0.083) or Model 2 (β = 0.001, p = 0.901). Sex (male) had a strong
positive effect on inverse temperature in Model 1 (β = 0.247, p = 0.003) and Model 2 (β = 0.246, p = 0.004), while age had a strong negative
effect in Model 1 (β = −0.009, p = 0.011) and Model 2 (β = −0.009, p = 0.020).
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this task, the participant learning rate was unaffected (or only

minimally affected) by the proportion of negative outcomes received.

It is important to note that prediction errors will increase with

repeated incorrect choices, and thus scaling may only have a minor

additional effect above that of prediction errors. Our study

additionally assessed the fit of the Vmax model (Supporting

Information: Section 6), whereby learning rate increases if the most

valuable option has changed from the previous trial. Given the

performance of this model was inferior even to the novel models, it

suggests that proportional adjustments in learning rate based on poor

previous outcome may not be a feature of human learning and

decision making, at least on this task.

4.2 | Catastrophizing has no relationship with

reinforcement learning parameters

Counter to our predictions, we were unable to detect a relationship

between self‐report catastrophizing scores and any one of the

reinforcement learning parameters we explored in this study, demon-

strating that, within our sample, catastrophizing had no effect on learning

rate, inverse temperature, or the extent to which individuals may scale

learning rate by history of negative outcome. Notably, inclusion of mental

health covariates in a multiple regression analysis led to a trend in the

catastrophizing coefficient toward the predicted positive direction for

both the scaling parameter of the lr scaling model and the learning rate

parameter of the 1lr1t model. Though neither reached significance at the

predetermined level, the common pattern across models may imply that

the study was underpowered to capture this effect, or that there are

confounding variables masking an effect of catastrophizing. Future

replication with a larger sample size would be required to confirm this.

Alternative explanations of our failure to detect a relationship include

the possibility that a more complex relationship exists between

catastrophizing and reinforcement learning parameters, whereby individ-

ual differences in the effects that catastrophizing elicit on behavior evoke

contradictory or inconsistent behavioral responses amongst participants.

In this case, we may not have detected an effect, as correlations and

regressions assume linear relationships without individual differences in

the direction of the relationship. Latent class analysis or correlation

clustering could be utilized to determine if there is evidence for individual

differences in response. Moreover, it is feasible that there are valence‐

dependent effects on learning in catastrophizing, which we did not assess,

due to our models including single learning rates, thus not allowing the

separation of learning from reward and learning from punishment. Such

effects have been shown in mood and anxiety disorders, which feature

considerable comorbidity with catastrophizing (Aylward et al., 2019).

4.3 | Significant covariate effects on reinforcement

learning parameters

We observed significant (unhypothesised) relationships between our

selected reinforcement learning parameters and several of our

covariates, which are individually discussed in the Supporting

Information as secondary findings (Supporting Information S1:

Section 9). Beyond the individual implications of each of these

findings, the inherent presence of significant effects suggests that the

selected reinforcement learning parameters are likely to be meaning-

fully capturing a cognitive construct, but that these constructs were

unrelated to the mental health measures collected in this study.

4.4 | Win‐stay behavior and catastrophizing

Our model‐agnostic analyses indicate that there may be some

relationship between win‐stay behavior and catastrophizing, which

was not captured in our computational modeling analyses. Future

research could develop clear hypotheses and models that might allow

this behavior to be captured and mechanistically characterized—

perhaps this reflects a greater tendency to “perseverate” in those

who catastrophize, which may be captured by a perseveration

parameter in a model. Alternatively, perseveration after win

outcomes may reflect a form of “safety behavior” or avoidance,

which could perhaps be captured by a go/no‐go paradigm modeled

using an avoidance parameter (Guitart‐Masip et al., 2012; Mkrtchian

et al., 2017).

5 | LIMITATIONS

Notably, in this bandit task the possible outcomes were rewards (+1

points) and neutral outcomes (0 points). Despite our attempt to

ensure that neutral outcomes were perceived as negative (partici-

pants received a message saying that the restaurant choice was

“disgusting,” and fewer points won translated to a lower financial

bonus), it may be more relevant to catastrophizing and other mental

health constructs to use explicit punishments (loss of points, rather

than absence of gain of points or financial bonus) in future research

examining history of outcomes.

Moreover, it is possible that catastrophizing is only present or

primarily present during high arousal or anxiety (Clark et al., 1988), or

that it requires activation by a trigger specific to the individual

(Beck, 1976). As we did not manipulate arousal or anxiety, and the

stakes of our gamified abstract task were both non‐threatening and

impersonal, it is unlikely that our task evoked elevated anxiety in our

participants, thus potentially limiting their catastrophizing behavior.

6 | CONCLUSIONS

We were unable to provide any conclusive evidence as to whether

catastrophizing relates to reinforcement learning parameters. Never-

theless, there were some ambiguous trends in the effect of

catastrophizing on reinforcement learning parameters in a direction

that aligned with our predictions. However, our model fit findings

suggest that learning rate may not be proportionally affected by the
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history of outcomes beyond the effect of prediction error, and that

standard reinforcement learning frameworks may be superior in

capturing participant learning and decision making on this task, over

our novel model which included a scaling term.
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