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Introduction

Procedural memory underlies the encoding; storage; and 

retrieval of motor, perceptual, and cognitive skills that 

involve the integration of sequenced, statistical, and prob-

abilistic knowledge across the lifespan (Eichenbaum, 

2002; Eichenbaum & Cohen, 2001; Koch et al., 2020; 

Ullman, 2004). Learning in this system relies on the basal 

ganglia (specifically, the striatum), the cerebellum, and 

portions of the parietal and frontal cortices (Packard & 

Knowlton, 2002; Parent & Hazrati, 1995; Poldrack & 

Packard, 2003) and tends to be gradual, yet once the skills 

have been learned they are used rapidly and automatically. 

The procedural memory system is proposed to be involved 

in language acquisition. Specifically, Ullman and col-

leagues (Ullman, 2004; Ullman et al., 2020) propose that 

the procedural memory system supports the acquisition of 

rule-based linguistic knowledge, such as phonology and 

grammar; while the declarative system is mostly associ-

ated with acquisition of more arbitrary and explicit knowl-

edge, such as vocabulary. Supporting this, language and 

procedural memory share brain systems, including basal 

ganglia and frontal cortex, especially Broca’s area (Ullman, 

2001; Ullman & Pierpont, 2005), and clinical populations 

with impairments of the basal ganglia tend to show both 

motor and linguistic impairments (Ullman & Pierpont, 

2005). Aligning with the declarative/procedural model, 

some previous studies have shown small to moderate cor-

relations between procedural learning and language and 

literacy abilities (Clark & Lum, 2017; Desmottes et al., 

2017; Lum et al., 2012). However, other studies have 

failed to replicate these associations (Desmottes et al., 

2017; Gabriel et al., 2015; Henderson & Warmington, 

2017; Siegelman & Frost, 2015; Vakil et al., 2015; West 

et al., 2019). This inconsistency, coupled with recent 
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concerns about the psychometric properties of tasks used 

to measure procedural learning—serial reaction time task 

(SRTT; Kalra et al., 2019; Siegelman & Frost, 2015; Stark-

Inbar et al., 2017; West et al., 2018); contextual cueing and 

Hebb tasks (West et al., 2018); and statistical learning 

tasks (Arnon, 2020)—calls for further research to system-

atically examine the reliability of markers of procedural 

learning.

The SRTT (Nissen & Bullemer, 1987) is the most widely 

used measure of procedural (or sequence) learning that 

requires participants to connect a series of events and form 

high-order associations to predict future positions (Keele 

et al., 2003). It has been shown to rely on the same neural 

networks as other measures of procedural learning (Clark 

et al., 2014; Hardwick et al., 2013). For example, patients 

with basal ganglia disorders (e.g., Huntington’s disease) 

show impaired procedural learning on the SRTT 

(Willingham & Koroshetz, 1993), and functional magnetic 

resonance imaging (fMRI) studies demonstrate that proce-

dural learning captured by the SRTT elicits activation in the 

basal ganglia (putamen: Willingham et al., 2002; ventral 

striatum: Doyon et al., 1996; and the cerebellum: Hardwick 

et al., 2013). In the SRTT, a stimulus is presented in an 

array (e.g., four squares presented horizontally across a 

screen) and participants are required to press a correspond-

ing button on a keypad or button box to the position of the 

stimulus on screen as quickly as possible. Unbeknown to 

the participant, some of the stimulus transitions follow a 

sequence, with procedural learning being measured as the 

response time difference between the sequenced and ran-

dom trials. Faster responses to sequenced than random tri-

als are taken as a “procedural learning effect,” indicating 

that the participant has learned the sequence and is there-

fore able to anticipate the next position.

SRTTs can be deterministic or probabilistic. 

Deterministic sequences usually comprise random and 

sequenced blocks. The first blocks typically contain the 

repeating sequence, with a sudden switch to a random 

block, followed by a final sequenced block; however the 

opposite pattern (random–structured–random) is also fre-

quently adopted. Reaction times (RTs) tend to decrease 

progressively during practice in sequenced blocks but then 

increase in random blocks; this difference in RT is taken as 

evidence of procedural learning. In contrast, probabilistic 

SRTTs usually comprise two second-order conditional 

sequences, one that occurs with a higher probability than 

the other (e.g., sequence A [85%]: 121432413423; 

sequence B [15%]: 323412431421; Siegelman & Frost, 

2015). Each block starts with a random bigram (e.g., 43) 

and the next location selected will be either the location 

that followed that bigram in sequence A (i.e., 2, termed a 

“probable” trial) or the location that following that bigram 

in sequence B (i.e., 1, termed an “improbable” trial). 

Procedural learning in probabilistic SRTTs is measured as 

the difference in response times between probable and 

improbable trials. Importantly, despite participants show-

ing evidence of procedural learning, they often have little 

to no awareness of the presence of a probabilistic sequence 

(Destrebecqz & Cleeremans, 2001). Deterministic 

sequences, on the contrary, have been found to yield more 

explicit awareness of the sequence (Jiménez & Vázquez, 

2005; Stark-Inbar et al., 2017; Stefaniak et al., 2008). 

Thus, the probabilistic sequences may represent purer 

measures of implicit procedural learning (Stefaniak et al., 

2008).

The SRTT is well known for producing robust effects at 

the group level, thus recently there has been increased 

interest in using the SRTT as a marker of individual differ-

ences (Siegelman & Frost, 2015). However only a few 

studies have explored the psychometric properties of the 

task. Reliability refers to the ability of a task to rank indi-

viduals’ performance consistently across time, with higher 

reliability indicating stable scores obtained at test and 

retest (Hedge et al., 2018). Split-half reliability, a measure 

of internal consistency within a single session that reflects 

the correlation between scores within a test (Nunnally & 

Bernstein, 1994), has been shown to be moderate to ade-

quate on the SRTT in children and adults, respectively 

(children: rs = .49−.75; adults rs = .84−.92, West et al., 

2018, 2021). However, test-retest reliability (i.e., the sta-

bility of the test scores over different sessions) is notably 

poorer and below acceptable psychometric standards: that 

is, r < .70 (Burlingame et al., 1995; Nunnally & Bernstein, 

1994), in both children (probabilistic SRTT: r = .21, 500 

trials, West et al., 2018; r = .26, 1000 trials, West et al., 

2021) and adults (deterministic SRTT: r = .38, Kalra et al., 

2019; r = .07, Stark-Inbar et al., 2017; probabilistic SRTT: 

r = .47, Siegelman & Frost, 2015; r = .70, West et al., 2021; 

and alternating SRTT: r = .46, Stark-Inbar et al., 2017). In 

one exception, West et al. (2021) obtained a test–retest 

reliability of .70 using a probabilistic SRTT with 46 adults 

aged between 18 and 61 years. The unusually high stability 

reported here could be due to one or more of a number of 

methodological differences: for example, a large number 

of trials (i.e., 1,500), the same sequence was administered 

twice, the gap between tests was 2–3 days, and use of a 

250-ms interstimulus interval (ISI).

According to classical test theory (Fleiss, 1986), 

observed scores reflect true scores and measurement error, 

and higher degrees of measurement error lead to greater 

fluctuations in scores across time. This translates into poor 

test–retest reliability as participants’ relative ranking will 

change between test and retest (Berchtold, 2016; Nunnally 

& Bernstein, 1994). Poor reliability may contribute to 

noisier predictions; increased uncertainty in parameter 

estimation (Loken & Gelman, 2017); and attenuation of 

the association between measures (Rouder et al., 2019; 

Rouder & Haaf, 2019, 2021). In small samples, as demon-

strated by Loken and Gelman (2017), measurement error 

can lead, by chance, to overestimation of the effect size. 
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Thus, the poor reliability of the SRTT may contribute to 

the inconsistently reported correlations between language/

literacy measures and procedural learning (LeBel & 

Paunonen, 2011). It is, however, important to note that in 

the one study to date which reports adequate test–retest 

reliability for the SRTT (r = .70; West et al., 2021), only 

negligible correlations were observed between procedural 

learning and word and nonword reading measures (rs from 

−.06 to −.11; West et al., 2021). Thus, even in the face of 

adequate stability, this lack of association remains contrary 

to the predictions of the declarative/procedural model. 

Nevertheless, it is a single study, and identifying optimal 

conditions for achieving better reliability remains impera-

tive. Indeed, only a robust and reliable task can test the 

boundaries of the procedural/declarative model of lan-

guage acquisition, including the procedural deficit hypoth-

esis, and permit a better understanding of the role of 

procedural learning and language development and disor-

der (Matheson, 2019). Systematically examining the sta-

bility of the SRTT also has clear methodological value, in 

revealing design modifications to enhance its psychomet-

ric properties, and clinical value, in working towards 

developing a tool that can identify procedural learning 

weaknesses (Berchtold, 2016). Generally, it has been 

claimed that a larger number of trials in any task tends to 

increase reliability, due to a reduction in measurement 

error (D. H. Baker et al., 2021; Rouder & Haaf, 2019, 

2020). However, studies by West and colleagues (2018, 

2021) showed only modest (and nonsignificant) numerical 

improvements in test–retest reliability when they increased 

the number of trials in their SRTT.

In addition to examining reliability, agreement, also 

called repeatability, was examined using the Bland–

Altman method (Bland & Altman, 1986, 1999, 2010). As 

argued by Berchtold (2016), the concept of test–retest 

refers to both the reliability and agreement of a measure-

ment tool, with agreement referring to the ability of a test 

to produce the same scores when participants are tested 

under the same conditions. Thus, while reliability reflects 

the test’s ability to rank participants consistently within or 

across sessions, agreement instead focuses on the consist-

ency of the scores, independently of the range and distri-

bution of the variables. Thus proving particularly important 

for clinical applications whereby participants’ scores, 

instead of ranking order, may be used to track response to 

intervention.

Therefore, here, we examine further factors that may 

influence stability. Of particular focus here are the similar-

ity of the sequences to be learned (Experiment 1) and the 

number of sessions across which learning is assessed 

(Experiment 2). To allow for a comprehensive understand-

ing of reliability, a multi-measurement analytic approach 

will be taken: we will assess the psychometric properties 

of the SRTT across different measures of procedural learn-

ing (difference scores or random slopes) and different 

psychometric measures (split-half reliability, test–retest 

reliability, and agreement).

Experiment 1

There are several reasons why the similarity of sequences 

to be learned over two or more sessions may influence 

both the size of the procedural learning effect and poten-

tially also its stability, and each predicts that greater simi-

larity between sequences should result in better learning at 

later sessions. First, learning the same or similar sequences 

reduces the likelihood of proactive interference, in which 

the memory of the first-learned sequence disrupts the 

learning of the second-learned sequence (Borragán et al., 

2015; Darby & Sloutsky, 2015). Second, greater similarity 

increases the likelihood that consolidation of the first 

sequence will benefit learning of the second, such that 

individuals benefit from prior knowledge when exposed to 

the new material (Nemeth et al., 2010; Robertson et al., 

2004; Siegelman & Frost, 2015). Third, the well-estab-

lished phenomenon of practice effects is likely to lead to 

an improvement in performance for later sessions 

(Hausknecht et al., 2007; Scharfen et al., 2018), which is 

why the use of alternate forms is generally recommended 

(Beglinger et al., 2005); although see Scharfen et al. (2018) 

for evidence that alternate forms do not reduce practice 

effects in working memory capacity tasks. Finally, greater 

similarity may also lead to increased explicit awareness of 

the sequence at subsequent sessions and improve perfor-

mance (Rüsseler et al., 2003) as explicit knowledge has 

been shown to increase with extended training in the SRTT 

and is more likely to lead to offline consolidation 

(Robertson et al., 2004).

While greater similarity in sequences used in different 

sessions may result in larger procedural learning effects in 

later sessions, they may also reduce the stability of proce-

dural learning (Stark-Inbar et al., 2017). Individual differ-

ences in any one of the above factors would introduce 

variability in procedural learning at retest, thus leading to 

changes in the rank order of scores (Hedge et al., 2018; 

Stark-Inbar et al., 2017). Practice effects have been shown 

to vary according to participants’ characteristics (e.g., age: 

Brown et al., 2009; Hodel et al., 2014) and cognitive skills 

(Schaefer & Duff, 2017), thus introducing additional vari-

ability at retest. To our knowledge there has been no direct 

examination of the effect of sequence similarity on either 

the magnitude of the procedural learning effect, or the 

test–retest reliability of the SRTT. However, two recent 

studies in the literature are consistent with our prediction: 

Siegelman & Frost (2015) used the same sequences at both 

testing sessions and reported lower test–retest reliability 

than West et al. (2021), who used different sequences. 

While West et al. (2021) showed no significant differences 

in the learning effect between sessions, Siegelman and 

Frost (2015), on the contrary, reported that after 3 months 
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the majority of participants (64 out of 75) showed a better 

performance at retest.

Experiment 1 examined the effect of similarity of the 

two sequences to be learned, to ascertain (1) the impact on 

the magnitude of the procedural learning effect, and (2) the 

effect on test–retest reliability (referred to here as stabil-

ity). Similarity was operationalised in terms of the 

Levenshtein distance (LD), which has been widely used to 

determine the distance between strings across fields such 

as biology, computer science, and linguistics (Berger et al., 

2021; Eriksen & Tougaard, 2006; Faes et al., 2016; 

Konstantinidis, 2005). Three types of operations are con-

sidered—substitutions, deletions, and insertions—with a 

small distance between sequences indicating higher simi-

larity and a large distance revealing that the sequences are 

dissimilar (Levenshtein, 1966). We used sequences of 

varying similarity in a probabilistic SRTT to test four main 

hypotheses:

H1: Participants will demonstrate procedural learning 

in both sessions, as indexed by faster responses to prob-

able versus improbable elements of the sequence;

H2: Similarity between sequences will impact the mag-

nitude of the procedural learning. Higher levels of simi-

larity between Sessions 1 and 2 will result in a larger 

procedural learning effect in Session 2, whereas lower 

levels of similarity between Sessions 1 and 2 will result 

in a relatively smaller of procedural learning effect;

H3: Within session reliability (indexed by the split-half 

correlation coefficient) will be higher than stability 

across sessions, indexed by test–retest reliability;

H4: Sequence similarity will be negatively associated 

with stability: more similar sequences at Sessions 1 and 

2 will be associated with lower test–retest reliability.

Methods

Participants. A total of 103 undergraduate students from 

the University of York (91 females), aged between 18 and 

25 years (M = 19.18, SD = 1.09), participated in exchange 

for course credit. The sample included monolingual, bilin-

gual, and multilingual individuals from various nationali-

ties; all identified as fluent English speakers. The sample 

size was determined based on West et al. (2021), doubling 

the number of participants to allow for a median split of 

participants based on similarity of the sequence. Sensitiv-

ity analyses, in line with those conducted by Farkas et al. 

(2023) and presented in Supplementary Materials 1, sug-

gest that sample sizes above 100 participants offer limited 

gains in precision. Furthermore, with a sample size of 103, 

we have 80% power to detect correlations equal to, or 

above, .30. The experiment was approved by the Ethics 

Committee of the Psychology Department at the 

University of York and each participant gave written 

informed consent.

Measures. SRTT: A nonverbal probabilistic SRTT was 

used, following West et al. (2018, 2021) given the task 

used in this previous study has produced the highest 

reported stability in the existing literature. On each trial, 

four black outlined rectangles were presented horizontally 

and a stimulus (i.e., a smiley face) appeared in one of the 

four rectangles, with participants asked to respond as 

quickly and accurately as possible by pressing one of four 

corresponding keys (Z, X, N, M) on the keyboard. The 

stimulus remained visible until the key press. Participants 

rested their index and middle fingers of each hand on the 

four keys so they were ready to respond.

Two versions of this task were generated, each contain-

ing two different underlying second-order conditional 12 

item sequences. The first two sequences were taken from 

Shanks et al. (2003): probable sequence A—314324213412; 

improbable sequence A—431241321423, while the sec-

ond sequences were taken from Schvaneveldt and Gomez 

(1998): probable sequence B—121342314324; improba-

ble sequence B—123413214243. In second-order condi-

tional sequences, each trial can be predicted based on the 

previous two trials (Schwarb & Schumacher, 2012). For 

each SRTT, each block started with the consecutive gen-

eration of two random digits (e.g., 21), with that bigram 

then followed by the digit in probable sequence A (e.g., 3) 

with 90% of probability or followed by the digit in improb-

able sequence A (e.g., 4) with 10% probability (after West 

et al., 2018, 2021). After each response a new bigram was 

created which continuously followed the same principles. 

See Additional Analyses 11 for a series of simulations 

manipulating (1) the overall number of trials and (2) the 

ratio between trials per condition.

The task comprised 1,000 trials per session, as in West 

et al. (2021), divided into 20 blocks of 50 trials each. 

Within each block, trials immediately followed the partici-

pants’ response, with no ISI. Breaks between blocks com-

prised a fixation cross presented centrally on screen for a 

random duration between 8 and 12 s. The stimuli were pro-

grammed in Psychopy 2 (Peirce et al., 2019); response 

accuracy and RT (from stimulus onset) were recorded.

Sequence similarity. Varying the degree of similarity 

between inputs was achieved by generating a new stimulus 

set for each participant (i.e., given the probabilistic nature 

of the SRTT, each participant was exposed to a different set 

of 1,000 trials). To achieve variability in the stimulus sets, 

half of the participants were exposed to stimuli that con-

formed to the same sequence structure at Sessions 1 and 

2 (A/A), while others were exposed to stimuli that were 

generated by different sequence structures at both time 

points (A/B) (see Figure 1). Crucially, due to the proba-

bilistic nature of the task, none of the participants was 
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exposed to the exact same stimulus set at both sessions, as 

new stimuli were generated per session. Furthermore, vari-

ability in the input was increased by randomly matching 

the digits of the sequence (1, 2, 3, 4) to a different position 

on screen (left, centre–left, centre–right, right). A measure 

of similarity of the resulting sequences actually presented 

to each participant was computed using the LD. LD com-

putes the minimum operations required (insertion, dele-

tion, and substitution) for both strings to be identical, thus 

providing an indication of similarity between stimulus sets 

(Levenshtein, 1966). The LD was calculated for each par-

ticipant by comparing the stimulus sets, that is, two sets of 

1,000 trials. Across participants, the LD between pairs of 

stimuli varied between 248 and 437. More details on the 

distribution of LD between sessions can be found in Addi-

tional Analyses 2. The similarity ratio index of the total 

number of triplets in common between sequences was also 

computed (Pasquali et al., 2019; Wierzchon et al., 2012). 

Given the use of second-order conditional sequences, 

whose minimum unit of sequential information is three 

sequential locations or triplets, this additional computation 

ensured that these triplets were captured by the LD scores. 

Pearson’s correlations between the LD scores and the 

similarity ratio index revealed a high correlation between 

measures (r = .86).

Procedure. All participants were tested individually or in a 

quiet testing room in groups of up to six. All participants 

performed the SRTT at both sessions (SRT1 refers to 

SRTT at Session 1; SRT2 for Session 2). Each session 

lasted approximately 30 min, with Session 2 occurring 

1 week after Session 1 for all but two participants, who 

were tested 9 and 10 days apart. Once the SRT2 task was 

completed, task enjoyment and explicit knowledge were 

assessed via a question and a generation task, to ensure 

that the levels of explicit awareness were equivalent to 

previous studies using probabilistic tasks (see Supplemen-

tary Materials 2).

Statistical analyses. R software—version 4.1.1 (Rstudio 

Team, 2020) and lme4 package (Bates et al., 2015) were 

used to perform two separate linear mixed effects analyses 

of the performance of the participants on the SRTT and all 

figures produced using the package ggplot2 (Wickham, 

2016). p-values were obtained for the linear mixed effects 

model using the lmerTest package (Kuznetsova et al., 

2017) and corrected for multiple comparisons using the 

Holm–Bonferroni method (Holm, 1979). All reported p 

values are non-adjusted; however, all analyses which have 

not survived correction for multiple comparisons after cor-

rection for familywise error rates have been stated.

For the following data analyses, RTs were grouped 

into epochs of five blocks, comprising 200 trials. The 

first two trials of each block were removed as these were 

not predictable since the sequence follows a higher order 

structure with the third trial being predicted based on the 

previous bigram (two trials). All incorrect trials were 

removed from the analyses. Due to the unequal number 

of probable and improbable trials, a moving criterion 

based on sample size was used to identify outlier RTs 

(Cousineau & Chartier, 2010; Van Selst & Jolicoeur, 

1994). Participants with overall RTs > 2.5 SD from over-

all mean were excluded from the analyses (based on z 

scores averaged across probable and improbable condi-

tions for each group/session separately). Two participants 

were removed from the analyses for both sessions while 

the remaining two participants were removed for one of 

the sessions.

As RTs were right-skewed based on visual inspection 

and tests of normality, a log transformation was used to 

normalise the distribution of RTs (Brysbaert & Stevens, 

2018). Visual inspection of the residual plots after log 

transformation did not reveal any obvious deviations from 

homoscedasticity or normality.

The fixed-effects structure represented the maximal-

fixed-effects structure. The random intercept structure 

included solely participants, as item order was not consist-

ent across participants due to randomisation procedures. 

The random structure followed the forwards best path 

approach (Barr et al., 2013) starting from the minimal 

intercepts-only structure and building the random structure 

according to likelihood-ratio tests (p < .2) (Barr et al., 

2013) and the Akaike information criterion (AIC; Akaike, 

1974) to avoid overfitting (Brewer et al., 2016).

Figure 1. Visual representation of the process of stimulus set generation.
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H1 and H2: the procedural learning effect and 

similarity

The first model—RT model, designed to explore the pro-

cedural learning skills of the sample, included the within-

group variables—probability (probable or improbable), 

epoch (contrasts between successive Epochs 2-1 [i.e., 

Epoch 2 vs Epoch 1], 3-2 [i.e., Epoch 3 vs Epoch 2], 4-3 

[i.e., Epoch 4 vs Epoch 3], 5-4 [i.e., Epoch 5 vs Epoch 4]), 

and Session (1 or 2) into a linear mixed effects model, with 

participants as a random effect, to account for participant 

variability in performing the SRTT, and Session, Epoch, 

and Probability as random slopes. The second model—

similarity model—was formulated to explore the relation-

ship between similarity and procedural learning in more 

detail. Due to the continuous nature of the similarity vari-

able, it was centred and standardised before running the 

analysis. In both models, the outcome variable is log-trans-

formed RTs to address issues of non-normality, although 

raw means are reported for ease of interpretation. The 

model with similarity included only RTs from the last three 

epochs to avoid the inclusion of epochs where procedural 

learning is not yet robust as suggested by Conway et al. 

(2019). Probability (probable or improbable), Session (1 

or 2), and Similarity were entered as fixed effects and 

Participants as a random effect. Thus, unlike the first 

model, Epoch was not included as the goal was to explore 

the role of similarity when procedural learning was more 

robust, independently of its progression across epochs. 

After building the random structure following the method 

previously described, Session and Probability were 

included as a random slope.

After model selection, the influence.ME package was 

used to detect influential data as these values may lead to 

changes in regression estimates (Nieuwenhuis et al., 2012). 

Dfbetas were standardised and participants whose z-scores 

were greater than ±3.29 were identified as influential 

cases as opposed to the 2.5 SD threshold to avoid loss of a 

high number of participants (Walker et al., 2020). Three 

participants were identified as influential cases for the 

response times model and four for the similarity model.

H3 and H4: reliability and agreement

Test–retest and split-half reliability of the RTs were ana-

lysed using Pearson’s correlations, with a reliability of .70 

or greater being considered adequate (Nunnally & 

Bernstein, 1994). Although we have compared our find-

ings against this arbitrary threshold, reliability should be 

viewed in a continuum. As poor reliability results in the 

attenuation of the effect sizes of interest, researchers 

should take these measurement issues into account when 

designing a study, especially when making design choices, 

such as the number of trials per individual per task, has a 

critical impact on the effect sizes within a task and 

correlations across tasks (Green et al., 2016; Rouder & 

Haaf, 2019). Two2 different indices of procedural learning, 

commonly used in previous studies, were computed to bet-

ter capture stability. Simple difference scores, the most 

commonly used measure for the SRTT, were computed for 

each participant as the simple difference between improb-

able and probable RTs, with a positive value indicating 

procedural learning. Random slopes for each participant/

session were obtained by running a linear mixed effects 

model with log transformed RTs as a dependent variable 

and Probability (probable or improbable) as a predictor, 

for the random structure participants were introduced as a 

random intercept and probability as a random slope 

(Lammertink et al., 2020; Llompart & Dąbrowska, 2020; 

Milin et al., 2017). Random slopes were computed as this 

measure better captures the learning trajectory for each 

participant and are less likely to be influenced by extreme 

scores.

To measure split-half reliability for both sessions, trials 

were separated into probable and improbable trials. 

Consecutive trials were labelled as odd or even. Split-half 

reliability was calculated by correlating the overall mean 

difference in RTs for even and odd trials. The split-half and 

test–retest reliability were computed both for the entire 

task and the last 600 trials, following the suggestion that 

the later stages of procedural learning may be more stable 

(Conway et al., 2019). Agreement was examined using the 

Bland–Altman method (Bland & Altman, 1986). The 

Bland–Altman method involves plotting the mean of the 

measures for each participant (e.g., (Diff2 + Diff 1)/2 

against the difference in the paired measurements in 

Sessions 2 and 1 (e.g., Diff2—Diff 1), with 95% of the 

data points being expected to lie within ±1.96 SDs of the 

mean difference, referred to as the 95% limits of agree-

ments. According to Bland and Altman (1999), while a 

consistent tendency in the scores where performance is 

superior in one of the sessions than the other can be 

adjusted for by subtracting the difference between sessions 

from the one with higher scores (bias), wide limits of 

agreement pose a more serious problem. Determining 

whether the limits are adequate will depend on how pre-

cise the instrument must be for its use in clinical or research 

settings.

Results

Data were available for 100/103 participants for Session 1 

and for 98/103 participants for Session 2. Data from five 

participants were lost due to computer malfunction and 

one due to a participant being unable to attend the second 

session. Four of these participants contributed data for one 

of the sessions, but two participants’ data were lost for 

both sessions. Three participants were identified as outli-

ers for each session. Data from 97 participants for Session 

1 and from 95 participants for Session 2 were therefore 
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included in the analysis. Participants showed high accu-

racy rates across sessions (Session 1: Macc = 95%, 

SD = .09; Session 2: Macc = 95%, SD = .08).

H1: procedural learning in the SRTT. Results from the mixed 

effects model are presented in Table 1. As evidenced in Fig-

ure 2, RTs decreased with practice as observed by faster RTs 

with successive epochs. There was evidence of procedural 

learning, with RTs faster for probable than improbable trials. 

This “procedural learning effect” increased over epochs, as 

shown by the significant interaction between Epoch × 

Probability for Epoch 2-1 (i.e., Epoch 2 vs Epoch 1), Epoch 

3-2 (i.e., Epoch 3 vs Epoch 2), and Epoch 4-3 (i.e., Epoch 4 

vs Epoch 3; no longer significant after correction for multi-

ple comparisons), but not for the last contrast, possibly indi-

cating a plateau in learning after Epoch 4. The significant 

interaction between Probability × Session, indicates that 

participants showed a larger procedural learning effect in 

Session 2 than Session 1, but this was not significant after 

correction for multiple comparisons. The absence of a three-

way interaction between Epochs × Probability × Session 

indicates that the within-session progression of procedural 

learning was similar for both sessions.

H2: the effect of similarity on procedural learning. In the 

model incorporating sequence similarity (results are pre-

sented in Table 2), a similar pattern of results was obtained 

in terms of significant effects of probability and session. 

Turning to the effect of similarity, in line with our predic-

tions, LD and LD × Probability were not significant pre-

dictors of RT, but there were Probability × Session × LD 

interactions. This indicates that greater similarity was asso-

ciated with larger procedural learning effects in Session 2. 

This was further examined by Pearson’s correlations 

Table 1. Predictors of the magnitude of procedural learning.

Fixed effects b SE t p CI

(Intercept) 6.074 0.013 474.610 <.001 6.049 6.100

Epoch 2-1 −0.019 0.004 −4.259 <.001 −0.028 −0.010

Epoch 3-2 0.008 0.004 2.130 .035 0.001 0.015

Epoch 4-3 −0.010 0.003 −3.001 .003 −0.017 −0.004

Epoch 5-4 −0.019 0.004 −4.921 <.001 −0.026 −0.011

Probability 0.024 0.001 15.806 <.001 0.021 0.027

Session 0.061 0.004 16.080 <.001 0.054 0.069

Epoch 2-1 × Probability 0.011 0.002 5.020 <.001 0.007 0.016

Epoch 3-2 × Probability 0.012 0.002 5.018 <.001 0.007 0.016

Epoch 4-3 × Probability 0.005 0.002 2.309 .021 0.001 0.010

Epoch 5-4 × Probability 0.004 0.002 1.653 .098 −0.001 0.008

Epoch 2-1:Session1 −0.017 0.004 −3.816 <.001 −0.025 −0.008

Epoch 3-2:Session1 −0.004 0.003 −1.392 .166 −0.010 0.002

Epoch 4-3:Session1 −0.012 0.003 −3.398 <.001 −0.019 −0.005

Epoch 5-4:Session1 −0.008 0.003 −2.328 .021 −0.015 −0.001

Probability × Session −0.002 0.001 −2.297 .022 −0.003 0.000

Epoch 2-1 × Probability × Session 0.001 0.002 0.618 .537 −0.003 0.006

Epoch 3-2 × Probability × Session −0.001 0.002 −0.396 .692 −0.005 0.004

Epoch 4-3 × Probability × Session −0.004 0.002 −1.638 .102 −0.008 0.001

Epoch 5-4 × Probability × Session 0.000 0.002 0.079 .937 −0.004 0.005

Random effects Variance SD

Participant: (Intercept) 0.0156 0.1250

Participant: Session (Slope) 0.0013 0.0360

Participant: Epoch 2-1 (Slope) 0.0014 0.0372

Participant: Epoch 3-2 (Slope) 0.0008 0.0291

Participant: Epoch 4-3 (Slope) 0.0006 0.0248

Participant: Epoch 5-4 (Slope) 0.0008 0.0286

Participant: Probability (Slope) 0.0002 0.0127

Participant: Session × Epoch 2-1 (Slope) 0.0013 0.0361

Participant: Session × Epoch 3-2 (Slope) 0.0004 0.0203

Participant: Session × Epoch 4-3 (Slope) 0.0006 0.0254

Participant: Session × Epoch 5-4 (Slope) 0.0006 0.0252

Indicated in bold are the contrasts that survived correction for multiple comparisons using the Holm–Bonferroni method.
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between the LD for each participant and their procedural 

learning effect (for each session separately). As expected, 

LD and procedural learning were not significantly corre-

lated in Session 1 (given sequence similarity between the 

two sessions should have no effect on Session 1), overall: 

r(91) = .09, p = .40, 95% CI = [−.12, .29]; last 600 trials: 

r(92) = .11, p = .271, 95% CI = [−.09, .31], but were moder-

ately negatively correlated in Session 2, overall: 

Figure 2. Mean response times for probable and improbable trials per epoch and session (Session 1 on the left and Session 2 on 
the right). Bars indicate 95% CI.

Table 2. Predictors of the similarity effect on the magnitude of procedural learning.

Fixed effects b SE T p CI

(Intercept) 6.068 0.013 474.508 <.001 6.042 6.068

Probability 0.033 0.002 19.253 <.001 0.030 0.033

Session 0.051 0.003 15.181 <.001 0.044 0.051

Levenshtein distance −0.016 0.015 −1.060 .292 −0.046 −0.016

Probability × Session −0.002 0.002 −1.524 .131 −0.006 −0.002

Probability × Levenshtein distance −0.003 0.002 −1.518 .133 −0.007 −0.003

Session × Levenshtein distance −0.005 0.004 −1.204 .232 −0.013 −0.005

Probability × Session × Levenshtein distance 0.006 0.002 3.178 .002 0.002 0.006

Random effects Variance SD

Participant (Intercept) 0.0145 0.120  

Participant: Session (Slope) 0.0009 0.030  

Participant: Probability (Slope) 0.0002 0.013  

Participant: Session × Probability (Slope) 0.0001 0.012  

Indicated in bold are the contrasts that survived correction for multiple comparisons using the Holm–Bonferroni method.
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r(91) = −.34, p < .001, 95% CI = [−.51., −.14]; last 600 tri-

als: r(91) = −.34, p < .001, 95% CI = [−.51, −.15]. This fur-

ther confirms that participants who were exposed to more 

similar sequences (i.e., lower LD) in Sessions 1 and 2 dem-

onstrated larger procedural learning effects in Session 2 

(Figure 3).

H3: reliability. Split-half reliability (see Table 3) was very 

similar in both sessions for the overall task and the last 600 

trials; using random slopes rather than raw difference 

scores as the metric of learning yielded numerically higher 

estimates of reliability. The split-half coefficients ranged 

from .55 to .71 (>.70 is considered adequate (Furr & 

Bacharach, 2008).

Test–retest reliability of the RTs themselves (e.g., the 

RT for probable trials in Session 1 with the RT for probable 

trials in Session 2) was high with a value equal or superior 

to .80. However, test–retest reliability of procedural learn-

ing effect was poor (r = .08–.17), irrespective of which 

measure was used and whether all RTs were included or 

just the final 600 trials (Table 4).

The levels of agreement between difference scores 

were explored via creating Bland–Altman plots (Figure 

4). The Bland–Altman plots for the difference scores 

reveal that very few data points lie outside the limits of 

agreement (−57.53, 55.47), with a mean difference of 

−1.03; 95% CI = [−7.03; 4.98]. However, although most 

data points lie within the limits of agreement, there are 

still considerable discrepancies between time points as 

evidenced by the poor precision of these limits, indicating 

a high degree of variance between sessions compared 

with between-subject variance, thus suggesting that the 

degree of agreement is not acceptable (Bland & Altman, 

1999).

H4: similarity and test–retest reliability. Following the sig-

nificant interaction between similarity and procedural 

learning, test–retest reliability was compared for partici-

pants with low and high sequence similarity scores 

(achieved by performing a median split). Test–retest relia-

bility was poor for both the high- and low-similarity 

groups, with no significant differences between groups 

(overall task: z = .83, p = .41; last 600 trials: z = .15, p = .88) 

(Table 5).

Also, we tested for the possibility that similarity might 

have an impact on test–retest reliability by including similar-

ity in a linear regression model which predicted the regres-

sion slopes in Session 2 from the regression slopes in Session 

1 (mean-centred), LD (mean-centred) and their interaction. 

We found no evidence that LD moderated the relationship 

between procedural learning Sessions 1 and 2. Although LD 

was predictive of the size of the effect in Session 2 (overall: 

b = −.37, SE = .11, t = −3.55, p < .001, 95% CI = [−.58, −.16]; 

last 600 trials: b = −.37, SE = .11, t = −3.47, p < .001, 95% CI 

= [−.58, −.16]), there was no significant interaction between 

procedural learning in Session 1 and LD, thus suggesting that 

similarity did not influence the test–retest reliability of the 

SRTT (overall: b = .06, SE = .09, t = .69, p = .493, 95% CI = 

Figure 3. Relationship between Levenshtein distance and 
difference scores for both sessions for all trials.

Table 3. Split-half reliability of the procedural learning 
measures for overall and last 600 trials of the SRTT for Session 
1 (SRT1) and Session 2 (SRT2).

Task Trials Split-half reliability

N Difference scores N Random slope

SRT1 1,000 95 r = .55 (.39, .67) 95 r = .68 (.56, .78)

Last 600 94 r = .50 (.34, .64) 94 r = .71 (.59, .80)

SRT2 1,000 91 r = .62 (.47, .73) 94 r = .70 (.58, .79)

Last 600 93 r = .55 (.39, .68) 93 r = .63 (.49, .74)

Split-half reliability correlations are significant (p < .05). SRTT: serial 
reaction time task.

Table 4. Test–retest reliability of the procedural learning 
measures for overall and last 600 trials of the SRTT.

Task Trials Test–retest reliability

N Difference 
scores

N Random 
slopes

SRT1–SRT2 1,000 91 r = .14
(−.06, .34)

91 r = .17
(−.04, .36)

Last 600 91 r = .08
(−.12, .28)

91 r = .17
(−.04, .36)

Test–retest reliability correlations are nonsignificant (p > .05). SRTT: 
serial reaction time task.
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[−.12, .24]; last 600 trials: b = −.006, SE = .11, t = −.06, 

p = .952, 95% CI = [−.22, .20]).

Discussion

Experiment 1 examined the reliability of the procedural 

learning effect, as captured by a probabilistic SRTT, and 

examined the impact of the similarity of the sequences on 

the magnitude and stability of procedural learning. As 

expected, robust procedural learning effects (i.e., faster 

responses to probable than improbable trials) were 

observed. However, the level of procedural learning in a 

subsequent session was substantially influenced by how 

similar the new sequence was to a previously learned 

sequence. That is, greater similarity between sequences 

was associated with larger procedural learning effects for 

the new sequences. Furthermore, despite observing ade-

quate levels of split-half reliability within each session 

(random slopes: .68−.72), test–retest reliability was very 

poor, regardless of the level of similarity between 

sequences (r < .18).

The positive correlation between the procedural learn-

ing effect and sequence similarity aligns with previous 

results (e.g., Siegelman & Frost, 2015). West et al. (2021) 

Figure 4. Plot of the procedural learning mean in Session 1 and Session 2 (x-axis) against the differences between these measures 
(y-axis). Black dashed line in the centre indicates the overall mean and the blues lines at the top and bottom represent 95% limits of 
agreement. Grey dashed lines represent CI around each measure.

Table 5. Test–retest reliability of the procedural learning 
measures for high and low-similarity groups measured for 
overall and the last 600 trials of the SRTT.

Similarity Random slopes Test–retest reliability

Trials N Random slopes

Low 1,000 46 r = .30 (.01, .55)

Last 600 46 r = .22 (−.08, .48)

High 1,000 47 r = .13 (−.17, .40)

Last 600 48 r = .20 (−.10, .46)

All correlations are nonsignificant (p > .05). SRTT: serial reaction time 
task.
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tested participants on a probabilistic SRTT, with a 3- to 

4-day interval between sessions, and found no significant 

differences in performance between sessions. However, 

West et al. used distinct sequences at test and retest with 

the aim of reducing practice effects. Together with the pre-

sent results, these studies suggest that the SRTT is prone to 

practice effects when subsequent sessions use similar 

sequences. The present study cannot speak of the 

mechanism/s that underlie the benefit of similarity on pro-

cedural learning. However, in light of the lack of evidence 

for a relationship between explicit awareness and the level 

of similarity between sequences (see Supplementary 

Materials 2), one possibility is that consolidated knowl-

edge of the first-learned sequence aids the acquisition of 

the second-learned sequence (Brown et al., 2009; Press 

et al., 2005; Robertson et al., 2004) or that knowledge of 

the first-learned sequence proactively interferes with the 

acquisition of the second-learned sequence (Desmottes 

et al., 2017).

The suboptimal test–retest reliability of the SRTT 

observed here is also generally consistent with previous 

findings. However, our test–retest coefficients were con-

siderably lower than Siegelman and Frost (2015; r = .47) 

and West et al. (2021; r = .70), irrespective of similarity 

between sequences at both time points. Our coefficients 

are more akin to those obtained by West et al. (2018, 2021) 

in children (r = .21; r = .26, respectively). The low test–

retest reliability of the SRTT is striking, particularly in the 

context of robust group-level procedural learning effects 

and despite high stability of overall RTs. One possibility is 

that difference scores, in general, are intrinsically less reli-

able than their component parts. This has been suggested 

by Hedge et al. (2018) as difference scores contain meas-

urement error from both measures which leads to an 

increase in the proportion of measurement error relative to 

between-subject variance. Yet, the limitations of using dif-

ference scores does not seem to pose as much of an issue 

when analysing the split-half reliability, nor does it explain 

the better test–retest reliability observed by Siegelman and 

Frost (2015) and West et al. (2018) despite also analysing 

difference scores. Furthermore, if difference scores were 

solely responsible for poor reliability, one would expect 

better outcomes for the random slopes. Unfortunately, that 

was not the case. Thus, other factors must contribute to the 

pattern of lower stability than split-half reliability.

It is possible that specific differences in design between 

our experiment and West et al. (2021) can account for the 

divergent findings. First, West et al. (2021) recruited older 

participants (18–61 years, M = 25.33 years, SD = 10.33 years) 

than in Experiment 2 (17–34 years, M = 20.09 years, 

SD = 2.09 years). This could have contributed to increasing 

the stability of the SRTT as test–retest reliability has been 

found to increase with age in intelligence measures 

(Schuerger & Witt, 1989). While presentation rates and age 

of participants have been shown to affect the procedural 

learning effect on the SRTT (presentation rates: e.g., Arciuli 

& Simpson, 2011; Emberson et al., 2011; Frensch & Miner, 

1994; Soetens et al., 2004; Willingham et al., 1997; age: 

e.g., Brown et al., 2009; Juhasz et al., 2019) there is no 

evidence, to our knowledge, of its impact on the test–retest 

reliability of the task. Second, West et al. (2021) included a 

250-ms ISI between trials, which was absent in our experi-

ment with the aim of reducing explicit awareness 

(Destrebecqz & Cleeremans, 2001). The inclusion of an 

ISI, however, could have contributed to the higher test–

retest reliability by inducing stronger representations of the 

sequence (Cleeremans & Sarrazin, 2007; Gaillard et al., 

2009), with explicit awareness possibly emerging as a con-

sequence of the increased signal strength (Cleeremans, 

2011; Timmermans et al., 2012). However, our data did not 

show indication that the magnitude of procedural learning 

was associated with explicit awareness (for more details 

see Supplementary Materials 2). Furthermore, a follow-up 

experiment (fully described in Supplementary Materials 4) 

replicated more closely the design adopted by West et al. 

(2021) by including a 250-ms ISI and participants with 

ages between 18 and 60 years. Yet, this experiment still 

revealed suboptimal test–retest reliability (r < 21). Explicit 

awareness levels were also similar between groups with 

and without an ISI. Taken together, this suggests that the 

superior reliability observed by West and colleagues (2021) 

may be explained by other design or sampling factors.

In sum, Experiment 1 obtained clear evidence of proce-

dural learning, which was larger in the second session, par-

ticularly when the second-learned sequences were more 

similar to the first-learned sequences. However, test–retest 

reliability of procedural learning was very poor regardless 

of the level of similarity between sequences. Another pos-

sibility, examined in Experiment 2, is whether this varia-

bility in the procedural learning effect across sessions will 

diminish with further training—that is, individuals will 

eventually reach a “plateau” which more accurately 

reflects their intrinsic procedural learning capacity. Given 

the lack of evidence for any impact of sequence similarity 

on reliability of the SRTT, and the larger procedural learn-

ing effect for those learning sequences with higher similar-

ity, sequences with high similarity were adopted in 

Experiment 2 to maximise the chances of participants 

reaching a “plateau” at an earlier stage of learning.

Experiment 2

Experiment 2 examined whether the inclusion of three ses-

sions would increase the test–retest reliability of the SRTT, 

since, as suggested by Conway et al. (2019) the poor reli-

ability of probabilistic procedural learning may be related 

to the measurement of earlier stages when learning might 

not be as robust. Palmer et al. (2018) have demonstrated 

patterns of increased stability on a variety of measures of 

cognitive ability commonly used to assess striatal 
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dysfunction by increasing the number of training sessions. 

They reported that practice effects diminished in patients 

with striatal impairments by the third session, thus increas-

ing the stability of the measures. Although Palmer et al. 

(2018) did not consider the SRTT, it is possible that it 

would follow a similar stabilisation trajectory, since the 

striatum has also been strongly implicated in performance 

on this task (Robertson et al., 2001; Torriero et al., 2004).

Experiment 2 also carried out a preliminary examina-

tion of the relationship between procedural learning and 

language and literacy. According to the Procedural/

Declarative model (Ullman et al., 2020; Ullman & 

Pierpont, 2005), performance on language measures (par-

ticularly grammar and phonology) and literacy measures 

(e.g., spelling, which requires procedural learning) should 

be associated with procedural learning. However, such 

correlations have not been consistently found in previous 

studies. If these correlations are masked by the low stabil-

ity of the SRTT and if incorporating multiple sessions 

increases stability, then stronger correlations would be 

expected with procedural learning effects measured at later 

sessions. This hypothesis is supported by West et al. 

(2021), who found, in their children’s sample, small to 

moderate correlations between linguistic/literacy meas-

ures and procedural learning captured in a second session, 

but not a first session.

Finally, Experiment 2 considered the role of attention 

in relation to procedural learning stability. An extensive 

literature has considered the role of attention in proce-

dural learning in the context of dual task paradigms. Such 

studies demonstrate a detrimental effect on procedural 

learning when participants simultaneously perform the 

SRTT alongside a secondary task (deterministic 

sequences: Coomans et al., 2014; Schumacher & Schwarb, 

2009; Shanks et al., 2003; probabilistic sequences: Shanks 

et al., 2005). In line with this, a positive correlation 

between sustained attention and procedural learning in 

children has been found by Sengottuvel and Rao (2013) 

and West and colleagues (2021). In the latter, it was also 

observed that the attentional demands of the SRTT may 

vary depending on the session: although attention was 

found to positively correlate with procedural learning at 

both sessions, stronger correlations were observed for 

Session 2. Furthermore, when attention was entered as a 

predictor of children’s attainment (on measures of read-

ing, grammar, and arithmetic), in a latent variable path 

model which also included the SRTT, measures of declar-

ative learning and attention, attention and declarative 

memory contributed unique variance, but the SRTT did 

not. This suggests that while the SRT may be a weak cor-

relate of language and related skills, this may be the result 

of overlapping variance with other variables, such as 

attention. This is further supported by the strong correla-

tion between attention and procedural memory (r = .56) 

observed in West et al. (2021).

However, in West et al. (2021), a 9-point observational 

rating scale was used to estimate the levels of attention 

throughout the SRTT, while Sengottuvel and Rao 

(Sengottuvel & Rao, 2013) assessed the offline attention 

skills through a two-choice RT task. For both attentional 

tasks information regarding their psychometric properties 

is lacking, with the operationalisation of attention used by 

West et al. (2021) potentially tapping into other constructs 

such as motivation/boredom required for children to 

remain focused on the task (e.g., R. S. J. d. Baker et al., 

2010; Godwin et al., 2016). Here, a direct measure of 

attention (i.e., a psychomotor vigilance task) was adopted 

to further explore the relationship between procedural 

learning and attention.

Experiment 2 used the same SRTT as in Experiment 1 

but on three separate sessions, to address three research 

questions and test the following accompanying preregis-

tered hypotheses (https://osf.io/yb3sv):

H1: Participants are expected to demonstrate evidence 

of procedural learning in all three sessions.

H2: Moderate to low test–retest reliability levels are 

expected between Sessions 1 and 2;

H3: If stability of performance increases with the num-

ber of sessions, test–retest reliability will be higher 

between Sessions 2 and 3 than between Sessions 1 and 

2;

H4: Split-half reliability will be higher for later sessions 

when compared with Session 1;

H5: Procedural learning is expected to correlate with 

language and literacy performance/scores in all 

sessions;

H6: Higher associations between language and proce-

dural learning will be expected in later sessions if the 

procedural learning effects are more reliable at later 

sessions;

H7: Participants with better attention skills will be 

expected to show more procedural learning;

H8: Higher correlations between procedural learning 

and attention are expected for later sessions.

No hypotheses were preregistered regarding how atten-

tion influences stability between sessions as, to our knowl-

edge, this has not been previously tested using the SRTT. 

Exploratory analyses were therefore performed to examine 

relationships between attention and stability.

Methods

Participants. Forty-seven young healthy adults aged 

between 17 and 34 years (M = 20.11 years, SD = 2.87 years) 
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with language, literacy, and nonverbal intelligence within 

the average range (see Supplementary Materials 3) were 

recruited from the University of York. All participants 

were native English speakers based in the United Kingdom 

with normal or corrected-to-normal hearing, vision, and 

without motor impairments that may impede task perfor-

mance. Participants received payment or course credit as 

compensation. The experiment was approved by the Ethics 

Committee of the Psychology Department in the Univer-

sity of York and each participant gave written informed 

consent.

Measures

SRTT. The SRTT used in Experiment 1 was used here, 

with the exception that the 1,000 trials per session were 

distributed over 5 blocks rather than 20 to replicate the 

number of blocks adopted by West et al. (2018, 2021). 

The first two sequences adopted were the ones included in 

Experiment 1. A new pair of sequences was selected for the 

additional session. The sequences were taken from Kauf-

man et al. (2010): probable sequence E—121432413423; 

improbable sequence F—323412431421. These sequences 

were selected to have equivalent levels of similarity (as 

captured by LD) and the similarity was comparable to West 

et al. (2018, 2020) (Sequences 1–2: LD = 338; Sequences 

1–3: LD = 342; Sequences 2–3: LD = 374).

Sustained attention. A computerised 10-min Psychomo-

tor vigilance task (PVT; based on Reifman et al., 2018) 

was used to measure sustained or vigilant attention by 

recording response times (RTs) to visual stimuli presented 

at random intervals between 2 and 10 s ISI. When perform-

ing the PVT, participants are asked to press the spacebar 

as soon as a red counter appears on screen, which stops 

the counter and displays the RT in milliseconds for a 1-s 

period. Based on the study by Basner and Dinges (2011), 

the mean reciprocal response time (M 1/RT) was selected 

as the primary outcome as this measure shows the most 

superior statistical properties, that is, being sensitive to 

small changes in fast RTs and robust to extreme values 

(Basner & Dinges, 2011). Median RTs of the PVT were 

also adopted as these have shown to have good reliability 

>.80 in adults (Dorrian et al., 2005).

Beyond these measures on the PVT, performance vari-

ability, which may be masked by analyses based on mean 

performance, has been explored as a valuable source of 

information to better understand individual differences in 

learning (Henríquez-Henríquez et al., 2015). The 

Ex-Gaussian method allows the examination of the 

response time distribution both for the “mu” and “sigma” 

parameters of the Gaussian distribution, which represent 

the mean and standard deviation of the normal component 

of the distribution, but also “tau,” which represents the 

exponential component reflecting the slower response 

times, and is the tail of the distribution. Previous research 

has found that high indices of intraindividual variability, 

usually higher tau values, are characteristic of populations 

with attention-deficit/hyperactivity disorder (ADHD; 

Borella et al., 2011; Gooch et al., 2012). Thus, the “tau” 

measure was also computed since it has been proposed as 

a stronger marker of attention difficulties than basic RTs/

lapses (Castellanos et al., 2006). Hence, the “tau” metric 

would potentially better capture the association between 

procedural learning and attention.

Standardised measures. All cognitive measures were 

delivered and scored in accordance with manual instruc-

tions.

Nonverbal intelligence was assessed by the Matrix 

Reasoning subtest of the Wechsler Abbreviated Scale of 

Intelligence—Second Edition (WASI-II; test–retest relia-

bility, r = .82; Wechsler, 2011). This task consists of 30 

incomplete visual matrices and the participants are 

required to choose the item from a selection of five that 

correctly completes the matrix.

Expressive vocabulary was assessed using the 

Vocabulary subtest of the Wechsler Abbreviated Scale of 

Intelligence—Second Edition (WASI-II; test–retest relia-

bility, r = .90; Wechsler, 2011). This task requires partici-

pants to provide a definition for a series of words that 

increase in difficulty, presented both verbally and ortho-

graphically. Each answer is given a score of 0, 1, or 2 

points depending on the quality of the description.

Nonword repetition was assessed with the Comprehensive 

Test of Phonological Processing—2 (CTOPP-2; internal 

consistency alpha coefficient, r = .77; Wagner et al., 2013), 

providing a measure of phonological memory. Participants 

were told that they would hear nonwords (that increased in 

phonological complexity) via headphones and that they 

should repeat the nonword exactly.

Sentence repetition was measured with the Recalling 

Sentences task from the Clinical Evaluation of Language 

Fundamentals—Fifth Edition (CELF-5, test–retest relia-

bility, r = .94; Wiig et al., 2013) was used to assess indi-

viduals’ ability to repeat sentences of increasing length and 

complexity.

Reading and spelling were assessed with the Wechsler 

Individual Achievement Test, third edition UK (WIAT-

IIIUK; internal consistency coefficients r ⩾ .90; Wechsler, 

2009). For Word Reading, participants were asked to read 

aloud words and nonwords ordered in increasing diffi-

culty. Participants’ responses were audio-recorded and 

later scored. The Spelling subtest consists of a spelling-to-

dictation task containing regular and irregular words. 

Participants first heard the target word in isolation, then in 

the context of a sentence, and finally in isolation again. 

Dictation was conducted using a recording of a native 

female speaker.
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Procedure. A within-subjects design was used, with each 

participant performing the SRTT at three time points each 

separated by roughly 1 week (interval between Sessions 1 

and 2: M = 7.02 days, SD = 0.15; interval between Sessions 

2 and 3: M = 7.07 days, SD = .61). The three underlying 

sequences were counterbalanced across participants and 

sessions to avoid order effects.

All sessions started with the administration of the SRTT 

(duration ~15 min). Standardised tests were administered 

after the SRTT in each session (i.e., literacy and attention 

tests Session 1; language measures Session 2; nonverbal 

measure Session 3). A generation task was completed at 

the end of the final session, to capture explicit knowledge 

of the sequence learned in Session 3. Session 1 lasted 

roughly 1 hr; Sessions 2 and 3 were approximately 30 min.

Analyses

H1: mixed effects model—procedural learning. The same 

procedures adopted in Experiment 1 were adopted for data 

treatment and analyses in Experiment 2. The additional 

session allowed the exploration of its effects on the sta-

bility of procedural learning. For the three-level factor of 

session two orthogonal contrasts were set: lag1 which con-

trasts Session 1 with Sessions 2 and 3 (S1 vs S2 & S3) and 

lag2 contrasted the performance in Sessions 2 and 3. After 

model selection, three participants were identified as influ-

ential cases. The analyses reported include the influential 

cases as this led to no differences in result interpretation 

with only minor changes in the degree of significance.

H2–H4: reliability and agreement. As in Experiment 1, 

test–retest reliability was calculated between Sessions 1 

and 2 and Sessions 2 and 3 using difference scores and 

random slopes as measures of procedural learning. Agree-

ment was assessed through Bland–Altman plots.

H5–H8: relationship between procedural learning and cog-

nitive measures. Pearson’s correlations were conducted to 

explore the relationship between written and oral language 

measures and procedural learning. The Holm–Bonferroni 

method was used to correct for multiple comparisons 

(Holm, 1979). Based on the sensitivity analysis, this study 

has 80% power to detect correlations equal and above .35. 

As nonsignificant results may represent either lack of evi-

dence for a correlation or lack of power, Bayesian Pearson 

correlations will be computed alongside. Bayes factors 

above 3 or below ⅓ will be taken as support for the alterna-

tive or null, respectively; yet we recognise that Bayes fac-

tors should be interpreted in a continuum (Jeffreys, 1961).

Exploratory analysis of attention. Ex-Gaussian analy-

sis was performed on the PVT and the parameters were 

extracted using the package Retimes (Massidda, 2013). 

The Ex-Gaussian distribution is characterised by a mean 

mu, standard deviation sigma and exponential distribution 

with mean tau. In this analysis, we focus on the measure 

tau as it represents the skewness or variability of the slow 

responses. This measure has been shown to be a better pre-

dictor of performance than traditional response time meas-

ures on attention and inhibition tasks (Gooch et al., 2012; 

Henríquez-Henríquez et al., 2015; van Belle et al., 2015).

Results

All participants completed the three sessions each sepa-

rated by 1 week, with the exception that one participant 

completed Session 3, 11 days after Session 2 and another 

completed Session 2, 8 days after Session 1. Data from all 

participants were available for all sessions except for one 

participant who missed Session 3. The remaining data 

were included in the analyses. The performance of two 

other participants was identified as an outlier, one for 

Session 1 and another for Session 3. Similar to Experiment 

1, high levels of accuracy were observed across sessions 

(Session 1: Macc = 97%, SD = .02; Session 2: Macc = 96%, 

SD = .03; Session 3: Macc = 95%, SD = .04).

H1: procedural learning in the SRTT—effect of session. Par-

ticipants’ RTs decreased with practice (Figure 5 and Table 

6) as evidenced by significant main effects of Epoch for 

contrasts Epoch 2-1 (no longer significant after correction 

for multiple comparisons) and Epoch 5-4 and Session for 

both contrasts (Delay1: Session 1 vs Session 2 and 3; 

Delay2: Session 2 vs Session 3). It is unclear why response 

times decreased in Epoch 5; however, we hypothesise that 

fatigue may have contributed to individuals prioritising 

speed over engaging with the task as demonstrated by the 

drop in the procedural learning effect (Epoch 5-4 × Prob-

ability). Importantly, there was a main effect of Probabil-

ity, as response times were faster for probable than 

improbable trials. This difference in probable and improb-

able response times increased with practice as evidenced 

by a significant Epoch × Probability interaction (with the 

exception of the final epoch), as well as a significant Ses-

sion × Probability interaction. Yet, the interaction between 

Session × Probability for Delay2 was no longer signifi-

cant after correction for multiple comparisons.

Despite this improvement in procedural learning with 

practice, the three-way interaction between Epochs × 

Probability × Session was only significant for Delay1 for 

Epoch 3-2 and Epoch 4-3 (also no longer significant after 

correction for multiple comparisons), thus indicating a sig-

nificant increase in procedural learning in Sessions 2 and 3 

for Epoch 3-2 relative to Session 1. This difference 

between Session 1 and Sessions 2/3 for Epoch 3-2 is appar-

ent in Figure 5. The nonsignificant interaction for Delay2 

(Session 2 vs Session 3) indicates that, despite the overall 

gains in procedural learning from Sessions 2 to 3, the dif-

ference between sessions was not observed at the epoch 

level (Figure 5).
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H2–H4: reliability. As shown in Tables 7 and 8 and similar 

to Experiment 1, split-half reliability for the SRTT was 

numerically higher when using slope coefficients com-

pared with raw difference scores and ranged from low 

(r = .23) to excellent (r = .91; Cicchetti, 1994; Cicchetti & 

Sparrow, 1990). This difference reached significance in 

the third session for both contrasts (p < .001).

As in Experiment 1, overall response times were highly 

stable across sessions (probable trials, rs = .82–.89; 

improbable trials, rs = .79–.83) but the procedural learning 

effect showed poor stability between Sessions 1 and 2, as 

reported in Table 8. Although there was a numerical 

improvement in stability between Sessions 2 and 3 which 

was most evident for the regression slope metric, this 

numerical increase in stability was not statistically signifi-

cant (overall: z = −0.38, p = .70; last 600 trials: z = −1.08, 

p = .28).

The Bland–Altman’s 95% limits of agreement range 

between −40.47 and 54.03 for Sessions 1 and 2 and 

between −37.62 and 45.03 for Sessions 2 and 3 (Figure 6). 

Almost all participants fell within the limits of agreement; 

however, the limits of agreement lacked precision (i.e., the 

magnitude of the procedural learning effect lacks consist-

ency whereby performance on one session is not 

necessarily replicated in another possibly reflecting a high 

degree of measurement), thus revealing poor agreement 

between measures. Yet, the Bland–Altman plot for 

Sessions 2 and 3 shows narrower limits of agreement, indi-

cating an improvement in agreement for later sessions.

H5–H8: relationship between procedural learning and cogni-

tive measures. The random slopes were used as a measure 

of procedural learning for analyses of individual differ-

ences as this method of calculation demonstrated the high-

est split-half and test–retest reliability, especially between 

Sessions 2 and 3 (see Additional Analyses 5 for the Bayes 

factors and credible intervals for the bivariate correlations 

between procedural learning and cognitive measures).

Procedural learning was not significantly correlated 

with nonverbal IQ (Session 1: r = −.08, BF
10

 = 0.38; Session 

2: r = .09, BF
10

 = .39; Session 3 = .22, BF
10

 = .87); thus, non-

verbal IQ was not used as a covariate in subsequent 

analyses.

Language and literacy. Vocabulary (r = .39) was the only 

significant language or literacy correlate of procedural 

learning and only in Session 3, indicating that participants 

with higher vocabulary skills also demonstrated greater 

Figure 5. Mean and 95% CI response times for probable and improbable trials per Epoch and Session (Session 1 on the left, 
Session 2 in the centre, and Session 3 on the right).
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Table 6. Predictors of the additional session on the magnitude of procedural learning.

Fixed effects b SE t p CI

(Intercept) 6.051 0.017 347.667 .000 6.016 6.087

Epoch 2-1 −0.009 0.004 −2.135 .037 −0.018 −0.001

Epoch 3-2 −0.002 0.004 −0.620 .538 −0.010 0.005

Epoch 4-3 0.006 0.004 1.397 .167 −0.002 0.014

Epoch 5-4 −0.021 0.004 −5.099 .000 −0.029 −0.012

Probability 0.039 0.002 21.674 .000 0.035 0.043

Delay1 (S1 vs S2 and S3) −0.045 0.003 −14.568 .000 −0.051 −0.039

Delay2 (S2 vs S3) −0.020 0.004 −5.271 .000 −0.028 −0.012

Epoch 2-1 × Probability 0.014 0.003 5.438 .000 0.009 0.019

Epoch 3-2 × Probability 0.010 0.003 4.042 .000 0.005 0.015

Epoch 4-3 × Probability 0.021 0.003 8.047 .000 0.016 0.027

Epoch 5-4 × Probability −0.008 0.003 −2.763 .006 −0.013 −0.002

Epoch 2-1 × Delay1 0.013 0.002 7.406 .000 0.010 0.017

Epoch 3-2 × Delay1 0.001 0.002 0.828 .408 −0.002 0.005

Epoch 4-3 × Delay1 −0.001 0.002 −0.442 .659 −0.005 0.003

Epoch 5-4 × Delay1 0.003 0.002 1.524 .128 −0.001 0.007

Epoch 2-1 × Delay2 0.004 0.003 1.404 .160 −0.002 0.010

Epoch 3-2 × Delay2 0.003 0.003 0.954 .340 −0.003 0.009

Epoch 4-3 × Delay2 0.001 0.003 0.257 .797 −0.006 0.007

Epoch 5-4 × Delay2 −0.007 0.003 −2.185 .029 −0.014 −0.001

Probability1 × Delay1 0.004 0.001 6.757 .000 0.003 0.005

Probability1 × Delay2 0.003 0.001 2.556 .011 0.001 0.005

Epoch 2-1 × Probability × Delay1 0.001 0.002 0.367 .714 −0.003 0.004

Epoch 3-2 × Probability × Delay1 0.005 0.002 2.644 .008 0.001 0.008

Epoch 4-3 × Probability × Delay1 −0.005 0.002 −2.427 .015 −0.008 −0.001

Epoch 5-4 × Probability × Delay1 0.001 0.002 0.331 .741 −0.003 0.004

Epoch 2-1 × Probability × Delay2 −0.002 0.003 −0.668 .504 −0.008 0.004

Epoch 3-2 × Probability × Delay2 0.002 0.003 0.494 .621 −0.005 0.008

Epoch 4-3 × Probability × Delay2 0.002 0.003 0.516 .606 −0.005 0.008

Epoch 5-4 × Probability × Delay2 −0.001 0.003 −0.403 .687 −0.008 0.005

Random effects Variance SD

Participant (Intercept) 0.0004 0.113

Participant: Delay1 (Slope) 0.0006 0.019

Participant: Delay2 (Slope) 0.0006 0.024

Participant: Block2-1 (Slope) 0.0004 0.024

Participant: Block3-2 (Slope) 0.0004 0.020

Participant: Block4-3 (Slope) 0.0004 0.020

Participant: Block5-4 (Slope) 0.0001 0.019

Participant: Probability (Slope) 0.0410 0.010

Indicated in bold are the contrasts that survived correction for multiple comparisons using the Holm–Bonferroni method. CI: confidence interval.

Table 7. Split-half reliability for the procedural learning measures per session (SRT1, Session 1; SRT2, Session 2; SRT3, Session 3).

Task Trials Split-half reliability

N Difference scores N Random slopes

SRT1 1,000 45 .60*** (.38, .76) 45 .77*** (.61, .87)

Last 600 44 .56*** (.31, .73) 45 .66*** (.45, .80)

SRT2 1,000 45 .55*** (.30, .72) 47 .55*** (.31, .72)

Last 600 46 .36* (.08, .59) 47 .56*** (.32, .73)

SRT3 1,000 43 .23 (−.07, .50) 44 .81*** (.67, .89)

Last 600 45 .32 (.02, .56) 45 .91*** (.84, .95)

*p < .05. ***p < .001.
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procedural learning. However, this correlation did not 

survive Holm–Bonferroni correction (see Table 9). None-

theless, Bayesian correlations revealed that there was evi-

dence against the null hypothesis (BF
10

 = 7.55).

Attention. A positive and significant correlation was 

observed between procedural learning and sustained atten-

tion for Sessions 1 (median: r = −.28; BF
10

 = 1.46, recipro-

cal: r = .30, BF
10

 = 1.90) and 2 (median: −.45, BF
10

 = 29.88; 

reciprocal: r = .49, BF
10

 = 64.40); this association was 

smaller and nonsignificant for Session 3 (median: r = −.25, 

BF
10

 = 1.11; reciprocal: r = .25, BF
10

 = 1.15). As shown in 

Table 8, there were negative and nonsignificant correla-

tions for the tau parameter, which indexes intraindividual 

variability (M = 63.84, SD = 28.73) for all sessions (SRT1: 

r = −.18, BF
10

 = .63; SRT2: r = −.14, BF
10

 = .48; SRT 3: 

r = −.19, BF
10

 = .68).

Given the negative relationship between attention and 

procedural learning, whereby individuals with better atten-

tional skills showed better procedural learning, correla-

tions between tau and SRTT stability were explored to 

examine whether individuals with high levels of intraindi-

vidual variability in attention would also show less stabil-

ity in the SRTT. Using a medium split approach, the sample 

was divided into high- and low-tau groups. With respect to 

Sessions 1 and 2, moderate stability was found for both 

low-tau (r = .29) and high-tau (r = .42) groups (the numeri-

cal difference was nonsignificant: z = −.33, p = .74). 

However, there was a marked difference between low- and 

high-tau groups for test–retest stability across Sessions 2 

and 3, with the low tau group showing higher test–retest 

stability (r = .73) than the high-tau group (r = .26). 

Importantly, the difference between these correlations was 

Table 8. Pairwise test–retest reliability of the procedural 
learning measures.

Tasks Trials Test–retest reliability

Difference scores Random slopes

SRT1–SRT2 1,000 .22 (−.07, .49) .28 (−.01, .53)

Last 600 .25 (−.04, .51) .42** (.14, .64)

SRT2–SRT3 1,000 .15 (−.15, .43) .41** (.13, .62)

Last 600 .30* (.01, .55) .60*** (.37, .76)

*p < .05. **p < .01. ***p < .001.

Figure 6. Plot of the mean of the two measurements against the differences between procedural learning in (a) Session 1 and 2 
and (b) Sessions 2 and 3.
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statistically significant: z = 2.07, p = .04. That is, partici-

pants with lower intraindividual variability on the measure 

of sustained attention were also those with more stable 

procedural learning effects on the SRTT across Sessions 2 

and 3.

Discussion

Experiment 2 examined the stability of procedural learn-

ing over three sessions, as well as the relationship between 

procedural learning and attention and language measures. 

As in Experiment 1, the procedural learning effect was 

robust in all sessions. While there was some evidence of a 

numerical increase in reliability for the later sessions for 

both split-half and test–retest reliability, these improve-

ments were not statistically significant, and stability 

remained suboptimal. Procedural learning positively and 

significantly correlated with sustained attention and, to a 

lesser extent, vocabulary, with the latter not surviving cor-

rection for multiple comparisons.

As predicted, the test–retest reliability of the SRTT 

showed numerical (but not statistical) improvements 

across sessions, with stability slightly higher for later ses-

sions. Indeed, the highest level of stability in the current 

experiment was between Sessions 2 and 3 when using 

random slopes as the index of learning, r = .60 (.37, .76). 

This is more akin to the stability reported by Siegelman 

and Frost (2015; r(76) = .47) and West et al. (2021; 

r(46) = .70), although in these studies this level of stability 

was found across two sessions rather than three. Overall, 

the highest stability was observed when focusing on the 

procedural learning effect on the last three epochs, which 

aligns with Conway and colleagues’ (2019) suggestion 

that the inclusion of earlier stages of procedural learning, 

when learning is not yet robust, may reduce test–retest 

reliability. Nonetheless, the linear mixed effects model 

and the Bland–Altman plots indicate that, even though 

increasing the number of sessions reduced practice effects, 

there was still a significant procedural learning improve-

ment between Sessions 2 and 3. This may indicate that 

additional sessions may be required to reach a plateau in 

procedural learning; while this would be theoretically 

important to ascertain, it would limit the practical utility 

of using the SRTT in clinical or developmental research. 

Furthermore, it is unclear whether the superior reliability 

for later sessions results from participants having more 

training opportunities or more consolidation opportuni-

ties. Future research would be needed to examine what 

underlies the better stability across time. This pattern was 

observed despite adopting distinct, though similar, 

sequences at each session, with the aim of reducing prac-

tice effects (Palmer et al., 2018). In a recent meta-analysis 

on retest effects in working memory tasks, improvements 

in performance were observed until the 7th session, yet 

they were no longer significant after the 4th administra-

tion (Scharfen et al., 2018). Trial variability (i.e., the vari-

ance in the response times for probable and improbable 

trials) also decreased across sessions, further suggesting 

that measurement error decreased across sessions, with an 

increase in the signal-to-noise ratio (Chen et al., 2021; 

Rouder & Haaf, 2019). Nevertheless, it should be empha-

sised that the increase in stability over sessions observed 

here was not statistically significant. Finally, with the pre-

sent sample size of approximately 50 participants, we 

cannot be completely confident in the point estimates (as 

suggested by the sensitivity analyses conducted in 

Table 9. Correlation matrix between procedural learning and cognitive measures.

Measures Procedural learning
Session 1

Procedural learning
Session 2

Procedural learning
Session 3

Procedural learning
All Sessions

Age .22 (−.08, .49) −.04 (−.33, .25) −.05 (−.34, .24) .04 (−.25, .33)

Literacy

 Word reading .04 (−.27, .33) .014 (−.16, .41) −.002 (−.30, .30) .08 (−.21, .36)

 Nonword reading .02 (−.28, .32) .08 (−.21, .36) .06 (−.24, .35) .11 (−.18, .39)

 Spelling .20 (−.11, .47) .25† (−.05, .50) .03 (−.27, .32) .22 (−.08, .48)

Language

 Vocabulary −.08 (−.37, .22) .11 (−.18, .39) .39**a (.11, .61) .23 (−.06, .48)

 Nonword repetition −.04 (−.33, .26) −.10 (−.38, .19) −.24 (−.50, .06) −.23 (−.48, .06)

 Recalling −.16 (−.43, .15) −.15 (−.42, .15) −.29† (−.53, .01) −.24† (−.50, .05)

Nonverbal IQ

 Matrix reasoning −.08 (−.37, .24) .09 (−.21, .38) .22 (−.08, .49) .07 (−.23, .36)

Attention

 PVT median −.28† (−.53, .02) −.45**a (−.66, −.19) −.25 (−.51, .05) −.45**a (−.66, −.19)

 PVT reciprocal .30* (.00, .55) .49***a (.23, .68) .25† (−.05, .51) .49***a (.24, .69)

 PVT tau −.18 (−.46, .13) −.14 (−.41, .16) −.19 (−.47, .11) −.28† (−.53, .01)

†p < .10; *p < .05; **p < .01; ***p < .001; bold—Correlations that survived correction for multiple comparisons. PVT: psychomotor vigilance task.
aCorrelations with Bayes factor equal or bigger than 3.
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Supplementary Materials 1). Thus, this effect warrants 

replication in future work.

Contrary to our hypotheses, there was minimal evi-

dence of an association between procedural learning and 

language. We found only a moderate correlation that did 

not survive correction for multiple comparisons, between 

procedural learning and vocabulary Session 3. It is worth 

noting that this aspect of language is proposed to be more 

highly associated with declarative than procedural mem-

ory (Ullman, 2004). Notably, and also counter to Ullman 

(2004), there were no associations between procedural 

learning and measures of grammar, phonology, and decod-

ing. As with previous studies that have failed to find robust 

associations, it may be that the suboptimal test–retest reli-

ability of the SRTT results in an underestimation of the 

true effect size (Rouder et al., 2019).

The most robust association in the present experiment 

was between attention and procedural learning, particu-

larly in Sessions 1 and 2. This finding is consistent with 

the results obtained by Sengottuvel and Rao (2013) and 

West et al. (2021), and points to attentional resources play-

ing a facilitatory effect in the magnitude and stability of 

procedural learning on the SRTT as individuals with lower 

intraindividual variability (as indexed by tau) showed bet-

ter stability, particularly for later sessions. The decrease in 

the magnitude of the correlation between attention and 

procedural learning in Session 3 may be related to the find-

ings obtained by Thomas and colleagues (2004), which 

demonstrated that a decrease in parietal activity, a brain 

region which plays a role in visual attention and spatial 

orienting, occurred once the sequence became more pre-

dictable. Thus, tentatively, the smaller correlation in 

Session 3 may indicate that as the sequence became more 

predictable with increasing practice, this worked to reduce 

reliance on attentional resources (Thomas et al., 2004). 

However, it remains for future research to test this hypoth-

esis directly.

General discussion

Procedural learning is thought to be a fundamental compo-

nent of the memory system, crucial for encoding, storing, 

and retrieving rule-governed knowledge that underlies 

motor and cognitive abilities (Cohen & Squire, 1980). 

Research into this vital memory system is often reliant on 

the SRTT; however, questions have been raised about the 

reliability of this task. Here, we present a systematic exam-

ination of the reliability of procedural learning as meas-

ured by the SRTT, with the important aim of identifying 

extrinsic design features (i.e., similarity of sequences 

learned over sessions, number of sessions, stimulus pres-

entation rate) and participant characteristics (i.e., attention, 

age, see Supplementary Materials 4) that could influence 

reliability. In Experiment 1, manipulation of the levels of 

similarity between sequences learned at Sessions 1 and 2 

revealed a positive relationship between similarity and the 

procedural learning effect, yet the participant-level stabil-

ity of the effect was low irrespective of similarity. A fol-

low-up to this found that despite further manipulations of 

sample (age) and task (ISI) characteristics (see 

Supplementary Materials 4) the test–retest reliability of 

the SRT remained low. Experiment 2 examined the effect 

of training over three sessions. However, irrespective of 

experimental manipulations and participant characteris-

tics, the test–retest reliability of the SRTT remained persis-

tently suboptimal (r < .70). When all participants who 

performed the SRTT without an ISI (N = 184) were 

included in the analyses to obtain an overall estimate of 

reliability across experiments, the test–retest reliability 

was still well below acceptable standards, random slopes, 

600 trials: r = .33 (.19, .45); see more details in 

Supplementary Materials 1.

Importantly, the issue of reliability of procedural learn-

ing tasks is not specific to the SRTT, as other measures of 

procedural memory have also been found to show poor 

reliability (e.g., artificial grammar learning: Kalra et al., 

2019; probabilistic classification task: Kalra et al., 2019; 

Hebb task: West et al., 2018; auditory and visual statistical 

learning tasks: Arnon, 2020). Weak correlations among 

different tasks thought to index procedural memory 

(Arnon, 2020; Kalra et al., 2019; Siegelman & Frost, 2015; 

West et al., 2018) have led researchers to question unitary 

accounts of procedural memory, in support of more com-

ponential views (Arciuli, 2017). Yet, it is unlikely that cor-

relations between these measures would emerge, even if 

they capture the same underlying construct given that the 

degree of attenuation is impacted by the poor reliability of 

both measures (Spearman, 1910). Beyond this, the issues 

with reliability are not specific to procedural memory, with 

similar findings reported for other classic, widely used 

experimental paradigms in cognitive psychology (e.g., 

Stroop task, Flanker task: Haines et al., 2020; Hedge et al., 

2018; von Bastian et al., 2020). This phenomenon is 

referred to as the “reliability paradox” (Hedge et al., 2018), 

where experimental paradigms known for eliciting robust 

effects fail to capture stable individual differences. The 

reliability paradox is thought to be a consequence of the 

use of experimental tasks in individual differences research 

which have been designed to reduce variability between 

individuals to ensure that the phenomenon of interest is 

captured. Unfortunately, this reduction in between-subject 

variability has consequences for individual differences as 

it limits the ability of a test to differentiate between indi-

viduals (Hedge et al., 2018).

The use of difference scores has been suggested as a 

contributing factor to poor reliability as such scores can 

reduce the signal-to-noise ratio (Hedge et al., 2018). 

Despite the debates surrounding the limitations of adopt-

ing difference scores as indices of the construct of interest 

(Hedge et al., 2018), differences scores were used in this 
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experiment to estimate split-half reliability often produced 

within-session stability estimates between .50 and .93, 

with the exception of the third session of Experiment 2, 

thus, revealing mostly adequate internal consistency in 

participants’ performance between halves (odd-numbered 

and even-numbered trials). Furthermore, the use of ran-

dom slopes as an index of procedural learning did not sig-

nificantly improve reliability. Importantly, this suggests 

that one should not dismiss difference scores as being 

intrinsically unreliable. This also raises a clear distinction 

between within-session and across-session stability in the 

SRTT. Higher within- than across-session stability of the 

SRTT has been found in previous studies of children and 

adults (e.g., West et al., 2018, 2021), with this pattern mir-

rored in studies using other measures of sequential learn-

ing (Hebb task—e.g., Bogaerts et al., 2018; West et al., 

2018; statistical learning e.g., Arnon, 2019—although this 

pattern was only found for a visual version of the task and 

not for linguistic/nonlinguistic versions). One simple 

explanation for why we observe higher within-session 

than across-session reliability could be due to temporal 

differences, such that there is a decrease in the magnitude 

of correlations between trials as the number of intervening 

trials increases (Wagenmakers et al., 2004). More specifi-

cally, while short-scale fluctuations are present when com-

puting split-half reliability where even–odd trials are 

compared, more distant points are compared for the test–

retest reliability which, in the present studies, occurred 

1 week apart.

However, this explanation does not account for why we 

do not see the same disparity between within- and across-

session stability for declarative tasks (Buchner & Wippich, 

2000; LeBel & Paunonen, 2011; Ward et al., 2013). Kalra 

et al. (2019) and West et al. (2018) observed that the test–

retest reliability of all procedural learning measures was 

inferior to those of declarative measures. In West et al. 

(2018), for example, test–retest reliability for the nonver-

bal immediate serial recall and dot locations tasks test–

retest .71 and .57 and split-half reliability was .68 and .76, 

respectively. This is perhaps in part due to the complex 

nature of procedural learning itself and the multifaceted 

nature of the tasks used to measure this poorly defined 

construct (Bogaerts et al., 2021). Addressing this issue is 

made even more complex by the interchangeable use of 

tasks (e.g., Artificial Grammar Learning, Weather 

Prediction task) that are claimed to tap into procedural 

memory as a unified ability, despite their computational 

and modality differences.

Recently, it has been argued that poor test–retest relia-

bility of some tasks (e.g., Stroop task, Flanker test), well 

known for producing robust effects at the group level, may 

be related to the methods adopted to analyse their psycho-

metric properties. Haines and colleagues (2020) show 

adequate test–retest reliability when using Bayesian hier-

archical modelling which more closely captures individu-

als’ performance and accounts for within-subject 

variability, but suboptimal test–retest reliability when 

using difference scores. In these models, instead of ignor-

ing uncertainty, as is the case when using point estimates 

(e.g., mean), which may underestimate test–retest reliabil-

ity, hierarchical Bayesian models aim to closely represent 

the data generating process. By using generative model-

ling, a single model is able to integrate information at the 

individual and group levels when estimating parameters, 

accounting for our assumptions and hypotheses from the 

trial-by-trial response times at the individual level to the 

overall distribution of individual differences across people 

(see Haines et al., 2020). Yet here we aimed to explore the 

impact of experimental manipulations on reliability using 

statistical methods/measures comparable to previous 

research (i.e., by estimating the procedural learning effect 

separately for each session). Future studies may aim to 

apply the methods applied by Haines et al. (2020) to the 

SRTT to determine whether it would better capture the sta-

bility of the procedural learning effect across sessions.

Previous studies have noted an association between 

attention and procedural learning (Arciuli, 2017; 

Sengottuvel & Rao, 2013; Shanks & St. John, 1994; West 

et al., 2021); however, here, we carried out the first inves-

tigation of whether attention influences the stability of pro-

cedural learning. Exploratory analyses in Experiment 2 

and the Supplementary Experiment (see Supplementary 

Materials 4) suggest that participants with better attention 

skills (lower tau) showed more stable procedural learning 

across sessions than those with worse attention. Thus, 

these results may lend support to the hypothesis that fluc-

tuations in attention during the task could lead to lower 

test–retest reliability. One interesting prediction that arises 

here is that fluctuations of attention may exert lower 

impact on split-half reliability as this type of stability 

would be captured by both halves of the task due to the 

time proximity between even and odd trials. This warrants 

a systematic assessment of the attention skills during the 

SRTT using online measures of attention such as pupil-

lometry to better determine its relationship with procedural 

learning both within and across sessions. A second inter-

esting prediction here is that if attentional skills influence 

the stability of procedural learning on the SRTT task, then 

children would be expected to show poorer test–retest reli-

ability than adults as their attentional skills are under 

development (Levy, 1980). Indeed, this pattern of lower 

retest reliability has been observed in children by West 

et al. (2018, 2021), despite somewhat comparable split-

half reliability to adults, children: West et al., 2018—

SRT1, r = .75; SRT2, r = .49 (500 trials); West et al., 

2021—SRT1, r = .51; SRT2, r = .62 (1,000 trials); adults: 

West et al., 2021—SRT1, r = .84; SRT2, r = .92 (1,000 

trials).

Fluctuations in procedural learning over time may also 

be related to changes in performance between measure-

ment points due to individual differences in consolidation 

and other learning-related strategies adopted at test and 
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retest. This could also account for the higher within- than 

across-session stability. In line with this, Scharfen et al. 

(2018), in a recent meta-analysis observed that participants 

reached a plateau later in working memory tasks compared 

with other cognitive ability tests. Authors argued that more 

complex tasks lead to larger retest effects because more 

test-specific strategies can be developed compared with 

easier tasks for which strategies do not apply. In the SRTT, 

this may be accompanied by, or occur due to the develop-

ment of explicit awareness, as suggested by Stark-Inbar 

et al. (2017). Thus, the numerically higher test–retest reli-

ability for later sessions observed in Experiment 2 would 

be expected given that participants’ may be reaching a pla-

teau in their learning effect—seen as a reduction in the 

practice effects for later sessions. In addition, the strategies 

adopted for later sessions would potentially be more simi-

lar as most participants would already possess some 

awareness of the presence of an underlying sequence. 

Future research may aim to explore the trajectory of learn-

ing on the SRTT across sessions until no practice effects 

are observed and its impact on reliability. Alternatively, 

participants could be asked to perform the SRTT in an ini-

tial practice session until each reaches a plateau in perfor-

mance, only then reliability would be assessed in two 

separate sessions. However, as a first step, due to the small 

sample size of Experiment 2 and our sensitivity analysis 

suggesting that a sample size of at least 100 participants is 

necessary to obtain a more precise estimate of the test–

retest reliability, future work is required to determine 

whether the superior reliability in later sessions emerges 

under similar experimental conditions.

It is important to consider the extent to which poor 

across-session reliability of procedural learning on the 

SRTT may impact our ability to adequately test the predic-

tions of models of language and literacy acquisition, 

namely the declarative/procedural model (Ullman, 2004). 

This model predicts that the procedural memory system is 

involved in the development of language and literacy abili-

ties that underlie aspects of rule-based learning. Yet, given 

that procedural learning tasks may fail to capture partici-

pants’ true procedural learning abilities, attenuation of the 

correlation between the constructs of interest is likely to 

occur. Thus, unsurprisingly, Experiment 2 provided no sup-

port for the declarative/procedural model (Ullman, 2004). 

While there was a weak positive correlation between proce-

dural learning and vocabulary (which would not necessar-

ily be a firm prediction of the declarative/procedural 

model), there were no other significant correlations with 

other language/literacy measures that have been claimed by 

this model to be associated with procedural learning (i.e., 

grammar, phonological skills). Nevertheless, a positive 

relationship between procedural learning and attention was 

observed in Experiment 2 (and also in the experiment pre-

sented in Supplementary Materials 4), irrespective of the 

reliability issues and possible attenuation of correlations 

between measures. Thus, it is also possible that this result 

reflects a genuine lack of support for the declarative/proce-

dural model (Ullman, 2004) and/or poor measurement of 

procedural learning (Enkavi et al., 2019).

Finally, individual differences research assumes that 

there are stable differences between individuals in the con-

struct of interest which may influence individuals’ accu-

mulated experience/learning over the long term, which, if 

adequately captured, would likely result in adequate stabil-

ity. However, it is possible that the poor reliability of the 

procedural learning effect does not reflect a problem with 

the paradigm. Instead, this may indicate that there is insuf-

ficient variability in the procedural learning effect, as it 

may be sufficient for a minimum level of procedural learn-

ing ability to facilitate acquisition of cognitive and motor 

skills and habits. Therefore, the magnitude of the differ-

ence scores may carry only limited meaning, instead it 

may be more important whether the individual is able to 

extract any knowledge from the task, irrespective of its 

magnitude. This is in line with Reber’s (1989) proposal 

that procedural learning due to being evolutionarily old 

differs substantially from declarative memory as it is 

expected to show little between subject-variability. 

Following from this, if individuals do not differ enough 

from one another, then measurement fluctuations will lead 

to substantial changes in ranking order.

While the various experimental attempts to improve the 

test–retest reliability of the SRTT were not effective here, 

there are other potential manipulations to explore. For 

instance, a critical design element of SRTTs is the number 

of trials. We carried out a preliminary exploration of this 

factor with simulation work presented in Additional 

Analyses 1 and demonstrated that the ratio of probable to 

improbable trials can influence test–retest reliability. 

While researchers have considered the number of trials in 

the SRTT (e.g., West et al., 2021), the focus tends to be on 

the overall number of trials, rather than the number of tri-

als per condition as recommended by Rouder et al. (2019). 

Further experimental work is necessary to determine 

whether increasing the number of trials in the improbable 

condition could reduce measurement error, while consid-

ering the potential consequences for the size of procedural 

learning effect. Furthermore, considering the findings by 

West et al. (2021), which suggest that attention during the 

SRTT, but not procedural learning, predict children’s read-

ing, grammatical, or arithmetic skills, it is crucial to deter-

mine if attention mediates the relationship between 

procedural learning and language/literacy measures or 

whether poorer attentional skills represent an additional 

risk factor for procedural learning deficits in children/

adults with Dyslexia.

Finally, Bayesian hierarchical models have been shown 

to be useful in estimating the degree of attenuation in cor-

relations between measures (e.g., attentional control; 

Rouder & Haaf, 2019; von Bastian et al., 2020), with trial 
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noise and true variability being estimated separately 

(Rouder & Haaf, 2019). Future research would benefit 

from exploring the use of these approaches for procedural 

learning. Regardless of the consistent suboptimal test–

retest reliability of the procedural learning effect, the 

SRTT has reliably produced robust evidence of learning 

across populations and settings. Thus, while the current set 

of experiments challenges its suitability for individual dif-

ferences research (Enkavi et al., 2019), there is little doubt 

that the SRTT is still a valuable paradigm for group-level 

experiments.

In conclusion, the probabilistic SRTT used here pro-

duced robust procedural learning effects across three 

experiments, irrespective of samples and testing condi-

tions. Yet, despite some weak evidence of improvement in 

stability due to the experimental manipulations presented 

here, it remains suboptimal. Future research should focus 

on understanding (1) the discrepancy between within- and 

across-session reliability (e.g., temporal dynamics, con-

solidation processes) and (2) whether there are more sensi-

tive analytical methods that can be used to assess 

across-session reliability (e.g., Haines et al., 2020). It will 

also be important to further investigate the potential role of 

attention in procedural learning, particularly in individuals 

vulnerable to poor attention (e.g., including those with 

dyslexia/DLD). Thus, until these questions are answered, 

it is not possible to use the SRTT to test the boundaries of 

the Procedural/Declarative model.
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Notes

1. Available at https://osf.io/fn9mw/.

2. Ratio scores were also computed taking individual differ-

ences in baseline reaction time (RT) into account by divid-

ing participants’ difference scores by their overall mean RT 

per session (Ratio1; Kalra et al., 2019; West et al., 2021) or 

by their improbable RTs (Ratio 2; Urry et al., 2018). These 

yielded lower reliability than the regression slope scores; 

full details are reported in Additional Analyses 8.

References

Akaike, H. (1974). A new look at the statistical model identi-

fication. IEEE Transactions on Automatic Control, 19(6), 

716–723. https://doi.org/10.1109/TAC.1974.1100705

Arciuli, J. (2017). The multi-component nature of statistical 

learning. Philosophical Transactions of the Royal Society 

B: Biological Sciences, 372(1711), 20160058. https://doi.

org/10.1098/rstb.2016.0058

Arciuli, J., & Simpson, I. C. (2011). Statistical learn-

ing in typically developing children: The role of age 

and speed of stimulus presentation. Developmental 

Science, 14(3), 464–473. https://doi.org/10.1111/j.1467-

7687.2009.00937.x

Arnon, I. (2019). Statistical learning, implicit learning, and first 

language acquisition: A critical evaluation of two develop-

mental predictions. Topics in Cognitive Science, 11, 504–

519. https://doi.org/10.1111/tops.12428

Arnon, I. (2020). Do current statistical learning tasks capture sta-

ble individual differences in children? An investigation of 

task reliability across modality. Behavior Research Methods, 

52(1), 68–81. https://doi.org/10.3758/s13428-019-01205-5

Baker, D. H., Vilidaite, G., Lygo, F. A., Smith, A. K., Flack, T. 

R., Gouws, A. D., & Andrews, T. J. (2021). Power contours: 

Optimising sample size and precision in experimental psy-

chology and human neuroscience. Psychological Methods, 

26(3), 295–314. https://doi.org/10.1037/met0000337

Baker, R. S. J. d., D’Mello, S. K., Rodrigo Ma, M. T., & 

Graesser, A. C. (2010). Better to be frustrated than bored: 

The incidence, persistence, and impact of learners’ cogni-

tive–affective states during interactions with three differ-

ent computer-based learning environments. International 

Journal of Human-Computer Studies, 68(4), 223–241. 

https://doi.org/10.1016/j.ijhcs.2009.12.003

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random 

effects structure for confirmatory hypothesis testing: Keep 

it maximal. Journal of Memory and Language, 68(3), 255–

278. https://doi.org/10.1016/j.jml.2012.11.001

Basner, M., & Dinges, D. F. (2011). Maximizing sensitivity of 

PVT to Sleep Loss (Basner, Dinges). Sleep, 34(5), 581–591.



Oliveira et al. 23

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). 

Fitting linear mixed-effects models using lme4. Journal of 

Statistical Software, 67(1), 1–48. https://doi.org/10.18637/

jss.v067.i01

Beglinger, L., Gaydos, B., Tangphaodaniels, O., Duff, K., 

Kareken, D., Crawford, J., Fastenau, P., & Siemers, E. 

(2005). Practice effects and the use of alternate forms in 

serial neuropsychological testing. Archives of Clinical 

Neuropsychology, 20(4), 517–529. https://doi.org/10.1016/j.

acn.2004.12.003

Berchtold, A. (2016). Test–retest: Agreement or reliability? 

Methodological Innovations, 9, 205979911667287. https://

doi.org/10.1177/2059799116672875

Berger, B., Waterman, M. S., & Yu, Y. W. (2021). Levenshtein 

distance, sequence comparison and biological database 

search. IEEE Transactions on Information Theory, 67(6), 

3287–3294. https://doi.org/10.1109/TIT.2020.2996543

Bland, J. M., & Altman, D. G. (1986). Statistical methods for 

assessing agreement between two methods of clinical meas-

urement. The Lancet, 1(8476), 308–310.

Bland, J. M., & Altman, D. G. (1999). Measuring agree-

ment in method comparison studies. Statistical Methods 

in Medical Research, 8(2), 135–160. https://doi.

org/10.1177/096228029900800204

Bland, J. M., & Altman, D. G. (2010). Statistical methods for 

assessing agreement between two methods of clinical meas-

urement. International Journal of Nursing Studies, 6, 931–

936. https://doi.org/10.1016/j.ijnurstu.2009.10.001

Bogaerts, L., Siegelman, N., Ben-Porat, T., & Frost, R. (2018). 

Is the Hebb repetition task a reliable measure of individ-

ual differences in sequence learning? Quarterly Journal of 

Experimental Psychology, 71(4), 892–905. https://doi.org/1

0.1080/17470218.2017.1307432

Bogaerts, L., Siegelman, N., & Frost, R. (2021). Statistical learn-

ing and language impairments: Toward more precise theoret-

ical accounts. Perspectives on Psychological Science, 16(2), 

319–337. https://doi.org/10.1177/1745691620953082

Borella, E., Chicherio, C., Re, A. M., Sensini, V., & Cornoldi, C. 

(2011). Increased intraindividual variability is a marker of 

ADHD but also of dyslexia: A study on handwriting. Brain 

and Cognition, 77(1), 33–39. https://doi.org/10.1016/j.

bandc.2011.06.005

Borragán, G., Urbain, C., Schmitz, R., Mary, A., & Peigneux, 

P. (2015). Sleep and memory consolidation: Motor per-

formance and proactive interference effects in sequence 

learning. Brain and Cognition, 95, 54–61. https://doi.

org/10.1016/j.bandc.2015.01.011

Brewer, M. J., Butler, A., & Cooksley, S. L. (2016). The relative 

performance of AIC, AICC and BIC in the presence of unob-

served heterogeneity. Methods in Ecology and Evolution, 

7(6), 679–692. https://doi.org/10.1111/2041-210X.12541

Brown, R. M., Robertson, E. M., & Press, D. Z. (2009). Sequence 

skill acquisition and off-line learning in normal aging. 

PLOS ONE, 4(8), Article e6683. https://doi.org/10.1371/

journal.pone.0006683

Brysbaert, M., & Stevens, M. (2018). Power analysis and 

effect size in mixed effects models: A tutorial. Journal of 

Cognition, 1(1), 1–20. https://doi.org/10.5334/joc.10

Buchner, A., & Wippich, W. (2000). On the reliability of implicit 

and explicit memory measures. Cognitive Psychology, 

40(3), 227–259. https://doi.org/10.1006/cogp.1999.0731

Burlingame, G. M., Lambert, M. J., Reisinger, C. W., Neff, W. 

M., & Mosier, J. (1995). Pragmatics of tracking mental 

health outcomes in a managed care setting. The Journal of 

Mental Health Administration, 22(3), 226–236. https://doi.

org/10.1007/BF02521118

Castellanos, F. X., Sonuga-Barke, E. J. S., Milham, M. P., & 

Tannock, R. (2006). Characterizing cognition in ADHD: 

Beyond executive dysfunction. Trends in Cognitive Sciences, 

10(3), 117–123. https://doi.org/10.1016/j.tics.2006.01.011

Chen, G., Pine, D. S., Brotman, M. A., Smith, A. R., Cox, R. W., 

& Haller, S. P. (2021). Trial and error: A hierarchical mod-

eling approach to test-retest reliability. NeuroImage, 245, 

118647. https://doi.org/10.1016/j.neuroimage.2021.118647

Cicchetti, D. V. (1994). Guidelines, criteria, and rules of thumb 

for evaluating normed and standardized assessment instru-

ments in psychology. Psychological Assessment, 6(4), 284–

290. https://doi.org/10.1037/1040-3590.6.4.284

Cicchetti, D. V., & Sparrow, S. S. (1990). Assessment of adaptive 

behavior in young children. In J. J. Johnson & J. Goldman 

(Eds.), Developmental assessment in clinical child psychol-

ogy: A handbook (pp. 173–196). New York: Pergamon Press.

Clark, G. M., & Lum, J. A. G. (2017). First-order and higher 

order sequence learning in specific language impairment. 

Neuropsychology, 31(2), 149–159. https://doi.org/10.1037/

neu0000316

Clark, G. M., Lum, J. A. G., & Ullman, M. T. (2014). A meta-

analysis and meta-regression of serial reaction time task 

performance in Parkinson’s disease. Neuropsychology, 

28(6), 945–958. https://doi.org/10.1037/neu0000121

Cleeremans, A. (2011). The radical plasticity thesis: How the 

brain learns to be conscious. Frontiers in Psychology, 2, 

Article 86. https://doi.org/10.3389/fpsyg.2011.00086

Cleeremans, A., & Sarrazin, J.-C. (2007). Time, action, and con-

sciousness. Human Movement Science, 26(2), 180–202. 

https://doi.org/10.1016/j.humov.2007.01.009

Cohen, N. J., & Squire, L. R. (1980). Preserved learning and 

retention of pattern-analyzing skill in amnesia: Dissociation 

of knowing how and knowing that. Science, 210(4466), 

207–210. https://doi.org/10.1126/science.7414331

Conway, C. M., Arciuli, J., Lum, J. A. G., & Ullman, M. T. 

(2019). Seeing problems that may not exist: A reply to West 

et al.’s (2018) questioning of the procedural deficit hypoth-

esis. Developmental Science, 22, e12814.

Coomans, D., Vandenbossche, J., & Deroost, N. (2014). The 

effect of attentional load on implicit sequence learning in 

children and young adults. Frontiers in Psychology, 5, 465. 

https://doi.org/10.3389/fpsyg.2014.00465

Cousineau, D., & Chartier, S. (2010). Outliers detec-

tion and treatment: A review. International Journal 

of Psychological Research, 3(1), 58–67. https://doi.

org/10.21500/20112084.844

Darby, K. P., & Sloutsky, V. M. (2015). The cost of learning: 

Interference effects in memory development. Journal of 

Experimental Psychology: General, 144(2), 410–431. 

https://doi.org/10.1037/xge0000051

Desmottes, L., Maillart, C., & Meulemans, T. (2017). Memory 

consolidation in children with specific language impairment: 

Delayed gains and susceptibility to interference in implicit 

sequence learning. Journal of Clinical and Experimental 

Neuropsychology, 39(3), 265–285. https://doi.org/10.1080

/13803395.2016.1223279



24 Quarterly Journal of Experimental Psychology 00(0)

Destrebecqz, A., & Cleeremans, A. (2001). Can sequence learn-

ing be implicit? New evidence with the process dissociation 

procedure. Psychonomic Bulletin & Review, 8(2), 343–350. 

https://doi.org/10.3758/BF03196171

Dorrian, J., Rogers, N. L., & Dinges, D. F. (2005). Psychomotor 

vigilance performance: Neurocognitive assay sensitive 

to sleep loss. In C. A. Kushida (Ed.), Sleep deprivation: 

Clinical issues, pharmacology, and sleep loss effects (pp. 

39–70). Marcel Dekker.

Doyon, J., Owen, A. M., Petrides, M., Sziklas, V., & Evans, A. 

C. (1996). Functional anatomy of visuomotor skill learning 

in human subjects examined with positron emission tomog-

raphy. European Journal of Neuroscience, 8(4), 637–648. 

https://doi.org/10.1111/j.1460-9568.1996.tb01249.x

Eichenbaum, H. (2002). The cognitive neuroscience of memory: 

An introduction. Oxford University Press.

Eichenbaum, H., & Cohen, N. J. (2001). From conditioning 

to conscious recollection: Memory systems of the brain. 

Oxford University Press.

Emberson, L. L., Conway, C. M., & Christiansen, M. H. (2011). 

Timing is everything: Changes in presentation rate have 

opposite effects on auditory and visual implicit statistical 

learning. Quarterly Journal of Experimental Psychology, 

64(5), 1021–1040. https://doi.org/10.1080/17470218.2010

.538972

Enkavi, A. Z., Eisenberg, I. W., Bissett, P. G., Mazza, G. L., 

MacKinnon, D. P., Marsch, L. A., & Poldrack, R. A. (2019). 

Large-scale analysis of test–retest reliabilities of self-regu-

lation measures. Proceedings of the National Academy of 

Sciences of the United States of America, 116(12), 5472–

5477. https://doi.org/10.1073/pnas.1818430116

Eriksen, N., & Tougaard, J. (2006). Analysing differences among 

animal songs quantitatively by means of the Levenshtein 

distance measure. Behaviour, 143(2), 239–252. https://doi.

org/10.1163/156853906775900685

Faes, J., Gillis, J., & Gillis, S. (2016). Phonemic accuracy 

development in children with cochlear implants up to 

five years of age by using Levenshtein distance. Journal 

of Communication Disorders, 59, 40–58. https://doi.

org/10.1016/j.jcomdis.2015.09.004

Farkas, B., Krajcsi, A., Janacsek, K., & Nemeth, D. (2023). 

The complexity of measuring reliability in learning tasks: 

An illustration using the Alternating Serial Reaction Time 

Task. Behavior Research Methods, 56, 301–317. https://doi.

org/10.3758/s13428-022-02038-5

Fleiss, J. L. (1986). The design and analysis of clinical experi-

ments. John Wiley.

Frensch, P. A., & Miner, C. S. (1994). Effects of presentation rate 

and individual differences in short-term memory capacity on 

an indirect measure of serial learning. Memory & Cognition, 

22(1), 95–110. https://doi.org/10.3758/BF03202765

Furr, R., & Bacharach, V. (2008). Psychometrics: An introduc-

tion. Thousand Oaks, CA: Sage Publications, Inc.

Gabriel, A., Meulemans, T., Parisse, C., & Maillart, C. (2015). 

Procedural learning across modalities in French-speaking 

children with specific language impairment. Applied 

Psycholinguistics, 36(3), 747–769. https://doi.org/10.1017/

S0142716413000490

Gaillard, V., Destrebecqz, A., Michiels, S., & Cleeremans, A. 

(2009). Effects of age and practice in sequence learning: A 

graded account of ageing, learning, and control. European 

Journal of Cognitive Psychology, 21(2–3), 255–282. https://

doi.org/10.1080/09541440802257423

Godwin, K. E., Almeda Ma, V., Seltman, H., Kai, S., Skerbetz, 

M. D., Baker, R. S., & Fisher, A. V. (2016). Off-task 

behavior in elementary school children. Learning and 

Instruction, 44, 128–143. https://doi.org/10.1016/j.learnin-

struc.2016.04.003

Gooch, D., Snowling, M. J., & Hulme, C. (2012). Reaction time 

variability in children with ADHD symptoms and/or dys-

lexia. Developmental Neuropsychology, 37(5), 453–472. 

https://doi.org/10.1080/87565641.2011.650809

Green, S. B., Yang, Y., Alt, M., Brinkley, S., Gray, S., Hogan, 

T., & Cowan, N. (2016). Use of internal consistency coeffi-

cients for estimating reliability of experimental task scores. 

Psychonomic Bulletin & Review, 23(3), 750–763. https://

doi.org/10.3758/s13423-015-0968-3

Haines, N., Kvam, P. D., Irving, L. H., Smith, C., Beauchaine, 

T. P., Pitt, M. A., Ahn, W.-Y., & Turner, B. M. (2020). 

Theoretically informed generative models can advance the 

psychological and brain sciences: Lessons from the reli-

ability paradox. PsyArXiv. https://doi.org/10.31234/osf.io/

xr7y3

Hardwick, R. M., Rottschy, C., Miall, R. C., & Eickhoff, S. B. 

(2013). A quantitative meta-analysis and review of motor 

learning in the human brain. NeuroImage, 67, 283–297. 

https://doi.org/10.1016/j.neuroimage.2012.11.020

Hausknecht, J. P., Halpert, J. A., Di Paolo, N. T., & Moriarty 

Gerrard, M. O. (2007). Retesting in selection: A meta-anal-

ysis of coaching and practice effects for tests of cognitive 

ability. Journal of Applied Psychology, 92(2), 373–385. 

https://doi.org/10.1037/0021-9010.92.2.373

Hedge, C., Powell, G., & Sumner, P. (2018). The reliability par-

adox: Why robust cognitive tasks do not produce reliable 

individual differences. Behavior Research Methods, 50(3), 

1166–1186. https://doi.org/10.3758/s13428-017-0935-1

Henderson, L. M., & Warmington, M. (2017). A sequence learn-

ing impairment in dyslexia? It depends on the task. Research 

in Developmental Disabilities, 60, 198–210. https://doi.

org/10.1016/j.ridd.2016.11.002

Henríquez-Henríquez, M. P., Billeke, P., Henríquez, H., 

Zamorano, F. J., Rothhammer, F., & Aboitiz, F. (2015). 

Intra-individual response variability assessed by ex-Gauss-

ian analysis may Be a new endophenotype for attention-def-

icit/hyperactivity disorder. Frontiers in Psychiatry, 6, 1–8. 

https://doi.org/10.3389/fpsyt.2014.00197

Hodel, A. S., Markant, J. C., Van Den Heuvel, S. E., Cirilli-

Raether, J. M., & Thomas, K. M. (2014). Developmental 

differences in effects of task pacing on implicit sequence 

learning. Frontiers in Psychology, 5, 1–10. https://doi.

org/10.3389/fpsyg.2014.00153

Holm, S. (1979). A simple sequentially rejective multiple test 

procedure. Scandinavian Journal of Statistics, 6(2), 65–70.

Jeffreys, H. (1961). Theory of probability (3rd ed.). Clarendon 

Press.

Jiménez, L., & Vázquez, G. A. (2005). Sequence learning 

under dual-task conditions: Alternatives to a resource-

based account. Psychological Research/Psychologische 

Forschung, 69(5–6), 352–368. https://doi.org/10.1007/

s00426-004-0210-9



Oliveira et al. 25

Juhasz, D., Nemeth, D., & Janacsek, K. (2019). Is there more room 

to improve? The lifespan trajectory of procedural learning 

and its relationship to the between? The within-group differ-

ences in average response times. PLOS ONE, 14(7), Article 

e0215116. https://doi.org/10.1371/journal.pone.0215116

Kalra, P. B., Gabrieli, J. D. E., & Finn, A. S. (2019). Evidence 

of stable individual differences in implicit learning. 

Cognition, 190, 199–211. https://doi.org/10.1016/j.cogni-

tion.2019.05.007

Kaufman, S. B., DeYoung, C. G., Gray, J. R., Jiménez, L., Brown, 

J., & Mackintosh, N. (2010). Implicit learning as an ability. 

Cognition, 116(3), 321–340. https://doi.org/10.1016/j.cog-

nition.2010.05.011

Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., & Heuer, H. 

(2003). The cognitive and neural architecture of sequence 

representation. Psychological Review, 110(2), 316–339. 

https://doi.org/10.1037/0033-295X.110.2.316

Koch, F.-S., Sundqvist, A., Thornberg, U. B., Nyberg, S., Lum, 

J. A. G., Ullman, M. T., Barr, R., Rudner, M., & Heimann, 

M. (2020). Procedural memory in infancy: Evidence from 

implicit sequence learning in an eye-tracking paradigm. 

Journal of Experimental Child Psychology, 191, 104733. 

https://doi.org/10.1016/j.jecp.2019.104733

Konstantinidis, S. (2005). Computing the Levenshtein distance 

of a regular language. IEEE Information Theory Workshop, 

2005, 4. https://doi.org/10.1109/ITW.2005.1531868

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). 

LmerTest package: Tests in linear mixed effects models. 

Journal of Statistical Software, 82(13), 1–26. https://doi.

org/10.18637/jss.v082.i13

Lammertink, I., Boersma, P., Wijnen, F., & Rispens, J. (2020). 

Statistical learning in the visuomotor domain and its rela-

tion to grammatical proficiency in children with and without 

developmental language disorder: A conceptual replication 

and meta-analysis. Language Learning and Development, 

16(4), 426–450. https://doi.org/10.1080/15475441.2020.18

20340

LeBel, E. P., & Paunonen, S. V. (2011). Sexy but often unre-

liable: The impact of unreliability on the replicability of 

experimental findings with implicit measures. Personality 

and Social Psychology Bulletin, 37(4), 570–583. https://doi.

org/10.1177/0146167211400619

Levenshtein, V. I. (1966). Binary codes capable of correct-

ing deletions, insertions, and reversals. Soviet Physics—

Doklady, 10, 707–710.

Levy, F. (1980). The development of sustained attention (vigi-

lance) and inhibition in children: Some normative data. 

Journal of Child Psychology and Psychiatry, 21(1), 77–84. 

https://doi.org/10.1111/j.1469-7610.1980.tb00018.x

Llompart, M., & Dąbrowska, E. (2020). Explicit but not implicit 

memory predicts ultimate attainment in the native language. 

Frontiers in Psychology, 11, Article 569586. https://doi.

org/10.3389/fpsyg.2020.569586

Loken, E., & Gelman, A. (2017). Measurement error and the 

replication crisis. Science, 355(6325), 584–585. https://doi.

org/10.1126/science.aal3618

Lum, J. A. G., Conti-Ramsden, G., Page, D., & Ullman, M. T. 

(2012). Working, declarative and procedural memory in 

specific language impairment. Cortex, 48(9), 1138–1154. 

https://doi.org/10.1016/j.cortex.2011.06.001

Massidda, D. (2013). Retimes: Reaction time analysis. https://

CRAN.R-project.org/package=retimes

Matheson, G. J. (2019). We need to talk about reliability: Making 

better use of test-retest studies for study design and inter-

pretation. PeerJ, 7, Article e6918. https://doi.org/10.7717/

peerj.6918

Milin, P., Divjak, D., & Baayen, R. H. (2017). A learning per-

spective on individual differences in skilled reading: 

Exploring and exploiting orthographic and semantic dis-

crimination cues. Journal of Experimental Psychology: 

Learning, Memory, and Cognition, 43(11), 1730–1751. 

https://doi.org/10.1037/xlm0000410

Nemeth, D., Janacsek, K., Londe, Z., Ullman, M. T., Howard, 

D. V., & Howard, J. H. (2010). Sleep has no critical role in 

implicit motor sequence learning in young and old adults. 

Experimental Brain Research, 201(2), 351–358. https://doi.

org/10.1007/s00221-009-2024-x

Nieuwenhuis, R., Te Grotenhuis, M., & Pelzer, B. (2012). 

Influence.ME: Tools for detecting influential data in mixed 

effects models. R Journal, 4(2), 38–47.

Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of 

learning: Evidence from performance measures. Cognitive 

Psychology, 19(1), 1–32. https://doi.org/10.1016/0010-

0285(87)90002-8

Nunnally, J. C., & Bernstein, I. (1994). Psychometric theory (3rd 

ed.). McGraw-Hill.

Packard, M. G., & Knowlton, B. J. (2002). Learning and mem-

ory functions of the Basal Ganglia. Annual Review of 

Neuroscience, 25(1), 563–593. https://doi.org/10.1146/

annurev.neuro.25.112701.142937

Palmer, C. E., Langbehn, D., Tabrizi, S. J., & Papoutsi, M. 

(2018). Test-retest reliability of measures commonly used 

to measure striatal dysfunction across multiple testing ses-

sions: A longitudinal study. Frontiers in Psychology, 8, 

Article 2363. https://doi.org/10.3389/fpsyg.2017.02363

Parent, A., & Hazrati, L.-N. (1995). The cortico-basal ganglia-

thalamo-cortical loop. Abstract Brain Research Reviews, 

20, 91–127.

Pasquali, A., Cleeremans, A., & Gaillard, V. (2019). 

Reversible second-order conditional sequences in inci-

dental sequence learning tasks. Quarterly Journal of 

Experimental Psychology, 72(5), 1164–1175. https://doi.

org/10.1177/1747021818780690

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, 

R., Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). 

PsychoPy2: Experiments in behavior made easy. Behavior 

Research Methods, 51(1), 195–203. https://doi.org/10.3758/

s13428-018-01193-y

Poldrack, R. A., & Packard, M. G. (2003). Competition among 

multiple memory systems: Converging evidence from ani-

mal and human brain studies. Neuropsychologia, 41, 245–

251.

Press, D. Z., Casement, M. D., Pascual-Leone, A., & Robertson, 

E. M. (2005). The time course of off-line motor sequence 

learning. Cognitive Brain Research, 25(1), 375–378. https://

doi.org/10.1016/j.cogbrainres.2005.05.010

Reber, A. S. (1989). Implicit learning and tacit knowledge: An 

essay on the cognitive unconscious. Journal of Experimental 

Psychology: General, 118(3), 219–235. https://doi.

org/10.1037/0096-3445.118.3.219



26 Quarterly Journal of Experimental Psychology 00(0)

Reifman, J., Kumar, K., Khitrov, M. Y., Liu, J., & Ramakrishnan, 

S. (2018). PC-PVT 2.0: An updated platform for psychomo-

tor vigilance task testing, analysis, prediction, and visualiza-

tion. Journal of Neuroscience Methods, 304, 39–45. https://

doi.org/10.1016/j.jneumeth.2018.04.007

Robertson, E. M., Pascual-Leone, A., & Press, D. Z. (2004). 

Awareness modifies the skill-learning benefits of sleep. 

Current Biology, 14(3), 208–212. https://doi.org/10.1016/j.

cub.2004.01.027

Robertson, E. M., Tormos, J. M., & Maeda, F. (2001). The role 

of the dorsolateral prefrontal cortex during sequence learn-

ing is specific for spatial information. Cerebral Cortex, 11, 

628–635.

Rouder, J. N., & Haaf, J. M. (2019). A psychometrics of individ-

ual differences in experimental tasks. Psychonomic Bulletin 

& Review, 26(2), 452–467. https://doi.org/10.3758/s13423-

018-1558-y

Rouder, J. N., & Haaf, J. M. (2020). Are there reliable qualitative 

individual difference in cognition? [Preprint]. PsyArXiv. 

https://doi.org/10.31234/osf.io/3ezmw

Rouder, J. N., & Haaf, J. M. (2021). Are there reliable qualitative 

individual differences in cognition? Journal of Cognition, 

4(1), 46. https://doi.org/10.5334/joc.131

Rouder, J. N., Kumar, A., & Haaf, J. M. (2019). Why most stud-

ies of individual differences with inhibition tasks are bound 

to fail. PsyArXiv.

RStudio Team. (2020). RStudio: Integrated development envi-

ronment for R. RStudio, PBC. http://www.rstudio.com/

Rüsseler, J., Hennighausen, E., Münte, T. F., & Rösler, F. (2003). 

Differences in incidental and intentional learning of senso-

rimotor sequences as revealed by event-related brain poten-

tials. Cognitive Brain Research, 15(2), 116–126. https://doi.

org/10.1016/S0926-6410(02)00145-3

Schaefer, S. Y., & Duff, K. (2017). Within-session and one-week 

practice effects on a motor task in amnestic mild cogni-

tive impairment. Journal of Clinical and Experimental 

Neuropsychology, 39(5), 473–484. https://doi.org/10.1080

/13803395.2016.1236905

Scharfen, J., Jansen, K., & Holling, H. (2018). Retest effects 

in working memory capacity tests: A meta-analysis. 

Psychonomic Bulletin and Review, 25(6), 2175–2199. 

https://doi.org/10.3758/s13423-018-1461-6

Schuerger, J. M., & Witt, A. C. (1989). The temporal sta-

bility of individually tested intelligence. Journal of 

Clinical Psychology, 45(2), 294–302. https://doi.

org/10.1002/1097-4679(198903)45:2<294::AID-

JCLP2270450218>3.0.CO;2-N

Schumacher, E. H., & Schwarb, H. (2009). Parallel response 

selection disrupts sequence learning under dual-task con-

ditions. Journal of Experimental Psychology: General, 

138(2), 270–290. https://doi.org/10.1037/a0015378

Schvaneveldt, R. W., & Gomez, R. L. (1998). Attention and 

probabilistic sequence learning. Psychological Research, 

61(3), 175–190. https://doi.org/10.1007/s004260050023

Schwarb, H., & Schumacher, E. (2012). Generalized lessons 

about sequence learning from the study of the serial reac-

tion time task. Advances in Cognitive Psychology, 8(2), 

165–178. https://doi.org/10.5709/acp-0113-1

Sengottuvel, K., & Rao, P. K. S. (2013). An adapted serial 

reaction time task for sequence learning measurements. 

Psychological Studies, 58(3), 276–284. https://doi.

org/10.1007/s12646-013-0204-z

Shanks, D. R., Rowland, L. A., & Ranger, M. S. (2005). 

Attentional load and implicit sequence learning. 

Psychological Research, 69(5–6), 369–382. https://doi.

org/10.1007/s00426-004-0211-8

Shanks, D. R., St., & John, M. F. (1994). Characteristics of 

dissociable human learning systems. Behavioral and 

Brain Sciences, 17(3), 367–395. https://doi.org/10.1017/

S0140525X00035032

Shanks, D. R., Wilkinson, L., & Channon, S. (2003). Relationship 

between priming and recognition in deterministic and 

probabilistic sequence learning. Journal of Experimental 

Psychology: Learning Memory and Cognition, 29(2), 248–

261. https://doi.org/10.1037/0278-7393.29.2.248

Siegelman, N., & Frost, R. (2015). Statistical learning as an 

individual ability: Theoretical perspectives and empirical 

evidence. Journal of Memory and Language, 81, 105–120. 

https://doi.org/10.1016/j.jml.2015.02.001

Soetens, E., Melis, A., & Notebaert, W. (2004). Sequence learn-

ing and sequential effects. Psychological Research, 69(1–

2), 124–137. https://doi.org/10.1007/s00426-003-0163-4

Spearman, C. (1910). Correlation calculated from faulty data. 

British Journal of Psychology, 3(3), 271–295. https://doi.

org/10.1111/j.2044-8295.1910.tb00206.x

Stark-Inbar, A., Raza, M., Taylor, J. A., & Ivry, R. B. (2017). 

Individual differences in implicit motor learning: Task 

specificity in sensorimotor adaptation and sequence learn-

ing. Journal of Neurophysiology, 117(1), 412–428. https://

doi.org/10.1152/jn.01141.2015

Stefaniak, N., Willems, S., Adam, S., & Meulemans, T. (2008). 

What is the impact of the explicit knowledge of sequence 

regularities on both deterministic and probabilistic serial 

reaction time task performance? Memory & Cognition, 36, 

1283–1298.

Thomas, K. M., Hunt, R. H., Vizueta, N., Sommer, T., Durston, 

S., Yang, Y., & Worden, M. S. (2004). Evidence of devel-

opmental differences in implicit sequence learning: An 

fMRI study of children and adults. Journal of Cognitive 

Neuroscience, 16, 1339–1351.

Timmermans, B., Schilbach, L., Pasquali, A., & Cleeremans, 

A. (2012). Higher order thoughts in action: Consciousness 

as an unconscious re-description process. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 

367(1594), 1412–1423. https://doi.org/10.1098/rstb.2011.0421

Torriero, S., Oliveri, M., Koch, G., Caltagirone, C., & 

Petrosini, L. (2004). Interference of left and right cer-

ebellar rTMS with procedural learning. Journal of 

Cognitive Neuroscience, 16(9), 1605–1611. https://doi.

org/10.1162/0898929042568488

Ullman, M. T. (2001). A neurocognitive perspective on language: The 

declarative/procedural model. Nature Reviews Neuroscience, 

2(10), 717–726. https://doi.org/10.1038/35094573

Ullman, M. T. (2004). Contributions of memory circuits to lan-

guage: The declarative/procedural model. Cognition, 92(1–

2), 231–270. https://doi.org/10.1016/j.cognition.2003.10.008

Ullman, M. T., Earle, F. S., Walenski, M., & Janacsek, K. (2020). 

The neurocognition of developmental disorders of language. 

Annual Review of Psychology, 71(1), 389–417. https://doi.

org/10.1146/annurev-psych-122216-011555



Oliveira et al. 27

Ullman, M. T., & Pierpont, E. I. (2005). Specific language 

impairment is not specific to language: The procedural 

deficit hypothesis. Cortex, 41(3), 399–433. https://doi.

org/10.1016/S0010-9452(08)70276-4

Urry, K., Burns, N. R., & Baetu, I. (2018). Age-related differ-

ences in sequence learning: Findings from two visuo-motor 

sequence learning tasks. British Journal of Psychology, 

109(4), 830–849. https://doi.org/10.1111/bjop.12299

Vakil, E., Lowe, M., & Goldfus, C. (2015). Performance of 

children with developmental dyslexia on two skill learning 

tasks—serial reaction time and tower of Hanoi puzzle: A 

test of the specific procedural learning difficulties theory. 

Journal of Learning Disabilities, 48(5), 471–481. https://

doi.org/10.1177/0022219413508981

van Belle, J., van Raalten, T., Bos, D. J., Zandbelt, B. B., 

Oranje, B., & Durston, S. (2015). Capturing the dynamics 

of response variability in the brain in ADHD. NeuroImage: 

Clinical, 7, 132–141. https://doi.org/10.1016/j.nicl.2014. 

11.014

Van Selst, M., & Jolicoeur, P. (1994). A solution to the effect of 

sample size on outlier elimination. The Quarterly Journal 

of Experimental Psychology Section A, 47(3), 631–650. 

https://doi.org/10.1080/14640749408401131

von Bastian, C. C., Blais, C., Brewer, G. A., Gyurkovics, M., 

Hedge, C., Kałamała, P., Meier, M. E., Oberauer, K., Rey-

Mermet, A., Rouder, J. N., Souza, A. S., Bartsch, L. M., 

Conway, A. R. A., Draheim, C., Engle, R. W., Friedman, 

N. P., Frischkorn, G. T., Gustavson, D. E., Koch, I., . . . 

Wiemers, E. A. (2020). Advancing the understanding of 

individual differences in attentional control: Theoretical, 

methodological, and analytical considerations [Preprint]. 

PsyArXiv. https://doi.org/10.31234/osf.io/x3b9k

Wagenmakers, E. J., Farrell, S., & Ratcliff, R. (2004). Estimation 

and interpretation of 1/fα noise in human cognition. 

Psychonomic Bulletin and Review, 11(4), 579–615. https://

doi.org/10.3758/BF03196615

Wagner, R. K., Torgesen, J. K., Rashotte, C. A., & Pearson, N. 

A. (2013). CTOPP-2—Comprehensive Test of Phonological 

Processing-Second Edition. Pearson Clinical.

Walker, S., Gaskell, M. G., Knowland, V. C. P., Fletcher, F. E., 

Cairney, S. A., & Henderson, L. M. (2020). Growing up 

with interfering neighbours: The influence of time of learn-

ing and vocabulary knowledge on written word learning in 

children. Royal Society Open Science, 7(3), 191597. https://

doi.org/10.1098/rsos.191597

Ward, E. V., Berry, C. J., & Shanks, D. R. (2013). Age effects on 

explicit and implicit memory. Frontiers in Psychology, 4, 

Article 639. https://doi.org/10.3389/fpsyg.2013.00639

Wechsler, D. (2009). Wechsler Individual Achievement Test—

Third UK Edition (WIAT-III UK). Pearson Assessment.

Wechsler, D. (2011). Wechsler Abbreviated Scale of 

Intelligence—Second Edition (WASI-II). NCS Pearson.

West, G., Clayton, F. J., Shanks, D. R., & Hulme, C. (2019). 

Procedural and declarative learning in dyslexia. Dyslexia, 

25(3), 246–255. https://doi.org/10.1002/dys.1615

West, G., Shanks, D. R., & Hulme, C. (2021). Sustained atten-

tion, not procedural learning, is a predictor of reading, lan-

guage and arithmetic skills in children. Scientific Studies of 

Reading, 25(1), 47–63. https://doi.org/10.1080/10888438.2

020.1750618

West, G., Vadillo, M. A., Shanks, D. R., & Hulme, C. (2018). 

The procedural learning deficit hypothesis of language 

learning disorders: We see some problems. Developmental 

Science, 21(2), e12552. https://doi.org/10.1111/desc.12552

Wickham, H. (2016). Ggplot2: Elegant graphics for data analy-

sis. Springer-Verlag. https://ggplot2.tidyverse.org

Wierzchon, M., Gaillard, V., Asanowicz, D., & Cleeremans, A. 

(2012). Manipulating attentional load in sequence learning 

through random number generation. Advances in Cognitive 

Psychology, 8(2), 179–195. https://doi.org/10.2478/v10053-

008-0114-0

Wiig, E. H., Semel, E., & Secord, W. A. (2013). Clinical 

Evaluation of Language Fundamentals—Fifth UK Edition. 

Pearson Assessment.

Willingham, D. B., Greenberg, A. R., & Thomas, R. C. (1997). 

Response-to-stimulus interval does not affect implicit motor 

sequence learning, but does affect performance. Memory 

and Cognition, 25(4), 534–542. https://doi.org/10.3758/

BF03201128

Willingham, D. B., & Koroshetz, W. J. (1993). Evidence for 

dissociable motor skills in Huntington’s disease patients. 

Psychobiology, 21, 173–182.

Willingham, D. B., Salidis, J., & Gabrieli, J. D. E. (2002). Direct 

comparison of neural systems mediating conscious and 

unconscious skill learning. Journal of Neurophysiology, 

88(3), 1451–1460. https://doi.org/10.1152/jn.2002.88.3.1451


