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Introduction

Procedural memory underlies the encoding; storage; and 
retrieval of motor, perceptual, and cognitive skills that 
involve the integration of sequenced, statistical, and prob-
abilistic knowledge across the lifespan (Eichenbaum, 
2002; Eichenbaum & Cohen, 2001; Koch et al., 2020; 
Ullman, 2004). Learning in this system relies on the basal 
ganglia (specifically, the striatum), the cerebellum, and 
portions of the parietal and frontal cortices (Packard & 
Knowlton, 2002; Parent & Hazrati, 1995; Poldrack & 
Packard, 2003) and tends to be gradual, yet once the skills 
have been learned they are used rapidly and automatically. 
The procedural memory system is proposed to be involved 
in language acquisition. Specifically, Ullman and col-
leagues (Ullman, 2004; Ullman et al., 2020) propose that 
the procedural memory system supports the acquisition of 
rule-based linguistic knowledge, such as phonology and 
grammar; while the declarative system is mostly associ-
ated with acquisition of more arbitrary and explicit knowl-
edge, such as vocabulary. Supporting this, language and 

procedural memory share brain systems, including basal 
ganglia and frontal cortex, especially Broca’s area (Ullman, 
2001; Ullman & Pierpont, 2005), and clinical populations 
with impairments of the basal ganglia tend to show both 
motor and linguistic impairments (Ullman & Pierpont, 
2005). Aligning with the declarative/procedural model, 
some previous studies have shown small to moderate cor-
relations between procedural learning and language and 
literacy abilities (Clark & Lum, 2017; Desmottes et al., 
2017; Lum et al., 2012). However, other studies have 
failed to replicate these associations (Desmottes et al., 
2017; Gabriel et al., 2015; Henderson & Warmington, 
2017; Siegelman & Frost, 2015; Vakil et al., 2015; West 
et al., 2019). This inconsistency, coupled with recent 
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concerns about the psychometric properties of tasks used 
to measure procedural learning—serial reaction time task 
(SRTT; Kalra et al., 2019; Siegelman & Frost, 2015; Stark-
Inbar et al., 2017; West et al., 2018); contextual cueing and 
Hebb tasks (West et al., 2018); and statistical learning 
tasks (Arnon, 2020)—calls for further research to system-
atically examine the reliability of markers of procedural 
learning.

The SRTT (Nissen & Bullemer, 1987) is the most widely 
used measure of procedural (or sequence) learning that 
requires participants to connect a series of events and form 
high-order associations to predict future positions (Keele 
et al., 2003). It has been shown to rely on the same neural 
networks as other measures of procedural learning (Clark 
et al., 2014; Hardwick et al., 2013). For example, patients 
with basal ganglia disorders (e.g., Huntington’s disease) 
show impaired procedural learning on the SRTT 
(Willingham & Koroshetz, 1993), and functional magnetic 
resonance imaging (fMRI) studies demonstrate that proce-
dural learning captured by the SRTT elicits activation in the 
basal ganglia (putamen: Willingham et al., 2002; ventral 
striatum: Doyon et al., 1996; and the cerebellum: Hardwick 
et al., 2013). In the SRTT, a stimulus is presented in an 
array (e.g., four squares presented horizontally across a 
screen) and participants are required to press a correspond-
ing button on a keypad or button box to the position of the 
stimulus on screen as quickly as possible. Unbeknown to 
the participant, some of the stimulus transitions follow a 
sequence, with procedural learning being measured as the 
response time difference between the sequenced and ran-
dom trials. Faster responses to sequenced than random tri-
als are taken as a “procedural learning effect,” indicating 
that the participant has learned the sequence and is there-
fore able to anticipate the next position.

SRTTs can be deterministic or probabilistic. 
Deterministic sequences usually comprise random and 
sequenced blocks. The first blocks typically contain the 
repeating sequence, with a sudden switch to a random 
block, followed by a final sequenced block; however the 
opposite pattern (random–structured–random) is also fre-
quently adopted. Reaction times (RTs) tend to decrease 
progressively during practice in sequenced blocks but then 
increase in random blocks; this difference in RT is taken as 
evidence of procedural learning. In contrast, probabilistic 
SRTTs usually comprise two second-order conditional 
sequences, one that occurs with a higher probability than 
the other (e.g., sequence A [85%]: 121432413423; 
sequence B [15%]: 323412431421; Siegelman & Frost, 
2015). Each block starts with a random bigram (e.g., 43) 
and the next location selected will be either the location 
that followed that bigram in sequence A (i.e., 2, termed a 
“probable” trial) or the location that following that bigram 
in sequence B (i.e., 1, termed an “improbable” trial). 
Procedural learning in probabilistic SRTTs is measured as 
the difference in response times between probable and 

improbable trials. Importantly, despite participants show-
ing evidence of procedural learning, they often have little 
to no awareness of the presence of a probabilistic sequence 
(Destrebecqz & Cleeremans, 2001). Deterministic 
sequences, on the contrary, have been found to yield more 
explicit awareness of the sequence (Jiménez & Vázquez, 
2005; Stark-Inbar et al., 2017; Stefaniak et al., 2008). 
Thus, the probabilistic sequences may represent purer 
measures of implicit procedural learning (Stefaniak et al., 
2008).

The SRTT is well known for producing robust effects at 
the group level, thus recently there has been increased 
interest in using the SRTT as a marker of individual differ-
ences (Siegelman & Frost, 2015). However only a few 
studies have explored the psychometric properties of the 
task. Reliability refers to the ability of a task to rank indi-
viduals’ performance consistently across time, with higher 
reliability indicating stable scores obtained at test and 
retest (Hedge et al., 2018). Split-half reliability, a measure 
of internal consistency within a single session that reflects 
the correlation between scores within a test (Nunnally & 
Bernstein, 1994), has been shown to be moderate to ade-
quate on the SRTT in children and adults, respectively 
(children: rs = .49−.75; adults rs = .84−.92, West et al., 
2018, 2021). However, test-retest reliability (i.e., the sta-
bility of the test scores over different sessions) is notably 
poorer and below acceptable psychometric standards: that 
is, r < .70 (Burlingame et al., 1995; Nunnally & Bernstein, 
1994), in both children (probabilistic SRTT: r = .21, 500 
trials, West et al., 2018; r = .26, 1000 trials, West et al., 
2021) and adults (deterministic SRTT: r = .38, Kalra et al., 
2019; r = .07, Stark-Inbar et al., 2017; probabilistic SRTT: 
r = .47, Siegelman & Frost, 2015; r = .70, West et al., 2021; 
and alternating SRTT: r = .46, Stark-Inbar et al., 2017). In 
one exception, West et al. (2021) obtained a test–retest 
reliability of .70 using a probabilistic SRTT with 46 adults 
aged between 18 and 61 years. The unusually high stability 
reported here could be due to one or more of a number of 
methodological differences: for example, a large number 
of trials (i.e., 1,500), the same sequence was administered 
twice, the gap between tests was 2–3 days, and use of a 
250-ms interstimulus interval (ISI).

According to classical test theory (Fleiss, 1986), 
observed scores reflect true scores and measurement error, 
and higher degrees of measurement error lead to greater 
fluctuations in scores across time. This translates into poor 
test–retest reliability as participants’ relative ranking will 
change between test and retest (Berchtold, 2016; Nunnally 
& Bernstein, 1994). Poor reliability may contribute to 
noisier predictions; increased uncertainty in parameter 
estimation (Loken & Gelman, 2017); and attenuation of 
the association between measures (Rouder et al., 2019; 
Rouder & Haaf, 2019, 2021). In small samples, as demon-
strated by Loken and Gelman (2017), measurement error 
can lead, by chance, to overestimation of the effect size. 
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Thus, the poor reliability of the SRTT may contribute to 
the inconsistently reported correlations between language/
literacy measures and procedural learning (LeBel & 
Paunonen, 2011). It is, however, important to note that in 
the one study to date which reports adequate test–retest 
reliability for the SRTT (r = .70; West et al., 2021), only 
negligible correlations were observed between procedural 
learning and word and nonword reading measures (rs from 
−.06 to −.11; West et al., 2021). Thus, even in the face of 
adequate stability, this lack of association remains contrary 
to the predictions of the declarative/procedural model. 
Nevertheless, it is a single study, and identifying optimal 
conditions for achieving better reliability remains impera-
tive. Indeed, only a robust and reliable task can test the 
boundaries of the procedural/declarative model of lan-
guage acquisition, including the procedural deficit hypoth-
esis, and permit a better understanding of the role of 
procedural learning and language development and disor-
der (Matheson, 2019). Systematically examining the sta-
bility of the SRTT also has clear methodological value, in 
revealing design modifications to enhance its psychomet-
ric properties, and clinical value, in working towards 
developing a tool that can identify procedural learning 
weaknesses (Berchtold, 2016). Generally, it has been 
claimed that a larger number of trials in any task tends to 
increase reliability, due to a reduction in measurement 
error (D. H. Baker et al., 2021; Rouder & Haaf, 2019, 
2020). However, studies by West and colleagues (2018, 
2021) showed only modest (and nonsignificant) numerical 
improvements in test–retest reliability when they increased 
the number of trials in their SRTT.

In addition to examining reliability, agreement, also 
called repeatability, was examined using the Bland–
Altman method (Bland & Altman, 1986, 1999, 2010). As 
argued by Berchtold (2016), the concept of test–retest 
refers to both the reliability and agreement of a measure-
ment tool, with agreement referring to the ability of a test 
to produce the same scores when participants are tested 
under the same conditions. Thus, while reliability reflects 
the test’s ability to rank participants consistently within or 
across sessions, agreement instead focuses on the consist-
ency of the scores, independently of the range and distri-
bution of the variables. Thus proving particularly important 
for clinical applications whereby participants’ scores, 
instead of ranking order, may be used to track response to 
intervention.

Therefore, here, we examine further factors that may 
influence stability. Of particular focus here are the similar-
ity of the sequences to be learned (Experiment 1) and the 
number of sessions across which learning is assessed 
(Experiment 2). To allow for a comprehensive understand-
ing of reliability, a multi-measurement analytic approach 
will be taken: we will assess the psychometric properties 
of the SRTT across different measures of procedural learn-
ing (difference scores or random slopes) and different 

psychometric measures (split-half reliability, test–retest 
reliability, and agreement).

Experiment 1

There are several reasons why the similarity of sequences 
to be learned over two or more sessions may influence 
both the size of the procedural learning effect and poten-
tially also its stability, and each predicts that greater simi-
larity between sequences should result in better learning at 
later sessions. First, learning the same or similar sequences 
reduces the likelihood of proactive interference, in which 
the memory of the first-learned sequence disrupts the 
learning of the second-learned sequence (Borragán et al., 
2015; Darby & Sloutsky, 2015). Second, greater similarity 
increases the likelihood that consolidation of the first 
sequence will benefit learning of the second, such that 
individuals benefit from prior knowledge when exposed to 
the new material (Nemeth et al., 2010; Robertson et al., 
2004; Siegelman & Frost, 2015). Third, the well-estab-
lished phenomenon of practice effects is likely to lead to 
an improvement in performance for later sessions 
(Hausknecht et al., 2007; Scharfen et al., 2018), which is 
why the use of alternate forms is generally recommended 
(Beglinger et al., 2005); although see Scharfen et al. (2018) 
for evidence that alternate forms do not reduce practice 
effects in working memory capacity tasks. Finally, greater 
similarity may also lead to increased explicit awareness of 
the sequence at subsequent sessions and improve perfor-
mance (Rüsseler et al., 2003) as explicit knowledge has 
been shown to increase with extended training in the SRTT 
and is more likely to lead to offline consolidation 
(Robertson et al., 2004).

While greater similarity in sequences used in different 
sessions may result in larger procedural learning effects in 
later sessions, they may also reduce the stability of proce-
dural learning (Stark-Inbar et al., 2017). Individual differ-
ences in any one of the above factors would introduce 
variability in procedural learning at retest, thus leading to 
changes in the rank order of scores (Hedge et al., 2018; 
Stark-Inbar et al., 2017). Practice effects have been shown 
to vary according to participants’ characteristics (e.g., age: 
Brown et al., 2009; Hodel et al., 2014) and cognitive skills 
(Schaefer & Duff, 2017), thus introducing additional vari-
ability at retest. To our knowledge there has been no direct 
examination of the effect of sequence similarity on either 
the magnitude of the procedural learning effect, or the 
test–retest reliability of the SRTT. However, two recent 
studies in the literature are consistent with our prediction: 
Siegelman & Frost (2015) used the same sequences at both 
testing sessions and reported lower test–retest reliability 
than West et al. (2021), who used different sequences. 
While West et al. (2021) showed no significant differences 
in the learning effect between sessions, Siegelman and 
Frost (2015), on the contrary, reported that after 3 months 
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the majority of participants (64 out of 75) showed a better 
performance at retest.

Experiment 1 examined the effect of similarity of the 
two sequences to be learned, to ascertain (1) the impact on 
the magnitude of the procedural learning effect, and (2) the 
effect on test–retest reliability (referred to here as stabil-
ity). Similarity was operationalised in terms of the 
Levenshtein distance (LD), which has been widely used to 
determine the distance between strings across fields such 
as biology, computer science, and linguistics (Berger et al., 
2021; Eriksen & Tougaard, 2006; Faes et al., 2016; 
Konstantinidis, 2005). Three types of operations are con-
sidered—substitutions, deletions, and insertions—with a 
small distance between sequences indicating higher simi-
larity and a large distance revealing that the sequences are 
dissimilar (Levenshtein, 1966). We used sequences of 
varying similarity in a probabilistic SRTT to test four main 
hypotheses:

H1: Participants will demonstrate procedural learning 
in both sessions, as indexed by faster responses to prob-
able versus improbable elements of the sequence;

H2: Similarity between sequences will impact the mag-
nitude of the procedural learning. Higher levels of simi-
larity between Sessions 1 and 2 will result in a larger 
procedural learning effect in Session 2, whereas lower 
levels of similarity between Sessions 1 and 2 will result 
in a relatively smaller of procedural learning effect;

H3: Within session reliability (indexed by the split-half 
correlation coefficient) will be higher than stability 
across sessions, indexed by test–retest reliability;

H4: Sequence similarity will be negatively associated 
with stability: more similar sequences at Sessions 1 and 
2 will be associated with lower test–retest reliability.

Methods

Participants. A total of 103 undergraduate students from 
the University of York (91 females), aged between 18 and 
25 years (M = 19.18, SD = 1.09), participated in exchange 
for course credit. The sample included monolingual, bilin-
gual, and multilingual individuals from various nationali-
ties; all identified as fluent English speakers. The sample 
size was determined based on West et al. (2021), doubling 
the number of participants to allow for a median split of 
participants based on similarity of the sequence. Sensitiv-
ity analyses, in line with those conducted by Farkas et al. 
(2023) and presented in Supplementary Materials 1, sug-
gest that sample sizes above 100 participants offer limited 
gains in precision. Furthermore, with a sample size of 103, 
we have 80% power to detect correlations equal to, or 
above, .30. The experiment was approved by the Ethics 
Committee of the Psychology Department at the 

University of York and each participant gave written 
informed consent.

Measures. SRTT: A nonverbal probabilistic SRTT was 
used, following West et al. (2018, 2021) given the task 
used in this previous study has produced the highest 
reported stability in the existing literature. On each trial, 
four black outlined rectangles were presented horizontally 
and a stimulus (i.e., a smiley face) appeared in one of the 
four rectangles, with participants asked to respond as 
quickly and accurately as possible by pressing one of four 
corresponding keys (Z, X, N, M) on the keyboard. The 
stimulus remained visible until the key press. Participants 
rested their index and middle fingers of each hand on the 
four keys so they were ready to respond.

Two versions of this task were generated, each contain-
ing two different underlying second-order conditional 12 
item sequences. The first two sequences were taken from 
Shanks et al. (2003): probable sequence A—314324213412; 
improbable sequence A—431241321423, while the sec-
ond sequences were taken from Schvaneveldt and Gomez 
(1998): probable sequence B—121342314324; improba-
ble sequence B—123413214243. In second-order condi-
tional sequences, each trial can be predicted based on the 
previous two trials (Schwarb & Schumacher, 2012). For 
each SRTT, each block started with the consecutive gen-
eration of two random digits (e.g., 21), with that bigram 
then followed by the digit in probable sequence A (e.g., 3) 
with 90% of probability or followed by the digit in improb-
able sequence A (e.g., 4) with 10% probability (after West 
et al., 2018, 2021). After each response a new bigram was 
created which continuously followed the same principles. 
See Additional Analyses 11 for a series of simulations 
manipulating (1) the overall number of trials and (2) the 
ratio between trials per condition.

The task comprised 1,000 trials per session, as in West 
et al. (2021), divided into 20 blocks of 50 trials each. 
Within each block, trials immediately followed the partici-
pants’ response, with no ISI. Breaks between blocks com-
prised a fixation cross presented centrally on screen for a 
random duration between 8 and 12 s. The stimuli were pro-
grammed in Psychopy 2 (Peirce et al., 2019); response 
accuracy and RT (from stimulus onset) were recorded.

Sequence similarity. Varying the degree of similarity 
between inputs was achieved by generating a new stimulus 
set for each participant (i.e., given the probabilistic nature 
of the SRTT, each participant was exposed to a different set 
of 1,000 trials). To achieve variability in the stimulus sets, 
half of the participants were exposed to stimuli that con-
formed to the same sequence structure at Sessions 1 and 
2 (A/A), while others were exposed to stimuli that were 
generated by different sequence structures at both time 
points (A/B) (see Figure 1). Crucially, due to the proba-
bilistic nature of the task, none of the participants was 
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exposed to the exact same stimulus set at both sessions, as 
new stimuli were generated per session. Furthermore, vari-
ability in the input was increased by randomly matching 
the digits of the sequence (1, 2, 3, 4) to a different position 
on screen (left, centre–left, centre–right, right). A measure 
of similarity of the resulting sequences actually presented 
to each participant was computed using the LD. LD com-
putes the minimum operations required (insertion, dele-
tion, and substitution) for both strings to be identical, thus 
providing an indication of similarity between stimulus sets 
(Levenshtein, 1966). The LD was calculated for each par-
ticipant by comparing the stimulus sets, that is, two sets of 
1,000 trials. Across participants, the LD between pairs of 
stimuli varied between 248 and 437. More details on the 
distribution of LD between sessions can be found in Addi-
tional Analyses 2. The similarity ratio index of the total 
number of triplets in common between sequences was also 
computed (Pasquali et al., 2019; Wierzchon et al., 2012). 
Given the use of second-order conditional sequences, 
whose minimum unit of sequential information is three 
sequential locations or triplets, this additional computation 
ensured that these triplets were captured by the LD scores. 
Pearson’s correlations between the LD scores and the 
similarity ratio index revealed a high correlation between 
measures (r = .86).

Procedure. All participants were tested individually or in a 
quiet testing room in groups of up to six. All participants 
performed the SRTT at both sessions (SRT1 refers to 
SRTT at Session 1; SRT2 for Session 2). Each session 
lasted approximately 30 min, with Session 2 occurring 
1 week after Session 1 for all but two participants, who 
were tested 9 and 10 days apart. Once the SRT2 task was 
completed, task enjoyment and explicit knowledge were 
assessed via a question and a generation task, to ensure 
that the levels of explicit awareness were equivalent to 
previous studies using probabilistic tasks (see Supplemen-
tary Materials 2).

Statistical analyses. R software—version 4.1.1 (Rstudio 
Team, 2020) and lme4 package (Bates et al., 2015) were 
used to perform two separate linear mixed effects analyses 

of the performance of the participants on the SRTT and all 
figures produced using the package ggplot2 (Wickham, 
2016). p-values were obtained for the linear mixed effects 
model using the lmerTest package (Kuznetsova et al., 
2017) and corrected for multiple comparisons using the 
Holm–Bonferroni method (Holm, 1979). All reported p 
values are non-adjusted; however, all analyses which have 
not survived correction for multiple comparisons after cor-
rection for familywise error rates have been stated.

For the following data analyses, RTs were grouped 
into epochs of five blocks, comprising 200 trials. The 
first two trials of each block were removed as these were 
not predictable since the sequence follows a higher order 
structure with the third trial being predicted based on the 
previous bigram (two trials). All incorrect trials were 
removed from the analyses. Due to the unequal number 
of probable and improbable trials, a moving criterion 
based on sample size was used to identify outlier RTs 
(Cousineau & Chartier, 2010; Van Selst & Jolicoeur, 
1994). Participants with overall RTs > 2.5 SD from over-
all mean were excluded from the analyses (based on z 
scores averaged across probable and improbable condi-
tions for each group/session separately). Two participants 
were removed from the analyses for both sessions while 
the remaining two participants were removed for one of 
the sessions.

As RTs were right-skewed based on visual inspection 
and tests of normality, a log transformation was used to 
normalise the distribution of RTs (Brysbaert & Stevens, 
2018). Visual inspection of the residual plots after log 
transformation did not reveal any obvious deviations from 
homoscedasticity or normality.

The fixed-effects structure represented the maximal-
fixed-effects structure. The random intercept structure 
included solely participants, as item order was not consist-
ent across participants due to randomisation procedures. 
The random structure followed the forwards best path 
approach (Barr et al., 2013) starting from the minimal 
intercepts-only structure and building the random structure 
according to likelihood-ratio tests (p < .2) (Barr et al., 
2013) and the Akaike information criterion (AIC; Akaike, 
1974) to avoid overfitting (Brewer et al., 2016).

Figure 1. Visual representation of the process of stimulus set generation.
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H1 and H2: the procedural learning effect and 
similarity

The first model—RT model, designed to explore the pro-
cedural learning skills of the sample, included the within-
group variables—probability (probable or improbable), 
epoch (contrasts between successive Epochs 2-1 [i.e., 
Epoch 2 vs Epoch 1], 3-2 [i.e., Epoch 3 vs Epoch 2], 4-3 
[i.e., Epoch 4 vs Epoch 3], 5-4 [i.e., Epoch 5 vs Epoch 4]), 
and Session (1 or 2) into a linear mixed effects model, with 
participants as a random effect, to account for participant 
variability in performing the SRTT, and Session, Epoch, 
and Probability as random slopes. The second model—
similarity model—was formulated to explore the relation-
ship between similarity and procedural learning in more 
detail. Due to the continuous nature of the similarity vari-
able, it was centred and standardised before running the 
analysis. In both models, the outcome variable is log-trans-
formed RTs to address issues of non-normality, although 
raw means are reported for ease of interpretation. The 
model with similarity included only RTs from the last three 
epochs to avoid the inclusion of epochs where procedural 
learning is not yet robust as suggested by Conway et al. 
(2019). Probability (probable or improbable), Session (1 
or 2), and Similarity were entered as fixed effects and 
Participants as a random effect. Thus, unlike the first 
model, Epoch was not included as the goal was to explore 
the role of similarity when procedural learning was more 
robust, independently of its progression across epochs. 
After building the random structure following the method 
previously described, Session and Probability were 
included as a random slope.

After model selection, the influence.ME package was 
used to detect influential data as these values may lead to 
changes in regression estimates (Nieuwenhuis et al., 2012). 
Dfbetas were standardised and participants whose z-scores 
were greater than ±3.29 were identified as influential 
cases as opposed to the 2.5 SD threshold to avoid loss of a 
high number of participants (Walker et al., 2020). Three 
participants were identified as influential cases for the 
response times model and four for the similarity model.

H3 and H4: reliability and agreement

Test–retest and split-half reliability of the RTs were ana-
lysed using Pearson’s correlations, with a reliability of .70 
or greater being considered adequate (Nunnally & 
Bernstein, 1994). Although we have compared our find-
ings against this arbitrary threshold, reliability should be 
viewed in a continuum. As poor reliability results in the 
attenuation of the effect sizes of interest, researchers 
should take these measurement issues into account when 
designing a study, especially when making design choices, 
such as the number of trials per individual per task, has a 
critical impact on the effect sizes within a task and 

correlations across tasks (Green et al., 2016; Rouder & 
Haaf, 2019). Two2 different indices of procedural learning, 
commonly used in previous studies, were computed to bet-
ter capture stability. Simple difference scores, the most 
commonly used measure for the SRTT, were computed for 
each participant as the simple difference between improb-
able and probable RTs, with a positive value indicating 
procedural learning. Random slopes for each participant/
session were obtained by running a linear mixed effects 
model with log transformed RTs as a dependent variable 
and Probability (probable or improbable) as a predictor, 
for the random structure participants were introduced as a 
random intercept and probability as a random slope 
(Lammertink et al., 2020; Llompart & Dąbrowska, 2020; 
Milin et al., 2017). Random slopes were computed as this 
measure better captures the learning trajectory for each 
participant and are less likely to be influenced by extreme 
scores.

To measure split-half reliability for both sessions, trials 
were separated into probable and improbable trials. 
Consecutive trials were labelled as odd or even. Split-half 
reliability was calculated by correlating the overall mean 
difference in RTs for even and odd trials. The split-half and 
test–retest reliability were computed both for the entire 
task and the last 600 trials, following the suggestion that 
the later stages of procedural learning may be more stable 
(Conway et al., 2019). Agreement was examined using the 
Bland–Altman method (Bland & Altman, 1986). The 
Bland–Altman method involves plotting the mean of the 
measures for each participant (e.g., (Diff2 + Diff 1)/2 
against the difference in the paired measurements in 
Sessions 2 and 1 (e.g., Diff2—Diff 1), with 95% of the 
data points being expected to lie within ±1.96 SDs of the 
mean difference, referred to as the 95% limits of agree-
ments. According to Bland and Altman (1999), while a 
consistent tendency in the scores where performance is 
superior in one of the sessions than the other can be 
adjusted for by subtracting the difference between sessions 
from the one with higher scores (bias), wide limits of 
agreement pose a more serious problem. Determining 
whether the limits are adequate will depend on how pre-
cise the instrument must be for its use in clinical or research 
settings.

Results

Data were available for 100/103 participants for Session 1 
and for 98/103 participants for Session 2. Data from five 
participants were lost due to computer malfunction and 
one due to a participant being unable to attend the second 
session. Four of these participants contributed data for one 
of the sessions, but two participants’ data were lost for 
both sessions. Three participants were identified as outli-
ers for each session. Data from 97 participants for Session 
1 and from 95 participants for Session 2 were therefore 
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included in the analysis. Participants showed high accu-
racy rates across sessions (Session 1: Macc = 95%, 
SD = .09; Session 2: Macc = 95%, SD = .08).

H1: procedural learning in the SRTT. Results from the mixed 
effects model are presented in Table 1. As evidenced in Fig-
ure 2, RTs decreased with practice as observed by faster RTs 
with successive epochs. There was evidence of procedural 
learning, with RTs faster for probable than improbable trials. 
This “procedural learning effect” increased over epochs, as 
shown by the significant interaction between Epoch × 
Probability for Epoch 2-1 (i.e., Epoch 2 vs Epoch 1), Epoch 
3-2 (i.e., Epoch 3 vs Epoch 2), and Epoch 4-3 (i.e., Epoch 4 
vs Epoch 3; no longer significant after correction for multi-
ple comparisons), but not for the last contrast, possibly indi-
cating a plateau in learning after Epoch 4. The significant 
interaction between Probability × Session, indicates that 

participants showed a larger procedural learning effect in 
Session 2 than Session 1, but this was not significant after 
correction for multiple comparisons. The absence of a three-
way interaction between Epochs × Probability × Session 
indicates that the within-session progression of procedural 
learning was similar for both sessions.

H2: the effect of similarity on procedural learning. In the 
model incorporating sequence similarity (results are pre-
sented in Table 2), a similar pattern of results was obtained 
in terms of significant effects of probability and session. 
Turning to the effect of similarity, in line with our predic-
tions, LD and LD × Probability were not significant pre-
dictors of RT, but there were Probability × Session × LD 
interactions. This indicates that greater similarity was asso-
ciated with larger procedural learning effects in Session 2. 
This was further examined by Pearson’s correlations 

Table 1. Predictors of the magnitude of procedural learning.

Fixed effects b SE t p CI

(Intercept) 6.074 0.013 474.610 <.001 6.049 6.100
Epoch 2-1 −0.019 0.004 −4.259 <.001 −0.028 −0.010
Epoch 3-2 0.008 0.004 2.130 .035 0.001 0.015
Epoch 4-3 −0.010 0.003 −3.001 .003 −0.017 −0.004
Epoch 5-4 −0.019 0.004 −4.921 <.001 −0.026 −0.011
Probability 0.024 0.001 15.806 <.001 0.021 0.027
Session 0.061 0.004 16.080 <.001 0.054 0.069
Epoch 2-1 × Probability 0.011 0.002 5.020 <.001 0.007 0.016
Epoch 3-2 × Probability 0.012 0.002 5.018 <.001 0.007 0.016
Epoch 4-3 × Probability 0.005 0.002 2.309 .021 0.001 0.010
Epoch 5-4 × Probability 0.004 0.002 1.653 .098 −0.001 0.008
Epoch 2-1:Session1 −0.017 0.004 −3.816 <.001 −0.025 −0.008
Epoch 3-2:Session1 −0.004 0.003 −1.392 .166 −0.010 0.002
Epoch 4-3:Session1 −0.012 0.003 −3.398 <.001 −0.019 −0.005
Epoch 5-4:Session1 −0.008 0.003 −2.328 .021 −0.015 −0.001
Probability × Session −0.002 0.001 −2.297 .022 −0.003 0.000
Epoch 2-1 × Probability × Session 0.001 0.002 0.618 .537 −0.003 0.006
Epoch 3-2 × Probability × Session −0.001 0.002 −0.396 .692 −0.005 0.004
Epoch 4-3 × Probability × Session −0.004 0.002 −1.638 .102 −0.008 0.001
Epoch 5-4 × Probability × Session 0.000 0.002 0.079 .937 −0.004 0.005

Random effects Variance SD

Participant: (Intercept) 0.0156 0.1250
Participant: Session (Slope) 0.0013 0.0360
Participant: Epoch 2-1 (Slope) 0.0014 0.0372
Participant: Epoch 3-2 (Slope) 0.0008 0.0291
Participant: Epoch 4-3 (Slope) 0.0006 0.0248
Participant: Epoch 5-4 (Slope) 0.0008 0.0286
Participant: Probability (Slope) 0.0002 0.0127
Participant: Session × Epoch 2-1 (Slope) 0.0013 0.0361
Participant: Session × Epoch 3-2 (Slope) 0.0004 0.0203
Participant: Session × Epoch 4-3 (Slope) 0.0006 0.0254
Participant: Session × Epoch 5-4 (Slope) 0.0006 0.0252

Indicated in bold are the contrasts that survived correction for multiple comparisons using the Holm–Bonferroni method.
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between the LD for each participant and their procedural 
learning effect (for each session separately). As expected, 
LD and procedural learning were not significantly corre-
lated in Session 1 (given sequence similarity between the 

two sessions should have no effect on Session 1), overall: 
r(91) = .09, p = .40, 95% CI = [−.12, .29]; last 600 trials: 
r(92) = .11, p = .271, 95% CI = [−.09, .31], but were moder-
ately negatively correlated in Session 2, overall: 

Figure 2. Mean response times for probable and improbable trials per epoch and session (Session 1 on the left and Session 2 on 
the right). Bars indicate 95% CI.

Table 2. Predictors of the similarity effect on the magnitude of procedural learning.

Fixed effects b SE T p CI

(Intercept) 6.068 0.013 474.508 <.001 6.042 6.068
Probability 0.033 0.002 19.253 <.001 0.030 0.033
Session 0.051 0.003 15.181 <.001 0.044 0.051
Levenshtein distance −0.016 0.015 −1.060 .292 −0.046 −0.016
Probability × Session −0.002 0.002 −1.524 .131 −0.006 −0.002
Probability × Levenshtein distance −0.003 0.002 −1.518 .133 −0.007 −0.003
Session × Levenshtein distance −0.005 0.004 −1.204 .232 −0.013 −0.005
Probability × Session × Levenshtein distance 0.006 0.002 3.178 .002 0.002 0.006

Random effects Variance SD

Participant (Intercept) 0.0145 0.120  
Participant: Session (Slope) 0.0009 0.030  
Participant: Probability (Slope) 0.0002 0.013  
Participant: Session × Probability (Slope) 0.0001 0.012  

Indicated in bold are the contrasts that survived correction for multiple comparisons using the Holm–Bonferroni method.
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r(91) = −.34, p < .001, 95% CI = [−.51., −.14]; last 600 tri-
als: r(91) = −.34, p < .001, 95% CI = [−.51, −.15]. This fur-
ther confirms that participants who were exposed to more 
similar sequences (i.e., lower LD) in Sessions 1 and 2 dem-
onstrated larger procedural learning effects in Session 2 
(Figure 3).

H3: reliability. Split-half reliability (see Table 3) was very 
similar in both sessions for the overall task and the last 600 
trials; using random slopes rather than raw difference 
scores as the metric of learning yielded numerically higher 
estimates of reliability. The split-half coefficients ranged 
from .55 to .71 (>.70 is considered adequate (Furr & 
Bacharach, 2008).

Test–retest reliability of the RTs themselves (e.g., the 
RT for probable trials in Session 1 with the RT for probable 
trials in Session 2) was high with a value equal or superior 
to .80. However, test–retest reliability of procedural learn-
ing effect was poor (r = .08–.17), irrespective of which 
measure was used and whether all RTs were included or 
just the final 600 trials (Table 4).

The levels of agreement between difference scores 
were explored via creating Bland–Altman plots (Figure 
4). The Bland–Altman plots for the difference scores 
reveal that very few data points lie outside the limits of 
agreement (−57.53, 55.47), with a mean difference of 
−1.03; 95% CI = [−7.03; 4.98]. However, although most 
data points lie within the limits of agreement, there are 
still considerable discrepancies between time points as 
evidenced by the poor precision of these limits, indicating 
a high degree of variance between sessions compared 
with between-subject variance, thus suggesting that the 

degree of agreement is not acceptable (Bland & Altman, 
1999).

H4: similarity and test–retest reliability. Following the sig-
nificant interaction between similarity and procedural 
learning, test–retest reliability was compared for partici-
pants with low and high sequence similarity scores 
(achieved by performing a median split). Test–retest relia-
bility was poor for both the high- and low-similarity 
groups, with no significant differences between groups 
(overall task: z = .83, p = .41; last 600 trials: z = .15, p = .88) 
(Table 5).

Also, we tested for the possibility that similarity might 
have an impact on test–retest reliability by including similar-
ity in a linear regression model which predicted the regres-
sion slopes in Session 2 from the regression slopes in Session 
1 (mean-centred), LD (mean-centred) and their interaction. 
We found no evidence that LD moderated the relationship 
between procedural learning Sessions 1 and 2. Although LD 
was predictive of the size of the effect in Session 2 (overall: 
b = −.37, SE = .11, t = −3.55, p < .001, 95% CI = [−.58, −.16]; 
last 600 trials: b = −.37, SE = .11, t = −3.47, p < .001, 95% CI 
= [−.58, −.16]), there was no significant interaction between 
procedural learning in Session 1 and LD, thus suggesting that 
similarity did not influence the test–retest reliability of the 
SRTT (overall: b = .06, SE = .09, t = .69, p = .493, 95% CI = 

Figure 3. Relationship between Levenshtein distance and 
difference scores for both sessions for all trials.

Table 3. Split-half reliability of the procedural learning 
measures for overall and last 600 trials of the SRTT for Session 
1 (SRT1) and Session 2 (SRT2).

Task Trials Split-half reliability

N Difference scores N Random slope

SRT1 1,000 95 r = .55 (.39, .67) 95 r = .68 (.56, .78)
Last 600 94 r = .50 (.34, .64) 94 r = .71 (.59, .80)

SRT2 1,000 91 r = .62 (.47, .73) 94 r = .70 (.58, .79)
Last 600 93 r = .55 (.39, .68) 93 r = .63 (.49, .74)

Split-half reliability correlations are significant (p < .05). SRTT: serial 
reaction time task.

Table 4. Test–retest reliability of the procedural learning 
measures for overall and last 600 trials of the SRTT.

Task Trials Test–retest reliability

N Difference 
scores

N Random 
slopes

SRT1–SRT2 1,000 91 r = .14
(−.06, .34)

91 r = .17
(−.04, .36)

Last 600 91 r = .08
(−.12, .28)

91 r = .17
(−.04, .36)

Test–retest reliability correlations are nonsignificant (p > .05). SRTT: 
serial reaction time task.
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[−.12, .24]; last 600 trials: b = −.006, SE = .11, t = −.06, 
p = .952, 95% CI = [−.22, .20]).

Discussion

Experiment 1 examined the reliability of the procedural 
learning effect, as captured by a probabilistic SRTT, and 
examined the impact of the similarity of the sequences on 
the magnitude and stability of procedural learning. As 
expected, robust procedural learning effects (i.e., faster 
responses to probable than improbable trials) were 
observed. However, the level of procedural learning in a 
subsequent session was substantially influenced by how 
similar the new sequence was to a previously learned 
sequence. That is, greater similarity between sequences 
was associated with larger procedural learning effects for 
the new sequences. Furthermore, despite observing ade-
quate levels of split-half reliability within each session 
(random slopes: .68−.72), test–retest reliability was very 

poor, regardless of the level of similarity between 
sequences (r < .18).

The positive correlation between the procedural learn-
ing effect and sequence similarity aligns with previous 
results (e.g., Siegelman & Frost, 2015). West et al. (2021) 

Figure 4. Plot of the procedural learning mean in Session 1 and Session 2 (x-axis) against the differences between these measures 
(y-axis). Black dashed line in the centre indicates the overall mean and the blues lines at the top and bottom represent 95% limits of 
agreement. Grey dashed lines represent CI around each measure.

Table 5. Test–retest reliability of the procedural learning 
measures for high and low-similarity groups measured for 
overall and the last 600 trials of the SRTT.

Similarity Random slopes Test–retest reliability

Trials N Random slopes

Low 1,000 46 r = .30 (.01, .55)
Last 600 46 r = .22 (−.08, .48)

High 1,000 47 r = .13 (−.17, .40)
Last 600 48 r = .20 (−.10, .46)

All correlations are nonsignificant (p > .05). SRTT: serial reaction time 
task.
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tested participants on a probabilistic SRTT, with a 3- to 
4-day interval between sessions, and found no significant 
differences in performance between sessions. However, 
West et al. used distinct sequences at test and retest with 
the aim of reducing practice effects. Together with the pre-
sent results, these studies suggest that the SRTT is prone to 
practice effects when subsequent sessions use similar 
sequences. The present study cannot speak of the 
mechanism/s that underlie the benefit of similarity on pro-
cedural learning. However, in light of the lack of evidence 
for a relationship between explicit awareness and the level 
of similarity between sequences (see Supplementary 
Materials 2), one possibility is that consolidated knowl-
edge of the first-learned sequence aids the acquisition of 
the second-learned sequence (Brown et al., 2009; Press 
et al., 2005; Robertson et al., 2004) or that knowledge of 
the first-learned sequence proactively interferes with the 
acquisition of the second-learned sequence (Desmottes 
et al., 2017).

The suboptimal test–retest reliability of the SRTT 
observed here is also generally consistent with previous 
findings. However, our test–retest coefficients were con-
siderably lower than Siegelman and Frost (2015; r = .47) 
and West et al. (2021; r = .70), irrespective of similarity 
between sequences at both time points. Our coefficients 
are more akin to those obtained by West et al. (2018, 2021) 
in children (r = .21; r = .26, respectively). The low test–
retest reliability of the SRTT is striking, particularly in the 
context of robust group-level procedural learning effects 
and despite high stability of overall RTs. One possibility is 
that difference scores, in general, are intrinsically less reli-
able than their component parts. This has been suggested 
by Hedge et al. (2018) as difference scores contain meas-
urement error from both measures which leads to an 
increase in the proportion of measurement error relative to 
between-subject variance. Yet, the limitations of using dif-
ference scores does not seem to pose as much of an issue 
when analysing the split-half reliability, nor does it explain 
the better test–retest reliability observed by Siegelman and 
Frost (2015) and West et al. (2018) despite also analysing 
difference scores. Furthermore, if difference scores were 
solely responsible for poor reliability, one would expect 
better outcomes for the random slopes. Unfortunately, that 
was not the case. Thus, other factors must contribute to the 
pattern of lower stability than split-half reliability.

It is possible that specific differences in design between 
our experiment and West et al. (2021) can account for the 
divergent findings. First, West et al. (2021) recruited older 
participants (18–61 years, M = 25.33 years, SD = 10.33 years) 
than in Experiment 2 (17–34 years, M = 20.09 years, 
SD = 2.09 years). This could have contributed to increasing 
the stability of the SRTT as test–retest reliability has been 
found to increase with age in intelligence measures 
(Schuerger & Witt, 1989). While presentation rates and age 
of participants have been shown to affect the procedural 

learning effect on the SRTT (presentation rates: e.g., Arciuli 
& Simpson, 2011; Emberson et al., 2011; Frensch & Miner, 
1994; Soetens et al., 2004; Willingham et al., 1997; age: 
e.g., Brown et al., 2009; Juhasz et al., 2019) there is no 
evidence, to our knowledge, of its impact on the test–retest 
reliability of the task. Second, West et al. (2021) included a 
250-ms ISI between trials, which was absent in our experi-
ment with the aim of reducing explicit awareness 
(Destrebecqz & Cleeremans, 2001). The inclusion of an 
ISI, however, could have contributed to the higher test–
retest reliability by inducing stronger representations of the 
sequence (Cleeremans & Sarrazin, 2007; Gaillard et al., 
2009), with explicit awareness possibly emerging as a con-
sequence of the increased signal strength (Cleeremans, 
2011; Timmermans et al., 2012). However, our data did not 
show indication that the magnitude of procedural learning 
was associated with explicit awareness (for more details 
see Supplementary Materials 2). Furthermore, a follow-up 
experiment (fully described in Supplementary Materials 4) 
replicated more closely the design adopted by West et al. 
(2021) by including a 250-ms ISI and participants with 
ages between 18 and 60 years. Yet, this experiment still 
revealed suboptimal test–retest reliability (r < 21). Explicit 
awareness levels were also similar between groups with 
and without an ISI. Taken together, this suggests that the 
superior reliability observed by West and colleagues (2021) 
may be explained by other design or sampling factors.

In sum, Experiment 1 obtained clear evidence of proce-
dural learning, which was larger in the second session, par-
ticularly when the second-learned sequences were more 
similar to the first-learned sequences. However, test–retest 
reliability of procedural learning was very poor regardless 
of the level of similarity between sequences. Another pos-
sibility, examined in Experiment 2, is whether this varia-
bility in the procedural learning effect across sessions will 
diminish with further training—that is, individuals will 
eventually reach a “plateau” which more accurately 
reflects their intrinsic procedural learning capacity. Given 
the lack of evidence for any impact of sequence similarity 
on reliability of the SRTT, and the larger procedural learn-
ing effect for those learning sequences with higher similar-
ity, sequences with high similarity were adopted in 
Experiment 2 to maximise the chances of participants 
reaching a “plateau” at an earlier stage of learning.

Experiment 2

Experiment 2 examined whether the inclusion of three ses-
sions would increase the test–retest reliability of the SRTT, 
since, as suggested by Conway et al. (2019) the poor reli-
ability of probabilistic procedural learning may be related 
to the measurement of earlier stages when learning might 
not be as robust. Palmer et al. (2018) have demonstrated 
patterns of increased stability on a variety of measures of 
cognitive ability commonly used to assess striatal 
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dysfunction by increasing the number of training sessions. 
They reported that practice effects diminished in patients 
with striatal impairments by the third session, thus increas-
ing the stability of the measures. Although Palmer et al. 
(2018) did not consider the SRTT, it is possible that it 
would follow a similar stabilisation trajectory, since the 
striatum has also been strongly implicated in performance 
on this task (Robertson et al., 2001; Torriero et al., 2004).

Experiment 2 also carried out a preliminary examina-
tion of the relationship between procedural learning and 
language and literacy. According to the Procedural/
Declarative model (Ullman et al., 2020; Ullman & 
Pierpont, 2005), performance on language measures (par-
ticularly grammar and phonology) and literacy measures 
(e.g., spelling, which requires procedural learning) should 
be associated with procedural learning. However, such 
correlations have not been consistently found in previous 
studies. If these correlations are masked by the low stabil-
ity of the SRTT and if incorporating multiple sessions 
increases stability, then stronger correlations would be 
expected with procedural learning effects measured at later 
sessions. This hypothesis is supported by West et al. 
(2021), who found, in their children’s sample, small to 
moderate correlations between linguistic/literacy meas-
ures and procedural learning captured in a second session, 
but not a first session.

Finally, Experiment 2 considered the role of attention 
in relation to procedural learning stability. An extensive 
literature has considered the role of attention in proce-
dural learning in the context of dual task paradigms. Such 
studies demonstrate a detrimental effect on procedural 
learning when participants simultaneously perform the 
SRTT alongside a secondary task (deterministic 
sequences: Coomans et al., 2014; Schumacher & Schwarb, 
2009; Shanks et al., 2003; probabilistic sequences: Shanks 
et al., 2005). In line with this, a positive correlation 
between sustained attention and procedural learning in 
children has been found by Sengottuvel and Rao (2013) 
and West and colleagues (2021). In the latter, it was also 
observed that the attentional demands of the SRTT may 
vary depending on the session: although attention was 
found to positively correlate with procedural learning at 
both sessions, stronger correlations were observed for 
Session 2. Furthermore, when attention was entered as a 
predictor of children’s attainment (on measures of read-
ing, grammar, and arithmetic), in a latent variable path 
model which also included the SRTT, measures of declar-
ative learning and attention, attention and declarative 
memory contributed unique variance, but the SRTT did 
not. This suggests that while the SRT may be a weak cor-
relate of language and related skills, this may be the result 
of overlapping variance with other variables, such as 
attention. This is further supported by the strong correla-
tion between attention and procedural memory (r = .56) 
observed in West et al. (2021).

However, in West et al. (2021), a 9-point observational 
rating scale was used to estimate the levels of attention 
throughout the SRTT, while Sengottuvel and Rao 
(Sengottuvel & Rao, 2013) assessed the offline attention 
skills through a two-choice RT task. For both attentional 
tasks information regarding their psychometric properties 
is lacking, with the operationalisation of attention used by 
West et al. (2021) potentially tapping into other constructs 
such as motivation/boredom required for children to 
remain focused on the task (e.g., R. S. J. d. Baker et al., 
2010; Godwin et al., 2016). Here, a direct measure of 
attention (i.e., a psychomotor vigilance task) was adopted 
to further explore the relationship between procedural 
learning and attention.

Experiment 2 used the same SRTT as in Experiment 1 
but on three separate sessions, to address three research 
questions and test the following accompanying preregis-
tered hypotheses (https://osf.io/yb3sv):

H1: Participants are expected to demonstrate evidence 
of procedural learning in all three sessions.

H2: Moderate to low test–retest reliability levels are 
expected between Sessions 1 and 2;

H3: If stability of performance increases with the num-
ber of sessions, test–retest reliability will be higher 
between Sessions 2 and 3 than between Sessions 1 and 
2;

H4: Split-half reliability will be higher for later sessions 
when compared with Session 1;

H5: Procedural learning is expected to correlate with 
language and literacy performance/scores in all 
sessions;

H6: Higher associations between language and proce-
dural learning will be expected in later sessions if the 
procedural learning effects are more reliable at later 
sessions;

H7: Participants with better attention skills will be 
expected to show more procedural learning;

H8: Higher correlations between procedural learning 
and attention are expected for later sessions.

No hypotheses were preregistered regarding how atten-
tion influences stability between sessions as, to our knowl-
edge, this has not been previously tested using the SRTT. 
Exploratory analyses were therefore performed to examine 
relationships between attention and stability.

Methods

Participants. Forty-seven young healthy adults aged 
between 17 and 34 years (M = 20.11 years, SD = 2.87 years) 

https://osf.io/yb3sv
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with language, literacy, and nonverbal intelligence within 
the average range (see Supplementary Materials 3) were 
recruited from the University of York. All participants 
were native English speakers based in the United Kingdom 
with normal or corrected-to-normal hearing, vision, and 
without motor impairments that may impede task perfor-
mance. Participants received payment or course credit as 
compensation. The experiment was approved by the Ethics 
Committee of the Psychology Department in the Univer-
sity of York and each participant gave written informed 
consent.

Measures
SRTT. The SRTT used in Experiment 1 was used here, 

with the exception that the 1,000 trials per session were 
distributed over 5 blocks rather than 20 to replicate the 
number of blocks adopted by West et al. (2018, 2021). 
The first two sequences adopted were the ones included in 
Experiment 1. A new pair of sequences was selected for the 
additional session. The sequences were taken from Kauf-
man et al. (2010): probable sequence E—121432413423; 
improbable sequence F—323412431421. These sequences 
were selected to have equivalent levels of similarity (as 
captured by LD) and the similarity was comparable to West 
et al. (2018, 2020) (Sequences 1–2: LD = 338; Sequences 
1–3: LD = 342; Sequences 2–3: LD = 374).

Sustained attention. A computerised 10-min Psychomo-
tor vigilance task (PVT; based on Reifman et al., 2018) 
was used to measure sustained or vigilant attention by 
recording response times (RTs) to visual stimuli presented 
at random intervals between 2 and 10 s ISI. When perform-
ing the PVT, participants are asked to press the spacebar 
as soon as a red counter appears on screen, which stops 
the counter and displays the RT in milliseconds for a 1-s 
period. Based on the study by Basner and Dinges (2011), 
the mean reciprocal response time (M 1/RT) was selected 
as the primary outcome as this measure shows the most 
superior statistical properties, that is, being sensitive to 
small changes in fast RTs and robust to extreme values 
(Basner & Dinges, 2011). Median RTs of the PVT were 
also adopted as these have shown to have good reliability 
>.80 in adults (Dorrian et al., 2005).

Beyond these measures on the PVT, performance vari-
ability, which may be masked by analyses based on mean 
performance, has been explored as a valuable source of 
information to better understand individual differences in 
learning (Henríquez-Henríquez et al., 2015). The 
Ex-Gaussian method allows the examination of the 
response time distribution both for the “mu” and “sigma” 
parameters of the Gaussian distribution, which represent 
the mean and standard deviation of the normal component 
of the distribution, but also “tau,” which represents the 
exponential component reflecting the slower response 

times, and is the tail of the distribution. Previous research 
has found that high indices of intraindividual variability, 
usually higher tau values, are characteristic of populations 
with attention-deficit/hyperactivity disorder (ADHD; 
Borella et al., 2011; Gooch et al., 2012). Thus, the “tau” 
measure was also computed since it has been proposed as 
a stronger marker of attention difficulties than basic RTs/
lapses (Castellanos et al., 2006). Hence, the “tau” metric 
would potentially better capture the association between 
procedural learning and attention.

Standardised measures. All cognitive measures were 
delivered and scored in accordance with manual instruc-
tions.

Nonverbal intelligence was assessed by the Matrix 
Reasoning subtest of the Wechsler Abbreviated Scale of 
Intelligence—Second Edition (WASI-II; test–retest relia-
bility, r = .82; Wechsler, 2011). This task consists of 30 
incomplete visual matrices and the participants are 
required to choose the item from a selection of five that 
correctly completes the matrix.

Expressive vocabulary was assessed using the 
Vocabulary subtest of the Wechsler Abbreviated Scale of 
Intelligence—Second Edition (WASI-II; test–retest relia-
bility, r = .90; Wechsler, 2011). This task requires partici-
pants to provide a definition for a series of words that 
increase in difficulty, presented both verbally and ortho-
graphically. Each answer is given a score of 0, 1, or 2 
points depending on the quality of the description.

Nonword repetition was assessed with the Comprehensive 
Test of Phonological Processing—2 (CTOPP-2; internal 
consistency alpha coefficient, r = .77; Wagner et al., 2013), 
providing a measure of phonological memory. Participants 
were told that they would hear nonwords (that increased in 
phonological complexity) via headphones and that they 
should repeat the nonword exactly.

Sentence repetition was measured with the Recalling 
Sentences task from the Clinical Evaluation of Language 
Fundamentals—Fifth Edition (CELF-5, test–retest relia-
bility, r = .94; Wiig et al., 2013) was used to assess indi-
viduals’ ability to repeat sentences of increasing length and 
complexity.

Reading and spelling were assessed with the Wechsler 
Individual Achievement Test, third edition UK (WIAT-
IIIUK; internal consistency coefficients r ⩾ .90; Wechsler, 
2009). For Word Reading, participants were asked to read 
aloud words and nonwords ordered in increasing diffi-
culty. Participants’ responses were audio-recorded and 
later scored. The Spelling subtest consists of a spelling-to-
dictation task containing regular and irregular words. 
Participants first heard the target word in isolation, then in 
the context of a sentence, and finally in isolation again. 
Dictation was conducted using a recording of a native 
female speaker.
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Procedure. A within-subjects design was used, with each 
participant performing the SRTT at three time points each 
separated by roughly 1 week (interval between Sessions 1 
and 2: M = 7.02 days, SD = 0.15; interval between Sessions 
2 and 3: M = 7.07 days, SD = .61). The three underlying 
sequences were counterbalanced across participants and 
sessions to avoid order effects.

All sessions started with the administration of the SRTT 
(duration ~15 min). Standardised tests were administered 
after the SRTT in each session (i.e., literacy and attention 
tests Session 1; language measures Session 2; nonverbal 
measure Session 3). A generation task was completed at 
the end of the final session, to capture explicit knowledge 
of the sequence learned in Session 3. Session 1 lasted 
roughly 1 hr; Sessions 2 and 3 were approximately 30 min.

Analyses
H1: mixed effects model—procedural learning. The same 

procedures adopted in Experiment 1 were adopted for data 
treatment and analyses in Experiment 2. The additional 
session allowed the exploration of its effects on the sta-
bility of procedural learning. For the three-level factor of 
session two orthogonal contrasts were set: lag1 which con-
trasts Session 1 with Sessions 2 and 3 (S1 vs S2 & S3) and 
lag2 contrasted the performance in Sessions 2 and 3. After 
model selection, three participants were identified as influ-
ential cases. The analyses reported include the influential 
cases as this led to no differences in result interpretation 
with only minor changes in the degree of significance.

H2–H4: reliability and agreement. As in Experiment 1, 
test–retest reliability was calculated between Sessions 1 
and 2 and Sessions 2 and 3 using difference scores and 
random slopes as measures of procedural learning. Agree-
ment was assessed through Bland–Altman plots.

H5–H8: relationship between procedural learning and cog-
nitive measures. Pearson’s correlations were conducted to 
explore the relationship between written and oral language 
measures and procedural learning. The Holm–Bonferroni 
method was used to correct for multiple comparisons 
(Holm, 1979). Based on the sensitivity analysis, this study 
has 80% power to detect correlations equal and above .35. 
As nonsignificant results may represent either lack of evi-
dence for a correlation or lack of power, Bayesian Pearson 
correlations will be computed alongside. Bayes factors 
above 3 or below ⅓ will be taken as support for the alterna-
tive or null, respectively; yet we recognise that Bayes fac-
tors should be interpreted in a continuum (Jeffreys, 1961).

Exploratory analysis of attention. Ex-Gaussian analy-
sis was performed on the PVT and the parameters were 
extracted using the package Retimes (Massidda, 2013). 
The Ex-Gaussian distribution is characterised by a mean 
mu, standard deviation sigma and exponential distribution 

with mean tau. In this analysis, we focus on the measure 
tau as it represents the skewness or variability of the slow 
responses. This measure has been shown to be a better pre-
dictor of performance than traditional response time meas-
ures on attention and inhibition tasks (Gooch et al., 2012; 
Henríquez-Henríquez et al., 2015; van Belle et al., 2015).

Results

All participants completed the three sessions each sepa-
rated by 1 week, with the exception that one participant 
completed Session 3, 11 days after Session 2 and another 
completed Session 2, 8 days after Session 1. Data from all 
participants were available for all sessions except for one 
participant who missed Session 3. The remaining data 
were included in the analyses. The performance of two 
other participants was identified as an outlier, one for 
Session 1 and another for Session 3. Similar to Experiment 
1, high levels of accuracy were observed across sessions 
(Session 1: Macc = 97%, SD = .02; Session 2: Macc = 96%, 
SD = .03; Session 3: Macc = 95%, SD = .04).

H1: procedural learning in the SRTT—effect of session. Par-
ticipants’ RTs decreased with practice (Figure 5 and Table 
6) as evidenced by significant main effects of Epoch for 
contrasts Epoch 2-1 (no longer significant after correction 
for multiple comparisons) and Epoch 5-4 and Session for 
both contrasts (Delay1: Session 1 vs Session 2 and 3; 
Delay2: Session 2 vs Session 3). It is unclear why response 
times decreased in Epoch 5; however, we hypothesise that 
fatigue may have contributed to individuals prioritising 
speed over engaging with the task as demonstrated by the 
drop in the procedural learning effect (Epoch 5-4 × Prob-
ability). Importantly, there was a main effect of Probabil-
ity, as response times were faster for probable than 
improbable trials. This difference in probable and improb-
able response times increased with practice as evidenced 
by a significant Epoch × Probability interaction (with the 
exception of the final epoch), as well as a significant Ses-
sion × Probability interaction. Yet, the interaction between 
Session × Probability for Delay2 was no longer signifi-
cant after correction for multiple comparisons.

Despite this improvement in procedural learning with 
practice, the three-way interaction between Epochs × 
Probability × Session was only significant for Delay1 for 
Epoch 3-2 and Epoch 4-3 (also no longer significant after 
correction for multiple comparisons), thus indicating a sig-
nificant increase in procedural learning in Sessions 2 and 3 
for Epoch 3-2 relative to Session 1. This difference 
between Session 1 and Sessions 2/3 for Epoch 3-2 is appar-
ent in Figure 5. The nonsignificant interaction for Delay2 
(Session 2 vs Session 3) indicates that, despite the overall 
gains in procedural learning from Sessions 2 to 3, the dif-
ference between sessions was not observed at the epoch 
level (Figure 5).
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H2–H4: reliability. As shown in Tables 7 and 8 and similar 
to Experiment 1, split-half reliability for the SRTT was 
numerically higher when using slope coefficients com-
pared with raw difference scores and ranged from low 
(r = .23) to excellent (r = .91; Cicchetti, 1994; Cicchetti & 
Sparrow, 1990). This difference reached significance in 
the third session for both contrasts (p < .001).

As in Experiment 1, overall response times were highly 
stable across sessions (probable trials, rs = .82–.89; 
improbable trials, rs = .79–.83) but the procedural learning 
effect showed poor stability between Sessions 1 and 2, as 
reported in Table 8. Although there was a numerical 
improvement in stability between Sessions 2 and 3 which 
was most evident for the regression slope metric, this 
numerical increase in stability was not statistically signifi-
cant (overall: z = −0.38, p = .70; last 600 trials: z = −1.08, 
p = .28).

The Bland–Altman’s 95% limits of agreement range 
between −40.47 and 54.03 for Sessions 1 and 2 and 
between −37.62 and 45.03 for Sessions 2 and 3 (Figure 6). 
Almost all participants fell within the limits of agreement; 
however, the limits of agreement lacked precision (i.e., the 
magnitude of the procedural learning effect lacks consist-
ency whereby performance on one session is not 

necessarily replicated in another possibly reflecting a high 
degree of measurement), thus revealing poor agreement 
between measures. Yet, the Bland–Altman plot for 
Sessions 2 and 3 shows narrower limits of agreement, indi-
cating an improvement in agreement for later sessions.

H5–H8: relationship between procedural learning and cogni-
tive measures. The random slopes were used as a measure 
of procedural learning for analyses of individual differ-
ences as this method of calculation demonstrated the high-
est split-half and test–retest reliability, especially between 
Sessions 2 and 3 (see Additional Analyses 5 for the Bayes 
factors and credible intervals for the bivariate correlations 
between procedural learning and cognitive measures).

Procedural learning was not significantly correlated 
with nonverbal IQ (Session 1: r = −.08, BF10 = 0.38; Session 
2: r = .09, BF10 = .39; Session 3 = .22, BF10 = .87); thus, non-
verbal IQ was not used as a covariate in subsequent 
analyses.

Language and literacy. Vocabulary (r = .39) was the only 
significant language or literacy correlate of procedural 
learning and only in Session 3, indicating that participants 
with higher vocabulary skills also demonstrated greater 

Figure 5. Mean and 95% CI response times for probable and improbable trials per Epoch and Session (Session 1 on the left, 
Session 2 in the centre, and Session 3 on the right).
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Table 6. Predictors of the additional session on the magnitude of procedural learning.

Fixed effects b SE t p CI

(Intercept) 6.051 0.017 347.667 .000 6.016 6.087
Epoch 2-1 −0.009 0.004 −2.135 .037 −0.018 −0.001
Epoch 3-2 −0.002 0.004 −0.620 .538 −0.010 0.005
Epoch 4-3 0.006 0.004 1.397 .167 −0.002 0.014
Epoch 5-4 −0.021 0.004 −5.099 .000 −0.029 −0.012
Probability 0.039 0.002 21.674 .000 0.035 0.043
Delay1 (S1 vs S2 and S3) −0.045 0.003 −14.568 .000 −0.051 −0.039
Delay2 (S2 vs S3) −0.020 0.004 −5.271 .000 −0.028 −0.012
Epoch 2-1 × Probability 0.014 0.003 5.438 .000 0.009 0.019
Epoch 3-2 × Probability 0.010 0.003 4.042 .000 0.005 0.015
Epoch 4-3 × Probability 0.021 0.003 8.047 .000 0.016 0.027
Epoch 5-4 × Probability −0.008 0.003 −2.763 .006 −0.013 −0.002
Epoch 2-1 × Delay1 0.013 0.002 7.406 .000 0.010 0.017
Epoch 3-2 × Delay1 0.001 0.002 0.828 .408 −0.002 0.005
Epoch 4-3 × Delay1 −0.001 0.002 −0.442 .659 −0.005 0.003
Epoch 5-4 × Delay1 0.003 0.002 1.524 .128 −0.001 0.007
Epoch 2-1 × Delay2 0.004 0.003 1.404 .160 −0.002 0.010
Epoch 3-2 × Delay2 0.003 0.003 0.954 .340 −0.003 0.009
Epoch 4-3 × Delay2 0.001 0.003 0.257 .797 −0.006 0.007
Epoch 5-4 × Delay2 −0.007 0.003 −2.185 .029 −0.014 −0.001
Probability1 × Delay1 0.004 0.001 6.757 .000 0.003 0.005
Probability1 × Delay2 0.003 0.001 2.556 .011 0.001 0.005
Epoch 2-1 × Probability × Delay1 0.001 0.002 0.367 .714 −0.003 0.004
Epoch 3-2 × Probability × Delay1 0.005 0.002 2.644 .008 0.001 0.008
Epoch 4-3 × Probability × Delay1 −0.005 0.002 −2.427 .015 −0.008 −0.001
Epoch 5-4 × Probability × Delay1 0.001 0.002 0.331 .741 −0.003 0.004
Epoch 2-1 × Probability × Delay2 −0.002 0.003 −0.668 .504 −0.008 0.004
Epoch 3-2 × Probability × Delay2 0.002 0.003 0.494 .621 −0.005 0.008
Epoch 4-3 × Probability × Delay2 0.002 0.003 0.516 .606 −0.005 0.008
Epoch 5-4 × Probability × Delay2 −0.001 0.003 −0.403 .687 −0.008 0.005

Random effects Variance SD

Participant (Intercept) 0.0004 0.113
Participant: Delay1 (Slope) 0.0006 0.019
Participant: Delay2 (Slope) 0.0006 0.024
Participant: Block2-1 (Slope) 0.0004 0.024
Participant: Block3-2 (Slope) 0.0004 0.020
Participant: Block4-3 (Slope) 0.0004 0.020
Participant: Block5-4 (Slope) 0.0001 0.019
Participant: Probability (Slope) 0.0410 0.010

Indicated in bold are the contrasts that survived correction for multiple comparisons using the Holm–Bonferroni method. CI: confidence interval.

Table 7. Split-half reliability for the procedural learning measures per session (SRT1, Session 1; SRT2, Session 2; SRT3, Session 3).

Task Trials Split-half reliability

N Difference scores N Random slopes

SRT1 1,000 45 .60*** (.38, .76) 45 .77*** (.61, .87)
Last 600 44 .56*** (.31, .73) 45 .66*** (.45, .80)

SRT2 1,000 45 .55*** (.30, .72) 47 .55*** (.31, .72)
Last 600 46 .36* (.08, .59) 47 .56*** (.32, .73)

SRT3 1,000 43 .23 (−.07, .50) 44 .81*** (.67, .89)
Last 600 45 .32 (.02, .56) 45 .91*** (.84, .95)

*p < .05. ***p < .001.
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procedural learning. However, this correlation did not 
survive Holm–Bonferroni correction (see Table 9). None-
theless, Bayesian correlations revealed that there was evi-
dence against the null hypothesis (BF10 = 7.55).

Attention. A positive and significant correlation was 
observed between procedural learning and sustained atten-
tion for Sessions 1 (median: r = −.28; BF10 = 1.46, recipro-
cal: r = .30, BF10 = 1.90) and 2 (median: −.45, BF10 = 29.88; 
reciprocal: r = .49, BF10 = 64.40); this association was 

smaller and nonsignificant for Session 3 (median: r = −.25, 
BF10 = 1.11; reciprocal: r = .25, BF10 = 1.15). As shown in 
Table 8, there were negative and nonsignificant correla-
tions for the tau parameter, which indexes intraindividual 
variability (M = 63.84, SD = 28.73) for all sessions (SRT1: 
r = −.18, BF10 = .63; SRT2: r = −.14, BF10 = .48; SRT 3: 
r = −.19, BF10 = .68).

Given the negative relationship between attention and 
procedural learning, whereby individuals with better atten-
tional skills showed better procedural learning, correla-
tions between tau and SRTT stability were explored to 
examine whether individuals with high levels of intraindi-
vidual variability in attention would also show less stabil-
ity in the SRTT. Using a medium split approach, the sample 
was divided into high- and low-tau groups. With respect to 
Sessions 1 and 2, moderate stability was found for both 
low-tau (r = .29) and high-tau (r = .42) groups (the numeri-
cal difference was nonsignificant: z = −.33, p = .74). 
However, there was a marked difference between low- and 
high-tau groups for test–retest stability across Sessions 2 
and 3, with the low tau group showing higher test–retest 
stability (r = .73) than the high-tau group (r = .26). 
Importantly, the difference between these correlations was 

Table 8. Pairwise test–retest reliability of the procedural 
learning measures.

Tasks Trials Test–retest reliability

Difference scores Random slopes

SRT1–SRT2 1,000 .22 (−.07, .49) .28 (−.01, .53)
Last 600 .25 (−.04, .51) .42** (.14, .64)

SRT2–SRT3 1,000 .15 (−.15, .43) .41** (.13, .62)
Last 600 .30* (.01, .55) .60*** (.37, .76)

*p < .05. **p < .01. ***p < .001.

Figure 6. Plot of the mean of the two measurements against the differences between procedural learning in (a) Session 1 and 2 
and (b) Sessions 2 and 3.
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statistically significant: z = 2.07, p = .04. That is, partici-
pants with lower intraindividual variability on the measure 
of sustained attention were also those with more stable 
procedural learning effects on the SRTT across Sessions 2 
and 3.

Discussion

Experiment 2 examined the stability of procedural learn-
ing over three sessions, as well as the relationship between 
procedural learning and attention and language measures. 
As in Experiment 1, the procedural learning effect was 
robust in all sessions. While there was some evidence of a 
numerical increase in reliability for the later sessions for 
both split-half and test–retest reliability, these improve-
ments were not statistically significant, and stability 
remained suboptimal. Procedural learning positively and 
significantly correlated with sustained attention and, to a 
lesser extent, vocabulary, with the latter not surviving cor-
rection for multiple comparisons.

As predicted, the test–retest reliability of the SRTT 
showed numerical (but not statistical) improvements 
across sessions, with stability slightly higher for later ses-
sions. Indeed, the highest level of stability in the current 
experiment was between Sessions 2 and 3 when using 
random slopes as the index of learning, r = .60 (.37, .76). 
This is more akin to the stability reported by Siegelman 
and Frost (2015; r(76) = .47) and West et al. (2021; 
r(46) = .70), although in these studies this level of stability 
was found across two sessions rather than three. Overall, 
the highest stability was observed when focusing on the 
procedural learning effect on the last three epochs, which 
aligns with Conway and colleagues’ (2019) suggestion 

that the inclusion of earlier stages of procedural learning, 
when learning is not yet robust, may reduce test–retest 
reliability. Nonetheless, the linear mixed effects model 
and the Bland–Altman plots indicate that, even though 
increasing the number of sessions reduced practice effects, 
there was still a significant procedural learning improve-
ment between Sessions 2 and 3. This may indicate that 
additional sessions may be required to reach a plateau in 
procedural learning; while this would be theoretically 
important to ascertain, it would limit the practical utility 
of using the SRTT in clinical or developmental research. 
Furthermore, it is unclear whether the superior reliability 
for later sessions results from participants having more 
training opportunities or more consolidation opportuni-
ties. Future research would be needed to examine what 
underlies the better stability across time. This pattern was 
observed despite adopting distinct, though similar, 
sequences at each session, with the aim of reducing prac-
tice effects (Palmer et al., 2018). In a recent meta-analysis 
on retest effects in working memory tasks, improvements 
in performance were observed until the 7th session, yet 
they were no longer significant after the 4th administra-
tion (Scharfen et al., 2018). Trial variability (i.e., the vari-
ance in the response times for probable and improbable 
trials) also decreased across sessions, further suggesting 
that measurement error decreased across sessions, with an 
increase in the signal-to-noise ratio (Chen et al., 2021; 
Rouder & Haaf, 2019). Nevertheless, it should be empha-
sised that the increase in stability over sessions observed 
here was not statistically significant. Finally, with the pre-
sent sample size of approximately 50 participants, we 
cannot be completely confident in the point estimates (as 
suggested by the sensitivity analyses conducted in 

Table 9. Correlation matrix between procedural learning and cognitive measures.

Measures Procedural learning
Session 1

Procedural learning
Session 2

Procedural learning
Session 3

Procedural learning
All Sessions

Age .22 (−.08, .49) −.04 (−.33, .25) −.05 (−.34, .24) .04 (−.25, .33)
Literacy
 Word reading .04 (−.27, .33) .014 (−.16, .41) −.002 (−.30, .30) .08 (−.21, .36)
 Nonword reading .02 (−.28, .32) .08 (−.21, .36) .06 (−.24, .35) .11 (−.18, .39)
 Spelling .20 (−.11, .47) .25† (−.05, .50) .03 (−.27, .32) .22 (−.08, .48)
Language
 Vocabulary −.08 (−.37, .22) .11 (−.18, .39) .39**a (.11, .61) .23 (−.06, .48)
 Nonword repetition −.04 (−.33, .26) −.10 (−.38, .19) −.24 (−.50, .06) −.23 (−.48, .06)
 Recalling −.16 (−.43, .15) −.15 (−.42, .15) −.29† (−.53, .01) −.24† (−.50, .05)
Nonverbal IQ
 Matrix reasoning −.08 (−.37, .24) .09 (−.21, .38) .22 (−.08, .49) .07 (−.23, .36)
Attention
 PVT median −.28† (−.53, .02) −.45**a (−.66, −.19) −.25 (−.51, .05) −.45**a (−.66, −.19)
 PVT reciprocal .30* (.00, .55) .49***a (.23, .68) .25† (−.05, .51) .49***a (.24, .69)
 PVT tau −.18 (−.46, .13) −.14 (−.41, .16) −.19 (−.47, .11) −.28† (−.53, .01)

†p < .10; *p < .05; **p < .01; ***p < .001; bold—Correlations that survived correction for multiple comparisons. PVT: psychomotor vigilance task.
aCorrelations with Bayes factor equal or bigger than 3.
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Supplementary Materials 1). Thus, this effect warrants 
replication in future work.

Contrary to our hypotheses, there was minimal evi-
dence of an association between procedural learning and 
language. We found only a moderate correlation that did 
not survive correction for multiple comparisons, between 
procedural learning and vocabulary Session 3. It is worth 
noting that this aspect of language is proposed to be more 
highly associated with declarative than procedural mem-
ory (Ullman, 2004). Notably, and also counter to Ullman 
(2004), there were no associations between procedural 
learning and measures of grammar, phonology, and decod-
ing. As with previous studies that have failed to find robust 
associations, it may be that the suboptimal test–retest reli-
ability of the SRTT results in an underestimation of the 
true effect size (Rouder et al., 2019).

The most robust association in the present experiment 
was between attention and procedural learning, particu-
larly in Sessions 1 and 2. This finding is consistent with 
the results obtained by Sengottuvel and Rao (2013) and 
West et al. (2021), and points to attentional resources play-
ing a facilitatory effect in the magnitude and stability of 
procedural learning on the SRTT as individuals with lower 
intraindividual variability (as indexed by tau) showed bet-
ter stability, particularly for later sessions. The decrease in 
the magnitude of the correlation between attention and 
procedural learning in Session 3 may be related to the find-
ings obtained by Thomas and colleagues (2004), which 
demonstrated that a decrease in parietal activity, a brain 
region which plays a role in visual attention and spatial 
orienting, occurred once the sequence became more pre-
dictable. Thus, tentatively, the smaller correlation in 
Session 3 may indicate that as the sequence became more 
predictable with increasing practice, this worked to reduce 
reliance on attentional resources (Thomas et al., 2004). 
However, it remains for future research to test this hypoth-
esis directly.

General discussion

Procedural learning is thought to be a fundamental compo-
nent of the memory system, crucial for encoding, storing, 
and retrieving rule-governed knowledge that underlies 
motor and cognitive abilities (Cohen & Squire, 1980). 
Research into this vital memory system is often reliant on 
the SRTT; however, questions have been raised about the 
reliability of this task. Here, we present a systematic exam-
ination of the reliability of procedural learning as meas-
ured by the SRTT, with the important aim of identifying 
extrinsic design features (i.e., similarity of sequences 
learned over sessions, number of sessions, stimulus pres-
entation rate) and participant characteristics (i.e., attention, 
age, see Supplementary Materials 4) that could influence 
reliability. In Experiment 1, manipulation of the levels of 
similarity between sequences learned at Sessions 1 and 2 

revealed a positive relationship between similarity and the 
procedural learning effect, yet the participant-level stabil-
ity of the effect was low irrespective of similarity. A fol-
low-up to this found that despite further manipulations of 
sample (age) and task (ISI) characteristics (see 
Supplementary Materials 4) the test–retest reliability of 
the SRT remained low. Experiment 2 examined the effect 
of training over three sessions. However, irrespective of 
experimental manipulations and participant characteris-
tics, the test–retest reliability of the SRTT remained persis-
tently suboptimal (r < .70). When all participants who 
performed the SRTT without an ISI (N = 184) were 
included in the analyses to obtain an overall estimate of 
reliability across experiments, the test–retest reliability 
was still well below acceptable standards, random slopes, 
600 trials: r = .33 (.19, .45); see more details in 
Supplementary Materials 1.

Importantly, the issue of reliability of procedural learn-
ing tasks is not specific to the SRTT, as other measures of 
procedural memory have also been found to show poor 
reliability (e.g., artificial grammar learning: Kalra et al., 
2019; probabilistic classification task: Kalra et al., 2019; 
Hebb task: West et al., 2018; auditory and visual statistical 
learning tasks: Arnon, 2020). Weak correlations among 
different tasks thought to index procedural memory 
(Arnon, 2020; Kalra et al., 2019; Siegelman & Frost, 2015; 
West et al., 2018) have led researchers to question unitary 
accounts of procedural memory, in support of more com-
ponential views (Arciuli, 2017). Yet, it is unlikely that cor-
relations between these measures would emerge, even if 
they capture the same underlying construct given that the 
degree of attenuation is impacted by the poor reliability of 
both measures (Spearman, 1910). Beyond this, the issues 
with reliability are not specific to procedural memory, with 
similar findings reported for other classic, widely used 
experimental paradigms in cognitive psychology (e.g., 
Stroop task, Flanker task: Haines et al., 2020; Hedge et al., 
2018; von Bastian et al., 2020). This phenomenon is 
referred to as the “reliability paradox” (Hedge et al., 2018), 
where experimental paradigms known for eliciting robust 
effects fail to capture stable individual differences. The 
reliability paradox is thought to be a consequence of the 
use of experimental tasks in individual differences research 
which have been designed to reduce variability between 
individuals to ensure that the phenomenon of interest is 
captured. Unfortunately, this reduction in between-subject 
variability has consequences for individual differences as 
it limits the ability of a test to differentiate between indi-
viduals (Hedge et al., 2018).

The use of difference scores has been suggested as a 
contributing factor to poor reliability as such scores can 
reduce the signal-to-noise ratio (Hedge et al., 2018). 
Despite the debates surrounding the limitations of adopt-
ing difference scores as indices of the construct of interest 
(Hedge et al., 2018), differences scores were used in this 
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experiment to estimate split-half reliability often produced 
within-session stability estimates between .50 and .93, 
with the exception of the third session of Experiment 2, 
thus, revealing mostly adequate internal consistency in 
participants’ performance between halves (odd-numbered 
and even-numbered trials). Furthermore, the use of ran-
dom slopes as an index of procedural learning did not sig-
nificantly improve reliability. Importantly, this suggests 
that one should not dismiss difference scores as being 
intrinsically unreliable. This also raises a clear distinction 
between within-session and across-session stability in the 
SRTT. Higher within- than across-session stability of the 
SRTT has been found in previous studies of children and 
adults (e.g., West et al., 2018, 2021), with this pattern mir-
rored in studies using other measures of sequential learn-
ing (Hebb task—e.g., Bogaerts et al., 2018; West et al., 
2018; statistical learning e.g., Arnon, 2019—although this 
pattern was only found for a visual version of the task and 
not for linguistic/nonlinguistic versions). One simple 
explanation for why we observe higher within-session 
than across-session reliability could be due to temporal 
differences, such that there is a decrease in the magnitude 
of correlations between trials as the number of intervening 
trials increases (Wagenmakers et al., 2004). More specifi-
cally, while short-scale fluctuations are present when com-
puting split-half reliability where even–odd trials are 
compared, more distant points are compared for the test–
retest reliability which, in the present studies, occurred 
1 week apart.

However, this explanation does not account for why we 
do not see the same disparity between within- and across-
session stability for declarative tasks (Buchner & Wippich, 
2000; LeBel & Paunonen, 2011; Ward et al., 2013). Kalra 
et al. (2019) and West et al. (2018) observed that the test–
retest reliability of all procedural learning measures was 
inferior to those of declarative measures. In West et al. 
(2018), for example, test–retest reliability for the nonver-
bal immediate serial recall and dot locations tasks test–
retest .71 and .57 and split-half reliability was .68 and .76, 
respectively. This is perhaps in part due to the complex 
nature of procedural learning itself and the multifaceted 
nature of the tasks used to measure this poorly defined 
construct (Bogaerts et al., 2021). Addressing this issue is 
made even more complex by the interchangeable use of 
tasks (e.g., Artificial Grammar Learning, Weather 
Prediction task) that are claimed to tap into procedural 
memory as a unified ability, despite their computational 
and modality differences.

Recently, it has been argued that poor test–retest relia-
bility of some tasks (e.g., Stroop task, Flanker test), well 
known for producing robust effects at the group level, may 
be related to the methods adopted to analyse their psycho-
metric properties. Haines and colleagues (2020) show 
adequate test–retest reliability when using Bayesian hier-
archical modelling which more closely captures individu-
als’ performance and accounts for within-subject 

variability, but suboptimal test–retest reliability when 
using difference scores. In these models, instead of ignor-
ing uncertainty, as is the case when using point estimates 
(e.g., mean), which may underestimate test–retest reliabil-
ity, hierarchical Bayesian models aim to closely represent 
the data generating process. By using generative model-
ling, a single model is able to integrate information at the 
individual and group levels when estimating parameters, 
accounting for our assumptions and hypotheses from the 
trial-by-trial response times at the individual level to the 
overall distribution of individual differences across people 
(see Haines et al., 2020). Yet here we aimed to explore the 
impact of experimental manipulations on reliability using 
statistical methods/measures comparable to previous 
research (i.e., by estimating the procedural learning effect 
separately for each session). Future studies may aim to 
apply the methods applied by Haines et al. (2020) to the 
SRTT to determine whether it would better capture the sta-
bility of the procedural learning effect across sessions.

Previous studies have noted an association between 
attention and procedural learning (Arciuli, 2017; 
Sengottuvel & Rao, 2013; Shanks & St. John, 1994; West 
et al., 2021); however, here, we carried out the first inves-
tigation of whether attention influences the stability of pro-
cedural learning. Exploratory analyses in Experiment 2 
and the Supplementary Experiment (see Supplementary 
Materials 4) suggest that participants with better attention 
skills (lower tau) showed more stable procedural learning 
across sessions than those with worse attention. Thus, 
these results may lend support to the hypothesis that fluc-
tuations in attention during the task could lead to lower 
test–retest reliability. One interesting prediction that arises 
here is that fluctuations of attention may exert lower 
impact on split-half reliability as this type of stability 
would be captured by both halves of the task due to the 
time proximity between even and odd trials. This warrants 
a systematic assessment of the attention skills during the 
SRTT using online measures of attention such as pupil-
lometry to better determine its relationship with procedural 
learning both within and across sessions. A second inter-
esting prediction here is that if attentional skills influence 
the stability of procedural learning on the SRTT task, then 
children would be expected to show poorer test–retest reli-
ability than adults as their attentional skills are under 
development (Levy, 1980). Indeed, this pattern of lower 
retest reliability has been observed in children by West 
et al. (2018, 2021), despite somewhat comparable split-
half reliability to adults, children: West et al., 2018—
SRT1, r = .75; SRT2, r = .49 (500 trials); West et al., 
2021—SRT1, r = .51; SRT2, r = .62 (1,000 trials); adults: 
West et al., 2021—SRT1, r = .84; SRT2, r = .92 (1,000 
trials).

Fluctuations in procedural learning over time may also 
be related to changes in performance between measure-
ment points due to individual differences in consolidation 
and other learning-related strategies adopted at test and 
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retest. This could also account for the higher within- than 
across-session stability. In line with this, Scharfen et al. 
(2018), in a recent meta-analysis observed that participants 
reached a plateau later in working memory tasks compared 
with other cognitive ability tests. Authors argued that more 
complex tasks lead to larger retest effects because more 
test-specific strategies can be developed compared with 
easier tasks for which strategies do not apply. In the SRTT, 
this may be accompanied by, or occur due to the develop-
ment of explicit awareness, as suggested by Stark-Inbar 
et al. (2017). Thus, the numerically higher test–retest reli-
ability for later sessions observed in Experiment 2 would 
be expected given that participants’ may be reaching a pla-
teau in their learning effect—seen as a reduction in the 
practice effects for later sessions. In addition, the strategies 
adopted for later sessions would potentially be more simi-
lar as most participants would already possess some 
awareness of the presence of an underlying sequence. 
Future research may aim to explore the trajectory of learn-
ing on the SRTT across sessions until no practice effects 
are observed and its impact on reliability. Alternatively, 
participants could be asked to perform the SRTT in an ini-
tial practice session until each reaches a plateau in perfor-
mance, only then reliability would be assessed in two 
separate sessions. However, as a first step, due to the small 
sample size of Experiment 2 and our sensitivity analysis 
suggesting that a sample size of at least 100 participants is 
necessary to obtain a more precise estimate of the test–
retest reliability, future work is required to determine 
whether the superior reliability in later sessions emerges 
under similar experimental conditions.

It is important to consider the extent to which poor 
across-session reliability of procedural learning on the 
SRTT may impact our ability to adequately test the predic-
tions of models of language and literacy acquisition, 
namely the declarative/procedural model (Ullman, 2004). 
This model predicts that the procedural memory system is 
involved in the development of language and literacy abili-
ties that underlie aspects of rule-based learning. Yet, given 
that procedural learning tasks may fail to capture partici-
pants’ true procedural learning abilities, attenuation of the 
correlation between the constructs of interest is likely to 
occur. Thus, unsurprisingly, Experiment 2 provided no sup-
port for the declarative/procedural model (Ullman, 2004). 
While there was a weak positive correlation between proce-
dural learning and vocabulary (which would not necessar-
ily be a firm prediction of the declarative/procedural 
model), there were no other significant correlations with 
other language/literacy measures that have been claimed by 
this model to be associated with procedural learning (i.e., 
grammar, phonological skills). Nevertheless, a positive 
relationship between procedural learning and attention was 
observed in Experiment 2 (and also in the experiment pre-
sented in Supplementary Materials 4), irrespective of the 
reliability issues and possible attenuation of correlations 

between measures. Thus, it is also possible that this result 
reflects a genuine lack of support for the declarative/proce-
dural model (Ullman, 2004) and/or poor measurement of 
procedural learning (Enkavi et al., 2019).

Finally, individual differences research assumes that 
there are stable differences between individuals in the con-
struct of interest which may influence individuals’ accu-
mulated experience/learning over the long term, which, if 
adequately captured, would likely result in adequate stabil-
ity. However, it is possible that the poor reliability of the 
procedural learning effect does not reflect a problem with 
the paradigm. Instead, this may indicate that there is insuf-
ficient variability in the procedural learning effect, as it 
may be sufficient for a minimum level of procedural learn-
ing ability to facilitate acquisition of cognitive and motor 
skills and habits. Therefore, the magnitude of the differ-
ence scores may carry only limited meaning, instead it 
may be more important whether the individual is able to 
extract any knowledge from the task, irrespective of its 
magnitude. This is in line with Reber’s (1989) proposal 
that procedural learning due to being evolutionarily old 
differs substantially from declarative memory as it is 
expected to show little between subject-variability. 
Following from this, if individuals do not differ enough 
from one another, then measurement fluctuations will lead 
to substantial changes in ranking order.

While the various experimental attempts to improve the 
test–retest reliability of the SRTT were not effective here, 
there are other potential manipulations to explore. For 
instance, a critical design element of SRTTs is the number 
of trials. We carried out a preliminary exploration of this 
factor with simulation work presented in Additional 
Analyses 1 and demonstrated that the ratio of probable to 
improbable trials can influence test–retest reliability. 
While researchers have considered the number of trials in 
the SRTT (e.g., West et al., 2021), the focus tends to be on 
the overall number of trials, rather than the number of tri-
als per condition as recommended by Rouder et al. (2019). 
Further experimental work is necessary to determine 
whether increasing the number of trials in the improbable 
condition could reduce measurement error, while consid-
ering the potential consequences for the size of procedural 
learning effect. Furthermore, considering the findings by 
West et al. (2021), which suggest that attention during the 
SRTT, but not procedural learning, predict children’s read-
ing, grammatical, or arithmetic skills, it is crucial to deter-
mine if attention mediates the relationship between 
procedural learning and language/literacy measures or 
whether poorer attentional skills represent an additional 
risk factor for procedural learning deficits in children/
adults with Dyslexia.

Finally, Bayesian hierarchical models have been shown 
to be useful in estimating the degree of attenuation in cor-
relations between measures (e.g., attentional control; 
Rouder & Haaf, 2019; von Bastian et al., 2020), with trial 
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noise and true variability being estimated separately 
(Rouder & Haaf, 2019). Future research would benefit 
from exploring the use of these approaches for procedural 
learning. Regardless of the consistent suboptimal test–
retest reliability of the procedural learning effect, the 
SRTT has reliably produced robust evidence of learning 
across populations and settings. Thus, while the current set 
of experiments challenges its suitability for individual dif-
ferences research (Enkavi et al., 2019), there is little doubt 
that the SRTT is still a valuable paradigm for group-level 
experiments.

In conclusion, the probabilistic SRTT used here pro-
duced robust procedural learning effects across three 
experiments, irrespective of samples and testing condi-
tions. Yet, despite some weak evidence of improvement in 
stability due to the experimental manipulations presented 
here, it remains suboptimal. Future research should focus 
on understanding (1) the discrepancy between within- and 
across-session reliability (e.g., temporal dynamics, con-
solidation processes) and (2) whether there are more sensi-
tive analytical methods that can be used to assess 
across-session reliability (e.g., Haines et al., 2020). It will 
also be important to further investigate the potential role of 
attention in procedural learning, particularly in individuals 
vulnerable to poor attention (e.g., including those with 
dyslexia/DLD). Thus, until these questions are answered, 
it is not possible to use the SRTT to test the boundaries of 
the Procedural/Declarative model.
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2. Ratio scores were also computed taking individual differ-
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by their improbable RTs (Ratio 2; Urry et al., 2018). These 
yielded lower reliability than the regression slope scores; 
full details are reported in Additional Analyses 8.
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